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Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter
waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum
coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental
implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and
quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the
quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept
of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any
observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically
measurable and computable as the difference between the static fluctuations and the static susceptibility of
the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted
estimators of “quantumness” of observables (both as a feature as well as a resource), such as the Wigner-Yanase
skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended
quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case
of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of
entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance
paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex
quantum systems.
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I. INTRODUCTION

Quantum mechanics introduces two fundamentally new
traits in a physical system: (1) an intrinsic uncertainty on
the knowledge of observables (Heisenberg’s uncertainty or
coherent quantum fluctuations) and (2) a superior form
of correlation among degrees of freedom, stemming from
correlated quantum uncertainties (or entanglement) [1–3].
Quantum uncertainty of observables persists even at zero
temperature in the form of so-called zero-point fluctuations,
responsible for macroscopic quantum phenomena such as the
inability of liquid Helium to solidify at ambient pressure [4].
On the other hand, two quantum systems (hereafter called A

and B) can exhibit correlations far exceeding any classical
counterpart, which for pure quantum states are embodied by
entanglement [5].

The supremacy of both fluctuations and correlations in
quantum systems, as compared to classical ones, is at the heart
of the complexity of many-body quantum states, challenging
all realms of quantum physics, from relativistic quantum field
theory to atomic/molecular physics and quantum condensed
matter. At the same time, quantum fluctuations and correlations
(going beyond entanglement [6]) are by now recognized as
essential ingredients for the supremacy of quantum devices
over classical ones in the context of quantum metrology [7–9]
and potentially also for quantum information processing [6].

Despite their fundamental as well as practical importance,
quantum coherence and quantum correlations remain very hard
to both quantify theoretically and to measure experimentally.
Quantum uncertainty of an observable and quantum entangle-
ment between two subsystems are generically defined only for
pure states [1,5]. In the case of generic, real-life mixed states,

the most widespread concept of quantum coherence is related
to the thermal de Broglie wavelength (TdBWL) [10], express-
ing the spatial extent of coherent quantum fluctuations for a
single quantum particle in free space; but this concept does not
even extend to systems as simple as a particle in a potential.
More recently, several definitions of mixed-state quantum
coherence have been put forward [11–17], which nonetheless
share the generically prohibitive requirement of knowing the
full density matrix of the state, and they are therefore limited
to few-body systems. As for the entanglement of mixed states,
one can only provide sufficient conditions (witnesses) for the
presence of entanglement between the components of the
system [18–20]. Yet, even for nonentangled mixed states, it
has been recognized that quantum correlations may exist,
associated with the violation of classical information-theory
identities, and quantified via the so-called quantum discord
[6]; alternatively quantum correlations can be captured via
the minimum quantum uncertainty (quantified by the skew
information [11] or quantum Fisher information [7]) of local
observables [13,21]. Despite their deep conceptual meaning,
entanglement and quantum correlations of mixed states re-
main in general information-theoretical objects, generically
accessible (to calculations and measurements alike) only when
defined between two (or a few) elementary quantum degrees
of freedom [21–27].

Here we show that both quantum coherent fluctuations
and quantum correlations in generic quantum states can be
quantified in terms of elementary physical concepts. The
variance of fluctuations in generic mixed states possesses in
fact an additive structure, in which the incoherent/thermal part
can be separated from the coherent/quantum part, which we
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name quantum variance (QV). The QV is defined in terms
of the violation of a classical, static fluctuation-dissipation
relation, and as such it is fully computable and measurable for
generic systems. The QV of a given observable is a measure
of its genuine quantum uncertainty in mixed states, and, in
the case of bipartite fluctuations, it represents a measure of
correlated quantum uncertainties, namely of quantum correla-
tions. Remarkably, the QV is convex (namely it decreases upon
incoherent mixing of states with the same QV), and it gives a
tight lower bound to both the Wigner-Yanase skew information
[11,12] and to the quantum Fisher information [28], which
are widely accepted, yet generically prohibitive measures (for
both calculations and experiments) of the quantumness of
observables and of correlations [13,14,21,29–31].

The structure of the paper is as follows. Section II
introduces the separation between coherent and incoherent
fluctuations, and the definition of QV. Section III reviews
the fundamental properties of the QV in connection with
known measures of “quantumness” of observables, and as
a measure of quantum coherence. Section IV describes the
volume-law scaling of QV for generic extensive observables.
Section V illustrates the fundamental separation of scales
between thermal and quantum fluctuations at a thermal critical
point. Section VI discusses the area-law scaling of the QV of
bipartite fluctuations. Section VII illustrates the link between
the QV and other measures of quantum correlations in the case
of free fermions. Section VIII proposes a realistic experimental
setup to measure the QV in cold-atom quantum simulators of
correlated lattice models; and finally, Sec. IX elaborates on the
general link between QV on the one side, and entanglement
and quantum correlations on the other; and on the experimental
measurement of the QV with cold-atom quantum simulators.
The technical aspects are kept to a minimum level in the main
text, and they are postponed to the appendices.

II. SEPARATING CLASSICAL AND
QUANTUM FLUCTUATIONS

Let us first show that, given a density matrix ρ̂ such that
〈. . .〉 = Tr[ρ̂(. . .)]/Trρ̂, and a generic Hermitian operator Ô,
the fluctuations of the latter can be written as

〈δ2Ô〉 = 〈Ô2〉 − 〈Ô〉2 = 〈δ2Ô〉T + 〈δ2Ô〉Q, (1)

where 〈δ2Ô〉T represents thermal/incoherent fluctuations,
while 〈δ2Ô〉Q represent quantum/coherent fluctuations. In the
following we shall focus our attention on thermal equilibrium
states, but the whole treatment is readily generalizable to
arbitrary density matrices (see Appendix B). If ρ̂ = e−βĤ/Z
(Z = Tr(e−βĤ)) is the thermal density matrix of a system of
Hamiltonian Ĥ at temperature kBT = 1/β, and [Ô,Ĥ] = 0,
it is well known that the fluctuations of Ô satisfy a (classical)
fluctuation-dissipation theorem

〈δ2Ô〉 = χOkBT , (2)

where χO = −∂2F/∂h2|h=0 is the susceptibility associated
with the application of a term −hÔ to the Hamiltonian, and
F = −kBT lnZ is the free energy. On the other hand, if
[Ô,Ĥ] �= 0, the quantum uncertainty on the value of Ô adds

up to the thermal fluctuations, and, as a result

〈δ2O〉 � χOkBT = 1

β

∫ β

0
dτ 〈δÔ(τ )δÔ(0)〉 =: 〈δ2Ô〉T , (3)

where Ô(τ ) = eτĤÔe−τĤ is the operator evolved in imaginary
time. Equation (3) shows that thermal fluctuations do not
exhaust the total fluctuations of the observable. It is then
natural to define the QV for the observable Ô as the residual
fluctuations, or as the violation of the classical fluctuation-
dissipation relation of Eq. (2):

〈δ2Ô〉Q = 〈δ2Ô〉 − χOkBT . (4)

The QV has a particularly suggestive interpretation in the
context of a path-integral representation of the partition
function of the system, using a basis of Hilbert space which
diagonalizes the Ô operator [see Fig. 1(a)]. As discussed in
Appendix B, this allows one to cast the partition function in
the form

Z =
∫

D[O(τ )]e−S[O(τ ),∂τ O(τ ),...], (5)

where O(τ ) is a periodic trajectory (O(0) = O(β)) in the space
of eigenvalues of Ô, associated with a Feynman path in the
basis diagonalizing Ô, and S is the associated action weighting
the trajectory. When assigning a path-integral expression to
each of the terms in Eq. (4), one can easily find that (see
Appendix B)

〈δ2Ô〉Q =
〈

1

β

∫
dτ (O(τ ) − Ō)2

〉
S

, (6)

where 〈. . .〉S is the average over the ensemble of paths O(τ )
weighed by the action S, and

Ō = Ō[O(τ )] = 1

β

∫
dτO(τ ) (7)

is the centroid of the path [32]. Equation (6) shows that the
QV represents the (squared) amplitude of the imaginary-time
fluctuations of the trajectory O(τ ) around the path centroid.
Clearly such fluctuations have a genuine quantum origin
[32–34]. If Ô is the position x̂ of a one-dimensional particle,
in Appendix C, we show that 〈δ2x̂〉Q ∼ λ2

dB, namely, the
QV is tightly related to the quantum uncertainty on the
position expressed by the TdBWL λdB. When moving to
higher dimensions and generic quantum systems, the QV
generalizes therefore the concept of TdBWL (or quantum
coherence length) to the space of eigenvalues of any Hermitian
operator. And, most remarkably, it does so in a computable and
measurable manner, being expressed as the difference between
a fluctuation property and a response function.

