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Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015)] developed an ab initio theory of temperature-
dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point
renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a
stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced
by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions.
We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization
including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted
optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate
from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and
indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment
and with previous calculations. In this work we also establish the formal connection between the Williams-Lax
theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and
of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic
ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect
transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature
and for calculating temperature-dependent optical properties using high-level theories such as GW and Bethe-
Salpeter approaches.
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I. INTRODUCTION

The electron-phonon interaction plays a central role in the
optical properties of solids. For example, electron-phonon
couplings lead to the temperature dependence and the quantum
zero-point renormalization of the critical point energies, to
temperature-dependent broadening of light absorption and
emission line shapes, and to indirect optical transitions.

Recently, it has become possible to study these effects using
ab initio calculations. The phonon-induced renormalization
of band gaps and band structures was investigated from first
principles in Refs. [1–13] starting from the theory of Allen
and Heine (AH) [14]. The optical absorption in indirect-gap
semiconductors was studied from first principles in Ref. [15]
using the classic theory of Hall, Bardeen, and Blatt (HBB) [16],
and in Ref. [17] using the theory of Williams [18] and Lax [19]
(WL). A review of the standard formalism and the of most
recent literature can be found in Ref. [20].

In this manuscript, we focus on the WL theory, and on
how to perform accurate and efficient ab initio calculations
of temperature-dependent band gaps and optical spectra in
semiconductors and insulators using the WL formalism. In
its original formulation, the WL theory was employed to
study the vibrational broadening of the photoluminescence
spectra of defects in solids [18,19]. In a recent work, we
showed that the same theory can successfully be employed
for predicting temperature dependent optical spectra and band
gaps in semiconductors, including phonon-assisted indirect
absorption [17]. The reason for this success is that a per-
turbative treatment of the WL theory naturally leads to the
adiabatic approximations of the AH and the HBB theories.
In fact, as it was shown in Ref. [17], the AH theory of
temperature-dependent band structures can alternatively be

derived from the WL theory by neglecting the optical matrix
elements. Similarly, the adiabatic limit of the HBB theory of
indirect optical absorption can be derived from the WL theory
by retaining only one-phonon processes. The relations between
the WL, the HBB, and the AH theory will be analyzed in detail
in Sec. V.

In the WL theory [17–19,21,22], the effect of quantum
nuclear motion on the optical properties is described by first
calculating the optical spectrum evaluated at clamped nuclei,
and then taking the expectation value of this quantity over a
given nuclear wave function. The temperature is introduced
by performing a canonical average over all possible nuclear
quantum states. Formally, this approach corresponds to a
“semiclassical” Franck-Condon approximation, whereby the
initial quantum states are described by Born-Oppenheimer
products of electronic and nuclear wave functions, and the
final quantum states are replaced by a classical continuum.
This approach is related to but does not coincide with the
standard adiabatic approximation. An extensive discussion of
the formalism and its limit of applicability can be found in
Refs. [19,22].

The key advantages of the WL method are (i) the calcu-
lations are simple and can be performed as a post-processing
step on top of any electronic structure code. (ii) The formalism
is agnostic of the level of theory used to describe optical
excitations at clamped nuclei; therefore the same procedure
can be used with any level of theory (e.g., independent-particle
approximation, random-phase approximation, GW /Bethe-
Salpeter), so long as the optical process can be described by
means of Fermi’s golden rule. (iii) The method seamlessly
combines the AH theory of temperature-dependent band
structure and the HBB theory, of phonon-assisted indirect
optical absorption.
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The two main disadvantages of the WL method are (i)
the calculations require the use of supercells in order to
accommodate phonon wave vectors within the first Brillouin
zone. (ii) The evaluation of expectation values over the
nuclear wave functions requires calculations for many nuclear
configurations. In Refs. [17,21], the latter issue was addressed
by using a stochastic approach based on importance-sampling
Monte Carlo integration. In this manuscript, we further im-
prove the configurational averaging by replacing the stochastic
approach of Ref. [17] with a fully deterministic method. In
particular, we demonstrate that it is possible to choose a
single configuration of the nuclei yielding at once the band
structure renormalization and indirect optical absorption at a
given temperature. In order to demonstrate this method, we
report applications to silicon, diamond, and gallium arsenide.
Our calculated spectra and temperature dependent band gaps
compare well with previous calculations and with experiment.
For completeness, we also provide a detailed analysis of the
relation between the WL, the AH, and the HBB theories.

The organization of the manuscript is as follows. In Sec. II,
we briefly outline the WL expression for the temperature-
dependent dielectric function, and summarize the “one-shot”
procedure for evaluating this expression using a single atomic
configuration. In this section, we also show our main results
for the optical absorption spectra of Si, C, and GaAs in order to
emphasize the simplicity and effectiveness of the formalism.
In Sec. III, we develop the formalism, which is used to select
the optimal atomic configuration in the one-shot calculations
of Sec. II. In particular, we prove that our optimal configuration
yields exact results in the limit of infinite supercell size.
In Sec. IV, we extend the concepts of Sec. III by showing
that it is possible to deterministically select further atomic
configurations in order to control and systematically reduce the
error resulting from the configurational averaging. In Sec. V,
we discuss the link between the WL theory of temperature-
dependent optical spectra, the AH theory of temperature-
dependent band structures, and the HBB theory of indirect
optical absorption. In Sec. VI, we present our calculations of
temperature-dependent band gaps for silicon, diamond, and
gallium arsenide. Section VII reports all computational details
of the calculations presented in this manuscript. In Sec. VIII,
we summarize our key findings and indicate avenues for future
work. Lengthy formal derivations and further technical details
are left to Appendices A–D.

II. ONE-SHOT METHOD AND MAIN RESULTS

In this section, we outline the procedure for calculating
temperature-dependent optical spectra using one-shot frozen-
phonon calculations. For clarity, we also anticipate our main
results on silicon, diamond, and gallium arsenide, leaving all
computational details to Sec. VII.

In the WL theory, the imaginary part of the dielectric
function of a solid at the temperature T is given by [17]

ε2(ω; T ) = Z−1
∑

n
exp(−En/kBT )〈ε2(ω; x)〉n. (1)

In this expression, En denotes the energy of a nuclear quantum
state evaluated in the Born-Oppenheimer approximation, kB

is the Boltzmann constant, and Z = ∑
n exp(−En/kBT ) is

the canonical partition function. The function ε2(ω; x) is the
imaginary part of the macroscopic, electronic dielectric func-
tion, evaluated at clamped nuclei. For notational simplicity, we
indicate the set of all atomic coordinates by x. In the following,
we denote by N the total number of atomic coordinates. In
Eq. (1), each expectation value 〈· · · 〉n is taken with respect to
the quantum nuclear state with energy En, and involves a multi-
dimensional integration over all atomic coordinates. A detailed
derivation of Eq. (1) can be found in Sec. 9.2 of Ref. [22].

In order to focus on quantum nuclear effects and
temperature shifts, we here describe the dielectric function at
clamped nuclei using the simplest possible approximations,
namely the independent-particle approximation and the
electric dipole approximation:

ε2(ω; x) = 2π

meNe

ω2
p

ω2

∑
cv

∣∣px
cv

∣∣2
δ
(
εx
c − εx

v − �ω
)
. (2)

In this expression, me is the electron mass, Ne is the number
of electrons in the crystal unit cell, ωp is the plasma frequency,
and ω the photon frequency. The factor 2 is for the spin
degeneracy. The sum extends to the occupied Kohn-Sham
states |vx〉 of energy εx

v , as well as the unoccupied states |cx〉
of energy εx

c . The superscripts are to keep in mind that these
states are evaluated for nuclei clamped in the configuration
labeled by x. The matrix elements of the momentum operator
along the polarization direction of the photon is indicated as
px

cv . In the present case, we use nonlocal pseudopotentials and
a scissor operator, therefore the momentum matrix elements
are modified following Ref. [23], as described in Sec. VII. In
all the calculations presented in this manuscript, the dielectric
functions are obtained by first evaluating Eqs. (1) and (2) for
each Cartesian direction, and then performing the isotropic
average over the photon polarizations.

In principle, Eq. (1) could be evaluated using the nuclear
wave functions obtained from the solution of the nuclear
Schrödinger equation with electrons in their ground state. This
choice would lead to the automatic inclusion of anharmonic
effects. However, for conciseness, in the present work we
restrict the discussion to the harmonic approximation.

In the harmonic approximation, every many-body nuclear
quantum state can be expressed as a product of Hermite func-
tions, and the atomic displacements can be written as linear
combinations of normal coordinates [24]. By exploiting the
property of Hermite polynomials and Mehler’s formula [25],
the summation in Eq. (1) is exactly rewritten as follows [22]:

ε2(ω; T ) =
∏

ν

∫
dxν

exp
(−x2

ν /2σ 2
ν,T

)
√

2πσν,T

ε2(ω; x). (3)

Here the product runs over all the normal coordinates xν . In
this and all following expressions, it is understood that the
three translational modes with zero vibrational frequency are
skipped in the sums. We indicate the vibrational frequency
of the νth normal mode by 	ν . The corresponding zero-point
vibrational amplitude is given by lν = (�/2Mp	ν)1/2, where
Mp is a reference mass that we take equal to the proton mass.
Using these conventions, the Gaussian widths in Eq. (3) are
given by

σ 2
ν,T = (2nν,T + 1) l2

ν , (4)
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where nν,T = [exp(�ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν /2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 	ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount �τκα , with

�τκα = (Mp/Mκ )
1
2

∑
ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.
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supercells, using density-functional theory (DFT) in the local
density approximation (LDA) and a scissor correction; all
computational details are provided in Sec. VII. Our present
results for Si in Fig. 1(a), obtained using a single atomic
configuration, are in perfect agreement with those reported in
Ref. [17] using importance-sampling Monte Carlo integration.
In Fig. 1(a), we see that the spectrum calculated with the nuclei
clamped in their equilibrium positions exhibit absorption
only above the direct gap, as expected. At variance with
these calculations, our one-shot calculation based on the WL
theory correctly captures indirect transitions. In particular, this
calculation is in good agreement with experiment throughout
a wide range of photon energies [29,30]. This agreement
surprisingly extends over seven orders of magnitude of the
absorption coefficient. However, we should point out that
our adiabatic theory does not capture the fine structure
close to the absorption onset: there the nonadiabatic HBB
theory gives two different slopes for phonon absorption
and emission processes [15,31]. Near the onset for direct
transitions, our calculation underestimates the experimental
data. This behavior is expected since we are not including
electron-hole interactions, which are known to increase the
oscillator strength of the E1 peak near 3.4 eV [32].

