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The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3

[H. Takahashi et al., Nat. Mater. 14, 1008 (2015)] opens a broad avenue of research, because it represents the
first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor.
Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body
techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In
this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders
of BaFe2S3. The model is studied with the density matrix renormalization group. These first reported results are
exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the
rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments;
and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of
two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with
doping, with only one Wannier orbital receiving the hole carriers while the other remains half-filled. These results
suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies
and other exotic properties of iron-based high-critical-temperature superconductors in general.

DOI: 10.1103/PhysRevB.94.075119

I. INTRODUCTION

The understanding of the high-critical-temperature (Tc) su-
perconductors based on iron continues attracting the attention
of the condensed matter community [1–7]. It is widely believed
that these studies may not only have potential technological
applications, but they may also shed light on other high-Tc

superconductors such as those based on copper. While early
theoretical studies of the iron-based compounds were guided
by simple Fermi surface nesting ideas that may have captured
important properties of these materials such as the symmetry
of the superconducting state, more recent investigations are
increasingly suggesting that the effect of Coulombic repulsion
between electrons cannot be neglected [6]. For example,
there are compounds that are superconducting but do not
have hole pockets, and thus no nesting effects, at the Fermi
surface [8]. There are also materials with robust magnetic local
moments even at room temperature [9,10], in disagreement
with weak coupling perspectives where the formation of
moments and their long-range order occur simultaneously
upon cooling. Moreover, complex spin arrangements have
been unveiled in several materials, as recently reviewed [7].
All these results suggest that repulsive interactions between
electrons are important to fully understand these compounds’
properties. However, the theoretical analysis of multiorbital
Hubbard models is challenging because of the absence of
reliable many-body tools to study their properties in layered
systems. In particular, thus far the only theoretical evidence
that superconductivity can be induced in these compounds
via antiferromagnetic (AFM) fluctuations relies exclusively
on BCS gap equations and random phase approximation

techniques. Can we generate more robust theoretical evidence
for AFM-based superconductivity in these compounds?

In the context of the copper-oxide high-Tc superconductors,
finding crystal structures simpler than layers but still with
intriguing quantum mechanical many-body properties proved
to be a fruitful path for progress in that field. One of the reasons
is that theorists can perform model Hamiltonian calculations
with more accuracy in, e.g., quasi-one-dimensional systems. In
fact, spin-1/2 Cu-oxide two-leg ladders have been much stud-
ied in cuprates because of their unusual spin gap, induced by
the ladder geometry [11–13]. The Cu-oxide-ladder spin state
is dominated by rung spin-singlets, and it was theoretically
predicted that such a system should have a tendency to super-
conductivity upon doping. This was verified in high-pressure
experiments at ∼3 GPa for the case of Sr0.4Ca13.6Cu24O41.84,
reporting a critical temperature of 12 K [14]. Due to its
quasi-one-dimensional character, it was possible to employ a
variety of accurate many-body techniques for ladders, showing
agreement between theoretical predictions and experimental
results, an agreement that has provided considerable support
to the notion that superconductivity in cuprates originates in
AFM fluctuations.

These important earlier results in the context of copper-
oxide ladders suggest that progress in the understanding of
iron-based superconductors would be possible if similar quasi-
one-dimensional structures could be prepared and theoretically
studied. For this reason considerable interest was generated
by recent studies of BaFe2Se3 because this material contains
double chains made of [Fe2Se3]2− blocks separated by Ba
[15–23]. The resulting structure contains two extended Fe-Fe
directions (the “legs”) connected by Fe-Fe bonds of similar
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strength (the “rungs”) thus defining two-leg ladders very
similar to those in the cuprates. A difference is that the Cu-Cu
bridge in the cuprates’ ladders is made by an oxygen in between
the coppers, while in chalcogenides the bridges between irons
are provided by selenium, which is located up and down the
middle of the iron plaquettes. Thus, as in their two-dimensional
counterparts, electronic hoppings of similar strength are to be
expected for the chalcogenides not only along legs and rungs,
but also along the plaquette diagonals.