III. PROPERTIES OF THE QUANTUM VARIANCE

A. Quantum variance as a lower bound to skew
and quantum Fisher information

The QV represents a physically measurable lower bound to
fundamental quantities in quantum information. The Dyson-
Wigner-Yanase (DWY) skew information [35]

Iα(Ô,ρ̂) = − 1
2 Tr{[Ô,ρ̂α][Ô,ρ̂1−α]} (8)
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FIG. 1. Thermal vs quantum fluctuations. (a) Different imaginary-time paths O(τ ) in the space of eigenvalues of the observable Ô are
shown, associated with the path-integral representation of a generic mixed state ρ̂. While the thermal/incoherent fluctuations 〈δ2O〉T are
associated with the fluctuations of the centroids of the paths (dashed blue lines), the quantum/coherent fluctuations 〈δ2O〉Q are associated with
the fluctuations of the paths around their centroids. (b) Geometry of the A − B bipartition of an extended quantum system used in the text.
(c) Scaling of the total (tot), thermal (T) and quantum (Q) fluctuations of the staggered particle number Ns,A on a subsystem A of size LA for
hardcore bosons on a square lattice at temperature T/J = 0.5 (the system is defined on a L × L torus with L = 32). All fluctuation terms
exhibit volume-law scaling. Here and in the following graphs, the error bar is smaller than or comparable to the line thickness. (d) Temperature
dependence of the Ns,A fluctuations for a subsystem of linear size LA = L/2. The dashed line indicates the infinite temperature limit, in which
each lattice site fluctuates independently, with a shot-noise variance n(1 − n) where n = 1/2 is the lattice filling.

with α ∈ [0,1], generalizing the Wigner-Yanase skew infor-
mation (α = 1/2) [11], probes the quantum uncertainty of Ô

stemming from its noncommutativity with ρ̂. As shown in
Appendix D, the QV is simply

〈δ2Ô〉Q[ρ̂] =
∫ 1

0
dαIα. (9)

From the convexity of Iα [35] follows the convexity of the QV.
Moreover one can prove that

〈δ2Ô〉Q[ρ̂] � I1/2(Ô,ρ̂) (10)

(the equality holding for pure states). Finally, the quantum
Fisher information [28]

FQ(Ô; ρ̂) = 2
∑
nm

|〈n|Ô|m〉|2(pn − pm)2/(pn + pm) (11)

(where ρ̂ = ∑
n pn|n〉〈n|) expresses the sensitivity of the

density matrix to a unitary transformation Û (h) = e−ihÔ gen-
erated by the observable Ô, and it quantifies the fundamental
metrological gain in using the state ρ̂ to estimate the parameter
h [7]. As shown in Appendix E,

〈δ2Ô〉Q[ρ̂] � FQ(Ô; ρ̂)/4. (12)

The inequality becomes an equality for pure states. As dis-
cussed later, the inequalities satisfied by the QV have consider-
able implications concerning its importance for entanglement
witnessing and metrological applications. Conversely, the
computability and measurability of QV gives unprecedented
insight into the skew and quantum Fisher information for
quantum many-body systems.

B. Quantum variance as a measure of coherence

Several studies have recently concentrated their attention on
proper measures of quantum coherence of a given observables
[14–17]. An indisputable signature of quantum coherence of
a given observable Ô associated with a density matrix ρ̂ is

the existence of off-diagonal matrix elements of ρ̂ on the
basis of eigenstates of Ô—in fact, this is the very definition
of coherence of an observable. Given two nondegenerate
eigenstates |O1〉 and |O2〉 of Ô, it is immediate to see that
the existence of coherence between the two eigenstates in
the density matrix ρ̂ implies the existence of imaginary-time
fluctuations in a path integral representation of ρ built on a
basis of eigenstates that diagonalizes Ô, as in Eq. (5). Indeed,
the coherence of the density matrix reads

ρO1,O2 = 〈O1|ρ̂|O2〉 = Z(O1,O2)

Z

= 1

Z

∫
O(0)=O1,O(τ )=O2

D[O(τ )]e−S, (13)

namely, it is the ratio of two partition functions: the ordinary
one Z , which is a sum over periodic O(τ ) paths (O(0) =
O(β)) as in Eq. (5), and a modified one Z(O1,O2), which is
the sum over constrained paths O(0) = O1, O(β) = O2. It is
obvious that, while the ordinary partition function is nonzero
even in the absence of imaginary-time evolution (namely
O(τ ) = const for all paths), the modified partition function is
nonzero iff the paths O(τ ) display a nontrivial imaginary-time
evolution. This means that imaginary-time fluctuations of the
observable Ô, whose amplitude is expressed by the QV, imply
the existence of coherence between different eigenvectors of
Ô, and viceversa. The above property applies to thermal as
well as nonthermal states alike, as in the latter case one can
always cast the density matrix in the form of an equilibrium
one (Appendix B).

Beyond the physical intuition provided by the above dis-
cussion, one can easily prove that the QV verifies fundamental
requirements for a measure of quantum coherence, thanks to
its relationship to the DWY skew information as in Eq. (9).
We already mentioned convexity as an important mathematical
requirement. Moreover, as shown in Ref. [36], the DWY skew
information related to the observable Ô cannot grow under
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IRÉNÉE FRÉROT AND TOMMASO ROSCILDE PHYSICAL REVIEW B 94, 075121 (2016)

closed-system or dissipative dynamics which is translationally
invariant (TI) with respect to translations generated by Ô.
More formally, if E is a completely positive, trace-preserving
map such that

E(e−iÔt ρ̂eiÔt ) = e−iÔtE(ρ̂)eiÔt (14)

then Iα(Ô,ρ̂) � Iα(Ô,E(ρ̂)) for all α. This property of
monotonicity under TI dynamics is straightforwardly inherited
by the QV via Eq. (9).

As we shall later discuss, the QV of thermal equilibrium
states decreases generically (but not always) when increasing
the temperature. Monotonicity under thermal mixing is a
different requirement than convexity. Indeed, if higher energy
states have a larger QV than lower energy ones, it can happen
that QV increases upon increasing the temperature. Convexity
only states that the thermal QV at a given temperature is
lower than the average QV of the energy eigenstates, but it
does even guarantee that the thermal QV is lower than that
of the ground state. It is also different from monotonicity
under TI dynamics. Indeed, thermal mixing can be seen as the
following operation: starting from ρ̂(β) = e−βĤ/Z(β), one
has that ρ̂(β ′) = E(ρ̂(β)) = Â†ρ̂(β)Â where

Â =
√

Z(β)

Z(β ′)
e− 1

2 (β ′−β)Ĥ. (15)

Evidently, if [Ô,H] �= 0, any variation of the temperature
(either increasing or decreasing) is not a TI operation. A
slight thermal increase in the QV can be observed close to
thermal critical points (see Sec. V), and it implies that the
same behavior applies to the DWY skew information (at least
for some values of the α parameter) via Eq. (9); therefore it is
not in contradiction with the QV being a measure of coherence.

IV. QUANTUM VARIANCE OF A GLOBAL
OBSERVABLE AND VOLUME LAW

Due to its inherent quantum nature, the QV exhibits very
special size and temperature dependencies. In the following,
we shall concentrate on thermal equilibrium states, and we start
our analysis with the case of a generic, macroscopic observable
Ô that does not commute with the Hamiltonian of the system.
As an example we consider the case of two-dimensional
hardcore bosons on the square lattice:

Ĥ = −J
∑
〈ij〉

(b̂†i b̂j + H.c.), (16)

where b̂i , b̂
†
i are hardcore boson operators, satisfying the (anti)-

commutation relations {bi,b
†
i } = 1 and [bi,bj ] = [bi,b

†
j ] =

0 (i �= j ). We treat this model with a numerically exact
quantum Monte Carlo algorithm based on the stochastic series
expansion approach [37], which allows us to investigate the
imaginary-time dynamics of many-body observables [38]. The
Hamiltonian Ĥ does not commute with any finite-wave-vector
Fourier component of the density profile, and in particular with
the staggered particle number

N̂s =
∑

i

(−1)i b̂†i b̂i . (17)

To investigate the scaling of fluctuations (both thermal and
quantum) we isolate a subsystem A of linear size LA in a larger
system [of linear size L, see Fig. 1(b)], and we investigate the
scaling of local observables/fluctuations in A with the size of
the A region itself. This approach allows one to extract scaling
properties while using a single simulation box, and it is also
directly applicable to experiments giving access to local prop-
erties, such as those based on quantum-gas microscopy [39].

Figure 1(c) shows that both the thermal and the quantum
contribution to fluctuations obey a volume-law scaling in the
example at hand:

〈δ2N̂s,A〉T ,〈δ2N̂s,A〉Q ∼ Ld
A, (18)

where N̂s,A = ∑
i∈A(−1)i b̂†i b̂i . A volume-law scaling of

quantum fluctuations is generically expected in systems
with short-range interactions/hopping (hereafter called local
systems/Hamiltonians) when the observable of interest is
extensive, and its Heisenberg’s uncertainty is the result of
the noncommutativity between an extensive set of terms in the
Hamiltonian and in the observable in question. The separation
between thermal and quantum fluctuations gives rise to a very
meaningful result when tracking the temperature dependence
of the fluctuations on a subsystem of fixed size (LA = L/2
in this case). As shown in Fig. 1(c), the thermal component
grows linearly with T at low T , while the quantum component
decreases monotonically with T starting from the zero-point
fluctuations. Most remarkably, in the example at hand quantum
fluctuations are found to dominate the total fluctuations, and
they lead to a monotonically decreasing behavior of 〈δ2N̂s〉,
in complete contradiction with the classical expectation that
fluctuations should grow with temperature at low T .

V. QUANTUM VARIANCE DOES NOT GO CRITICAL
AT A THERMAL TRANSITION

Having shown that QV generically obeys a volume law
for extensive non-conserved observables in local systems,
one can naturally ask what is the fate of QV at a thermal
critical point, at which thermal fluctuations of the order
parameter become superextensive. If the QV only captures
the quantum mechanical part of fluctuations of the order
parameter, one would naturally expect that its scaling is not
modified at a thermal transition, given that the latter is purely
driven by thermal fluctuations. To answer to this question, we
consider a quantum many-body model exhibiting a thermal
phase transition with an order parameter not commuting with
the Hamiltonian; this is readily obtained by generalizing
the hardcore-boson Hamiltonian of Eq. (16) to include a
nearest-neighbor repulsion V :

Ĥ = −J
∑
〈ij〉

(b̂†i b̂j + H.c.) + V
∑
〈ij〉

(
n̂i − 1

2

)(
n̂j − 1

2

)
.