In Fig. 1(b), we show our WL calculation for diamond.
In this case, our method correctly captures the absorption
in the indirect range, however, we observe more pronounced
deviations between theory and experiment than in the case
of Si. We assign the residual discrepancy to the inability of
DFT/LDA to accurately describe the joint density of states of
diamond. In fact, in contrast to the case of silicon, in diamond a
simple scissor correction is not enough to mimic quasiparticle
corrections [36]. For example, the GW corrections to the
X1c, L1c, and L3c states of Si are all in the narrow range
between 0.66 and 0.75 eV; instead the GW corrections to the
same states of diamond span a broader range, between 1.47
and 2.04 eV [36]. This is expected to lead to a significant
redistribution of spectral weight precisely in the range of
photon energies considered in Fig. 1(b). Also in this case the
strength of the E1 peak near 7.3 eV is underestimated due
to our neglecting electron-hole interactions [32]. In Fig. 1(b),
we are reporting two sets of experimental data [30,33]. These
data exhibit different intensities near the absorption edge (at
energies <5.7 eV). According to Ref. [30], the intensity of the
absorption coefficient for energies below 6.5 eV is not fully
reliable. Our calculated spectrum is in closer agreement with
the data from Ref. [33], which exhibit a sharper absorption
edge. This comparison suggests that our present method might
prove useful for the validation of challenging experiments,
especially near the weak absorption edge. As in the case of
Fig. 1(a), the fine structure features close to the absorption
onset are absent in our calculation.

In Fig. 1(c), we compare the absorption coefficient
calculated for GaAs with experiment [34,35]. This
example clearly demonstrates that our WL calculation
correctly describes the absorption spectrum of a direct-gap
semiconductor. In this case, the shape of the absorption
coefficient is not altered, as expected, but the spectrum is
redshifted as a result of the zero-point renormalization of
the band structure. Also in the case of GaAs the calculated
absorption coefficient underestimates the measured values.

10−4

10−3

10−2

10−1

100

1.0 1.5 2.0 2.5 3.0 3.5

ε 2
(ω

)

Photon Energy h̄ω (eV)

iS)a(

0 K

2×2×2
4×4×4

8×8×8

-250

-200

-150

-100

-50

0

2 4 6 8

Z
P

R
(m

e
V

)

Supercell size

10−4

10−3

10−2

10−1

100

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

ε 2
(ω

)

Photon Energy h̄ω (eV)

C)b(

0 K

2×2×2

4×4×4

8×8×8

-600
-550
-500
-450
-400
-350
-300

2 4 6 8

Z
P

R
(m

e
V

)

Supercell size

10−3

10−2

10−1

100

101

1.5 2.0 2.5 3.0 3.5

ε 2
(ω

)

Photon Energy h̄ω (eV)

sAaG)c(

0 K

2×2×2

4×4×4

8×8×8

-50

-40

-30

-20

-10

0

2 4 6 8

Z
P

R
(m

e
V

)

Supercell size

FIG. 2. Convergence of the WL dielectric function as a function
of supercell size: (a) Si, (b) C, and (c) GaAs. The grey curves are
for calculations using 2 × 2 × 2 supercells; blue solid lines indicate
calculations using 4 × 4 × 4 supercells; thick red solid lines are
for 8 × 8 × 8 supercells. Each curve was obtained using a single
calculation, in the configuration specified by Eq. (5). For Si and
C the electronic Brillouin zone was sampled using 1920, 240, and
30 k points for the 2 × 2 × 2, 4 × 4 × 4, and 8 × 8 × 8 supercells,
respectively. In the case of GaAs, a finer sampling was required, and
we used 6400, 800, and 100 k points, respectively. The calculations
were performed using a Gaussian broadening of 30 meV for Si and
C and of 50 meV for GaAs. The insets show the band gap extracted
from the Tauc plots. These values automatically include zero-point
renormalization.
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This is partially a consequence of our neglecting of excitonic
effects [37], but most importantly it is a consequence of the
inability of DFT/LDA to accurately describe the effective
masses of GaAs. In fact, according to the standard theory of
absorption in direct-gap semiconductors [38], the absorption
coefficient scales as (m∗)3/4, where m∗ is the average isotropic
effective mass. Since DFT calculations for GaAs yield masses,
which are up to a factor of 2 smaller than in experiment, we
expect a corresponding underestimation of the absorption
coefficient by up to a factor of 23/4 ∼ 2. This estimate is in
line with our results in Fig. 1(c). We note that this issue is
not found in the case of Si [Fig. 1(a)], since the DFT/LDA
effective masses of silicon are in surprising agreement with
experiment [39]. We also note that for GaAs our calculation
correctly predicts phonon-assisted absorption below the direct
gap. This phenomenon is related to the Urbach tail [40].

After discussing the comparison between our calculations
and experiment, we briefly comment on the computational
effort and the numerical convergence. Figure 2 shows the
imaginary part of the WL dielectric function of Si, C, and GaAs
evaluated at zero temperature using the procedure outlined
in the previous page. In order to achieve convergence we
performed calculations for supercells of increasing size, from
2 × 2 × 2 to 8 × 8 × 8. It is clear that large supercells are
required in order to obtain converged results. Increasing the
supercell size has the twofold effect of refining the sampling
of the electron-phonon coupling in the equivalent Brillouin
zone, and of approaching the limit where Eq. (5) becomes
exact. In Fig. 2, we also report the band gaps of Si, C,
and GaAs as extracted from ε2(ω) using the standard Tauc
plots [41]. These results are in agreement with previous
work and will be discussed in Sec. VI. From this figure we
see that our methodology correctly describes the zero-point
renormalization of the band gap of both direct- and indirect-
gap semiconductors.

From Figs. 1 and 2, it should be apparent that, apart from
the inherent deficiencies of the DFT/LDA approximation, with
our new method it is possible to compute optical spectra and
band gaps in both direct and indirect semiconductors including
electron-phonon interactions, at the cost of a single supercell
calculation with clamped nuclei. In the following sections, we
develop the theory underlying our computational approach,
and we provide an extensive set of benchmarks.

III. FORMAL JUSTIFICATION OF EQ. (5)

In this section, we provide the rationale for the choice of
the optimal configuration given by Eq. (5). We start from a
heuristic argument, and then we provide a formal justification.

A. Heuristic approach

According to Eq. (3), the WL dielectric function can be
interpreted as the average of ε2(ω; x) over the N standard nor-
mal random variables xν/σν,T . Let us consider the sum of the
squares of these variables, q2 = ∑

ν(xν/σν,T )2. The random
variable q2 follows by construction the χ2 distribution [42].
Owing to the central limit theorem, the χ2 distribution tends
to a normal distribution for N → ∞. More specifically, in
the limit of large N , the variable (q2 − N )/(2N )1/2 follows a
standard normal distribution. As a result, as N increases, the

variable q2 becomes strongly peaked at N , with a standard
deviation N1/2 [43]. As a sanity check, we verified these
limits numerically by generating one million random atomic
configurations for a 4 × 4 × 4 supercell of diamond. Based on
these considerations, we infer that for large N the integration
in Eq. (3) is dominated by atomic configurations such that∑

ν(xν/σν,T )2 = N . This same conclusion can alternatively
be reached be rewriting the integral in Eq. (3) as the product
of an integral over the “radial” variable q, and an integral
over a generalized “angular” variable which runs over the
(N−1)-dimensional sphere of radius q.

In the absence of information about the electron-phonon
coupling constants of each vibrational mode, we must assume
that all modes are equally important in the evaluation of the
integral in Eq. (3). Therefore the most representative sets of
coordinates for evaluating the integral in Eq. (3) are those
satisfying the condition xν/σν,T = ±1 with ν = 1, . . . ,N .
This is precisely what we observed in the importance-sampling
Monte Carlo calculations reported in Ref. [17]. A similar
conclusion was reached in Ref. [12], where the concept of
“thermal lines” was introduced. Here we do not follow up on
the idea of thermal lines since, as we prove below, there exists
one atomic configuration, which yields the exact temperature-
dependent dielectric function in the limit of large N . If we
were to choose a single configuration to evaluate the integral
in Eq. (3), in absence of information about the electron-phonon
couplings the least-biased choice would correspond to taking
random signs for each normal coordinate. This reasoning
formed the heuristic basis for the choice made in Eq. (5).

B. Formal proof

We now proceed to demonstrate that Eq. (5) is not just a
sound approximation, but it is indeed the optimal configuration
for evaluating Eq. (3) using a one-shot calculation. To this aim,
we perform a Taylor expansion of ε2(ω; x) in the variables xν ,
and then evaluate each integral

∫
dxν in Eq. (3) analytically.

