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Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing
temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot
electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible,
despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We
present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling
coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates,
especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected
strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles
calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals,
including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions
of the time-resolved optical probe signatures in ultrafast laser experiments.
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I. INTRODUCTION

Understanding the energy transfer mechanisms during ther-
mal nonequilibrium between electrons and the lattice is critical
for a wide array of applications. Nonequilibrium electron
properties on time scales of 10 s–100 s of femtoseconds are
most efficiently observed with pulsed laser measurement tech-
niques [1–7]. Laser irradiation of a metal film or nanostructure
with an ultrashort laser pulse pushes the electron gas out of
equilibrium; describing the evolution of this nonequilibrium
distribution has been the subject of intense research for two
decades. A majority of investigations so far employ various ap-
proximate models, typically based on free-electron models and
empirical electron-phonon interactions, to calculate the energy
absorption, electron-electron thermalization, and electron-
phonon relaxation [8–19]. However, a complete ab initio
description of the time evolution and optical response of this
nonequilibrium electron gas from femtosecond to picosecond
time scales has remained elusive, especially because of the
empirical treatment of electron-phonon interactions [20].

The initial electron thermalization via electron-electron
scattering is qualitatively described within the Landau theory
of Fermi liquids [21–24]. The subsequent relaxation of the high
temperature electron gas with the lattice is widely described
by the two-temperature model (TTM) [1,5–7,17,20], given
by coupled differential equations for the electron and lattice
temperatures, Te and Tl ,

Ce(Te)
dTe

dt
= ∇ · (κe∇Te) − G(Te) × (Te − Tl) + S(t),

Cl(Tl)
dTl

dt
= ∇ · (κp∇Tl) + G(Te) × (Te − Tl). (1)

Here, κe and κp are the thermal conductivities of the electrons
and phonons, G(Te) is the electron-phonon coupling factor,
Ce(Te) and Cl(Tl) are the electronic and lattice heat capacities,
and S(t) is the source term which describes energy deposition
by a laser pulse. In nanostructures, the temperatures become

homogeneous in space rapidly and the contributions of the
thermal conductivities drop out. A vast majority of studies,
both theoretical and experimental, treat the remaining material
parameters, G(Te), Ce(Te), and Cl(Tl), as phenomenological
temperature-independent constants [25–32].

Figure 1 schematically shows the time evolution of the
electron and lattice temperatures in a plasmonic metal like
gold, and the role of the temperature-dependent material
properties. The electronic density of states and the resultant
electronic heat capacity Ce(Te) determine the peak electron
temperature Te reached after electron-electron thermalization.
The electron-phonon matrix elements and the resulting cou-
pling strength G(Te) determine the rate of energy transfer from
the electrons to the lattice, which along with Ce(Te) determines
the rate of relaxation of Te. Finally, the phonon density of states
and the resulting lattice heat capacity Cl(Tl) determine the rise
in lattice temperature Tl .

A key challenge in the quantitative application of TTM
models is the determination of these temperature-dependent
material parameters. With pulsed lasers, it is possible to
absorb sufficient energy in plasmonic nanostructures to melt
the metal once the electrons and lattice have equilibrated
[33]. The highest electron temperature, T max

e , accessible in
repeatable measurements is therefore limited only by the
equilibrated lattice temperature being less than the melting
temperature Tm of the metal [34], which yields the condition∫ T max

e

Tm
dTeCe(Te) = ∫ Tm

T0
dTlCl(Tl). Starting at room tempera-

ture T0 = 300 K and using our calculations of the electron and
lattice heat capacities, Ce(Te) and Cl(Tl), we find T max

e ≈ 5700,
8300, 7500, and 6700 K, respectively, for aluminum, silver,
gold, and copper. For gold and copper in particular, these
temperatures are sufficient to change the occupations of the
d-bands ∼2 eV below the Fermi level. Consequently, it is
important to derive the temperature dependence of these
material parameters from electronic structure calculations
rather than free-electron like models [20].
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FIG. 1. Schematic electron and lattice temperature evolution with
time following laser pulse illumination of a plasmonic metal like
gold, along with the relevant material properties that determine
this evolution. The vertical position of the gold atoms on the plot
corresponds to electron temperature, and the vibration marks around
the atoms schematically indicate lattice temperature. We show that
both the electron heat-capacity Ce(Te) [from electronic density of
states (DOS)] that sets the peak electron temperature Te, and the
electron-phonon coupling strength G(Te) (from electron-phonon
matrix element Me-ph) that affects the relaxation time of Te, vary with
Te in a manner sensitive to details of d electrons in noble metals. Only
the lattice heat capacity Cl(Tl), that determines the lattice temperature
rise, does not vary substantially between the detailed phonon DOS
and simpler models.