(19)

When V > 2J , the model has an Ising phase transition at
finite temperature, marking the onset of a checkerboard density
wave, with an order parameter given by the staggered density
N̂s . Hence, as in the previous section, it is meaningful to
investigate the temperature and size scaling of the fluctuations
of the local staggered density N̂s . In particular, to mimic the
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FIG. 2. Critical thermal fluctuations and noncritical quantum
fluctuations. (a) Temperature dependence of the order parameter
fluctuations at the Ising transition of 2d hardcore bosons with
nearest-neighbor repulsion V = 2.1J ; the sharp peak marks the
transition at Tc ≈ 0.78J . (b) Scaling of fluctuations close to the
critical temperature: the total and thermal fluctuations are found to
scale as L

d+γ /ν

A with γ = 7/4 and ν = 1 for the 2d Ising universality
class.

behavior in the thermodynamic limit (in which 〈N̂s,A〉 �= 0),
we focus on the fluctuations around a finite-size estimate of the
order parameter in the symmetry-breaking (SB) phase, given
by 〈|N̂s,A|〉:

〈δ2Ns,A〉(SB) = 〈
N̂2

s,A

〉 − 〈|N̂s,A|〉2. (20)

Figure 2(a) shows that the total and thermal fluctuations of
the order parameter exhibit a sharp peak in correspondence
with the Ising transition temperature, while the QV remains
smooth at the transition. Not only is the QV not exhibiting
any singularity, but it generally decreases with temperature
(exhibiting an almost horizontal inflection around the tran-
sition1). A closeup on the scaling close to the critical point
[Fig. 2(b)] finds that the total and thermal fluctuations exhibit
the critical super-extensive scaling L

d+γ /ν

A , where γ and ν

are the critical exponents for the susceptibility and correlation
length. On the other hand, the quantum variance maintains a
volume-law scaling as in the noncritical regime. Therefore a
critical point marks a net separation of scales between thermal
and quantum fluctuations of the order parameter, the latter
being essentially irrelevant in the thermodynamic limit. This
observation substantiates the common wisdom that quantum
mechanics is irrelevant for the universal properties at thermal
critical points, and it shows that order parameters close to a
critical point have the nature of emergent classical observables.

1A closer inspection into our data shows that the QV of N̂s,A is
always a monotonically decreasing function of temperature when
LA � L/2 up to LA = L, whereas for A sufficiently small (typically
LA � L/2) the QV displays a tiny maximum close to the transition.
This observation is unique to the QV of the order parameter in the
presence of a transition, while the QV of generic quantities is indeed
monotonically decreasing for any size of A.

VI. QUANTUM VARIANCE OF BIPARTITE
FLUCTUATIONS AND AREA LAW

The scaling properties of the QV change drastically when
considering the case of bipartite fluctuations of an otherwise
globally conserved quantity, such as the particle number N̂ .
Such fluctuations have been the subject of several recent
studies in view of their relationship to entanglement in the
case of pure states [40–43], as well as at finite temperature, for
which a suggestion of how to extract the quantum contribution
to fluctuations has been proposed in Ref. [41]. In the case of
mixed states, [N̂,Ĥ] = 0 implies automatically that 〈δ2N̂〉Q =
0. Taking then any bipartition of the system into A and B

subsystems, imaginary-time fluctuations of the local particle
numbers NA and NB are perfectly anticorrelated, so that the
QV in each subsystem is the same, 〈δ2N̂A〉Q = 〈δ2N̂B〉Q.
Perfect correlation in the quantum uncertainties of NA and NB

suggests that the QV captures genuine quantum correlations
between A and B whenever applied to bipartite fluctuations
of globally conserved quantities. Remarkably, Figs. 3(a)–3(c)
shows that, for local systems, the QV of bipartite fluctuations
scales like the boundary between A and B, thereby obeying a
so-called area law

〈δ2N̂A〉Q ∼ Ld−1
A , (21)

namely, the extensive (volume-law) part of bipartite fluctua-
tions is entirely of incoherent origin. This strongly suggests
that the QV captures the fluctuations associated with coherent
particle exchanges at the boundary between A and B. For
the hardcore-boson problem at hand, such fluctuations obey
a logarithmically corrected area law at T = 0 (when all
fluctuations are quantum) [42,43],

〈δ2N̂A〉Q ∼ Ld−1
A ln LA, (22)

turning then into an area-law scaling at finite T . Nonetheless,
a logarithmic violation can still be observed at sufficiently
low temperature and for small sizes of the A region—
namely, smaller than the thermal correlation length ξ for
density fluctuations.2 Interestingly, the area-law scaling of the
QV (either straight or logarithmically violated) is found to
dominate the scaling of total fluctuations at sufficiently small
sizes LA of the subsystem A, as shown in Figs. 3(a)–3(c).
This makes the (logarithmically violated) area law of bipartite
quantum fluctuations observable under experimentally realis-
tic conditions.

VII. QUANTUM VARIANCE OF BIPARTITE
FLUCTUATIONS PROVIDES QUANTUM CORRELATIONS

The area-law scaling of bipartite QV of mixed states
suggests a link to the similar scaling exhibited by entanglement
entropy in ground states of local Hamiltonians [45]. Yet
measures of entanglement at finite temperature (such as the

2Indeed, for hardcore bosons, the density-density correlation
function at finite temperature exhibits a finite correlation length,
〈δniδnj 〉 ∼ exp(−|r i − rj |/ξ ), even though the phase correlations
exhibit a critical behavior below the Kosterlitz-Thouless temperature.
This was already noticed in Ref. [61].
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FIG. 3. Bipartite fluctuations. (a)–(c) Scaling of local particle-number fluctuations in a subsystem A for square-lattice hardcore bosons
(V = 0) at three different temperatures (T/J = 0.01, 0.1, and 0.4). Other parameters as in Fig. 1(c). (d) Temperature dependence of the
particle-number fluctuations; same parameters as in Fig. 1(d).

negativity [19]) do not admit a simple physical interpreta-
tion in terms of entropy of quantum fluctuations (but see
below for further discussion on QV and entanglement). As
already pointed out, QV of bipartite fluctuations is rather
connected to quantum correlations, a more general concept
than entanglement. Quantum correlations between A and B

may be defined via the disturbance that a measurement on
B has on the state of A, in which case they are captured
by the quantum discord [6]. The latter quantity is given
by the difference between the quantum mutual information,
I (A : B) = SA + SB − SAB (or the entropy subextensivity due
to correlations between A and B) and the classical mutual
information J (A : B) (or the maximum amount of information
gained on A by performing measurements on B). Here
SA(B) = −Trρ̂A(B) ln ρ̂A(B) is the entropy of the reduced density
matrix of subsystem A(B), and SAB is the total entropy. The
operation of maximization implicit in the definition of quantum
discord makes it generically noncomputable when A and B are
extended subsystems of a quantum many-body system.

On the other hand, in some special systems, the existence
of quantum correlations is witnessed by more accessible
quantities. Indeed, we argue that, in the case of an ideal gas,
any form of correlation stems from quantum statistics, while
it is trivially absent in the classical limit. The existence of
correlations between A and B is generically captured by the
quantum mutual information, whose nonzero value is then a
direct proof of quantum correlations existing in the system.3

In the case of an ideal lattice gas, the existence of correlations
between A and B stems physically from the coherent exchange
of particles at the A − B boundary, and hence it is tightly
linked to the quantum fluctuations of particle numbers. In the
following, we shall particularly focus on the case of a free
Fermi gas on a lattice at half-filling, for which the mutual

3Even though the quantum discord of an ideal gas is not equal to
the mutual information [62], the vanishing of quantum discord in the
classical limit is the trivial result of both I (A : B) and J (A : B) being
vanishing quantities. Hence the existence of a finite I (A : B) and
J (A : B) is already a proof of quantum correlations, and the further
aspect that they are not identical—leading to quantum discord—is a
generic feature of quantum systems.

information and QV of particle-number fluctuations can be
easily calculated via exact diagonalization [46].

The quantum mutual information of many-body systems
exhibits in general an area law at finite temperature [47] from
which a finite-temperature area law descends for quantum
discord as well [48]. Figure 4 shows that the area law of
mutual information and of QV of particle-number fluctuations
are tightly related, as the prefactors of the thermal area
laws, I (A : B)/2 ≈ aI (T )LA and 〈δ2N̂A〉Q ≈ aN (T )LA, are
proportional at all T , aI ≈ π2

3 aN . Remarkably, this is the same
relationship holding between the particle-number variance
and the entanglement entropy for free fermions at T = 0
[Fig. 4(a)] [41,49], and between total entropy and variance in
a degenerate Fermi gas [Fig. 4(b)]. Hence the particle-number

FIG. 4. Quantum correlations vs quantum mutual information.
(a) Scaling of the quantum variance of bipartite particle-number
fluctuations and of the quantum mutual information in a system of
free fermions on a L × L square lattice (L = 32) at half-filling for
three different temperatures (J is the hopping amplitude); and (b)
temperature dependence of the same two quantities, along with the
total entropy SA, the total fluctuations 〈δ2N̂A〉, the Wigner-Yanase
skew information I1/2(N̂A,ρ̂), and the quantum Fisher information
FQ(N̂A; ρ̂), for an A region with linear size LA = L/2. The T −2

decay of the mutual information at high temperature has been proven
rigorously for free fermions in Ref. [44], and it is proven for the
quantum variance, skew information and quantum Fisher information
in Appendix F.
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QV provides experimental access to the mutual information
of free fermions at finite T , as much as the total variance of
particle-number fluctuations gives access to the entanglement
entropy in the ground state. Moreover, as shown in Fig. 4(b)
the QV provides a meaningful lower bound to both the
Wigner-Yanase skew information and to the quantum Fisher
information; in particular, at high temperatures, we find that
〈δ2N̂A〉Q ≈ 2

3I1/2(N̂A,ρ̂) and 〈δ2N̂A〉Q ≈ 1
3 (FQ(N̂A; ρ̂)/4).