The result is

ε2(ω,T ) = ε2(ω) + 1

2

∑
ν

∂2ε2(ω; x)

∂x2
ν

σ 2
ν,T + O(σ 4). (6)

In this expression, ε2(ω) denotes the dielectric function
evaluated for nuclei clamped in their equilibrium positions,
and the term O(σ 4) is a short-hand notation to indicate all
terms of the kind σ 4

ν,T and higher powers.
We now consider the dielectric function calculated with

the nuclei clamped in the positions specified by Eq. (5). We
denote this function by ε1C

2 (ω; T ), with “1C” standing for “one
configuration.” Another Taylor expansion in the normal mode
coordinates yields:

ε1C
2 (ω; T ) = ε2(ω) +

∑
ν

(−1)ν−1 ∂ε2(ω; x)

∂xν

σν,T

+1

2

∑
νμ

(−1)ν+μ−2 ∂2ε2(ω; x)

∂xνxμ

σν,T σμ,T

+1

6

∑
νμλ

(−1)ν+μ+λ−3 ∂3ε2(ω; x)

∂xνxμxλ

σν,T σμ,T σλ,T

+O(σ 4). (7)
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By comparing Eqs. (6) and (7), we see that ε1C
2 (ω; T ) and

ε2(ω; T ) do coincide up to O(σ 4) if the following conditions
hold: (i) the summations on the first and third lines of Eq. (7)
vanish and (ii) all terms ν 	= μ in the second line of the same
equation vanish.

In general the conditions (i) and (ii) do not hold, therefore
calculations of ε1C

2 (ω; T ) and ε2(ω; T ) will yield very different
results. However, these conditions are fulfilled in the limit
N → ∞, as we show in the following. To this aim, let us
consider the summation on the first line of Eq. (7). We focus
on two successive terms in the sum, ν and ν + 1. Assuming a
vibrational density of states (vDOS), which is nonvanishing
up to the highest vibrational frequency, when N → ∞,
then 	ν+1 − 	ν → 0, therefore these modes are effectively
degenerate, and hence must exhibit the same electron-phonon
coupling coefficients. Under these conditions, we can write

(−1)ν−1 ∂ε2(ω; x)

∂xν

σν,T + (−1)ν+1−1 ∂ε2(ω; x)

∂xν+1
σν+1,T


 ∂ε2(ω; x)

∂xν

σν,T (−1)ν−1[1 + (−1)] = 0. (8)

This reasoning can be repeated for every pair of vibrational
modes (ν,ν + 1) appearing in the first line of Eq. (7). If N is
even, then this proves that the sum on the first line vanishes. If
N is odd, then there is one mode left out, but the contribution
of this one mode is negligibly small for N → ∞. If there are
gaps in the vDOS, then the above reasoning remains valid by
considering separately the frequency ranges where the vDOS
is nonzero. This completes the proof that the sum in the first
line of Eq. (7) vanishes in the limit of large N .

The summation in the third line of Eq. (7) can be analyzed
along the same lines, after noticing that one can rearrange the
sum as follows:

∑
ν

⎡
⎣1

6

∑
μλ

(−1)μ+λ−3 ∂3ε2(ω; x)

∂xνxμxλ

σν,T σμ,T σλ,T

⎤
⎦(−1)ν . (9)

Also in this case we can consider any pair of successive
eigenmodes ν and ν + 1 and repeat the reasoning made above
for the first line of Eq. (7). The result is that for N → ∞ the
entire sum must vanish.

If we now consider the second line of Eq. (7), the sum of the
terms with ν 	= μ must vanish for large N . In fact, the second
derivatives ∂2ε2(ω; x)/∂xμ∂xν and ∂2ε2(ω; x)/∂xμ∂xν+1 enter
the sum with opposite signs, therefore their contribution
vanishes in the limit N → ∞. On the other hand, when ν = μ,
two successive terms in the sum contribute with the same sign,
yielding 2 1

2∂2ε2(ω; x)/∂x2
ν . These contributions lead precisely

to the second term on the right-hand side (r.h.s.) of Eq. (6).
Taken together, Eqs. (6)–(9) and the above discussion

demonstrate that our single-configuration dielectric function,
ε1C

2 (ω; T ), and the exact WL dielectric function, ε2(ω; T ), do
coincide to O(σ 4) for N → ∞. It is not difficult to see that
this result can be generalized to all orders in σν,T , therefore
the following general statement holds true: in the limit of large
supercell, the dielectric function evaluated with the nuclei
clamped in the configuration specified by Eq. (5) approaches

the WL dielectric function, Eq. (3). In symbols,

lim
N→∞

ε1C
2 (ω; T ) = ε2(ω; T ). (10)

This result forms the basis for the methodology presented in
this manuscript. The importance of the equivalence expressed
by Eq. (10) resides in that it allows us to calculate dielectric
functions at finite temperature using a single atomic configu-
ration. This represents a significant advance over alternative
techniques such as, for example, path-integral molecular
dynamics, importance-sampling Monte Carlo, or the direct
evaluation of each term in Eq. (6) using frozen-phonon
calculations for each vibrational mode.

We emphasize that, while we have proven the limit in
Eq. (10), we have no information about the convergence rate of
ε1C

2 (ω; T ) towards the exact result ε2(ω; T ). In principle, this
rate could be estimated a priori by inspecting the convergence
of the Eliashberg function [1] with the sampling of the
Brillouin zone in a calculation within the primitive unit cell.
In practice, we found it easier to directly calculate ε1C

2 (ω; T )
for supercells of increasing size. Convergence tests for Si, C,
and GaAs were reported in Fig. 2. It is seen that, for these
tetrahedral semiconductors, converged results are obtained for
8 × 8 × 8 supercells. We emphasize that in Fig. 2, ε1C

2 (ω; T )
is given in logarithmic scale; in a linear scale, the differences
between a 4 × 4 × 4 and an 8 × 8 × 8 calculation would be
barely discernible.

Calculations using the largest supercells in Fig. 2 are
obviously time-consuming. However, one should keep in mind
that each line in this figure corresponds to a single calculation
of the dielectric function at clamped nuclei, therefore this
method enables the incorporation of temperature at low
computational cost, and removes the need of configurational
sampling.

In the insets of Fig. 2, we also presented the zero-point
renormalization of the fundamental gaps of Si, C, and
GaAs. These gaps were directly obtained from the calculated
ε1C

2 (ω; T ) using the standard Tauc plots [41]. Details will be
discussed in Sec. VI; here we only point out that also the band
gaps are calculated by using a single atomic configuration in
each case. To the best of our knowledge, this is the first time
that calculations of temperature-dependent band gaps using a
single atomic configuration have been reported.

IV. IMPROVEMENTS USING CONFIGURATIONAL
AVERAGING

There might be systems for which calculations using large
supercells are prohibitively time-consuming, and the limit in
Eq. (10) is practically beyond reach. For these cases, it is
advantageous to extend the arguments presented in Sec. III
to calculations using more than one atomic configuration. In
this section, we show how it is indeed possible to construct a
hierarchy of atomic configurations in order to systematically
improve the numerical evaluation of Eq. (3) at fixed supercell
size.

We restart by considering atomic configurations specified
by the normal coordinates xν = sνσν,T , where the signs sν =
+1 or −1 are yet to be specified. A Taylor expansion as in
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Eq. (7) yields

εS
2 (ω; T ) = ε2(ω) +

∑
ν

sν

∂ε2(ω; x)

∂xν

σν,T

+ 1

2

∑
νμ

sνsμ

∂2ε2(ω; x)

∂xνxμ

σν,T σμ,T

+ 1

6

∑
νμλ

sνsμsλ

∂3ε2(ω; x)

∂xνxμxλ

σν,T σμ,T σλ,T

+O(σ 4). (11)

Here, the superscript S denotes the entire set of N signs, S =
(s1, . . . ,sN ). With this notation, the choice expressed by Eq. (5)
corresponds to setting S = (+ − + − + − · · · ).

In the language of stochastic sampling, the configurations
specified by S and −S are called an “antithetic pair” [26]. It is
immediate to see that the dielectric function calculated using
both S and −S does not contain any odd powers of σν,T . In
fact from Eq. (11), we have

1

2

[
εS

2 (ω; T ) + ε−S
2 (ω; T )

]
= ε2(ω) + 1

2

∑
νμ

sνsμ

∂2ε2(ω; x)

∂xνxμ

σν,T σμ,T + O(σ 4). (12)

This result is already very close to the exact expansion in
Eq. (6), independent of the size of the supercell.

In order to obtain Eq. (6) exactly, one would need to further
eliminate all terms ν 	= μ in the sum on the second line of
Eq. (12). This elimination can be achieved systematically by
considering an additional configuration S ′ defined as follows:

S = (+ − +− + − +−),
S ′ = (+ − +− − + −+), (13)

where for the sake of clarity we considered the case N = 8.
In practice S ′ is simply obtained by swapping all the signs of
the second-half of the vector S. It is immediate to verify that
the dielectric function calculated by averaging the four atomic

configurations specified by S, −S, S ′, and −S ′ contains only
half of the terms μ 	= ν that appear in Eq. (12). Since each
individual configuration satisfies the asymptotic relation in
Eq. (10), it is clear that the above calculation using four atomic
configurations will approach the exact WL dielectric function
faster as the supercell size increases.