Therefore to accurately predict the transient optical re-
sponse of metal nanostructures, we account for the electron-
temperature dependence of the electronic heat capacity,
electron-phonon coupling factor, and dielectric functions.
These properties, in turn, require accurate electron and phonon
band structures as well as electron-phonon and optical matrix
elements. We recently showed that ab initio calculations can
quantitatively predict optical response, carrier generation, and
electron transport in plasmonic metals in comparison with
experiment, with no empirical parameters [35]. In this article,
we calculate Ce(Te), G(Te) and the temperature and frequency-
dependent dielectric function, ε(ω,Te), from first principles.
These calculations implicitly include electronic-structure ef-
fects in the density of states and electron-phonon interaction
matrix elements, and implicitly account for processes such as
Umklapp scattering. We show substantial differences between
our predictions and those from simplified models due to the
energy dependence of the electron-phonon matrix elements,
especially at high electron temperatures.

The paper is organized as follows. We start with the
theoretical background and computational methods used in the
calculations of the electron heat capacity, phonon coupling,
and temperature dependent dielectric function of plasmonic
materials (Sec. II A). In Sec. II B, we show calculations
of the electron heat capacity and its dependence on the
electron temperature due to the electronic density of states.
Analogously, Sec. II C presents the lattice-temperature de-
pendence of the lattice heat capacity due to the phonon
density of states. Next, in Sec. II D we show a key result

of the paper: temperature dependence of the electron-phonon
coupling strength accounting for energy dependence of the
electron-phonon matrix elements. Finally, Sec. II E presents
the temperature and frequency dependence of the dielectric
function, including direct (interband), phonon-assisted, and
Drude intraband contributions. Section III summarizes our
results and discusses their application to plasmonic nanos-
tructures in various experimental regimes.

II. THEORY AND RESULTS

A. Computational details

We perform density-functional theory (DFT) calculations
of the electronic states, phonons, electron-phonon and op-
tical matrix elements, and several derived quantities based
on these properties, for four plasmonic metals, aluminum,
copper, silver, and gold. We use the open-source plane-wave
density-functional software named JDFTx [36] to perform
fully relativistic (spinorial) band structure calculations using
norm-conserving pseudopotentials at a kinetic energy cutoff
of 30 hartrees, and the PBEsol exchange-correlation func-
tional (Perdew-Burke-Ernzerhof functional reparametrized for
solids) [37] with a localized +U correction [38] for the
d-bands in the noble metals. Reference [39] shows that
this method produces accurate electronic band structures
in agreement with angle-resolved photoemission (ARPES)
measurements within 0.1 eV.

We calculate phonon energies and electron-phonon matrix
elements using perturbations on a 4 × 4 × 4 supercell. In
our calculations, these matrix elements implicitly include
Umklapp-like processes. We then convert the electron and
phonon Hamiltonians to a maximally localized Wannier
function basis [40], with 123 k-points in the Brillouin zone
for electrons. Specifically, we employ 24 Wannier centers
for aluminum and 46 spinorial centers for the noble met-
als which reproduces the density functional theory (DFT)
band structure exactly to at least 50 eV above the Fermi
level.

Using this Wannier representation, we interpolate the
electron, phonon, and electron-phonon interaction Hamilto-
nians to arbitrary wave vectors and perform dense Monte
Carlo sampling for accurately evaluating the Brillouin zone
integrals for each derived property below. This dense Brillouin
zone sampling is necessary because of the large disparity
in the energy scales of electrons and phonons, and directly
calculating DFT phonon properties on dense k-point grids is
computationally expensive and impractical. See Ref. [35] for
further details on the calculation protocol and benchmarks of
the accuracy of the electron-phonon coupling (e.g., resistivity
within 5% for all four metals).

B. Electronic density of states and heat capacity

The electronic density of states (DOS) per unit volume

g(ε) =
∫

BZ

dk
(2π )3

∑
n

δ(ε − εkn), (2)

where εkn are energies of quasiparticles with band index n and
wave vector k in the Brillouin zone BZ, directly determines
the electronic heat capacity and is an important factor in
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FIG. 2. Comparison of electronic density of states for (a) Al,
(b) Ag, (c) Au, and (d) Cu from our relativistic PBEsol+U

calculations, previous semilocal PBE DFT calculations [20] (less
accurate band structure), and a free electron model.

the electron-phonon coupling and dielectric response of hot
electrons. Above, the band index n implicitly counts spinorial
orbitals in our relativistic calculations, and hence we omit the
explicit spin degeneracy factor.