VIII. MEASUREMENT OF BIPARTITE QUANTUM
VARIANCE WITH QUANTUM-GAS MICROSCOPES

Owing to its definition in terms of fully measurable
quantities [fluctuations and response function, see Eq. (4)],
the QV is readily accessible to state-of-the-art experiments.
All the requirements for the measurement of the QV, and
in particular of its scaling in a bipartite setting, are met
by trapped-ion experiments [50] as well as quantum-gas
microscope experiments [39], enabling access to local degrees
of freedom. As an example, in microscopy experiments recent
progress [51] has demonstrated the ability to resolve different
single-site occupation numbers (n = 0, . . . ,3) in an optical
lattice, providing access to local fluctuations. A concrete
proposal to measure the quantum variance of bipartite particle-
number fluctuations in the context of ultra-cold quantum gases
is illustrated in Fig. 5. To access the quantum variance of
the particle number NA in the subsystem A one needs to
measure the total variance of fluctuations 〈δ2NA〉, as well as
the response function

χNA
≈ 〈NA〉(μA + δμA) − 〈NA〉(μA)

δμA

, (23)

where μA is the local chemical potential in region A, coupling
to the particle number NA. The two quantities 〈δ2NA〉 and χNA

need to be measured in the same conditions of temperature and
(offset) chemical potential. A way to achieve this in cold-atom
experiments is to use a “multiplexing” setup as in Fig. 5, in
which one single trap geometry allows one to measure both
quantities at once. Indeed monitoring fluctuations of NA in
region A allows one to extract 〈δ2NA〉 the total variance; on
the other hand, a boxlike potential superimposed to the optical
lattice creates a local increase in the chemical potential, giving

FIG. 5. Quantum-gas microscope setup to measure the quantum
variance. Here we sketch a possible scheme to measure the quantum
variance of the local particle number in region A by adding a boxlike
potential to a two-dimensional optical lattice. This potential induces
a local increase in the chemical potential, allowing one to probe the
response function as the particle-number difference between region
A′ and A; supplementing this measurement with the one of particle-
number variance in region A gives access to the quantum variance.

access to the response function as (〈NA′ 〉 − 〈NA〉)/δμA. If the
regions A and A′ are built symmetrically around the (global)
trap center, and if thermal equilibrium is established across the
system, one is ensured that the two quantities are measured
under the same thermodynamic conditions of temperature and
offset chemical potential.

One may worry that in cold-atom experiments the total
particle number has wide shot-to-shot fluctuations going well
beyond a grand-canonical description, and that this may alter
the estimate of the quantum variance, adding spurious contri-
butions coming from experimental systematics. On the other
hand, as already discussed in Sec. II and further elaborated in
the appendices Appendixes A and B, all incoherent fluctuations
(either stemming from the grand-canonical ensemble or from
other sources) are systematically subtracted away in the
quantum variance. This remains valid even when the total
particle number obeys an arbitrary statistics, namely even
when the density matrix takes the general form

ρ̂ = 1

Z
∑
N

pexp(N )P̂Ne−βĤP̂N, (24)

where pexp(N ) is the experimental particle-number statistics,
accounting for systematic shot-to-shot fluctuations, and P̂N is
the projector onto the Fock subspace with N particles. The
deformation of the Hamiltonian implied in Fig. 5 leads to the
desired deformation of the density matrix probing the response
function. Hence the quantum variance (and its peculiar size and
temperature scaling) can be experimentally measured even
without postelection of the measurement shots according to
the total particle number, with the obvious caveat that one is
not measuring properties of the grand-canonical ensemble but
the ones of the artificial ensemble realized experimentally.

A similar setup, and similar considerations, can be applied
to measure the quantum variance of the staggered particle
number. In that case, one needs to shine a weak superlattice
potential with twice the lattice spacing of the primary potential
over the region A′. Varying the size of region A and A′ allows
then to probe the scaling of the QV with subsystem size, as
illustrated in Figs. 1(c), 1(d), 3, and 4.

IX. CONCLUSIONS AND OUTLOOK

In conclusion, we have introduced the quantum variance
of generic observables, generalizing the concept of quantum
Heisenberg uncertainty to the case of mixed states—and
acting as the “thermal de Broglie wavelength” in the space
of eigenvalues of arbitrary observables. In the case of bipartite
fluctuations, the QV expresses the quantum correlations
among the two subsystems in arbitrary mixed states. The
quantum uncertainty may dominate the fluctuations in quan-
tum many-body systems, leading to a completely nonclassical
behavior (fluctuations decreasing with temperature, scaling of
fluctuations obeying area laws or logarithmically violated area
laws, etc.).

At the theory level, the QV represents a most accessible
way to assess quantum correlations, entanglement, and the
metrological use of quantum many-body states. As proposed
in Refs. [13,21], the minimal skew information and quantum
Fisher information associated with local observables in a
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subsystem A are both measures of quantum correlations, and
the latter dictates the minimal precision on the estimation of
the parameter of an arbitrary local unitary operation; the QV
offers a natural measurable lower bound to both quantities (see
Appendixes D and E for further discussion). Moreover, both
the skew information [29] and the quantum Fisher information
[30,31] of collective spin variables witness entanglement
among k qubits when exceeding a k-dependent bound: a
similar violation of the bound by the QV is therefore an even
stronger witness—see Appendix G for a detailed discussion.

The QV lends itself to analytical as well as to large-scale
numerical simulations based, e.g., on quantum Monte Carlo—
as shown in the present work. Hence its study can be readily ex-
tended to generic quantum many-body systems at equilibrium,
including interacting fermions, quantum spin models, etc., as
well as to nonequilibrium mixed states. While we have mostly
focused our attention on bipartite correlations, an extension
of our study to multipartite correlations can also be readily
achieved by introducing the concept of quantum covariance or
quantum correlation function, as developed in a recent work
by one of us [52]. This opens the perspective of a complete
characterization of quantum correlations in extended quantum
systems, based on experimentally accessible quantities.
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APPENDIX A: OPERATOR APPROACH TO COHERENT
VERSUS INCOHERENT FLUCTUATIONS IN MIXED
STATES: AREA LAW OF QUANTUM COHERENCE

As pointed out in the main text, in the case of mixed
states described by a density matrix ρ̂ there is a fundamen-
tal distinction between thermal/incoherent fluctuations and
quantum/coherent fluctuations of any observable, which does
not commute with ρ̂. This distinction is best captured via the
path-integral representation of the density matrix, as discussed
in the following Appendix B. Here we give an alternative
picture solely based on the operator picture of the density
matrix. In the following we shall choose, as observable of
interest, the particle number N̂A in the region A of the system,
capturing the quantum correlations between the region in
question and its complement.

When leaving the ground state of local Hamiltonians,
one expects to encounter states with the generic feature
of possessing volume-law entanglement, and volume-law
fluctuations of particle number [53]. Hence one may naively
suspect that, when dealing with excited states, the quantum
coherent fluctuations are stronger, and not weaker, than in
the ground state. This is indeed true, but it is only meaningful
provided that, in an experiment, one is able to deterministically
prepare one and the same excited state, in order to probe its
fluctuation properties over many shots of the experiment itself.

This last requirement is generally prohibitive, as experiments
on excited states generally probe the properties of ensembles
(every shot of the experiment reproducing a different state).
Whence the relevance of the concept of density matrices ρ̂, not
only in the context of systems coupled to dissipative baths, but
also in the context of systems evolving uniquely under their
own Hamiltonian dynamics.

In the latter case, let |�(t)〉 be the instantaneous state of the
system, and let � be a time window sufficiently long for time
averages to equal ensemble averages (namely, averages over
repeated shots of the experiment). Then the density matrix
describing the ensemble is well described by

ρ̂ ≈ 1

�

∫ �

0
dt |�(t)〉〈�(t)|. (A1)

Despite the fact that each |�(t)〉 state may exhibit volume-
law entanglement and coherent fluctuations, the ensemble
properties are quite different. Indeed, we can write |�(t)〉 as

|�(t)〉 =
∑
NA

∑
{ni }NA

c{ni };NA
(t)|{ni},NA〉, (A2)

where |{ni}; NA〉 is a Fock state {ni} characterized by having
NA particle in A. After time/ensemble averaging, the density
matrix takes the form ρ̂ = ρ̂D + ρ̂OD, where

ρ̂D =
∑
NA

∑
{ni }NA

∑
{n′

i }NA

ρ{ni },NA;{n′
i },NA

|{ni},NA〉〈{n′
i},NA| (A3)

is the diagonal part of the density matrix (in terms of the
quantum number NA), and

ρ̂OD =
∑

NA �=N ′
A

∑
{ni }NA

∑
{n′

i }N ′
A

ρ{ni },NA;{n′
i },N ′

A
|{ni},NA〉〈{n′

i},N ′
A|

(A4)

is the off-diagonal part; here

ρ{ni },NA;{n′
i },N ′

A
= 1

�

∫ �

0
dtc{ni },NA

(t)c∗
{n′

i },N ′
A
(t). (A5)

It is evident that [ρ̂D,N̂A] = 0, while [ρ̂OD,N̂A] �= 0. Therefore
the off-diagonal part, containing the coherence between con-
figurations differing by the number of particles in A, is the part
of ρ̂ responsible for the quantum fluctuations of N̂A, captured
by the quantum variance. The total, extensive fluctuations
of NA are given by the diagonal part, 〈δ2NA〉 = 〈N̂2

A〉ρ̂D
−

〈N̂A〉2
ρ̂D

; as a consequence the quantum coherent contribution,
which stems from the off-diagonal terms, remains hidden in
this calculation, and it cannot be formally separated from the
incoherent part. The proper separation between incoherent and
coherent fluctuations is achieved within the path-integral for-
malism, as described in the main text and below in Appendix B.
Nonetheless, the operator form of the density matrix provides
further insight into the physical origin and spatial structure of
coherent quantum fluctuations, as discussed below.