This strategy can also be iterated by partitioning each subset
in Eq. (13) in two halves, and applying a sign swap on two
out of four of the resulting subsets. At each level of iteration
the number of atomic configurations doubles, and the number
of remaining terms μ 	= ν in Eq. (12) halves. For example, it
is easy to verify that, by using 4, 16, and 64 configurations
generated in this way, it is possible to eliminate 50%, 87.5%,
and 96.875% of the terms μ 	= ν in Eq. (12), respectively.

In Fig. 3(a), we show the effect of using Eqs. (5) and (12)
for the calculation of the dielectric function of silicon at
300 K via two distinct atomic configurations. In Fig. 3(b),
we repeat the calculations, this time using four distinct
configurations, according to Eqs. (5), (12), and (13). Here
we see that increasing the number of atomic configurations
suppresses spurious fluctuations in the spectra; the effect is
most pronounced for the smallest supercell, which corresponds
to 2 × 2 × 2 Si unit cells. We note that, in Fig. 3, the curves
corresponding to the 8 × 8 × 8 supercell have been rigidly
shifted for clarity: without such a shift the curves are almost
indistinguishable from the those calculated using a 4 × 4 × 4
supercell.

Figure 3 clearly shows that, irrespective of the configura-
tional averaging, too small supercells may not be enough to
accurately evaluate the WL dielectric function. This is easily
explained by considering that, in order to correctly describe
an indirect absorption onset, we need a supercell which can
accommodate phonons connecting the band extrema.

V. RELATION BETWEEN THE WILLIAMS-LAX THEORY,
THE ALLEN-HEINE THEORY, AND THE

HALL-BARDEEN-BLATT THEORY

Having described the conceptual basis of our methodology,
we now establish the link between the WL dielectric function

10−4
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10−2
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100

1.0 1.5 2.0 2.5 3.0

ε 2
(ω

)

Photon Energy h̄ω (eV)

300 K

(a)

2×2×2

4×4×4

8×8×8

Blue-shifted by
0.1 eV for clarity
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ε 2
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Photon Energy h̄ω (eV)
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2×2×2

4×4×4

8×8×8
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0.1 eV for clarity

FIG. 3. Effect of using multiple atomic configurations in the evaluation of the WL dielectric function of silicon. (a) Comparison between
calculations performed using a single atomic configuration as specified by Eq. (5) (red solid lines), and calculations using this configuration
and its antithetic pair from Eq. (12) (blue solid line). We report calculations for increasing supercell size. (b) Comparison between calculations
performed using a single configuration as in (a) (red solid lines), and those performed using four configurations, as specified by Eqs. (5), (12),
and (13). The curves corresponding to the 8 × 8 × 8 supercell have been rigidly shifted by 0.1 eV: without such a shift the curves would overlap
with those obtained using a 4 × 4 × 4 supercell.
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given by Eq. (3) and the standard theory of Hall, Bardeen,
and Blatt of indirect optical absorption [16], as well as the
theory of temperature-dependent band structures of Allen and
Heine [14]. In this section we only present the main results,
leaving the mathematical details to Appendices A and B.

The HBB theory describes indirect optical absorption by
means of time-dependent perturbation theory, and the final
expression [see Eq. (24) below] involves the momentum matrix
elements evaluated for the nuclei clamped in their equilibrium
positions, pcv , and the linear electron-phonon matrix elements:

gmnν = lν 〈m| ∂V

∂xν

|n〉. (14)

Here, |n〉 denotes a Kohn-Sham state and ∂V/∂xν is the
variation of the Kohn-Sham potential with respect to the
normal mode coordinate xν . In order to make these quantities
explicit in Eq. (2), we expand the momentum matrix elements
px

cv to first order in the atomic displacements, and the energies
εx
n to second order in the displacements. Using Raleigh-

Schrödinger perturbation theory, we find

px
cv = pcv +

∑
νn

′
(

pcn gnvν

εv − εn

+ gcnν pnv

εc − εn

)
xν

lν
+ O(x2), (15)

where the primed summation indicates that we skip terms such
that n = v or n = c. Similarly, the expansion of the energies
yields, for example,

εx
c = εc +

∑
ν

gccν

xν

lν
+

∑
μνn

′
(

gcnμgncν

εc − εn

+ hcμν

)
xμxν

lμlν

+O(x3), (16)

with hcμν being the “Debye-Waller” electron-phonon matrix
element [1,14,20,22]

hcμν = 1

2
lμlν〈c| ∂2V

∂xμ∂xν

|c〉. (17)

To make contact with the AH theory of temperature-dependent
band structures and with the HBB theory of indirect absorption,
we analyze separately the cases of (i) direct gaps and (ii)
indirect gaps.

A. Direct gaps

When the gap is direct, the optical matrix elements px
cv

in Eq. (15) are dominated by the term pcv . In fact, if we
denote by g the characteristic electron-phonon matrix element
and by Eg the minimum gap, and we note that xν/ lν ∼ 1,
then the terms in the square brackets are ∼(g/Eg)pcv , and
hence can be neglected next to pcv . This approximation is
implicitly used in all calculations of optical absorption spectra
which do not include phonon-assisted processes. By using this
approximation in Eqs. (2) and (3), we obtain

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

|pcv|2

×
∏
ν

∫
dxν

exp
(−x2

ν

/
2σ 2

ν,T

)
√

2πσν,T

× δ
(
εcv + �εx

cv − �ω
)
, (18)

where we have defined εx
cv = εx

c − εx
v , εcv = εc − εv , and

�εx
cv = εx

cv − εcv . Equation (18) can be rewritten by exploiting
the Taylor expansion of the Dirac delta distribution in powers
of �εx

cv . The derivation is laborious and is reported in
Appendix A. The final result is

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

|pcv|2 1√
2π�cv

× exp

[
−

(
εAH
c,T − εAH

v,T − �ω
)2

2 �2
cv

]
+O(σ 4). (19)

In this expression, εAH
m,T denotes the temperature-dependent

electron energy in the Allen-Heine theory [14]:

εAH
m,T = εm +

∑
ν

(∑
n

′ |gmnν |2
εm − εn

+ hmνν

)
(2nν + 1). (20)

In particular, the first term in the square brackets is the Fan
self-energy correction, while the second term is the Debye-
Waller correction [1,14,44–46]. The quantity �cv in Eq. (19)
is the width of the optical transition, and is defined as follows:

�2
cv =

∑
ν

|gccν − gvvν |2(2nν,T + 1). (21)

Equation (19) shows that, in the case of direct absorption
processes, the WL theory yields a dielectric function which
exhibits normalized peaks at the temperature-dependent exci-
tation energies εAH

cv,T . We note that the width of the optical
transitions �cv is similar to but does not coincide with
the electron-phonon linewidth obtained in time-dependent
perturbation theory, compare for example with Eq. (169) of
Ref. [20]. This subtle difference is a direct consequence of
the semiclassical approximation upon which the Williams-Lax
theory is based.

To the best of our knowledge the connection derived here
between the Williams-Lax theory and the Allen-Heine theory,
as described by Eqs. (19) and (20), is a novel finding. In
particular, the present analysis demonstrates that, to lowest
order in perturbation theory, the WL theory of optical spectra
yields the adiabatic version of the AH theory of temperature-
dependent band structures.

B. Indirect gaps

In the case of indirect semiconductors, owing to the momen-
tum selection rule, optical transitions near the fundamental gap
are forbidden in the absence of phonons [47]. By consequence,
the optical matrix elements at equilibrium must vanish, and
we can set pcv = 0 in Eq. (15). This observation represents
the starting point of the classic HBB theory of indirect optical
processes [16]. In this case, Eq. (3) becomes

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

∏
ν

∫
dxν

exp
(−x2

ν

/
2σ 2

ν,T

)
√

2πσν,T

×
∣∣∣∣∣
∑
μn

′
(

pcn gnvμ

εv − εn

+ gcnμ pnv

εc − εn

)
xμ

lμ

∣∣∣∣∣
2

× δ(εcv + �εx
cv − �ω) + O(σ 4). (22)
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We stress that in this expression, we are only retaining those
terms in Eq. (15), which are linear in the normal coordinates.
This choice corresponds to considering only one-phonon
processes, as it is done in the HBB theory. While multiphonon
processes are automatically included in the WL theory, in the
following, we do not analyze them explicitly.

By performing a Taylor expansion of the Dirac delta
appearing in Eq. (22) in powers of �εx

cv , as we did for the
case of direct gaps, we arrive at the following expression:

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cvν

∣∣∣∣∣
∑

n

′
(

pcn gnvν

εv − εn

+ gcnν pnv

εc − εn

)∣∣∣∣∣
2

× 1√
2π�cv

exp

[
−

(
εAH
c,T − εAH

v,T − �ω
)2

2 �2
cv

]

× (2nν,T + 1) + O(σ 6). (23)

The derivation of this result is lengthy, and is reported for
completeness in Appendix B.

Equation (23) demonstrates that the WL theory correctly
describes indirect optical absorption. In fact, if we neglect
the broadening �cv and the temperature dependence of the
band structure, we obtain the theory of Hall, Bardeen, and
Blatt [15,16,47]:

εHBB
2 (ω; T ) = 2π

meNe

ω2
p

ω2

∑
cvν

∣∣∣∣∣
∑

n

′
(

pcn gnvν

εv − εn

+ gcnν pnv

εc − εn

)∣∣∣∣∣
2

× δ(εc − εv − �ω)(2nν,T + 1). (24)

The only difference between this last expression and the
original HBB theory is that here the Dirac delta function does
not contain the phonon energy. Physically this corresponds to
stating that the WL theory provides the adiabatic limit of the
HBB theory of indirect absorption.