Figure 2 compares the DOS predicted by our relativistic
PBEsol+U method with a previous nonrelativistic semilocal
estimate [20] using the PBE (Perdew-Burke-Ernzerhof) func-
tional [41], as well as a free electron model εk = �

2k2

2me
for which

g(ε) =
√

ε

2π2 ( 2me

�2 )
3/2

. The free electron model is a reasonable
approximation for aluminum and the PBE and PBEsol+U

density-functional calculations also agree reasonably well in
this case (U = 0 for aluminum). The regular 313 k-point grid
used for Brillouin zone sampling introduces the sharp artifacts
in the DOS from Ref. [20], compared to the much denser Monte
Carlo sampling in our calculations with 640 000 k-points for
Au, Ag, and Cu, and 1 280 000 k-points for Al.

For the noble metals, the free electron model and the
density functional methods agree reasonably near the Fermi
level, but differ significantly ∼2 eV below the Fermi level
where d-bands contribute. The free electron models ignore
the d-bands entirely, whereas the semilocal PBE calculations
predict d-bands that are narrower and closer to the Fermi
level than the PBEsol+U predictions. The U correction [38]
accounts for self-interaction errors in semilocal DFT and
positions the d-bands in agreement with ARPES measure-
ments (to within ∼0.1 eV) [39]. Additionally, the DOS in the
nonrelativistic PBE calculations strongly peaks at the top of
the d-bands (closest to the Fermi level), whereas the DOS in
our relativistic calculations is comparatively balanced between
the top and middle of the d-bands due to strong spin-orbit
splitting, particularly for gold. Below, we find that these
inaccuracies in the DOS due to electronic structure methods
previously employed for studying hot electrons propagates
to the predicted electronic heat capacity and electron-phonon
coupling.

The electronic heat capacity, defined as the derivative of the
electronic energy per unit volume with respect to the electronic
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FIG. 3. Comparison of the electronic heat capacity as a function
of electron temperature, Ce(Te), for (a) Al, (b) Ag, (c) Au, and
(d) Cu, corresponding to the three electronic density-of-states
predictions shown in Fig. 2. The free electron Sommerfeld model
underestimates Ce for noble metals at high Te because it neglects
d-band contributions, whereas previous DFT calculations [20] over-
estimate it because their d-bands are too close to the Fermi level.

temperature (Te), can be related to the DOS as

Ce(Te) =
∫ ∞

−∞
dε g(ε)ε

∂f (ε,Te)

∂Te

, (3)

where f (ε,Te) is the Fermi distribution function. The term
∂f/∂Te is sharply peaked at the Fermi energy εF with a
width ∼kBTe, and therefore the heat capacity depends only
on electronic states within a few kBTe of the Fermi level.
For the free electron model, Taylor expanding g(ε) around εF

and analytically integrating (3) yields the Sommerfeld model

Ce(Te) = π2nek
2
B

2εF
Te, which is valid for Te � TF (∼105 K).

Above, ne = 3π2k3
F , εF = �

2k2
F

2me
, and kF are respectively the

number density, Fermi energy, and Fermi wave vector of the
free electron model.

At temperatures Te � TF , the electronic heat capacities
are much smaller than the lattice heat capacities [5,10,23],
which makes it possible for laser pulses to increase Te by
103–104 K, while Tl remains relatively constant [6,42,43].
Figure 3 compares Ce(Te) from the free-electron Sommerfeld
model with predictions of (3) using DOS from PBE and
PBEsol+U calculations. The free-electron Sommerfeld model
is accurate at low temperatures (up to ∼2000 K) for all four
metals.

With increasing Te, ∂f/∂Te in (3) is nonzero increasingly
further away from the Fermi energy, so that deviations
from the free electron DOS eventually become important.
For aluminum, the DOS remains free-electron-like over a
wide energy range and the Sommerfeld model remains valid
throughout. For the noble metals, the increase in DOS due
to d-bands causes a dramatic increase in Ce(Te) once Te is
high enough that ∂f/∂Te becomes nonzero in that energy
range. Copper and gold have shallower d-bands and deviate
at lower temperatures compared to silver. Additionally, the
d-bands are too close to the Fermi level in the semilocal PBE
calculations of Ref. [20], which results in an overestimation of
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FIG. 4. Comparison of DFT-calculated phonon density of states
and the Debye model for (a) Al, (b) Ag, (c) Au, and (d) Cu.

Ce(Te) compared to our predictions based on the more accurate
relativistic PBEsol+U method.

C. Phonon density of states and lattice heat capacity

Similarly, the phonon DOS per unit volume

D(ε) =
∫

BZ

dq
(2π )3

∑
α

δ(ε − �ωqα), (4)

where �ωqα are energies of phonons with polarization index α

and wave vector q, directly determines the lattice heat capacity,

Cl(Tl) =
∫ ∞

0
dε D(ε)ε

∂n(ε,Tl)

∂Tl

, (5)

where n(ε,Tl) is the Bose occupation factor.
Within the Debye model, the phonon energies are ap-

proximated by an isotropic linear dispersion relation ωqα =
vαq up to a maximum Debye wave vector qD chosen to
conserve the number of phonon modes per unit volume.
This model yields the analytical phonon DOS, D(ε) =

ε2

(2π2)

∑
α θ (�qDvα − ε)/(�vα)3, where vα = {vL,vT ,vT } are

the speeds of sound for the one longitudinal and two degenerate
transverse phonon modes of the face-centered cubic metals
considered here [34].