In local systems, the instantaneous coherence
c{ni },NA

(t)c∗
{n′

i },N ′
A
(t) connects states with NA − N ′

A ∼ O(Ld/2
A ),

as it is typical of excited states in Hilbert space. However, the
time/ensemble-averaged coherence ρ{ni },NA;{n′

i },N ′
A

in Eq. (A5)
has a much shorter range away from the diagonal. Indeed,
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assuming that {ni} and {n′
i} are connected by moving m

particles from sites j1, . . . ,jm to sites i1, . . . ,im, one has

ρ{ni },NA;{n′
i },N ′

A

= Tr[ρ̂b
†
i1

· · · b
†
im

bj1 · · · bjm
|{ni},NA〉〈{ni},NA|], (A6)

where bi,b
†
i are the destruction/creation operators of the

particles of interest (of arbitrary statistics). Hence, as one may
have expected, the magnitude of ρ{ni },NA;{n′

i },N ′
A

is controlled by
that of the 2m-point correlation function, namely,

|ρ{ni },NA;{n′
i },N ′

A
| � |〈b†j1

· · · b
†
jm

bj1 · · · bjm
〉|. (A7)

In general, such a correlation function will exhibit a fast decay
with the (minimum) distances between pairs of points ip
and jq . This in turn implies that, in order to have a sizable
coherence [Eq. (A5)], two configurations {ni} and {n′

i} should
differ by particle moves, which, when occurring between
A and its complement B, are localized (algebraically or
exponentially) around the boundary between the two regions.
This observation generally excludes a volume law for the
coherent part of particle-number fluctuations, and it leaves
an area law (up to multiplicative logarithmic corrections) as
the only possibility.

APPENDIX B: PATH-INTEGRAL REPRESENTATION
OF A GENERIC DENSITY MATRIX AND OF THE

QUANTUM VARIANCE

In this section, we derive the path-integral representation
for a generic density matrix, generalizing the discussion
of the main text to arbitrary mixed states beyond thermal
equilibrium. Moreover we derive the path-integral expression
for the quantum variance.

Any (semipositive definite) density matrix ρ̂ can always be
cast in the form

ρ̂ = e−βĤ

Tr(e−βĤ)
, (B1)

namely in the form of a thermal density matrix with (effective)
temperature kBT = 1/β. For generic (nonthermal) mixed
states, the specific value of β is completely irrelevant, and
one could set in the following β = 1 in some convenient
energy units; yet, in order to make contact with the case
of thermal equilibrium, hereafter we will keep the inverse
temperature β explicitly indicated. We consider a generic
observable Ô which is diagonalized by a basis |Oα,{λ}α〉,
where Oα is the eigenvalue for Ô, and {λ}α are the other
quantum numbers possibly labeling the state. The partition
function Z = Tr[exp(−βĤ)] can be cast in the form of the
trace of the product of infinitesimal propagators between
successive states |Oαi

,{λ}αi
〉, namely,

Z = lim
M→∞

∑
{αi }

M−1∏
i=1

〈Oαi
,{λ}αi

|e− β

M
Ĥ|Oαi+1 ,{λ}αi+1〉 (B2)

where
∑

{αi } is a short-hand notation for the multiple sum over
the quantum numbers (Oαi

,{λ}αi
) labeling each state in the

propagation sequence α1,α2, . . . ,αM ≡ α1. Summing over the
λ quantum numbers, and taking the limit M → ∞, one obtains

formally the path-integral expression

Z =
∫

O(0)≡O(β)
D[O(τ )] e−S[O(τ ),∂τ O(τ ),...], (B3)

where O(τ ) is the continuum limit of the sequence
{Oα1 ,Oα2 , . . . ,OαM

}, and

e−S = lim
M→∞

∑
{λαi

}

M−1∏
i=1

〈Oαi
,{λ}αi

|e− β

M
Ĥ|Oαi+1 ,{λ}αi+1〉. (B4)

Once the density matrix has been given the thermal form
Eq. (B1), it is straightforward to deform the density matrix
upon application of a field h coupling to Ô,

ρ̂(h) = e−β(Ĥ−hÔ)

Tr[e−β(Ĥ−hÔ)]
, (B5)

which allows one to define the response function in the
standard way as χO = ∂

∂h
Tr[ρ̂(h)Ô]|

h=0
.

The path-integral representation of response function leads
to the expression

χO =
〈∫

dτδO(τ )δO(0)

〉
S

= 1

β

〈∫
dτ

∫
dτ ′δO(τ )δO(τ ′)

〉
S

, (B6)

where δO(τ ) = O(τ ) − 〈O〉S , and we have invoked the
periodicity of O(τ ) paths in imaginary time. Here

〈. . .〉S = 1

Z

∫
O(0)≡O(β)

D[O(τ )](. . .)e−S (B7)

is the average over the space of O(τ ) paths. Moreover, one has
that

〈δ2O〉 = 1

β

〈∫
dτ (δO(τ ))2

〉
S

. (B8)

Combing Eqs. (B6) and (B8), one readily obtains the path-
integral expression for the quantum variance

〈δ2O〉Q = 〈δ2O〉 − χOkBT

= 1

β

〈∫
dτ

[
O(τ ) − 1

β

∫
dτ ′O(τ ′)

]2
〉

S

(B9)

showing that it represents the average variance of fluctuations
of O(τ ) paths around their centroid.

We end this section by noticing that the deformation of the
density matrix to Eq. (B5) is a physically meaningful operation
for thermal states—as it can be obtained by turning on the
perturbation −hÔ in the Hamiltonian within an isothermal
setting—see Sec. VIII. Hence in the case of thermal states,
neither the measurement nor the calculation of the quantum
variance requires the full knowledge of the density matrix.
On the other hand, for generic mixed states the deformation
of ρ̂ should be thought of in general as a mathematical op-
eration. Devising physical (namely, experimentally realistic)
operations that can lead to the deformation of a generic density
matrix as in Eq. (B5) is an outstanding task, which we postpone
to future investigations.
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APPENDIX C: QUANTUM VARIANCE AS GENERALIZED
DE BROGLIE WAVELENGTH

1. Quantum variance for simple models

The analytical calculation of the quantum variance of the
position operator is illuminating in the case of simple models,
namely the free particle and the harmonic oscillator in one
dimension. It is convenient to start from the second one, and
to obtain the free-particle result as a limiting case. In the
case of the harmonic oscillator, the position fluctuations are
readily obtained from the diagonal part of the density matrix
〈x|e−βĤ|x〉/Z [32], while the susceptibility χx = ∂〈x〉

∂h
to a

displacement of the harmonic oscillator potential 1
2mω2x2 →

1
2mω2x2 − hx is readily obtained by the linear displacement
of the average, 〈x〉 → 〈x〉 − h/(mω2). As a result the quantum
variance takes the form

〈δ2x〉Q = a2
ho

2

[
sinh(1/θ )

cosh(1/θ ) − 1
− 2θ

]
(harm. osc.), (C1)

where aho = √
�/(mω) and θ = kBT /�ω. In the limit T → 0,

one recovers Heisenberg’s uncertainty in the ground state,
〈δ2x〉0 = a2

ho/2.
On the other hand, taking the limit ω → 0 gives the result

for the free particle, which, after careful expansion of Eq. (C1),
gives

〈δ2x〉Q = 1

24π
λ2

dB(T ) (free particle), (C2)

where λdB(T ) =
√

2π�2/(mkBT ) is the thermal de Broglie
wavelength. The link between the quantum variance
and the de Broglie wavelength shows that the quantum
variance of the particle position gives the characteristic
(squared) amplitude of coherent quantum fluctuations at finite
temperature [32]. In fact, one may interpret the quantum
variance of the position as a generalization of the thermal
de Broglie wavelength to the case of a particle in an external
potential, such as the case of the harmonic oscillator. In Fig. 6,
the quantum variance of the position for the two models

FIG. 6. Quantum variance of the position of a 1d particle. The
plot shows the quantum variance of the position for a one-dimensional
harmonic oscillator, as well as for a free particle as a function of
temperature. In the case of the free particle, the frequency ω is to be
understood as an arbitrary constant setting the energy scale �ω and
length scale aho.

discussed above shows the expected monotonic decrease
with temperature, due to the shrinking of the imaginary-time
“duration” of coherent quantum fluctuations.

2. Imaginary-time fluctuations as quantum
coherent fluctuations

As seen in Appendix B, the quantum variance of a generic
observable gives the characteristic amplitude of fluctuations
for such an observable along the imaginary-time dynamics of
the system. On the other hand, in Appendix C, we have estab-
lished a direct relationship between the quantum variance of
a free particle and the thermal de Broglie wavelength, namely
the characteristic width of wave packets at finite temperature.
In this section, we bring the two observations together to argue
that the quantum variance generalizes the concept of thermal
de Broglie wavelength, or finite-temperature coherence length,
to the space of eigenvalues of any observable (not only the
position operator) and for any quantum system.

The relationship between the quantum variance and the
de Broglie wavelength is very natural when considering the
fundamental link existing between the wave function of a
pure state and the statistics of Feynman paths. Thanks to
the parametrization in Eq. (B1), a pure state can always
be thought of as the β → ∞ limit of a mixed-state density
matrix, and hence represented in the form of a path integral.
In the case of a one-dimensional quantum particle, the path
integral for a pure state with wave function ψ(x) runs over
infinitely long trajectories x(τ ), whose fluctuations δx around
the average position 〈x〉 = 〈ψ |x̂|ψ〉 obey the statistics dictated
by the modulus of the square function [54], namely, taking an
arbitrary time τ :

P (δx) = 1

Z

∫
D[x(τ )]δ(x(τ ) − 〈x̂〉 − δx)e−S

= |ψ(〈x〉 + δx)|2. (C3)

In particular, any infinite trajectory contributing to the path
integral has the same statistical properties as the whole
ensemble, so that the centroid of the path x̄ = x̄[x(τ )] must
correspond to the expectation value 〈x̂〉. Hence, as depicted in
Fig. 7(a), the imaginary-time fluctuations span the support of
the wave function, and the (squared) amplitude of fluctuations
of the path x(τ ) around its centroid x̄—the quantum variance—
is the same as the (squared) width of the wavefunction,
giving Heisenberg’s uncertainty. In the case of free particles,
the thermal de Broglie wavelength generalizes Heisenberg’s
uncertainty on the position to the case of thermal states.
Therefore it is not too surprising that the quantum variance
follows the de Broglie wavelength at finite temperature, as
shown in Appendix C.