BaFe2Se3 is an insulator, with an activation energy between
0.13 eV [18] and 0.178 eV [16], long-range AFM order at
∼250 K induced by weak residual interladder interactions,
and low-temperature magnetic moments ∼2.8 μB [15–17].
Remarkably, neutron diffraction studies reported a dominant
magnetic order at low temperature involving blocks of four
iron atoms with their moments aligned, coupled antiferromag-
netically along the ladder direction [15,18]. When K replaces
Ba, thus leading to KFe2Se3, the magnetic state changes to
an arrangement where the spins in the same rung are coupled
ferromagnetically but they are antiferromagnetically ordered
in the long-ladder direction [19]. Theoretical studies primarily
employing the Hartree Fock approximation [21] unveiled a
rich phase diagram for two-leg ladder multiorbital Hubbard
models, with a plethora of phases including both states already
found in the Ba- and K-based ladders as well as several
other competitors. These exotic spin arrangements arise from
frustrating tendencies between the staggered AFM state that
dominates at small Hund coupling and the ferromagnetic
(FM) state stable at large Hund coupling [21]. Hartree-Fock
results for layers [24] and chains [25] also suggest a complex
landscape of competing magnetic states in those geometries.

Recently, an unexpected experimental result has been
reported using BaFe2S3 [26,27], where S replaces Se but
keeps the two-leg ladder structure the same. This material was
found to become superconducting at a pressure above 10 GPa
with an optimal critical temperature Tc = 24 K. The parent
compound, i.e., the same material but at ambient pressure,
is a Mott insulator with the same magnetic order as KFe2Se3

namely involving FM rung and AFM leg spin correlations with
a critical temperature ∼120 K, according to power neutron
diffraction studies [26]. These discoveries unveiled the first
iron-based superconductor that does not rely on a square
lattice structure of irons, opening an intriguing avenue of
research similar to the one opened with the discovery of
superconductivity in Cu oxide ladders in the context of the
cuprates.

The present publication introduces a two-orbital Hubbard
model for a two-leg ladder of BaFe2S3, based on ab initio
calculations. This model is subsequently solved computation-
ally using the density matrix renormalization group (DMRG)
technique [28]. Our main results are two folded. First, we
show that at half-filling with two electrons per iron, and using
clusters as large as 16×2, there is a robust evidence for the same
magnetic order found experimentally involving FM rungs and
AFM leg correlations. This magnetic state becomes robust
at intermediate and strong Hubbard couplings, in agreement
with the growing perception that these materials are not in
the weak coupling regime. Second, we assume that in the
experiments [26] the high pressure alters the band structure in
such a manner that the individual ladders become hole doped,

although the insulator-superconductor transition could also
be bandwidth-controlled [26]. In the Cu-oxide based ladders
studied some years ago, experiments showed [29] that indeed
pressure alters the amount of mobile electrons residing in the
two-leg ladders in such a manner that the superconducting state
is reached effectively by hole doping of the ladders. Here we
simply assume that a similar physics occurs in the iron-based
ladders and focus on their hole doping. In fact, studying the
cases of one, two, and four holes we have found pairing tenden-
cies when using an 8 × 2 cluster in the strong coupling regime
U/W � 2, W being the tight-binding electronic bandwidth.
The complexity of the Hamiltonian with two active orbitals
and a tight-binding term that must include plaquette diagonal
hoppings renders the DMRG calculation so computing time
demanding that a confirmation of the pairing tendency beyond
8 × 2 is not possible at present with the DMRG technique and
our available computer resources. Nevertheless, the pairing
indications we have observed are promising and suggestive
that the theoretical study of iron-based two-leg ladders may
illuminate the understanding of iron-based superconductors
using many-body techniques beyond the diagrammatic random
phase approximation.

The organization of the manuscript is as follows. Section II
provides details of the ab initio calculations. Section III
contains the actual model used, many-body technique, and
observables studied. Section IV presents our main results,
organized separately for zero, one, and two holes, the latter
including binding energies. Finally, Sec. V contains our main
conclusions.

II. AB INITIO CALCULATIONS

This section presents the details of the derivation of the
multiorbital Hubbard model for the BaFe2S3 ladder from first
principles, to be used later in Secs. III and IV. Following the
procedure described in Ref. [30], first, a calculation is per-
formed based on the generalized gradient approximation with
the QUANTUM ESPRESSO package [31]. There we employed the
exchange-correlation functional proposed by Perdew, Burke,
and Ernzerhof [32], a plane-wave basis set with a cutoff energy
of 40 Ry, and an 8×8 × 8 k mesh for the first Brillouin zone
(BZ). As for the lattice constants, we used the experimental
values a = 8.78 Å, b = 11.23 Å, and c = 5.29 Å for the
ambient pressure case and reduced them by 4.0%, 8.0%,
and 3.4%, respectively, for pressure P = 12.4 GPa [33]. The
space group of the system is Cmcm, and the atomic positions
of Ba(4c), Fe(8e), S(4c), and S(8g) are (0.0, 0.686, 0.25),
(0.154, 0.0, 0.0), (0.0, 0.116, 0.25), and (0.208, 0.378, 0.25),
respectively [33]. Because the magnetic properties will be
considered when we solve the effective two-orbital Hubbard
model in the following sections, magnetism was not included
in the derivation of the model from first principles [34].