Figure 4 compares the DFT-calculated phonon DOS with
the Debye model predictions, and shows that the Debye model
is a good approximation for the DOS only up to 0.01 eV.
However, Fig. 5 shows that the corresponding predictions for
the lattice heat capacities are very similar, rapidly approaching
the equipartition theorem prediction of Cl = 3kB/� at high
temperatures, which is insensitive to details in the phonon
DOS. In fact, the largest deviations of the Debye model are
below 100 K and less than 10% from the direct calculations for
all four metals. We therefore find that a simple model of the
phonons is adequate for predicting the lattice heat capacity, in
contrast to the remaining quantities we consider below which
are highly sensitive to details of the phonons and their coupling
to the electrons.
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FIG. 5. Comparison of DFT and Debye model predictions of the
lattice heat capacity as a function of lattice temperature, Cl(Tl), for
(a) Al, (b) Ag, (c) Au, and (d) Cu. Despite large differences in the
density of states (Fig. 4), the predicted lattice heat capacities of the
two models agree within 10%.

D. Electron-phonon coupling

In Sec. II B we have shown that the electronic heat capacity,
which determines the initial temperature that the hot electrons
equilibrate to, is sensitive to electronic structure especially
in noble metals at high Te where d-bands contribute. Now
we analyze the electron-phonon coupling which determines
the subsequent thermalization of the hot electrons with the
lattice. We show that details in the electron-phonon matrix
elements calculated using DFT also play a significant role, in
addition to the electronic band structure, and compare previous
semiempirical estimates of the Te-dependent phonon coupling
to our direct calculations.

The rate of energy transfer from electrons at temperature
Te to the lattice (phonons) at temperature Tl per unit volume
is given by Fermi’s golden rule as

dE

dt
≡ G(Te)(Te − Tl)

= 2π

�

∫
BZ

�dk dk′

(2π )6

∑
nn′α

δ(b − �ωk′−k,α)

× �ωk′−k,α

∣∣gk′−k,α
k′n′,kn

∣∣2
STe,Tl

(εkn,εk′n′ ,�ωk′−k,α), (6)

with

STe,Tl
(ε,ε′,�ωph) ≡ f (ε,Te)n(�ωph,Tl)(1 − f (ε′,Te))

− (1 − f (ε,Te))(1 + n(�ωph,Tl))f (ε′,Te).

(7)

Here, � is the unit cell volume, �ωqα is the energy of a phonon
with wave vector q = k′ − k and polarization index α, and
g

k′−k,α
k′n′,kn is the electron-phonon matrix element coupling this

phonon to electronic states indexed by kn and k′n′.
Above, S is the difference between the product of oc-

cupation factors for the forward and reverse directions of
the electron-phonon scattering process kn + qα → k′n′, with
f (ε,Te) and n(�ω,Tl) being the Fermi and Bose distribution
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function for the electrons and phonons, respectively. Using
the fact that STe,Te

= 0 for an energy-conserving process
ε + �ωph = ε′ by detailed balance, we can write the electron-
phonon coupling coefficient as

G(Te) = 2π

�

∫
BZ

�dk dk′

(2π )6

∑
nn′α

δ(εk′n′ − εkn − �ωk′−k,α)

× �ωk′−k,α

∣∣gk′−k,α
k′n′,kn

∣∣2
(f (εkn,Te) − f (εk′n′ ,Te))

× n(�ωk′−k,α,Te) − n(�ωk′−k,α,Tl)

Te − Tl

. (8)

This general form for DFT-based electronic and phononic
states is analogous to previous single-band/free electron
theories of the electron-phonon coupling coefficient; see,
for example, the derivation by Allen et al. [44]. Note that
unlike previous empirical models, here the coupling coefficient
depends on the lattice temperature Tl as well, but we omit the
Tl label in G(Te) to keep the notation consistent with previous
approaches [20], and present results below for Tl = 298 K
(ambient temperature).

The direct evaluation of G(Te) using (8) requires a six-
dimensional integral over electron-phonon matrix elements
from DFT with very fine k-point grids that can resolve both
electronic and phononic energy scales. This is impractical
without the recently developed Wannier interpolation and
Monte Carlo sampling methods for these matrix elements
[35,45], and therefore our results are the first parameter-free
predictions of G(Te), derived entirely from DFT.