To the best of our knowledge, this is the first derivation
of the precise formal connection between the WL theory of
indirect absorption, as expressed by Eq. (23), and the theories

of Hall, Bardeen, and Blatt and of Allen and Heine, as given
by Eqs. (24) and (20).

We emphasize that the adiabatic HBB theory does not
incorporate the temperature dependence of the band structure,
as it can be seen from Eq. (24). Instead, the WL theory includes
band structure renormalization by default, see Eq. (23). This
point is very important in view of performing predictive
calculations at finite temperature.

From Eq. (23), we can also tell that, in order to generalize
the HBB theory to include temperature-dependent band struc-
tures, one needs to incorporate the temperature dependence
only in the energies corresponding to real transitions, i.e., in the
Dirac deltas in Eq. (24), and not in the energies corresponding
to virtual transitions, i.e., the energy denominators in the same
equation.

In order to illustrate the points discussed in Secs. V A
and V B, we show in Fig. 4 a comparison between the
absorption spectra of silicon and diamond calculated using
either the HBB theory or the WL theory. For the HBB
calculations, we employed the adiabatic approximation and
we recast Eq. (24) in the following equivalent form:

εHBB
2 (ω; T ) =

∑
ν

∂2ε2(ω; x)

∂x2
ν

σ 2
ν,T . (25)

The equivalence between this expression and Eq. (24) is readily
proven by using Eqs. (15) and (B3). For the evaluation of the
second derivatives for each vibrational mode, we used finite-
difference formulas; this operation requires 2N frozen-phonon
calculations. In the examples shown in Fig. 4, we employed
4 × 4 × 4 supercells, corresponding to 768 calculations on
supercells containing 128 atoms. We emphasize that the WL
spectrum requires instead only one calculation.

Figure 4(a) compares the measured absorption coefficient
of silicon (grey dots) with those calculated using the HBB
theory (red line) and the WL theory (blue line). All data are
for the temperature T = 300 K. Here we see that the WL and
HBB calculations yield similar spectra. However, while the
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FIG. 4. (a) Comparison between measured and calculated optical absorption coefficients of silicon at 300 K. The grey dots are experimental
data from Ref. [29], the red line is a calculation using the Hall-Bardeen-Blatt theory, and the blue line is a calculation using the Williams-Lax
theory. (b) Comparison between measured absorption coefficient of diamond at 300 K [data from Refs. [30] (discs) and [33] (circles)] and our
calculations using the HBB theory or the WL theory. The color code is the same as in (a). In both panels, the calculations were performed on
4 × 4 × 4 supercells, using 65 random points in the electronic Brillouin zone (i.e., >4000 points in the Brillouin zone of the crystalline unit
cell), and a Gaussian smearing of 50 meV. The thin vertical lines indicate the energy of the band gaps calculated at the equilibrium geometries.
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optical absorption onset in the HBB theory coincides with the
indirect band gap of silicon at equilibrium, the WL spectrum
is redshifted by an amount ∼0.1 eV, corresponding to the
zero-point renormalization and the temperature shift of the
gap. As a result, the WL calculation is in better agreement
with experiment. We emphasize again that the agreement
between theory and experiment remarkably extends over a
range spanning 6 orders of magnitude, and the curves shown
in Fig. 4 do not carry any empirical scaling factors.

The effect of band-gap renormalization becomes more
spectacular in the case of diamond, as shown in Fig. 4(b). In this
case, the HBB calculation misses the absorption onset by as
much as ∼0.5 eV, while the WL theory yields an onset in agree-
ment with experiment. The discrepancy between the prediction
of the adiabatic HBB theory and experiment is understood as
the result of the very large electron-phonon renormalization
of the band gap of diamond [3,5,8]. In addition, the adiabatic
version of the HBB theory also misses the small redshift
associated with phonon-emission processes [15].

We stress that the WL theory does not come without faults.
The main shortcoming is that, unlike the HBB theory, it does
not capture the fine structure corresponding to phonon absorp-
tion and emission processes near the absorption onset. This is a
direct consequence of the semiclassical approximation under-
pinning the WL theory, whereby the quantization of the final
vibrational states is replaced by a classical continuum [19].

VI. BAND-GAP RENORMALIZATION

A. Comparison between calculations using the Williams-Lax
and Hall-Bardeen-Blatt theories

In Sec. V, we demonstrated that the imaginary part of the
temperature-dependent dielectric function in the WL theory
exhibits an absorption onset at the temperature-dependent band
gap given by the AH theory, see Eqs. (19) and (23). This
result suggests that it should be possible to extract temperature-
dependent band gaps directly from calculations of ε2(ω; T ) or
κ(ω; T ), as it is done in experiments.

Using Eqs. (19) and (23) and the standard parabolic
approximation for the band edges of three-dimensional
solids [38], the following relations can be obtained after a few
simple manipulations,

direct: [ω2ε2(ω; T )]2 = const × (�ω − Eg,T ), (26)

indirect: [ω2ε2(ω; T )]
1
2 = const × (�ω − Eg,T ). (27)

Here, Eg,T is the temperature-dependent band gap, and these
relations are valid near the absorption onset. Equations (26)
and (27) simply reflect the joint-density of states of
semiconductors, and form the basis for the standard Tauc
plots, which are commonly used in experiments in order to
determine band gaps [41]. These relations are employed as
follows: after having determined ε2(ω; T ), one plots (ω2ε2)2

for direct-gap materials, or (ω2ε2)1/2 for indirect gaps. The
plot should be linear near the absorption onset, and the
intercept with the horizontal axis gives the band gap Eg,T .

In the case of indirect-gap semiconductors, it is not possible
to use Eq. (26) in order to determine the direct band gap.
Nevertheless, in these cases one can still determine the gap

by analyzing second-derivative spectra of the real part of
the dielectric function, ∂2ε1(ω; T )/∂ω2. These spectra exhibit
characterisic dips, which can be used to identify the direct
gap. This is precisely the procedure employed in experiments
in order to measure direct band gaps [49–51]. In the following,
we use this line shape analysis to calculate the band gaps of
Si, C, and GaAs.

B. Indirect semiconductors: silicon

Figure 5(a) shows the Tauc plots obtained for silicon using
the WL theory. As expected from Eq. (26), we obtain straight
lines over an energy range of almost 1 eV from the absorption
onset. From the intercept of linear fits taken in the range 0–
1.8 eV we obtain the indirect band gaps at several temperatures;
the results are shown in Fig. 5(b) as red discs, and compared
to experiment (grey discs). The agreement with experiment
is good, with the exception of a constant offset which relates
to our choice of scissor correction for the band structure of
silicon (cf. Sec. VII).

In order to minimize numerical noise, we determine
the zero-point renormalization of the band gap �Eg as
the offset between the square root of the joint density of
states calculated at equilibrium and that at T = 0 K. This
refinement is discussed in Appendix C. In this case, we find
�Eg = 57 meV. Small changes of this value are expected
for larger supercells and denser Brillouin-zone sampling. For
completeness we show in Fig. 5(c) the convergence of the
zero-point renormalization of the indirect gap with the number
of k points in the supercell.

Our calculated zero-point renormalization of the indirect
gap of silicon is in good agreement with previous calcu-
lations and with experiment. In fact, Ref. [9] reported a
renormalization of 60 meV using finite-differences supercell
calculations; Ref. [12] reported 58 meV using Monte Carlo
calculations in a supercell. Reference [10] obtained a zero-
point renormalization of 56 meV using the perturbative Allen-
Heine approach. Measured values of the renormalization range
between 62 and 64 meV [46,52,53].

Figure 5(d) shows the second-derivative spectra,
∂2ε1(ω; T )/∂ω2, calculated for silicon at two temperatures.
Following Ref. [49], we determine the energy of the E′

0
transition using the first dip in the spectra. In Fig. 5(e),
we compare the direct band gaps thus extracted with the
experimental values. Apart from the vertical offset between our
data and experiment, which relates to the choice of the scissor
correction (cf. Sec. VII), the agreement with experiment is
good. In order to determine the zero-point renormalization
of the direct gap, we took the difference between the dips
of the second-derivative spectra calculated at equilibrium and
using the WL theory at T = 0 K. We obtained a zero-point
renormalization of 44 meV, which compares well with the
experimental range 25 ± 17 meV [49]. Values in the same
range were reported in previous calculations, namely 28 meV
from Ref. [54] and 42 meV from Ref. [10]. We note that, in
Ref. [54], a GW calculation on a 4 × 4 × 4 supercell yielded
a renormalization of 53 meV. For completeness, we show in
Fig. 5(f) the convergence of the zero-point renormalization
with respect to Brillouin-zone sampling.
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FIG. 5. (a) Tauc plot for determining the indirect band gap of silicon as a function of temperature. The red lines show (ω2ε2)1/2, and the
thin black lines are the corresponding linear fits at each temperature. The indirect gap is obtained from the intercept with the horizontal axis.
(b) Temperature-dependence of the indirect band gap of silicon: present theory (red discs) and experimental data from Ref. [48] (grey discs).
The solid line is a guide to the eye. The theoretical values were corrected to match the zero-point renormalization calculated as discussed in
Appendix C. (c) Convergence of the zero-point renormalization of the indirect gap of silicon with respect to the Brillouin-zone sampling of an
8 × 8 × 8 supercell. (d) Calculated second-derivatives of the real part of the dielectric function of silicon. (e) Temperature-dependence of the
direct gap of silicon: present calculations (red discs) and experimental data from Ref. [49]. The solid line is a guide to the eye. (f) Convergence
of the zero-point renormalization of the direct gap of silicon with respect to the Brillouin-zone sampling. All calculations in this figure were
performed using an 8 × 8 × 8 supercell.