After this initial setup, we constructed two Wannier
functions for each Fe atom in the unit cell using the WANNIER90

package [35]. One resulting Wannier orbital mainly consists of
the standard dx2−y2 orbitals (orbital a below), while the other
one is primarily made from the standard dxz orbital (orbital b

below). The two Wannier orbitals employed here do not have a
high symmetry, because the dx2−y2 or dxz orbitals significantly
hybridize with other d-orbitals or s-p orbitals. In particular, for
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the latter Wannier orbital there is a substantial contribution of
the canonical dxy orbital. To construct explicitly these orbitals,
we have to disentangle their complicated electronic structure.
In order to preserve accurately the properties of the low-energy
band dispersion, we introduced a “frozen” energy window [36]
as large as (−0.3 eV, 0.2 eV) with respect to EF , on top of the
ordinary “global” energy window (−1.2 eV, 1.5 eV).

After we constructed an eight-band model, we further
simplified this model by unfolding the BZ along the kz

direction. Namely, by introducing a local gauge transformation
for one of the two Wannier orbitals to change its sign, we can
expand the band dispersion from � to Z in the original BZ,
and construct a four-band model [30].

Finally, we want to derive an effective ladder model from
the four-band model, namely we wish to arrive to a model
restricted to a two-leg ladder. One possibility is to neglect
all interladder electron hopping transfers and just focus on
the intraladder transfers. However, the bandwidth in the kx-
ky plane is not necessarily small (as large as 500 meV at
maximum). Thus, in the present study, the effect of interladder
transfers is taken into account by considering their average, i.e.,
we construct our ladder model from the four-band Hamiltonian
by considering the case kx = ky = 0.

III. MODEL AND METHOD

This section explicitly provides the multiorbital Hubbard
model derived by the procedure explained before, while
Sec. IV will present the magnetic properties and pairing
tendencies of BaFe2S3. The model studied here breaks up into
kinetic energy and interaction terms: H = HK + Hint. The
tight-binding kinetic energy portion is

Hk =
∑
iσ

γ γ ′α

t �α
γ γ ′(c

†
iσγ ci+�ασγ ′ + H.c.) +

∑
iγ σ

�γ niγ σ , (1)

where the first term represents the hopping of an electron
from site i of a two-leg ladder and orbital γ to site i + �α and
orbital γ ′. The vector �α indicates the many different directions
possible for the electronic hopping, as shown in the ladder
sketch Fig. 1. We use a two-orbital model where we label the

y

z

tz

ty

t2z

t
z+

y

t z−
y

t
2z

+
y

t 2z−
y

FIG. 1. Schematic representation of the directions of electronic
hopping for the two-leg ladder model considered here. The legs of
the ladder are arranged in the z direction, while the rungs are in
the y direction. The hoppings to next-nearest neighbor rungs (i.e.,
t2z, t2z−y, and t2z+y) are dubbed the “long-range hoppings.” In total,
there are seven different hopping directions shown.

downfolded [30] orbitals as a and b (i.e., γ and γ ′ are restricted
to a and b). �γ represents the crystal-field splitting of orbital
γ . There are two sets of hopping parameters obtained from
fitting the ab initio downfolded band structure calculations
at different pressures. The crystal fields at P = 0.0 GPa are
�a = 0.308 and �b = −0.229 (eV units used from now on)
while the associated hopping amplitudes are

t z =
[−0.215 −0.149
+0.149 +0.153

]
,

ty =
[−0.012 0.000

0.000 +0.153

]
,

tz+y = t z−y =
[+0.075 +0.174
−0.174 +0.083

]
, (2)

t2z =
[−0.137 +0.004
−0.004 +0.037

]
,

t2z+y = t2z−y =
[−0.007 +0.016
−0.016 −0.041

]
,

while the crystal fields at P = 12.36 GPa are �a = 0.423 and
�b = −0.314, with associated hopping amplitudes

t z =
[−0.334 −0.177
+0.177 +0.212

]
,

ty =
[−0.024 0.000

0.000 +0.216

]

t z+y = t z−y =
[+0.085 +0.216
−0.216 +0.109

]
, (3)

t2z =
[−0.171 −0.011
+0.011 +0.035

]
,

t2z+y = t2z−y =
[

0.000 +0.042
−0.042 −0.044

]
.