The concept of quantum variance extends all the above
considerations to generic observables and generic quantum
systems. The quantum variance provides the width of the prob-
ability distribution for the fluctuations of generic observables
around the path centroid [see Fig. 7(b)], namely,

P (δO) = 1

Z

∫
D[O(τ )]δ(O(τ ) − Ō − δO)e−S, (C4)

where Ō = Ō[O(τ )] is the centroid. As seen in the case of
the position of a one-dimensional particle, for a pure state
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FIG. 7. Quantum variance as Heisenberg’s uncertainty for mixed
states. (a) The path-integral representation of the partition function
for a single one-dimensional particle at T → 0 (or for a generic
pure state) is a sum over infinitely long paths in imaginary time
x(τ ); on average, each path visits the region [x,x + dx] a number
of times proportional to |ψ(x)|2dx, where ψ(x) is the ground-state
(or, more generally, the pure-state) wave function. The width of the
wave function’s square modulus gives the Heisenberg’s uncertainty,
namely the amplitude of coherent quantum fluctuations. (b) In
the case of mixed states of a generic many-body system, the
probability distribution for the coherent quantum fluctuations of a
generic observable Ô is instead given by the probability that the
(imaginary-time) instantaneous value of O(τ ) differs from the path
centroid Ō = β−1

∫
dτO(τ ).

the width of P (δO) expresses the Heisenberg’s uncertainty
on the observable Ô. When applied to a mixed state, the
quantum variance generalizes therefore Heisenberg’s uncer-
tainty, expressing the (squared) amplitude of coherent quantum
fluctuations of the observable.

APPENDIX D: QUANTUM VARIANCE VERSUS SKEW
INFORMATION AND LOCAL QUANTUM UNCERTAINTY

In this section, we shall discuss the relationship between
the quantum variance and the skew information [11], the
latter being a widespread concept in quantum information
to quantify the quantum uncertainty of an observable. In
particular, we shall show that the quantum variance provides
a tight lower bound, based on physical observables, to the
otherwise abstract skew information. Moreover the discussion
of the relationship between the skew information and the
quantum variance allows one to conclude on the convexity
of the latter. Finally, we will see how the quantum variance
relates to the recently introduced “local quantum uncertainty”
[13], which is advocated as a measure of quantum correlations.

1. Wigner, Dyson, Lieb and the convexity of quantum variance

The Dyson-Wigner-Yanase (DWY) skew information
[11,35]

Iα(Ô,ρ̂) = − 1
2 Tr{[Ô,ρ̂α][Ô,ρ̂1−α]} (0 � α � 1) (D1)

probes the quantum uncertainty of the observable Ô due to
its noncommutativity with the density matrix of the system.
Replacing Ô by δÔ = Ô − 〈Ô〉 does not alter the above
definition.

Writing again the generic density matrix ρ̂ as a thermal
state, ρ̂ = e−βĤ/Z (with an arbitrary effective inverse tem-
perature β), one can immediately show that the DWY skew
information can be expressed as an imaginary-time correlation
function

Iα(O,ρ) = 〈δ2Ô〉 − 〈δÔ(τ = αβ)δÔ(0)〉. (D2)

Hence, clearly, the DWY skew information Iα expresses the
amount by which the imaginary-time correlation function
〈δÔ(τ )δÔ(0)〉 at a time τ = αβ has decreased with respect
to the equal-time (τ = 0) value. Hence the DWY skew
information probes the imaginary-time fluctuations in a similar
manner to quantum variance. As a consequence a link between
the two quantities can be expected, and it is straightforwardly
established in the form

〈δ2Ô〉Q = 〈δ2Ô〉 − 1

β

∫ β

0
dτ 〈δÔ(τ )δÔ(0)〉

=
∫ 1

0
dαIα(Ô,ρ̂), (D3)

namely, the quantum variance is equal to the average DWY
skew information. In particular, the Wigner-Yanase (WY) skew
information [11], Iα=1/2, is an upper bound to the DWY skew
information

Iα(Ô,ρ̂) � Iα=1/2(Ô,ρ̂) (D4)

as it is easy to prove due to the monotonic decay
of imaginary-time correlation functions, 〈δÔ(τ )δÔ(0)〉 �
〈δÔ(τ = β/2)δÔ(0)〉. As a consequence one readily obtains
that the quantum variance is always lower than the WY skew
information

〈δ2Ô〉Q � Iα=1/2(Ô,ρ̂). (D5)

Lieb [55] proved that the DWY skew information is convex
for any value of α, namely,

Iα(Ô,λ1ρ̂1 + λ2ρ̂2) � λ1Iα(Ô,ρ̂1) + λ2Iα(Ô,ρ̂2) (D6)

for any real numbers λ1, λ2. Using Eq. (D3), the property of
convexity is immediately inherited by the quantum variance.
Convexity is a fundamental figure of merit to assess the
quantum variance as a probe of quantum coherent fluctuations:
if ρ̂1 and ρ̂2 have the same quantum variance, any linear
incoherent superposition of the two has necessarily a lower
quantum variance.

2. Quantum variance versus local quantum uncertainty

Given an A − B bipartition of an extended quantum
system, Ref. [13] has introduced the concept of local quantum
uncertainty (LQU)

U�
A (ρ̂) = minÔ�

A
I1/2

(
Ô�

A ,ρ̂
)

(D7)

as the minimum of the WY skew information over all local
observables O�

A in A having a given spectrum �. Reference
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IRÉNÉE FRÉROT AND TOMMASO ROSCILDE PHYSICAL REVIEW B 94, 075121 (2016)

[13] argues that this observable-independent (but spectrum-
dependent) quantity acts as a measure of quantum correlations
between A and B. In order to capture quantum correlations
among all, equally weighted degrees of freedom of A and
those of B, it is obvious to request that the observable OA be
an extensive one, namely the sum of local observables Ôj ,

Ô
(macro)
A =

∑
j∈A

Ôj . (D8)

This ensures that quantum fluctuations of all degrees of
freedom in A are taken into account into the skew information.
As the size of A grows, the spectrum of the operator ô

(micro)
A =

Ô
(macro)
A /Ld

A becomes a continuous one, and it is contained
in a finite interval [λmin,λmax]. This behavior applies to all
extensive operators of the kind of Ô

(macro)
A , and their spectrum

can easily be reduced to one and the same � by a simple
shift and rescaling in the definition of the operator. Hence, in
the sense of Ref. [13], one can define a macroscopic LQU
U (macro)

A (ρ) defined as a minimum over all operators Ô
(macro)
A ,

which is arguably a most appropriate definition of quantum
correlations among all degrees of freedom of A and those in B.
We assume that A and B interact with a coherent Hamiltonian
term, leading to an exchange of energy, and possibly also
particle, or magnetization, etc,.... Hence, in the minimization
procedure, we explicitly exclude the possible existence of local
conserved quantities [Ô(macro)

A ,ρ̂] = 0, which would trivially
lead to a vanishing macroscopic LQU.

It follows immediately from Eq. (D5) that the macroscopic
LQU is lower-bounded by the minimum quantum variance of
macroscopic observables

U (macro)
A (ρ̂) = min

Ô
(macro)
A

I1/2(Ô(macro),ρ̂)

� min
Ô

(macro)
A

〈
δ2Ô

(macro)
A

〉
Q
. (D9)

The minimization implied by Eq. (D9) is readily performed
for the quantum variance: the minimum quantum variance of
macroscopic observables is realized by bipartite fluctuations
of an otherwise conserved quantity, namely ÔA such that
[ÔA + ÔB,ρ] = 0. For general quantum systems, the above
requirement applies to the local energy, and, in the presence
of a continuous symmetry, to the local particle number (for
particle models) or to the local magnetization (for spin mod-
els), etc., assuming that the latter quantities are not conserved.
In the case of equilibrium states of local Hamiltonians, we
have shown in this work that the quantum variance of bipartite
fluctuations obeys an area law: as a consequence, Eq. (D9)
implies that the macroscopic LQU obeys at least an area
law. On the other hand, in the ground state, the WY skew
information reduces to the variance of the operator

I1/2
(
Ô

(macro)
A ,ρ̂

) =
T =0

〈
δ2O

(macro)
A

〉
, (D10)

and the scaling of the minimum variance of local macroscopic
operators in the ground state of local Hamiltonians satisfies
a (logarithmically violated) area law [43]. Even though the
temperature dependence of the WY skew information is not
generally known in the literature, one can assume that it is
maximized at T = 0 (this is the case of the free-fermion
example studied explicitly in Sec. VII). Under this assumption,

and given that the WY skew information at T = 0 coincides
with the total variance, we obtain the inequalities

min
Ô

(macro)
A

〈
δ2Ô

(macro)
A

〉
Q

� U (macro)
A (ρ̂)

� min
Ô

(macro)
A

〈δ2O(macro)〉(T = 0)

(D11)

implying that the macroscopic LQU obeys at most a logarith-
mically violated area law, namely

O
(
Ld−1

A

)
� U (macro)

A (ρ̂) � O
(
Ld−1

A log LA

)
. (D12)

APPENDIX E: QUANTUM VARIANCE VERSUS QUANTUM
FISHER INFORMATION: QUANTUM CORRELATIONS

AND METROLOGY

In this section, we focus on the relationship between the
quantum variance and the quantum Fisher information [28],
a central quantity in quantum metrology due to its link with
the maximum precision achievable in the estimation of the
parameter of a given unitary transformation. Similarly to the
skew information, the quantum variance offers a lower bound
to the quantum Fisher information; we shall exploit this fact in
the context of the recently introduced “interferometric power”
[21] to explore the importance of the quantum variance of
bipartite fluctuations both for metrology and for quantum
correlations. Further implications of this bound in the context
of entanglement witnessing will be discussed in Appendix G.