C. Indirect semiconductors: diamond

Figure 6(a) shows the Tauc plots calculated for diamond
using the WL approach. As in the case of silicon, we
determined the indirect gap as a function of temperature by
means of the intercept of the linear fits with the horizontal
axis; the results are shown in Fig. 6(b) together with the
experimental data of Ref. [33]. From this comparison, we see
that the agreement with experiment is reasonable, however,
the calculations underestimate the measured renormalization.
This effect has been ascribed to the fact that DFT/LDA
underestimates the electron-phonon matrix elements as a
consequence of the DFT band-gap problem [8]. Our calculated
zero-point renormalization of the indirect gap is 345 meV. This
result was obtained following the procedure in Appendix C.
Our value for the zero-point renormalization is compatible
with previously reported values based on DFT/LDA, namely
330 [10], 334 [9], 343 [11], and 344 meV [12]. Our calculations
are in good agreement with the experimental values of 340
and 370 meV reported in Refs. [52,53]. However, the use of
a more recent extrapolation of the experimental data yields a
renormalization of 410 meV [55], which is 65 meV larger
than our result. Since it is known that GW quasiparticle
corrections do increase the zero-point renormalization as
compared to DFT/LDA [8,54], we expect that by repeating
our WL calculations in a GW framework our results will

be in better agreement with the experimental data. For
completeness in Fig. 6(c), we show the convergence of the
zero-point renormalization with Brillouin-zone sampling (for
an 8 × 8 × 8 supercell).

Figure 6(d) shows the second-derivative spectra of the real
part of the dielectric function of diamond, as calculated from
the WL theory. The direct gap of diamond was obtained in
Ref. [50] using the deep minimum in the experimental curves;
here we follow the same approach, and we report our results
in Fig. 6(e). For comparison, we also show the experimental
data from Ref. [50]. Apart from the vertical offset which
reflects our choice of scissor correction, the calculations are
in reasonable agreement with experiment. In particular, we
determined a zero-point renormalization of 450 meV, to be
compared with the experimental ranges of 180 ± 150 meV
(sample IIa of Ref. [50]) and 450 ± 370 meV (sample IIb
of Ref. [50]). Our value of the zero-point renormalization is
compatible with previous calculations at the DFT/LDA level,
for example, Ref. [11] reported 400 meV (when using an
8 × 8 × 8 supercell), Ref. [7] reported 409 meV, Ref. [54]
reported 410 meV (value extracted from Fig. 3), and Ref. [10]
reported 416 meV.

We also point out that a previous work by one of us on
the electron-phonon renormalization in diamond reported a
correction of 615 meV for the direct gap using DFT/LDA [3].
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FIG. 6. (a) Tauc plot to determine the indirect gap of diamond vs temperature. The red/black lines indicate (ω2ε2)1/2 and the corresponding
linear fits at each temperature. The indirect gap is obtained from the intercept with the horizontal axis. In this case the linear fits were
performed in the range of photon energies �ω = 0-5.6 eV. (b) Temperature dependence of the indirect gap of diamond: this work (red discs) and
experimental data from Ref. [33] (grey discs). The solid line is a guide to the eye. The theoretical values were corrected to match the zero-point
renormalization calculated as discussed in Appendix C. (c) Convergence of the zero-point renormalization of the indirect gap of diamond with
respect to the Brillouin-zone sampling (for an 8 × 8 × 8 supercell). (d) Calculated ∂2ε1(ω; T )/∂ω2 for diamond at two different temperatures.
The E′

0 transition is identified using the deep minimum, following Ref. [50]. (e) Temperature-dependent direct band gap of diamond: current
calculations (red discs) and experimental data from Ref. [50]. We report the experimental data corresponding to both diamond samples IIa
(grey circles) and IIb (grey discs) used in Ref. [50]. (f) Convergence of the zero-point renormalization of the direct band gap of diamond with
respect to Brillouin-zone sampling. All calculations were performed using an 8 × 8 × 8 supercell.

The origin of the overestimation obtained in Ref. [3] might be
related to numerical inaccuracies when calculating electron-
phonon matrix elements for unoccupied Kohn-Sham states at
very high-energy, although this point is yet to be confirmed.
Recent work demonstrated that GW quasiparticle corrections
lead to an increase of the zero-point renormalization of the
direct gap [8,54]. Calculations of optical spectra using the
WL theory and the GW method are certainly desirable but lie
beyond the scope of the present work.

For completeness, in Appendix D, we also investigate mul-
tiphonon effects. In particular, we prove that WL calculations
correctly yield the generalization of the adiabatic AH theory
to the case of two-phonon processes, and we demonstrate that
multiphonon effects provide a negligible contribution to the
band-gap renormalization.

We also note incidentally that, in the case of small
supercells, the band gap renormalization includes an additional
spurious contribution when the band extrema are degenerate.
This effect arises from a linear-order electron-phonon coupling
which lifts the band degeneracy, and has already been observed
in path-integral molecular dynamics calculations on diamond
using a supercell with 64 atoms [56]. This effect can easily be
seen in the density of states in Fig. 7 as three separate peaks
near the valence band edge. In the limit of large supercells,
this effect vanishes, since it arises from zone-center phonons,
whose weight becomes negligibly small as N → ∞.

D. Direct semiconductors: gallium arsenide

Figure 8 shows our WL calculations of the temperature-
dependent absorption onset and band gap of GaAs. Since
GaAS is polar, we included the nonanalytical part of the
dynamical matrix in the calculations of the vibrational fre-
quencies and eigenmodes [57]. In this case, we also took into
account the thermal expansion of the lattice, which is not neg-
ligible for this semiconductor [45]. To this aim, we performed
calculations within the quasiharmonic approximation [27],
that is, we repeated the calculations of the normal modes for
each temperature, by varying the lattice constant according to
the measured thermal lattice expansion coefficient [58,59].

In Fig. 8(a), we show the direct absorption onset. In this
case, we extract the gap from straight-line fits of (ω2ε2)2,
after Eq. (26). Since the range where the function (ω2ε2)2

is linear is rather narrow (due to the presence of low-lying
conduction band valleys), we refine the calculation of the
zero-point renormalization using the more accurate procedure
discussed in Appendix C.

In Fig. 8(b), we show the calculated band gaps as a function
of temperature and we compare our results to experiment.
For completeness, we report calculations performed without
considering the thermal expansion of the lattice. Here we
see that our calculations are in reasonable agreement with
experiment, and that lattice thermal expansion is definitely
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not negligible. Using an 8 × 8 × 8 supercell, we obtained a
zero-point renormalization of 32 meV. Our value is in line
with previous calculations, yielding 23 meV [8], as well as with
the experimental range of 57 ± 29 meV. We expect that GW

quasiparticle corrections will further increase the zero-point
correction by ∼10 meV [8]. For completeness, in Fig. 8(c), we
show the convergence of the zero-point renormalization with
the sampling of the Brillouin zone (in an 8 × 8 × 8 supercell).

Recently, it was pointed out that, in the case of polar
semiconductors, calculations based on the Allen-Heine theory
exhibit a spurious divergence when the quasiparticle lifetimes
are set to zero [10,13]. The origin of this artifact relates to the
Fröhlich electron-phonon coupling [60,61] and has been dis-
cussed in Ref. [20]. In the present calculations, it is practically
impossible to test whether we would have a singularity in the
limit of very large spercells. However, we speculate that our

calculations should not diverge, since the Born-von Kármán
boundary conditions effectively short circuit the long-range
electric field associated with longitudinal optical phonons.
This aspect will require separate investigation. In Table I, we
summarize all our calculations of zero-point renormalization
for Si, C, and GaAs and compare our present results with
previous theory and experiment.

VII. COMPUTATIONAL SETUP

All calculations were performed within the local density
approximation to density functional theory [62,63]. We used
norm-conserving pseudopotentials [64], as implemented in the
QUANTUM ESPRESSO distribution [28]. The Kohn-Sham wave
functions were expanded in plane-wave basis sets with kinetic
energy cutoffs of 40, 50, and 120 Ry for Si, GaAs, and C,
respectively. The interatomic force constants in the Born-von
Kármán supercell were obtained as the Fourier transforms of
the dynamical matrices calculated in the primitive unit cells
via density functional perturbation theory [27].

All calculations of band-gap renormalization were per-
formed by using two atomic configurations: our optimal con-
figuration, given by Eq. (5), and its antithetic pair, as obtained
by exchanging the signs of all normal coordinates. This choice
guarantees high accuracy in the line shapes near the absorption
onset. The absorption coefficients shown in Fig. 1 were
calculated using κ(ω; T ) = ω ε2(ω; T )/c n(ω,T ), where c is
the speed of light and n(ω,T ) the refractive index calculated

as n(ω,T ) = [
√

ε2
1 (ω; T ) + ε2

2 (ω; T ) + ε1(ω; T )]
1/2

/
√

2. The
optical matrix elements including the commutators with
the nonlocal components of the pseudopotential [23] were
calculated using YAMBO [65]. In order to compensate for the
DFT band-gap problem, we rigidly shifted the conduction
bands so as to mimic GW quasiparticle corrections. The
scissor corrections were taken from previous GW calculations
performed using the same computational setup for Si and
C [36], and from Ref. [66] for GaAs. In particular, we used
� = 0.74, 1.64, and 0.53 eV for Si, C, and GaAs, respectively.
The nonlocality of the scissor operator was correctly taken into
account in the oscillator strengths [23] via the renormalization
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FIG. 8. (a) Direct optical absorption onset in GaAs for various temperatures, as calculated using the WL theory in a 8 × 8 × 8 supercell.
The calculations were performed in the quasiharmonic approximation. The red curves correspond to (ω2ε2)2 and the thin black lines are the
corresponding linear fits (within the range of photon energies 1.42–1.62 eV). (b) Temperature dependence of the band gap of GaAs: calculations
in the quasiharmonic approximation (red discs), calculations without considering the lattice thermal expansion (blue discs), and experimental
data from Ref. [51] (grey discs). The lines are guides to the eye. (c) Convergence of the calculated zero-point renormalization with respect to
the number of k points, in a 8 × 8 × 8 supercell.
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TABLE I. Vibrational zero-point renormalization of the band gaps of silicon, diamond, and gallium arsenide. Our present results based on
the WL theory and Tauc plots are compared with previous DFT/LDA calculations and with experiment. The grids within the brackets indicate
the sampling of the Brillouin zone or the supercell size employed in previous calculations.