Figures 2(a) and 2(b) show the single-particle spectrum,
calculated to illustrate the band structure at both P = 0.0
and 12.36 GPa using all the hoppings in Eqs. (2) and (3)
(“long-range hoppings”). In Figs. 3(a) and 3(b), similar results
are presented but using only hoppings up to nearest-neighbor
rungs (“short-range hoppings”). The band structures in both
cases are similar. However, some discrepancies occur. For
instance, at the edges, such as kz = 0 and π , the short-range
hoppings present degeneracies (or near degeneracies) that
are split in the long-range case. It is unclear if these details
are significant or not, and without performing the DMRG
calculations in both cases explicilty this issue cannot be
answered conclusively. Here, we simply wish to alert the
readers of these small differences for completeness.

The electronic interaction portion of the Hamiltonian

Hint = U
∑
iγ

ni↑γ ni↓γ +
(

U ′ − J

2

) ∑
i

γ < γ ′

niγ niγ ′

− 2J
∑
i

γ < γ ′

Siγ .Siγ ′ + J
∑

i

γ < γ ′

(P †
iγ Piγ ′ + H.c.) (4)
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FIG. 2. Tight-binding band structure (U/W = 0.0) involving
hoppings up to the next-nearest neighbor rungs (i.e., long-range
hoppings) for pressures of (a) 0.0 and (b) 12.36 GPa. The chemical
potential is at zero energy for half-filling.

contains the standard intraorbital Hubbard repulsion U and
the Hund’s coupling J . The operator Siγ (niγ ) is the total spin
(electronic density) for orbital γ at site i. P

†
iγ (Piγ ) are the

pair creation (annihilation) operators. The standard relation
U ′ = U − 2J is assumed. The operators are defined in terms
of the creation and annihilation fermion operators as

Siγ =
∑
σσ ′

c
†
iσγ σσσ ′ciσ ′γ , (5)
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FIG. 3. Tight-binding band structure (U/W = 0.0) involving
hoppings only up to the nearest-neighbor rungs (i.e., short-range
hoppings) for pressures of (a) 0.0 and (b) 12.36 GPa. The chemical
potential is at zero energy for half-filling.

niσγ = c
†
iσγ ciσγ , and Piγ = ci↓γ ci↑γ . The half-filling elec-

tronic density corresponds to two electrons per site.
We use the ground-state density matrix renormalization

group (DMRG) technique with open boundary conditions
in order to study the BaFe2S3 ladder using the two-orbital
Hubbard model previously defined. DMRG grows the lattice
by adding sites in a “snakelike” geometry. We have studied in
detail a ladder size of 8 × 2 with up to four holes doped over
a half-filled system. Calculations involving 12 × 2 and 16 × 2
ladders are also presented at half-filling. Keeping up to 800
states, the typical value of the discarded weight (truncation
error) is of the order of 10−5 for the doping cases studied.
Within this level of error observables are converged. For the
two-holes case, we can reach a similar accuracy only for 8 × 2
lattices, and for this reason our study of binding energies is
restricted to those lattices. With typical computer resources,
8 × 2 ladder simulations with m = 800 states require 3–4 days
at half-filling. The two holes doped case needs more than
a week, even if using only short-range hoppings. The use
of the long-range hoppings substantially increases the time
required for convergence. This is because of three different
reasons. First, the most time consuming part of the DMRG
process is computing the Hamiltonian connections, and with
long-range hoppings one has to sum a large number of terms
in the Hamiltonian. Second, at fixed on-site interactions (U
and J ) and fixed density, the difficulty of the DMRG scales
exponentially with the number of connections between system
and environment, when a lattice is split in the middle. Third,
our on-site Hilbert space is large due to the presence of two
orbitals. In fact, the system we have studied can be translated
into a one-dimensional one-orbital Hubbard model with
hoppings up to 12th neighbors. This illustrates the substantial
numerical effort presented here at the limit of what can be done
with modern many-body computational techniques. We also
want to remark that perhaps more modern versions of DMRG,
such as those involving matrix product operators, may alleviate
the effort needed in the present problem. In fact, recently,
S = 1/2 ladders including dipolar interactions were studied
with up to 400 rungs with this method [37].