1. Quantum variance as a lower bound to the quantum
Fisher information

The quantum Fisher information (QFI) [28] expresses
the “distinguishability” (in the sense of the Bures distance)
between two density matrices ρ̂(h) and ρ̂(h + δh), belonging
to a family ρ̂(h) continuously parametrized by the parameter
h. If the family of density matrices is obtained via a
unitary transformation generated by an Hermitian operator Ô,
ρ̂(h) = e−iÔhρ̂(h = 0)eiÔh, the QFI takes the explicit form
FQ(Ô,ρ̂) = ∑

nm GF(pn,pm)|〈n|δÔ|m〉|2, where pn and |n〉
are eigenvalues and eigenvectors of the density matrix, and

GF(pn,pm) = 2
(pn − pm)2

pn + pm

. (E1)

This is to be compared with the expression of the quantum
variance, namely, 〈δ2O〉Q = ∑

nm GQV(pn,pm)|〈n|δO|m〉|2,
where

GQV(pn,pm) = pn + pm

2
− pn − pm

ln(pn) − ln(pm)
. (E2)

Comparing the two functions, it is easy to realize that

GF(x,y)

4
� GQV(x,y) 0 � x,y � 1, (E3)

whence the announced inequality

FQ(Ô,ρ̂)

4
� 〈δ2Ô〉Q. (E4)
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Incidentally, we notice that the WY skew information
admits a similar expression I1/2(Ô,ρ̂) = ∑

nm GI1/2 (pn,pm)
|〈n|δÔ|m〉|2 with

GI1/2 (pn,pm) = pn + pm

2
− √

pnpm. (E5)

Direct inspection into the G functions reveals the inequality
chain:

GF(x,y)

4
� GI1/2 (x,y) � GQV(x,y) 0 � x,y � 1, (E6)

whence the ensuing hierarchy:

FQ(Ô,ρ̂)

4
� I1/2(Ô,ρ̂) � 〈δ2Ô〉Q. (E7)

The inequality relating the QFI and WY skew information
was already proven in Ref. [56]. The quantum variance further
explicits this relationship by finding a common, nontrivial
lower bound for both quantities.

2. Metrological implications: the interferometric power

In a similar manner to the definition of local quantum un-
certainty discussed in Appendix D 2, Ref. [21] has introduced
the concept of interferometric power (IP) of an observable O�

A

in a bipartite (A + B) system with density matrix ρ̂ as

P�
A (ρ̂) = 1

4 min
Ô�

A

FQ

(
Ô�

A ,ρ̂
)
, (E8)

where FQ(Ô�
A ,ρ̂) is the quantum Fisher information associated

with a unitary transformation generated by a local observable
Ô�

A acting on A, and with spectrum �. The IP has a direct
metrological meaning: it expresses the worst-case-scenario
uncertainty (in the sense of the Cramér-Rao bound [57]) that
one can achieve in the estimation of the parameter of a unitary
transformation generated by an arbitrary observable which is
local in A and has a given spectrum �. Reference [21] argues
that the IP is another measure of quantum correlations between
A and B, leading to the conclusion that quantum correlations
are a resource for metrology.

It is immediate to see that the above conclusions carry
automatically over to the case of the quantum variance. Using
the inequality Eq. (E4), one immediately has that

P�
A (ρ) � min

Ô�
A

〈
δ2Ô�

A

〉
Q
. (E9)

In Appendix D 2, we argued that macroscopic observables
Ô

(macro)
A in A, having an extensive spectrum �, capture the

quantum correlations between all degrees of freedom in A

and those in B. In the case of such observables, one can
perform the minimization immediately for the right-hand side
of Eq. (E9), identifying the O

(macro)
A operator with the one

satisfying the condition [Ô(macro)
A + Ô

(macro)
B ,ρ̂] = 0 (again, as

in Appendix D 2 we are excluding local conserved quantities
from the minimization). Hence the quantum variance of
bipartite fluctuations provides a lower bound on the IP of
macroscopic observables, and on the quantum correlations and
metrological resource that this quantity expresses. Similarly to
Eq. (D12), this lower bound allows one to establish an area
law scaling (with at most logarithmic corrections) to the IP of
macroscopic observables, under the assumption (verified, e.g.,

by free fermions as in Sec. VII) that the QFI is maximised
at T = 0. In particular, this bound is very instructive in
terms of the metrological utility of many-body states: the
maximum quantum variance of bipartite fluctuations, and
hence the maximum IP, is achieved for states exhibiting
power-law correlations, and specifically in the vicinity of
quantum critical points—see also [58] for a recent calculation
of the quantum Fisher information in exactly solvable models
of quantum-critical points, which confirms this conclusion.

APPENDIX F: QUANTUM VARIANCE, SKEW
INFORMATION, AND QUANTUM FISHER INFORMATION

OF BIPARTITE FLUCTUATIONS FOR FREE FERMIONS

1. Quantum variance

In this section, we calculate the quantum variance of local
particle-number fluctuations in the case of free fermions on a
d-dimensional hypercubic lattice at half-filling. The density-
density correlation function is given by

〈δn̂i(τ )δn̂j (0)〉 = 1

L2d

∑
k,k′

ei(k−k′)·(r i−rj ) e(εk−ε′
k)τ fk(1 − fk′),

(F1)

where fk = [exp(βεk) + 1]−1 is the Fermi distribution, and
εk = −2J

∑
α=x,y,... cos(kα) is the dispersion relation. Inte-

grating the correlation function to get 〈δ2N̂A〉 and 〈δ2N̂A〉T ,
one obtains the quantum variance in the form

〈δ2N̂A〉Q = 1

L2d

∑
k,k′

∑
i,j∈A

ei(k−k′)·(r i−rj )fk(1 − fk′)

×
[

1 + 1 − eβ(εk−εk′ )

β(εk − εk′)

]
. (F2)

In the high-temperature limit β → 0, the quantum variance
reduces to

〈δ2N̂A〉Q = β2

48

1

L2d

∑
k,k′

∑
i,j∈A

× ei(k−k′)·(r i−rj )(εk − εk′)2 + O(β3). (F3)

One observes that the term linear in β vanishes, so that the
dominant temperature dependence goes like T −2.

Assuming for A the geometry of a hypercube of side LA,
the double sum over the A region can be performed exactly,
leading to

〈δ2N̂A〉Q = β2

48

(
LA

L

)2d ∑
k,k′

×
( ∏

α=x,y,...

sinc2[(kα − k′
α)LA/2]

sinc2[(kα − k′
α)/2]

)
(εk − εk′)2

+O(β3). (F4)

In the limit LA → ∞ one has that

LA

sinc2[(kα − k′
α)LA/2]

sinc2[(kα − k′
α)/2]

≈ 2
∞∑

n=−∞
δ(kα − k′

α − 2πn). (F5)
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One sees immediately that this limit would highlight a term
scaling as Ld

A (volume law), but that this term is actually
vanishing because εk = εk+2πneα

. Hence one is left with an
area-law scaling term.

2. Wigner-Yanase skew information

Using Eq. (D2) leads immediately to the following ex-
pression for the skew information of bipartite particle-number
fluctuations of free fermions

I1/2(N̂A,ρ̂) = 1

L2d

∑
k,k′

∑
i,j∈A

ei(k−k′)·(r i−rj )

× fk(1 − fk′)[1 − eβ(εk−εk′ )/2], (F6)

which, when expanded at high temperature, leads to the
behavior

I1/2(N̂A,ρ̂) = β2

32

1

L2d

∑
k,k′

∑
i,j∈A

× ei(k−k′)·(r i−rj )(εk − εk′)2 + O(β3). (F7)

The above expression is very similar to Eq. (F4) for the
quantum variance, confirming that the two quantities have
the same high-temperature behavior (as well as the same
zero-temperature value). In particular, when β → 0:

〈δ2N̂A〉Q = 2
3I1/2(N̂A,ρ̂) + O(β3). (F8)

3. Quantum Fisher information

Finally, when considering the QFI for free fermions [58],
one finds the following expression for bipartite particle-
number fluctuations:

FQ(N̂A,ρ̂) = 4

L2d

∑
k,k′

∑
i,j∈A

ei(k−k′)·(r i−rj )

× fk(1 − fk′) tanh2

[
β(εk − εk′)

2

]
, (F9)

which leads to the high-temperature behavior

FQ(N̂A,ρ̂) = β2

4

1

L2d

∑
k,k′

∑
i,j∈A

× ei(k−k′)·(r i−rj )(εk − εk′)2 + O(β3). (F10)

Comparing again with Eq. (F4), one can conclude that, at high
temperatures,

〈δ2N̂A〉Q = 1

3

FQ(N̂A,ρ̂)

4
+ O(β3). (F11)

4. Discussion

Hence, as anticipated in the main text, the quantum
fluctuations captured by the quantum variance, the WY skew
information or the QFI display the same high-temperature
behavior up to a global prefactor. This leads to a coherent
picture for bipartite quantum fluctuations of free fermions.
While the calculation of the quantum variance is easily
extended to arbitrary many-body systems, which can be treated
with state-of-the-art numerics, the same is generally not true

for the WY skew information nor the QFI—although, unlike
the QFI, the WY skew information lends itself to path-integral
Monte Carlo approaches probing imaginary-time correlation
functions. On the experimental side, the WY skew information,
being an imaginary-time correlation function, is not accessible
to experiments as such. As for the QFI, Ref. [58] has recently
shown that it is potentially accessible to experiments when cast
as a frequency integral involving the dynamic susceptibility; in
this respect, the quantum variance has the advantage of being
expressed solely in terms of static correlations and response
functions.