Indirect gap Direct gap

Present Previous Experiment Present Previous Experiment

Si 57 56a, 58b, 60c 62d, 64e 44 28f, 42a 25 ± 17g

C 345 330a, 334h, 343i, 344b 370e, 410j 450 409k, 410f, 416a, 430i 180 ± 150l, 450 ± 370l

GaAs 32 23m 57 ± 29n

aReference [10] (75 × 75 × 75); bReference [12] (6 × 6 × 6); cReference [9] (5 × 5 × 5); dReference [52]; eReference [53]; fReference [54]
(4 × 4 × 4); gReference [49]; hReference [9] (6 × 6 × 6); iReference [11] (48 × 48 × 48); jReference [55]; kReference [7]; lReference [50];
mReference [8] (4 × 4 × 4); nReference [51].

factors (εc − εv)/(εc − εv + �); this ensures that the f -sum
rule is fulfilled.

The dielectric functions were calculated by replacing the
Dirac deltas in Eq. (2) with Gaussians of width 30 meV for
Si and C and 50 meV, for GaAs. All calculations presented in
this work were performed using 8 × 8 × 8 supercells of the
primitive unit cell, unless specified otherwise. The sampling
of the Brillouin zone of each supercell was performed using
random k points, with weights determined by the Voronoi
triangulation [67]. In order to sample the 8 × 8 × 8 supercells
of Si, C, and GaAs we used 40, 40, and 100 random k points,
respectively.

The expansion of the crystalline lattice with temperature
was only considered in the case of GaAs. This choice is
justified by the fact that the calculated band gaps of silicon
and diamond change by less than 2 meV when using the
lattice parameters at T = 0 and 300 K. The temperature-
dependence of the lattice parameters of Si and C was taken
from Refs. [68,69].

VIII. CONCLUSIONS AND OUTLOOK

In this manuscript, we developed a new ab initio com-
putational method for calculating the temperature-dependent
optical absorption spectra and band gaps of semiconductors,
including quantum zero-point effects. The present work
significantly expands the scope of our previous investigation
in Ref. [17], by completely removing the need for stochastic
sampling of the nuclear wave functions. In particular, we
demonstrated, both using a formal proof and by means of
explicit first-principles calculations, that in order to compute
dielectric functions and band gaps at finite temperature it is
sufficient to perform a single supercell calculation with the
atoms in a well-defined configuration, as given by Eq. (5).

Using this technique, we reported the calculations of the
complete optical absorption spectra of diamond and gallium
arsenide including electron-phonon interactions, and we con-
firmed previous results obtained for silicon in Refs. [15,17].
Our calculations are in good agreement with experiment at
the level of line shape, location of the absorption onset,
and magnitude of the absorption coefficient. From these
calculations we extracted the temperature-dependence and the
zero-point renormalization of the direct band gaps of Si, C, and
GaAs, and of the indirect gaps of Si and C. Our calculations
are in good agreement with previous theoretical studies.

Our present work relies on the Williams-Lax theory of opti-
cal transitions including nuclear quantum effects [18,19]. For
completeness, we investigated in detail the formal relation be-
tween the WL theory, the Allen-Heine theory of temperature-
dependent band structures, and the Hall-Bardeen-Blatt theory
of phonon-assisted optical absorption. We demonstrated that
both the AH theory and the HBB theory can be derived as
low-order approximations of the WL theory.

We emphasize that our present approach enables calcu-
lations of complete optical spectra at finite temperature, in-
cluding seamlessly direct and indirect optical absorption. This
feature is useful in order to calculate spectra, which are directly
comparable to experiment in absolute terms, i.e., without
arbitrarily rescaling the absorption coefficient or shifting the
absorption onset to fit experiment. Our methodology will
also be useful for predictive calculations of optical spectra,
for example in the context of high-throughput computational
screening of materials.

It is natural to think that the present approach could be
upgraded with calculations of electronic structure and optical
properties based on the GW /Bethe-Salpeter approach. Indeed,
as it should be clear from Eq. (3), our methodology holds
unchanged irrespective of the electronic structure technique
employed to describe electrons at clamped nuclei. Since the
present approach requires only one calculation in a large
supercell, it is possible that complete GW /Bethe-Salpeter
calculations of optical spectra including phonon-assisted
processes will soon become feasible. In this regard, we note
that, recently, Ref. [11] proposed the so-called “nondiagonal”
supercells in order to perform accurate supercell calculations
at a dramatically reduced computational cost. In the future,
it will be interesting to investigate how to take advantage
of nondiagonal supercells in order to make the present
methodology even more efficient.

Finally, it should be possible to generalize our present work
to other important optical and transport properties. In fact, the
WL theory is completely general and can be used with any
property which can be described by the Fermi’s golden rule.
For example, we expect that generalizations to properties such
as photoluminescence or Auger recombination [70] should be
within reach.
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APPENDIX A: WILLIAMS-LAX EXPRESSION FOR
DIRECT ABSORPTION

In this Appendix, we outline the steps leading from Eq. (18)
to Eq. (19). We start by introducing the compact notation

�εx
cv =

∑
ν

Acvνxν +
∑
μν

Bcvμνxμxν + O(x3), (A1)

where the coefficients Acvν and Bcvμν are obtained from
Eq. (16):

Acvν = 1

lν
(gccν − gvvν), (A2)

Bcvμν = 1

lμlν

∑
n

′
[(

gcnμgncν

εc − εn

+ hcμν

)

−
(

gvnμgnvν

εv − εn

+ hvμν

)]
. (A3)

Equation (18) can be simplified by using the Taylor expansion
of the Dirac delta with respect to the energy argument. In
general, we have [71]

δ(ε + η) =
∞∑

n=0

(−1)n

n!

∂nδ

∂εn

∣∣∣∣
ε

ηn, (A4)

therefore we can set ε = εcv − �ω and η = �εx
cv , and replace

inside Eq. (18). We find

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

|pcv|2
∞∑

n=0

(−1)n

n!

∂nδ

∂(�ω)n

∣∣∣∣
�ω−εcv

×
∏
ν

∫
dxν

exp
(−x2

ν /2σ 2
ν,T

)
√

2πσν,T

(
�εx

cv

)n
. (A5)

Now we replace �εx
cv from Eq. (A1) and carry out the

integrals in the coordinates xν . The resulting expression does
not contain the normal coordinates any more, and the various
derivatives of the delta function can be regrouped using
Eq. (A4) in reverse. The result is

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

|pcv|2
[
δ
(
εAH
cv,T − �ω

)

+1

2

∑
ν

A2
cvνσ

2
ν,T

∂2δ(�ω − εcv)

∂(�ω)2

]
+ O(σ 4), (A6)

where εAH
cv,T = εAH

c,T − εAH
v,T , and εAH

m,T is the temperature-
dependent electron energy given by Eq. (20).

In order to make Eq. (A6) more compact, it is convenient
to rewrite the second term inside the square brackets by
performing a Taylor expansion of the Dirac delta around εAH

cv,T ,

and group the terms proportional to σ 4
ν,T and higher order

inside the term O(σ 4) at the end. This step leads to

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

|pcv|2
[

1 + 1

2
�2

cv

∂2

∂(�ω)2

]

× δ
(
εAH
cv,T − �ω

) + O(σ 4), (A7)

having defined

�2
cv =

∑
ν

A2
cvνσ

2
ν,T =

∑
ν

(gccν − gvvν)2(2nν,T + 1). (A8)

In the final step, we note that the term ∂2/∂(�ω)2 in
Eq. (A7) acts so as to broaden the lineshape. This is seen by
using the Fourier representation of the Dirac delta, δ(�ω) =
(2π�)−1

∫
dt exp(−iωt). We find[

1 + 1

2
�2

cv

∂2

∂(�ω)2

]
δ
(
εAH
cv,T − �ω

)

= 1

2π�

∫
dt

[
1 − �2

cv

2�2
t2

]
exp

(
−i

εAH
cv,T − �ω

�
t

)
. (A9)

The term within the square brackets corresponds to the first
order Taylor expansion of a Gaussian (or alternatively a
Lorentzian), therefore the last expression can be rewritten as

1

2π�

∫
dt exp

(
−�2

cv

2�2
t2

)
exp

(
−i

εAH
cv,T − �ω

�
t

)
+ O(σ 4),

(A10)

where we recognize the Fourier transform of a Gaussian. An
explicit evaluation of the integral yields also a Gaussian, and
the final result is Eq. (19).