We will present a variety of charge and magnetic observ-
ables for doping of up to four holes on the half-filled system.
The average occupation number of each orbital is

〈nγ 〉 = 1

N

∑
i,σ

〈niσγ 〉. (6)

We also calculate the spin-spin correlations by using the
Fourier transform of the real space 〈Si · Sj 〉,

S(kz,ky) = 1

N2

∑
i,j

e−i�k·�rij 〈Si · Sj 〉, (7)

where Si = ∑
γ Siγ (sum over the orbitals). Below, this spin

structure factor will carry a subindex “L” or “S” depending
on whether in the Hamiltonian the long-range or short-range
hoppings are used, respectively.

To explore pairing tendencies, we study the binding energy
of a pair of holes defined as [38]

�E = E(N − 2) + E(N ) − 2E(N − 1), (8)
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where E(M) is the ground-state energy of the model with a
total of M electrons (M = N is half-filling). If the particles
minimize their energy by creating a bound state then �E is
negative; if the holes become two independent particles, this
corresponds to zero binding energy in the bulk limit. In the
case where the particles do not bind, this quantity is positive
for finite systems.

To study the effects of holes on the magnetic correlations,
we define a projector Phγ (i) at site i such that it projects out
the portion of the ground state in which site i and orbital γ is
occupied [39]:

Phγ (i) = ci↓γ c
†
i↓γ ci↑γ c

†
i↑γ . (9)

In order to work in the Hilbert space corresponding to Nh

number of holes at specific locations, we apply a product
of projectors onto the ground state with Nh holes, Phγ =
Phγ (i1)Phγ (i2) . . . Phγ (iNh

), where i is the site to be projected
while respecting the fermionic normal ordering (ii < i2 <

· · · < iNh
). For example, Pha = Pha(6)Pha(8) projects out the

occupied part of the ground state on orbital a at sites 6 and 8. In
fact, for most results shown below, we only apply the projector
onto orbital a in order to observe the corresponding local
spin-spin correlations 〈ψ |Sia · SjaPha|ψ〉/〈ψ |Pha|ψ〉, where
the maximum possible magnitude of the correlations is 3/4.

IV. RESULTS

This section presents our main results. We start with the
half-filled case that should be contrasted with the experimental
data for the two-leg BaFe2S3 at pressures where magnetic order
was reported. The magnetic order observed experimentally
emerges very clearly from our calculations. We then proceed
to the addition of holes, under the assumption that the high
pressure used experimentally moves bands around in such
a manner that the two-leg ladders become effectively doped.
Our main result is that indications of pairing are found in small
systems, opening the possibility that indeed superconducting
tendencies may be present in the models studied here.

A. Half-Filling

Figure 4(a) shows the electronic population of the two
orbitals calculated via DMRG as a function of U/W , for the
two electrons per site half-filling case. Because of the crystal
field splitting that locates orbital b approximately 0.7 eV
below orbital a, in the weak coupling regime orbital b is
considerably more populated. As the energy penalization for
double occupancy increases with increasing U/W , eventually
at U/W ∼ 1 both orbitals become effectively singly occupied.
These orbital populations are robust varying the lattice size and
also using either the “short” or “long” version of the hopping
amplitudes, as shown in Fig. 4(a).

Figure 4(b) presents the spin structure factor at various
wave vectors as a function of U/W . The wave vector (π,0)
clearly dominates, particularly in the regime of intermediate
and strong coupling. SS(π,0) (see definition in caption of
Fig. 4) starts growing already at U/W � 0.4 even before
the full moments are developed, an intermediate coupling
regime that several investigations assign to the iron based
superconductors [6]. Once again, these results are robust
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FIG. 4. Charge and magnetic properties of a half-filled 8 × 2
ladder at P = 12.36 GPa [Eq. (3)] studied with DMRG. Full (empty)
points with subscript “L” (“S”) correspond to using long-range
(short-range) hoppings. All results are at J/U = 0.25. (a) Average
orbital occupation vs U/W . Black (blue) color is for orbital a (b).
The stars at U/W = 2.0 indicate results using a 12 × 2 lattice [cyan
(magenta) for orbital b (a)]. Very similar results were obtained for
a 16 × 2 lattice (not shown). (b) Fourier transform of the spin-spin
correlations (i.e., spin structure factor) at representative wave vectors,
indicating the dominance of (π,0) (see text). At U/W = 2.0, SS(π,0)
was also calculated using 12 × 2 (green star) and 16 × 2 (black
X) lattices. SS(π,0) slightly decreases with system size because the
one-dimensional nature of the lattice prevents long-range magnetic
order. (c) 〈S2〉 vs U/W , averaged over all sites. The subindexes
0, 1, 2, and 4 are the number of holes away from half-filling.
The green star and black X are as in (b), suggesting small size
effects. The convergence to 2 with increasing U/W at half-filling
denotes a convergence to spin S = 1, as expected because J increases
proportional to U . 〈S2〉 slightly decreases with increasing number of
holes because of dilution effects.