APPENDIX G: QUANTUM VARIANCE AS
MULTIPARTICLE ENTANGLEMENT WITNESS

Let us consider a system of N qubits, with collective
spin operators Ĵ = ∑N

i=1 Ŝi . A pure state |ψ〉 is said to be
k-producible [29,59,60] if it can be written as

|ψk-prod〉 = ⊗M
l=1|ψNl

〉, (G1)

where |ψNl
〉 is an (entangled) state of a block of Nl � k spins,

with the constraint that
∑

l Nl = N . A mixed state is then
said to be k-producible if it is an incoherent superposition of
ks-producible states with ks � k

ρ̂k-prod =
∑

s

ps |ψks -prod〉〈ψks -prod|. (G2)

Using Eq. (E4) and the results of Refs. [30,31], one can
prove that for k-producible states the quantum variance of
the collective spin components Ĵ α , and the QFI associated to
transformation generated by the Ĵ α , satisfy the inequality:

4〈δ2J α〉Q � FQ(J α; ρk-prod) � nk2 + (N − nk)2, (G3)

where n = [N/k] is the integer part of N/k. In fact, the exact
same bound as in the last inequality of Eq. (G3) holds for
the WY skew information [29], and again it carries over to
the quantum variance thanks to the inequality in Eq. (D5).
The inequality of Eq. (G3) can be readily generalized to more
general degrees of freedom than qubits, namely to collective
operators Ĉ = ∑

i ĉi , where ci is an operator with a bounded
spectrum contained in the interval [cmin,cmax]. In that case the
inequality takes the form [7]

4〈δ2Ĉ〉Q � FQ(Ĉ; ρk-prod)

� (cmax − cmin)2[nk2 + (N − nk)2]. (G4)

Hence, similarly to what was already found for the WY
skew information [29] and the QFI [7,30,31], a violation
of the inequalities in Eqs. (G3) or (G4) or for the quantum
variance is a strong indication of the existence of multiparticle
entanglement among a least (k + 1) degrees of freedom. The
condition of violation is actually very strong, as the bound of
the last inequality in is rather loose for thermal states. Indeed,
the bound of Eq. (G3) is valid for k-producible pure states
and mixed states alike, but, given that all the quantities in
question (WY skew information, QFI, and quantum variance)
are expected to decrease under thermal mixing, the bound is
much looser for thermal states, and all the more so the higher
the temperature.

075121-14



QUANTUM VARIANCE: A MEASURE OF QUANTUM . . . PHYSICAL REVIEW B 94, 075121 (2016)

[1] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley, Reading, MA, 1965),
Vol. III.

[2] E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935).
[3] V. Scarani, Quantum Physics: A First Encounter (Oxford

University Press, Oxford, 2006).
[4] A. J. Leggett, Quantum Liquids (Oxford University Press,

Oxford, 2006).
[5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[6] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral,

Rev. Mod. Phys. 84, 1655 (2012).
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A 85, 022321 (2012).

[32] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum
Mechanics and Path Integrals (Dover, New York, 2005).

[33] J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093 (1994).
[34] A. Cuccoli, R. Giachetti, V. Tognetti, R. Vaia, and P. Verrucchi,

J. Phys.: Condens. Matter 7, 7891 (1995).
[35] A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).
[36] I. Marvian and R. W. Spekkens, Nat. Commun. 5, 3821

(2014).
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[60] G. Tóth, O. Gühne, M. Seevinck, and J. Uffink, Phys. Rev. A

72, 014101 (2005).
[61] A. Cuccoli, T. Roscilde, V. Tognetti, R. Vaia, and P. Verrucchi,

Phys. Rev. B 67, 104414 (2003).
[62] P. Durganandini, Eur. Phys. J. D 66, 285 (2012).

075121-15

http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/PhysRevX.1.021022
http://dx.doi.org/10.1103/PhysRevX.1.021022
http://dx.doi.org/10.1103/PhysRevX.1.021022
http://dx.doi.org/10.1103/PhysRevX.1.021022
http://dx.doi.org/10.1038/nphys2376
http://dx.doi.org/10.1038/nphys2376
http://dx.doi.org/10.1038/nphys2376
http://dx.doi.org/10.1038/nphys2376
http://dx.doi.org/10.1073/pnas.49.6.910
http://dx.doi.org/10.1073/pnas.49.6.910
http://dx.doi.org/10.1073/pnas.49.6.910
http://dx.doi.org/10.1073/pnas.49.6.910
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.110.240402
http://dx.doi.org/10.1103/PhysRevLett.110.240402
http://dx.doi.org/10.1103/PhysRevLett.110.240402
http://dx.doi.org/10.1103/PhysRevLett.110.240402
http://dx.doi.org/10.1103/PhysRevLett.113.170401
http://dx.doi.org/10.1103/PhysRevLett.113.170401
http://dx.doi.org/10.1103/PhysRevLett.113.170401
http://dx.doi.org/10.1103/PhysRevLett.113.170401
http://dx.doi.org/10.1088/1367-2630/16/3/033007
http://dx.doi.org/10.1088/1367-2630/16/3/033007
http://dx.doi.org/10.1088/1367-2630/16/3/033007
http://dx.doi.org/10.1088/1367-2630/16/3/033007
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevA.93.052331
http://dx.doi.org/10.1103/PhysRevA.93.052331
http://dx.doi.org/10.1103/PhysRevA.93.052331
http://dx.doi.org/10.1103/PhysRevA.93.052331
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/PhysRevLett.112.210401
http://dx.doi.org/10.1103/PhysRevLett.112.210401
http://dx.doi.org/10.1103/PhysRevLett.112.210401
http://dx.doi.org/10.1103/PhysRevLett.112.210401
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.81.032120
http://dx.doi.org/10.1103/PhysRevA.81.032120
http://dx.doi.org/10.1103/PhysRevA.81.032120
http://dx.doi.org/10.1103/PhysRevA.81.032120
http://dx.doi.org/10.1103/PhysRevLett.115.035302
http://dx.doi.org/10.1103/PhysRevLett.115.035302
http://dx.doi.org/10.1103/PhysRevLett.115.035302
http://dx.doi.org/10.1103/PhysRevLett.115.035302
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1038/nphys2829
http://dx.doi.org/10.1038/nphys2829
http://dx.doi.org/10.1038/nphys2829
http://dx.doi.org/10.1038/nphys2829
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1088/0953-8984/7/41/003
http://dx.doi.org/10.1088/0953-8984/7/41/003
http://dx.doi.org/10.1088/0953-8984/7/41/003
http://dx.doi.org/10.1088/0953-8984/7/41/003
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1038/ncomms4821
http://dx.doi.org/10.1038/ncomms4821
http://dx.doi.org/10.1038/ncomms4821
http://dx.doi.org/10.1038/ncomms4821
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.85.035409
http://dx.doi.org/10.1103/PhysRevB.85.035409
http://dx.doi.org/10.1103/PhysRevB.85.035409
http://dx.doi.org/10.1103/PhysRevB.85.035409
http://dx.doi.org/10.1103/PhysRevLett.108.116401
http://dx.doi.org/10.1103/PhysRevLett.108.116401
http://dx.doi.org/10.1103/PhysRevLett.108.116401
http://dx.doi.org/10.1103/PhysRevLett.108.116401
http://dx.doi.org/10.1103/PhysRevB.92.115129
http://dx.doi.org/10.1103/PhysRevB.92.115129
http://dx.doi.org/10.1103/PhysRevB.92.115129
http://dx.doi.org/10.1103/PhysRevB.92.115129
http://dx.doi.org/10.1088/1742-5468/2015/02/P02008
http://dx.doi.org/10.1088/1742-5468/2015/02/P02008
http://dx.doi.org/10.1088/1742-5468/2015/02/P02008
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1209/0295-5075/97/20009
http://dx.doi.org/10.1209/0295-5075/97/20009
http://dx.doi.org/10.1209/0295-5075/97/20009
http://dx.doi.org/10.1209/0295-5075/97/20009
http://dx.doi.org/10.1103/PhysRevA.91.041602
http://dx.doi.org/10.1103/PhysRevA.91.041602
http://dx.doi.org/10.1103/PhysRevA.91.041602
http://dx.doi.org/10.1103/PhysRevA.91.041602
http://arxiv.org/abs/arXiv:1605.04223
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1016/0003-4916(83)90333-0
http://dx.doi.org/10.1016/0003-4916(83)90333-0
http://dx.doi.org/10.1016/0003-4916(83)90333-0
http://dx.doi.org/10.1016/0003-4916(83)90333-0
http://dx.doi.org/10.1016/0001-8708(73)90011-X
http://dx.doi.org/10.1016/0001-8708(73)90011-X
http://dx.doi.org/10.1016/0001-8708(73)90011-X
http://dx.doi.org/10.1016/0001-8708(73)90011-X
http://dx.doi.org/10.1090/S0002-9939-03-07175-2
http://dx.doi.org/10.1090/S0002-9939-03-07175-2
http://dx.doi.org/10.1090/S0002-9939-03-07175-2
http://dx.doi.org/10.1090/S0002-9939-03-07175-2
http://dx.doi.org/10.1038/nphys3700
http://dx.doi.org/10.1038/nphys3700
http://dx.doi.org/10.1038/nphys3700
http://dx.doi.org/10.1038/nphys3700
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevB.67.104414
http://dx.doi.org/10.1103/PhysRevB.67.104414
http://dx.doi.org/10.1103/PhysRevB.67.104414
http://dx.doi.org/10.1103/PhysRevB.67.104414
http://dx.doi.org/10.1140/epjd/e2012-30302-3
http://dx.doi.org/10.1140/epjd/e2012-30302-3
http://dx.doi.org/10.1140/epjd/e2012-30302-3
http://dx.doi.org/10.1140/epjd/e2012-30302-3