Previous theoretical estimates of G(Te) are semiempirical,
combining DFT electronic structure with empirical models
for the phonon coupling. For example, Wang et al. [46]
assume that the electron-phonon matrix elements averaged
over scattering angles is independent of energy and that the
phonon energies are smaller than kBTe, and then approximate
the electron-phonon coupling coefficient as

G(Te) ≈ πkB

�g(εF )
λ〈(�ω)2〉

∫ ∞

−∞
dε g2(ε)

−∂f (ε,Te)

∂ε
, (9)

where λ is the electron-phonon mass enhancement parameter
and 〈(�ω)2〉 is the second moment of the phonon spectrum
[8,20,47]. Lin et al. [20] treat λ〈(�ω)2〉 as an empirical
parameter calibrated to experimental G(Te) at low Te obtained
from thermoreflectance measurements, and extrapolate it to
higher Te using (9). See Refs. [46] and [20] for more details.

For clarity, we motivate here a simpler derivation of an
expression of the form of (9) from the general form (8). First,
making the approximation �ωqα � Te (which is reasonably
valid for Te above room temperature) allows us to approximate
the difference between the electron occupation factors in the
second line of (8) by �ωqα∂f/∂ε (using energy conservation).
Additionally, for Te 
 Tl , the third line of (8) simplifies
to kB/(�ωk′−k,α). With no other approximations, we can
then rearrange (8) to collect contributions by initial electron
energy,

G(Te) ≈ πkB

�g(εF )

∫ ∞

−∞
dε h(ε)g2(ε)

−∂f (ε,Te)

∂ε
, (10)
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FIG. 6. Energy-resolved electron-phonon coupling strength h(ε),
defined by (11), for (a) Al, (b) Ag, (c) Au, and (d) Cu. For the noble
metals, h(εF ) is substantially larger than its value in the d-bands,
which causes previous semiempirical estimates [20] using a constant
h(ε) to overestimate the electron-phonon coupling [G(Te)] at Te �
3000 K, as shown in Fig. 7.

with

h(ε) ≡ 2g(εF )

g2(ε)

∫
BZ

�dk dk′

(2π )6

∑
nn′α

δ(ε − εkn)

× δ(εk′n′ − εkn − �ωk′−k,α)�ωk′−k,α

∣∣gk′−k,α
k′n′,kn

∣∣2
. (11)

Therefore, the primary approximation in previous semiem-
pirical estimates [20,46] is the replacement of h(ε) by an
energy-independent constant λ〈(�ω)2〉, used as an empirical
parameter.

Figure 6 compares our calculations of this energy-resolved
electron-phonon coupling strength, h(ε), with previous empir-
ical estimates of λ〈(�ω)2〉, and Fig. 7 compares the resulting
temperature dependence of the electron-phonon coupling,
G(Te), from (8) and semiempirical methods (9). For noble
metals, G(Te) increases sharply beyond Te ∼ 3000 K because
of the large density of states in the d-bands. However, h(ε) is
smaller by a factor of 2–3 in the d-bands compared to near
the Fermi level. Therefore, assuming h(ε) to be an empirical
constant [17,20] results in a significant overestimate of G(Te)
at high Te, compared to the direct calculations. Additionally,
the shallowness of the d-bands in the semilocal PBE band
structure used in Ref. [20] lowers the onset temperature of
the increase in G(Te), and results in further overestimation
compared to our predictions.

Our predictions agree very well with the experimental
measurements of G(Te) available at lower temperatures for
noble metals [3,14,15,32,48]. In fact, the semiempirical calcu-
lation based on λ〈(�ω)2〉 underestimates the room temperature
electron-phonon coupling for these metals; the significant
overestimation of G(Te) seen in Fig. 7 is despite this partial
cancellation of error. This shows the importance of detailed
DFT electron-phonon matrix elements in calculating the
coupling between hot electrons and the lattice.

Experimental measurements of the electron-phonon cou-
pling in noble metals are reliable because of the reasonably
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(b) Ag, (c) Au, and (d) Cu, with experimental measurements where
available [3,14,15,32,48]. The DFT-based semiempirical predictions
of Lin et al. [20] overestimate the coupling for noble metals
at high temperatures because they assume an energy-independent
electron-phonon coupling strength (Fig. 6) and neglect the weaker
phonon coupling of d-bands compared to the conduction band.
The experimental results (and hence the semiempirical predictions)
for aluminum underestimate electron-phonon coupling because they
include the effect of competing electron-electron thermalization
which happens on the same time scale.