APPENDIX B: WILLIAMS-LAX EXPRESSION
FOR INDIRECT ABSORPTION

In this Appendix, we outline the derivation of Eq. (23)
starting from Eq. (22). It is convenient to introduce the notation

Ccvμ =
∑

n

′
(

pcn gnvμ

εv − εn

+ gcnμ pnv

εc − εn

)
1

lμ
, (B1)

so that Eq. (22) can be written as

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

∏
ν

∫
dxν

exp
(−x2

ν /2σ 2
ν,T

)
√

2πσν,T

×
∑
μμ′

CcvμCcvμ′xμxμ′ δ
(
εcv + �εx

cv − �ω
)

+O(σ 4). (B2)

We now write explicitly the expansion of the Dirac delta to
second order in xν , using Eqs. (A1)–(A4):

δ(εcv+�εx
cv−�ω) = δ(εcv − �ω) − ∂δ

∂(�ω)

∣∣∣∣
�ω−εcv

×
(∑

ν

Acvνxν +
∑
μν

Bcvμνxμxν

)
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+ 1

2

∂2δ

∂(�ω)2

∣∣∣∣
�ω−εcv

(∑
μν

AcvμAcvνxμxν

)

+O(x3). (B3)

By replacing the last expression in Eq. (B2) and performing
the integrations, after a few lengthy but straightforward
manipulations, we find

ε2(ω; T ) = 2π

meNe

ω2
p

ω2

∑
cv

∑
ν

|Ccvν |2σ 2
ν,T

×
[

1 −
∑

μ

Bcvμμσ 2
μ,T

∂δ

∂(�ω)

+ 1

2

∑
μ

|Acvμ|2σ 2
μ,T

∂2δ

∂(�ω)2

]
δ(εcv − �ω)

+O(σ 6). (B4)

In this expression, we neglected interference terms of
the type

∑
μν 	=λκ CcvμCcvλBcvνκσ

2
ν,T σ 2

κ,T next to positive-
definite terms of the same order, such as, for example,∑

μν |Ccvμ|2Bcvννσ
2
μ,T σ 2

ν,T . This is justified since in the case
of extended solids the former sum tends to zero as the phases
of each term cancel out in average. In a similar spirit, we
neglected terms like 2Bcvννσ

2
ν,T next to

∑
μ Bcvμμσ 2

μ,T . This
is justified as each term in the sum is positive definite, and the
number of these terms goes to infinity in extended solids.

Now Eq. (B4) can be recast in the form given by Eq. (23)
by using the Fourier representation of the Dirac delta and
following the same steps as in Appendix A, Eqs. (A9)
and (A10). In particular, the term ∂δ/∂(�ω) yields a shift
of the excitation energies which coincides with the energy
renormalization in the Allen-Heine theory, see Eq. (20).
Similarly, the term ∂2δ/∂(�ω)2 yields a broadening of the
absorption peak, which corresponds to the linewidth �cv of
Eq. (21).

APPENDIX C: CALCULATION OF THE ZERO-POINT
BAND-GAP RENORMALIZATION USING THE JOINT

DENSITY OF STATES

In this Appendix, we discuss an accurate procedure for
determining the zero-point band-gap renormalization within a
supercell calculation. We consider the joint density of states
(JDOS), defined as the convolution between the density of
states of valence and conduction bands [47]:

J (ω) =
∑
cv

δ(εcv − �ω). (C1)

Within an energy range where band extrema are parabolic, it
can be shown that J (ω) = const × (�ω − Eg)2. This relation
holds both for direct-gap and indirect-gap semiconductors.
This is the basic relation underpinning the use of Tauc’s
plots in experimental spectra [38,41]. Within the WL theory,
the previous relation can be shown to remain essentially
unchanged:

J (ω; T ) =
∑
cv

δ
(
εAH
cv,T − �ω

) + O(σ 4). (C2)

This result can be obtained by following the same prescription
used to obtain Eq. (A7). Therefore, also in this case, we have
J (ω,T ) = const × (�ω − Eg,T )2.

Using Eqs. (C1) and (C2), we can determine the zero-
point renormalization of the band gap as the horizontal
offset between the curves J (ω)1/2 and J (ω,T = 0)1/2. This
procedure is very accurate because we are comparing two
calculations executed under identical conditions; therefore the
numerical errors arising from the choice of the energy range,
the Gaussian broadening and the Brillouin-zone sampling tend
to cancel out.

In Figs. 9(a), 9(b) and 9(c), we show the square-root of
the joint density of states of silicon, diamond and gallium
arsenide, respectively, calculated with the atoms at their
relaxed positions (red lines), and the corresponding one-shot
WL calculations at 0 K (blue lines). In all cases, the two curves
are parallel, and the horizontal offset between the curves gives
the zero-point renormalization. Using this method, our values
of the zero-point renormalization of the band gaps of Si, C,
and GaAs are 57, 345, and 32 meV, respectively. We note
that this procedure critically requires the JDOS as opposed to
the optical spectra, since in the case of indirect-gap materials,
we have no optical absorption below the direct gap in the
equilibrium structure.

APPENDIX D: ANALYSIS OF MULTIPHONON
CONTRIBUTIONS TO THE BAND-GAP
RENORMALIZATION OF DIAMOND

In this Appendix, we first establish the link between our
one-shot WL calculation and multiphonon processes in the AH
theory and then show that multiphonon effects are essentially
negligible in diamond. We perform an expansion of the Kohn-
Sham energy εx

n in terms of normal-mode coordinates to obtain

εx
n = εn +

∑
ν

∂εx
n

∂xν

xν + 1

2

∑
μν

∂2εx
n

∂xμ∂xν

xμxν

+ 1

3!

∑
μνλ

∂3εx
n

∂xμ∂xν∂xλ

xμxνxλ

+ 1

4!

∑
μνλκ

∂4εx
n

∂xμ∂xν∂xλ∂xκ

xμxνxλxκ + O(x5). (D1)

The AH theory is obtained by taking the thermal averages of
xν , xμxν , xμxνxλ, and xμxνxλxκ . The result is

εAH
n,T = εn + 1

2

∑
ν

∂2εx
n

∂x2
ν

σ 2
ν,T + 3

4!

∑
μ 	=ν

∂4εx
n

∂x2
μ∂x2

ν

σ 2
μ,T σ 2

ν,T

+ 3

4!

∑
ν

∂4εx
n

∂x4
ν

σ 4
ν,T + O(σ 6). (D2)

The second term on the r.h.s. represents the energy-level renor-
malization within the AH theory and accounts only for single-
phonon processes. This was discussed in Sec. V. The third and
fourth terms of the r.h.s. represent the two-phonon contribution
to the energy-level renormalization in the AH theory.
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FIG. 9. Square-root of the joint density of states of (a) silicon, (b)
diamond, and (c) gallium arsenide. The calculations were performed
with nuclei clamped in their equilibrium positions (blue lines), and
using the one-shot WL method at T = 0 K (red lines). The horizontal
offset between blue and red curves corresponds to the zero-point
renormalization of the band gap in each case. The calculations for
the equilibrium structures were performed in the primitive unit cells,
using 20 480, 20 480, and 51 200 random k points for Si, C, and
GaAs, respectively. The WL calculations were performed on 8×8×8
supercells, using 40, 40, and 100 random k points for Si, C, and GaAs,
respectively. A Gaussian broadening of 30 meV was used in all plots.

Now we show how our one-shot calculation correctly cap-
tures the two-phonon contribution. By replacing our “optimal
configuration” from Sec. II inside Eq. (D1), and taking the
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D
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WL 4×4×4
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FIG. 10. Density of states of diamond close to the valence and
conduction band edges: calculation at the equilibrium geometry
(green line), one-shot WL calculation (red line), and AH calculation
(blue line). The latter two calculations were performed for T =
300 K, using a 4 × 4 × 4 supercell and 65 k points in the Brillouin
zone of the supercell. The calculation with the atoms at their
equilibrium geometry was carried out within the primitive unit cell,
using 4160 k points. A Gaussian smearing of 30 meV was used for
all curves.

limit of N → ∞, we find

ε1C
n,T = εn + 1

2

∑
ν

∂2εx
n

∂x2
ν

σ 2
ν,T + 3

4!

∑
μ 	=ν

∂4εx
n

∂x2
μ∂x2

ν

σ 2
μ,T σ 2

ν,T

+ 1

4!

∑
ν

∂4εx
n

∂x4
ν

σ 4
ν,T + O(σ 6). (D3)

By comparing Eqs. (D2) and (D3), we see that the one-shot
method and the fourth-order AH theory give the same result,

except for a contribution 2
4!

∑
ν

∂4εx
n

∂x4
ν
σ 4

ν,T . In the limit of
N → ∞, this contribution is negligible as compared to the
other terms. This reasoning is analogous to the discussion in
Appendix B.

Therefore we can conclude that the one-shot WL method
captures not only the standard one-phonon processes of the
AH theory, but also multiphonon contributions. The two-
phonon contributions are identical to what one would obtain
from carrying the AH theory to fourth-order in the atomic
displacements.

In order to investigate the energy-level renormalization
coming from two-phonon and higher multiphonon processes,
we calculated the density of states (DOS) of diamond within (i)
the standard (one-phonon) AH theory, and (ii) the one-shot WL
method. These quantities are shown in Fig. 10, for T = 300
K, in blue and red, respectively. For comparison, we also
show the DOS calculated with the atoms in their equilibrium
positions (green). The AH correction to the DOS was obtained
by evaluating the derivatives ∂2εx

n/∂x2
ν by means of finite

differences. This required 2N frozen-phonon calculations.
Figure 10 shows that the DOS obtained from the

standard AH theory and from the one-shot WL method
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(which includes multiphonon effects) essentially co-
incide. This demonstrates that multiphonon contribu-

tions to the band-gap renormalization are negligible in
diamond.
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