increasing the lattice size and using either “short” or “long”
hopping amplitudes. The small decrease of SS(π,0) in Fig. 4(b)
with increasing clusters from 8 × 2 to 16 × 2 is reasonable
because a true long-range order is not expected in one
dimension, but a slow power-law decay should instead prevail.
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The dominance of the (π,0) magnetic order is in excellent
agreement with neutron experiments for BaFe2S3 [26]. In our
model, this magnetic order dominance arises primarily from
the comparable strength of the hopping amplitudes ty+z along
the diagonal of the elementary plaquettes contrasted with those
along the nearest-neighbor sites along the rungs and legs. This
comparable strength originates in the location of sulfur, that
acts as a bridge between irons, up and down the middle of
the ladder plaquettes. This is also the same reason for the
dominance of the (degenerate) (π,0) and (0,π ) wave vectors
in planar geometries, at intermediate and strong couplings.

In two-leg ladders, the explicit breaking of the lattice rota-
tional invariance renders (π,0) and (0,π ) no longer degenerate.
However, why (π,0) dominates over (0,π ) according to the
DMRG calculations? A possible simple explanation is the
following. Consider a classical J1-J2 spin model for spins
of magnitude 1, where J1 is the antiferromagnetic Heisenberg
coupling for nearest-neighbors spins both along the rungs and
legs, while J2 is the antiferromagnetic coupling along the
plaquette diagonals. The energy of the (π,0) state is always
smaller than the energy of the (0,π ) because in (π,0) each spin
always has two nearest-neighbor AFM links, while in (0,π )
there is only one nearest-neighbor AFM link. While at small
J2/J1 the (π,π ) order dominates as expected, a level crossing
to (π,0) eventually occurs at J2/J1 = 0.5. This also provides
a possible rationale for why (π,π ) rather than (0,π ) appears
to be the subdominant order in Fig. 4(b): in these two-orbital
Hubbard models for two-leg ladder materials, the ratio J2/J1

between the effective Heisenberg couplings in strong coupling
must be between 0.5 and 1.0.

Figure 4(c) plots the spin squared expectation value as a
function of U/W , showing the formation of local moments.
The upturn with increasing U/W occurs at values similar to
those where S(π,0) starts growing. Eventually, at strong cou-
pling, U/W > 1, the spins are fully developed and they acquire
their maximum value S = 1, i.e., a magnetic moment 2.0 μB .
Neutron scattering experiments at ambient pressure [26] report
a moment of 1.2 μB (S ∼ 0.6), which we find at U/W � 0.5;
first principles predict a value of 2.0 μB (S ∼ 1.0) at the same
pressure [34]. Note that neutron scattering may be capturing
a moment that is time averaged, thus reducing its value, and
other techniques should be used to find the actual instantaneous
spin [9,10]. Also note that comparing magnetic moment results
of a two-orbital model versus calculations and experiments
involving five orbitals is difficult. Regardless, intermediate to
strong coupling is the physically relevant regime in this model
from the magnetic moment perspective.

B. One hole doped

Figure 5 shows results for the case of one hole doped into
the half-filled system. Panel (a) displays the population of each
orbital. As at half-filling, the crystal field splitting induces a
large difference at weak coupling between the two orbitals.
However, it is curious to observe that in the strong coupling
regime the hole is still almost entirely located at orbital a, in
spite of the presence of a gap induced by the repulsion U .
Nevertheless, since the U is the same for both orbitals, the
only asymmetry between the orbitals is the original crystal
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FIG. 5. Charge and magnetic properties of an 8 × 2 ladder doped
with one hole, at P = 12.36 GPa [Eq. (3)] and studied with DMRG.
Full (empty) points with subscript “L” (“S”) correspond to using
long-range (short-range) hoppings. All results are at J/U = 0.25.
(a) Average orbital occupancy vs U/W . Black (blue) color is for
orbital a (b). At small U/W , the crystal field creates a substantial
difference in the populations. At large U/W , the b orbital converges
approximately to one electron/site, while the a orbital contains most
of the doped hole. The results are approximately the same for L and S
hoppings. (b) Fourier transform of the spin-spin correlations (i.e., spin
structure factor) at various representative wave vectors, indicating the
dominance of (π,0). At very large U/W , the one hole state becomes
ferromagnetic due to double exchange tendencies, as discussed in
the text.

field splitting that, therefore, must be inducing the asymmetric
population with holes of the a orbital.