clear separation between a fast electron-electron thermal-
ization rise followed by a slower electron-phonon decay in
the thermoreflectance signal. In aluminum, these time scales
significantly overlap resulting in strong nonequilibrium effects
and making experimental determination of the equilibrium
electron-phonon coupling G(Te) difficult. Consequently, the
value of G(Te) for Al is not well agreed upon [32,49].
Using a simplified single-band free-electron-like model of
the electrons, Ref. [50] estimates G ≈ 2.9 × 107 W/m3K for
thermalized electrons at 2000 K, which is 1.5× larger than

G ≈ 1.9 × 107 W/m3K for nonthermalized electrons with
the same amount of energy. In Fig. 7(a), our predictions
using (8) which assumes equilibrium are 2× larger than
the experimental estimates [32] which implicitly include the
nonequilibrium effects. On the other hand, the semiempirical
model of Ref. [20] assumes thermalized electrons, but fits
to experimental data that includes nonthermal effects (and
matches experiment by construction). The single-band-model
nonequilibrium predictions do not match experiment because
it assumes a simple model for electron-phonon matrix elements
that ignores Umklapp processes [50]. Ultimately, quantitative
agreement with experiments for aluminum (for the right
reasons) therefore requires an extension of our nonempirical
DFT approach (8) to include nonequilibrium effects, a subject
of current work in our group.

E. Dielectric function

The final ingredient for a complete theoretical descrip-
tion of ultrafast transient absorption measurements is the
temperature-dependent dielectric function of the material. We
previously showed [35] that we could predict the imaginary
part of the dielectric function Im ε(ω) of plasmonic metals in
quantitative agreement with ellipsometric measurements for a
wide range of frequencies by accounting for the three dominant
contributions,

Im ε(ω) = 4πσ0

ω(1 + ω2τ 2)
+ Im εdirect(ω) + Im εphonon(ω).

(12)

We briefly summarize the calculation of these contributions
and focus on their electron temperature dependence below;
see Ref. [35] for a detailed description.

The first term of (12) accounts for the Drude response
of the metal due to free carriers near the Fermi level, with
the zero-frequency conductivity σ0 and momentum relaxation
time τ calculated using the linearized Boltzmann equation with
collision integrals based on DFT [35]. The second and third
terms of (12),

Im εdirect(ω) = 4π2e2

m2
eω

2

∫
BZ

dk
(2π )3

∑
n′n

(fkn − fkn′ )δ(εkn′ − εkn − �ω)
∣∣λ̂ · 〈p〉k

n′n

∣∣2
, (13)

Im εphonon(ω) = 4π2e2

m2
eω

2

∫
BZ

dk′dk
(2π )6

∑
n′nα±

(fkn − fk′n′)

(
nk′−k,α + 1

2
∓ 1

2

)
δ(εk′n′ − εkn − �ω ∓ �ωk′−k,α)

×
∣∣∣∣∣λ̂ ·

∑
n1

(
g

k′−k,α
k′n′,kn1

〈p〉k
n1n

εkn1 − εkn − �ω + iη
+ 〈p〉k′

n′n1
g

k′−k,α
k′n1,kn

εk′n1 − εkn ∓ �ωk′−k,α + iη

)∣∣∣∣∣
2

, (14)

capture the contributions due to direct interband excitations
and phonon-assisted intraband excitations, respectively. Here
〈p〉k

n′n are matrix elements of the momentum operator, λ̂

is the electric field direction (results are isotropic for crys-
tals with cubic symmetry), and all remaining electron and
phonon properties are exactly as described previously. The
energy-conserving δ functions are replaced by a Lorentzian
of width equal to the sum of initial and final electron

linewidths, because of the finite lifetime of the quasipar-
ticles.

The dielectric function calculated using (12)–(14) depends
on the electron temperature Te in two ways. First, the electron
occupations fkn directly depend on Te. Second, the phase
space for electron-electron scattering increases with electron
temperature, which increases the Lorentzian broadening in the
energy conserving δ functions in (13) and (14).
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TABLE I. Coefficient of the temperature dependence of the
electron-electron scattering rate as given by (15), extracted from
fits to the energy dependence of DFT-calculated electron-electron
scattering rates at room temperature [35].

Metal Al Ag Au Cu

De (eV-1) 0.017 0.021 0.016 0.020

We calculate electron linewidths from DFT using Fermi
golden rule calculations for electron-electron and electron-
phonon scattering at room temperature, as detailed in Ref. [35].
These calculations are computationally expensive and difficult
to repeat for several electron temperatures; we instead use the
linewidths at room temperature with an analytical correction
for the Te dependence. The electron-phonon scattering rate
depends on the lattice temperature, but is approximately
independent of Te because the phase space for scattering is
determined primarily by the electronic density of states and
electron-phonon matrix elements, which depend strongly on
the electron energies but not on the occupation factors or Te.
The phase space for electron-electron scattering, on the other
hand, depends on the occupation factors and Te because an
electron at an energy far from the Fermi level can scatter
with electrons close to the Fermi level. The variation of this
phase space with temperature is primarily due to the change in
occupation of states near the Fermi level, and we can therefore
estimate this effect in plasmonic metals using a free electron
model.