This strong-coupling Wannier orbital population, where
one orbital is locked at one electron/site and the other at less
than one electron/site, corresponds to an orbital selective Mott
phase (OSMP) [40]. In this context, orbital b provides localized
spins S = 1/2, that are in interaction with delocalized carriers
at orbital a. The physics of the OSMP state suggests that this
state, if realized in the present two-leg ladders, may have exotic
transport properties that include a very small quasiparticle
weight.

Panel (b) contains the spin structure factor. As in the case of
half-filling, clearly the wave vector (π,0) dominates starting at
U/W ∼ 0.4, and irrespective of using “short”- or “long”-range
hoppings. The dip at U/W ∼ 3 is unexpected and it may reflect
on how the hole scrambles the original magnetic order as the
size of the spin distortion around the hole changes with U/W .
This spin scrambling effect can be better visualized in Fig. 6
where from the entire wave function of the one-hole state, a
projection is made for the case where the hole is located at the
sites indicated. While far from the projected hole the spin order
is basically unchanged from the half-filled (π,0) pattern, in the
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FIG. 6. Results obtained from the wave function of a dynamical
hole at P = 12.36 GPa [Eq. (3)], using U/W = 2 and J/U = 0.25,
for the case when the hole is projected on orbital a at the location
denoted by the white circles [see Eq. (9)]. (a) Results for the
8 × 2 lattice and (b) are for the 12 × 2 lattice, showing that size
effects are small. The thickness of the lines is linearly proportional
to the magnitude of the spin-spin correlations involving orbital a.
These correlations between spins at sites m and j are defined as
〈ψ |Sma · SjaPha(i)|ψ〉/〈ψ |Pha(i)|ψ〉, where Pha(i) was defined in
the text. Blue denotes antiferromagnetic correlation while red is
ferromagnetic. In (a), i = 6, and in (b), i = 10. Magnetic correlations
away from the hole are very similar to those in the undoped case. In
both (a) and (b), in the vicinity of the hole, a weak antiferromagnetic
correlation between spins “across the hole” location can be clearly
observed. For a discussion see the text.

vicinity of the hole there is an inevitable scrambling effect that
broadens the (π,0) peak. This shift of weight away from π

along the leg direction is exemplified by the antiferromagnetic
coupling “across the hole” involving, e.g., spins 4 and 8 on
the 8 × 2 lattice that otherwise should be ferromagnetically
coupled. The 12 × 2 results in the same panel indicate very
small size effects. This across-the-hole AFM coupling has
been observed in the t-J model context before [41–43], and it
is considered a precursor of spin-charge separation at least at
short distances. In fact, the exact ground state of the U = ∞
one-orbital Hubbard model in one dimension presents an exact
decoupling between spin and charge with AFM couplings
across all holes [44].

We warn the readers that there are some qualitative differ-
ences between the cases of short-and long-range hoppings.
Of instance in Fig. 5(b) SS(π,0) has a “second peak” at
U/W ∼ 10, which is suppressed in SL(π,0). We do not know
the qualitative reasons for this difference. However, in the
important region of pair binding U/W ∼ 2, to be described
later in the text, both short- and long-range hoppings give very
similar results.

An interesting observation from Fig. 5(b) is that at very
large U/W eventually the one hole state becomes ferro-
magnetic since S(0,0) dominates. In multiorbital systems,
especially in cases where some degrees of freedom are
localized and others itinerant as it occurs in this model, double
exchange mechanisms can favor ferromagnetic tendencies as
it occurs in manganites [45]. In the large U/W regime, the
effective Heisenberg couplings J1 and J2 are very small since
they are inversely proportional to U , while the Hund coupling
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FIG. 7. Charge and magnetic properties of an 8 × 2 ladder doped
with two holes, at P = 12.36 GPa [Eq. (3)], using short-range (“S”)
hoppings, and studied with DMRG. All results are at J/U = 0.25.
(a) Average orbital occupancy vs U/W . Black color is for orbital
a and blue for orbital b. At small U/W , the crystal field creates
a substantial difference in the populations. At large U/W , the b

orbital converges approximately to one electron/site, while the a

orbital contains most of the doped holes. (b) Fourier transform of
the spin-spin correlations (i.e., spin structure factor) at representative
wave vectors, indicating the dominance of (π,0) at intermediate/large
U/W . At very large U/W > 10, the two holes state becomes
ferromagnetic due to double exchange tendencies, as discussed in
the text and as for one hole.

being fixed to J/U = 0.25 is very large. Such a regime is
clearly favorable for double exchange tendencies, as shown
by the DMRG results. This also indicates that ferromagnetic
states are close in parameter space to the realistic regimes for
iron superconductors, a conclusion that also emerged from
previous investigations [21,24,25].