Within a free electron model, the phase space for electron-
electron scattering grows quadratically with energy relative
to the Fermi level, resulting in scattering rates ∝(ε − εF )2 at
zero electron temperatures, as is well known [2,51]. We can
extend these derivations to finite electron temperature to show
that the energy and temperature-dependent electron-electron
scattering rate

τ−1
ee (ε,Te) ≈ De

�
[(ε − εF )2 + (πkBTe)2] (15)

for |ε − εF | � εF and Te � εF /kB . Within the free
electron model, the constant of proportionality De =

mee
4

4π�2(ε0
b )2ε

3/2
S

√
εF

(
√

4εF εS

4εF +εS
+ tan−1

√
4εF

εS
), where the background

dielectric constant ε0
b and the Thomas-Fermi screening energy

scale εS are typically treated as empirical parameters [2].
Here, we extract De by fitting (15) to the electron-electron
scattering rates at room temperature T0 calculated using DFT
[35]. The resulting fit parameters are listed in Table I. We
then estimate the total scattering rates at other temperatures by
adding (De/�)(πkB)2(T 2

e − T 2
0 ) to the total DFT-calculated

results (including electron-phonon scattering) at T0. Note that
we could have equivalently fit the DFT-calculated scattering
rates at zero temperature, but the Fermi golden rule results
at room temperature are less noisy at finite k-point sampling,
and moreover these rates do not differ appreciably for electron
energies more than ∼πkBT0 ≈ 0.08 eV away from the Fermi
level anyway.

Finally, we use the Kramers-Kronig relations to calculate
Re(ε(ω,Te)) from Im(ε(ω,Te)). Figure 8 compares the DFT-
predicted dielectric functions with ellipsometry measurements

(a) Al (b) Ag

(c) Au (d) Cu

FIG. 8. DFT predictions of the complex dielectric functions for
(a) Al, (b) Ag, (c) Au, and (d) Cu at room temperature (300 K)
compared with ellipsometry measurements [52]. The y axis is scaled
by ω2/ω2

p in order to represent features at different frequencies such
as the Drude pole and the interband response on the same scale.

[52] for a range of frequencies spanning from near-infrared to
ultraviolet. Note that we scale the y axis by (ω/ωp)2, where
ωp =

√
4πe2ne/me is the free-electron plasma frequency, in

order to display features at all frequencies on the same scale.
We find excellent agreement for aluminum within 10% of
experiment over the entire frequency range, including the peak
around 1.6 eV due to an interband transition. The agreement
is reasonable for noble metals with a typical error within
20%, but with a larger error ∼50% for certain features in
the interband d → s transitions due to inaccuracies in the
d-band positions predicted by DFT (especially for silver). In
the present work, the PBEsol+U band structure is typically
accurate to ∼0.1 eV [39], compared to errors ∼1 eV in
d-band positions predicted by semilocal DFT functionals [20]
and qualitative inadequacies of free-electron-like models that
ignore d bands entirely. Consequently, our chosen method has
the potential to provide the most reliable predictions of metal
dielectric functions, especially for the electron temperature
dependence that we discuss next. (Empirical fits such as Drude-
Lorentz models can be more accurate by construction at one
temperature [53], but do not predict temperature dependence.)

Figures 9–11 show the change of the DFT-calculated
complex dielectric function (solid lines) upon increasing the
electron temperature Te from room temperature to 400 K,
1000 K, and 5000 K, respectively, while the lattice remains
at room temperature (see Supplemental Material [54]). For
all four metals, the response from infrared to ultraviolet
frequencies is dominated by “sharp” features due to interband
transitions that broaden with increasing temperature. In the
remainder of this section, we analyze these sharp interband
features in greater detail using a simpler analytic model
of the (d → s) transitions (shown in dashed lines in the
aforementioned figures).

The strongest temperature dependence in noble metals
results from transitions between the highest occupied d-band
to the Fermi level near the L point, as shown in Fig. 12(a).
Assuming a parabolic dispersion and a constant transition
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(a) Al (b) Ag

(c) Au (d) Cu

FIG. 9. Change in the DFT-predicted complex dielectric function
(solid lines) for (a) Al, (b) Ag, (c) Au, and (d) Cu from room
temperature (300 K) to electron temperature Te = 400 K (with the
lattice remaining at room temperature). In comparison, the analytical
d → s model (16) (dashed lines) captures essential features of the
DFT results for noble metals at lower temperatures, but misses the
contributions of broadening due to electron-electron scattering at
higher temperatures. Note that the y axis is scaled as in Fig. 8 for
clarity.

matrix element, this temperature dependence can be modeled
as [17,55]

�ε(ω) = −�K A0

(�ω)2

∫ ∞

−εc

dε(1 − f (ε,Te))√
(m∗

v/m∗
c )(�ω − (ε + ε0 + εc))

− (ε + εc)

.

(16)

The denominator captures the joint density of states for
transitions between the bands, and the numerator counts
unoccupied states near the Fermi level, which introduces the
temperature dependence. Above, K fills in the real part of

(a) Al (b) Ag

(c) Au (d) Cu

FIG. 10. Change in the DFT-predicted complex dielectric func-
tion (solid lines) for (a) Al, (b) Ag, (c) Au, and (d) Cu from room
temperature (300 K) to electron temperature Te = 1000 K (with the
lattice remaining at room temperature), compared to the analytical
d → s model (16) (dashed lines).

(a) Al (b) Ag

(c) Au (d) Cu

FIG. 11. Change in the DFT-predicted complex dielectric func-
tion (solid lines) for (a) Al, (b) Ag, (c) Au, and (d) Cu from room
temperature (300 K) to electron temperature Te = 5000 K (with the
lattice remaining at room temperature), compared to the analytical
d → s model (16) (dashed lines).

the dielectric function, given the imaginary part using the
Kramers-Kronig relation.

Table II lists the parameters for the parabolic band ap-
proximation obtained from the PBEsol+U band structures.
Figure 9 shows that this approximation (dashed lines) captures
the correct shape of �ε(ω) for small changes in Te. However,
this model underestimates the Te dependence for higher Te

because it ignores the quadratic increase in broadening of the
electronic states due to increased electron-electron scattering,
as Figs. 10 and 11 show. Aluminum exhibits a sharp change in
the dielectric function around �ω ≈ 1.5 eV, which results from
several transitions to/from the Fermi level near the W point as
Fig. 12(b) shows. Additionally two of the involved bands are
not parabolic, making it difficult to construct a simple model
like (16). Therefore, simplified models are adequate for quali-
tative analysis of lower temperature excitation experiments in
noble metals [17], but dielectric functions from first-principles
DFT calculations are necessary for a quantitative analysis of
higher temperature experiments and a wider range of materials
and probe frequencies.

-4

-2

0

2

W L

ε
- 

ε F
[e

V
]

-2

0

2

X W

ε
- 

ε F
[e

V
]

FIG. 12. Critical interband transitions determining the “sharp”
features in the dielectric function change for (a) noble metals (gold
shown; similar shapes for silver and copper) and (b) aluminum. A
parabolic band model around the L point (parameters in Table II)
approximates the critical transition in noble metals. This is difficult
in aluminum because of four such transitions in a narrow energy range
≈1.3–1.6 eV.
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TABLE II. Parameters to describe the change in dielectric
function of noble metals with electron temperature using the d → s

model (16) with a parabolic band approximation, extracted from fits
to the PBEsol+U band structure. The energies and effective masses
are also labeled in Fig. 12(a).

Ag Au Cu

Physical constants:
ωp (eV/�) 8.98 9.01 10.8
τ−1 (eV/�) 0.0175 0.0240 0.0268
Fits to DFT calculations:
A0 (eV3/2) 70 22 90
εc (eV) 0.31 0.96 0.98
ε0 (eV) 3.36 1.25 1.05
m∗

v/m∗
c 5.4 3.4 16.1

III. CONCLUSIONS

Our parameter-free DFT calculations of electron-phonon
coupling, electron, and lattice heat capacities, and dielectric
functions show qualitative differences from free-electron and
previous semiempirical estimates because of the substantial
energy dependence of electron-phonon matrix elements and
electronic density of states. These changes are particularly im-
portant for gold and copper at transient electron temperatures
greater than 2000 K because of the change in occupations of
the d-bands situated ∼2 eV below the Fermi level in these
metals.

The temperature dependence of the optical response is, in
particular, important for a wide range of applications beyond
understanding ultrafast measurements. We show that while
simple models can account for some of the qualitative features
of the change in dielectric function for small changes in
temperature, an electronic structure treatment is essential to

quantitatively account for the complete frequency and temper-
ature dependence, including effects such as carrier linewidth
broadening and transitions between multiple nonparabolic
bands. Given the dearth of published temperature-dependent
dielectric functions in the literature, we include detailed tables
of our predictions for electron temperatures up to 8000 K, and
spanning frequencies from the infrared to the ultraviolet, in
the Supplemental Material [54].

This work has direct implications for analysis of exper-
imental pump-probe studies of metal nanostructures and is
the subject of ongoing work in our group. With the predicted
material properties we anticipate a parameter-free description
of the spectra obtained in transient absorption studies since
we implicitly account for all the microscopic processes in the
nonequilibrium dynamics of electrons in plasmonic metals.
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