C. Two holes doped

The results for two doped holes shown in Fig. 7 continue
the trends observed before for one hole. Panel (a) shows the
Wannier orbital populations as a function of U/W . As for one
hole, at large U/W the orbital b population remains locked at
one electron/site, while the two holes almost entirely reside at
orbital a. This confirms the tendency towards an OSMP state
with doping. With regards to the spin magnetic order, panel
(b), the (π,0) order still dominates in the broad region between
U/W = 0.4 and 10, but the spin order scrambling caused by
the mobile holes reduces the intensity of S(π,0) as expected.
In addition, the tendency towards ferromagnetism triggered by
double exchange continues at very large U/W .

075119-7



PATEL, NOCERA, ALVAREZ, ARITA, MOREO, AND DAGOTTO PHYSICAL REVIEW B 94, 075119 (2016)

0.01 0.1 1 10 100
U/W

−0.03

0.00

0.03

0.06
ΔΕ

0.01 0.1 1 10 100
U/W

0.00

0.10

0.20

ΔΕ

DMRG

8 x 2

3 x 2

Lanczos

(a)

(b)

FIG. 8. Binding energy vs U/W calculated using (a) DMRG for
an 8 × 2 ladder and (b) Lanczos for a 3 × 2 ladder. In both cases, we
observe a nonmonotonic up-down-up behavior where the minimum of
the binding energy can be found at U/W ∼ 2. Since this minimum of
�E is negative, panel (a) suggests binding of holes between U/W ∼
1.5 and U/W ∼ 4.5. The results in both panels were obtained at P =
12.36 GPa [Eq. (3)], using short-range hoppings, and J/U = 0.25.

D. Binding energy

After calculating the ground-state energies for the N ,
N − 1 (1 hole), and N − 2 (2 holes) subspaces, we can also
calculate the binding energy �E previously defined. The
remarkable result shown in Fig. 8(a) is that for the 8 × 2 cluster
this quantity becomes negative between U/W ∼ 1.5 and
U/W ∼ 4.5. This is a broad region, in spite of the perceived
narrowness in panel (a) because of the logarithmic scale used.
In this regime, the spins are already well developed and near
saturation as it was shown in Fig. 4(c). Considering that holes
are located at orbital a, this surprising result brings similarities
with negative binding energies found in one-orbital models for
the cuprates, such as the t-J [38]. In fact, the crude rationale
for binding based on the “number of broken AFM links” may
apply here as well [38]. In this context, binding occurs because
each hole damages the AFM spin state, and the manner to
minimize the size of that distorted magnetic background is
by bringing the holes together. It is also interesting that exact
results obtained via the Lanczos method applied to a very small
3 × 2 lattice produce a profile for the binding energy, shown in
Fig. 8(b), that qualitatively resembles panel (a) suggesting that
size effects are mild. Alas, as already explained, we have not
been able to reach sufficient accuracy in the two holes sector to
confirm the pairing tendencies of Fig. 8(a) with larger lattices,
thus our pairing analysis below is restricted to the 8 × 2 cluster.

The results in panel (a) suggesting pairing in a region of
parameter space brings analogies with the negative binding
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i
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FIG. 9. Real space electronic density of each orbital [panel (a)
is for orbital a, while panel (b) for orbital b] using an 8 × 2
ladder, U/W = 2.0, J/U = 0.25, short-range hoppings, and at
P = 12.36 GPa [Eq. (3)]. Results are shown for half-filling (N
electrons), one hole (N − 1), two holes (N − 2), and four holes
(N − 4) as a function of the position “i” [see Fig. 6(a) for the
site labeling convention]. The most striking result corresponds to
four holes where the presence of two minima is indicative of hole
pairing. Doping of four holes reduces the orbital a electron density
by approximately 25%, while orbital b has a charge depletion of only
∼3%, illustrating again that holes mainly reside at orbital a.

energies reported before in Kondo lattice models for heavy
fermions [46]. For instance, in Fig. 2(b) of Ref. [46], a
negative �E is reported using up to 32 × 2 lattices. Even
the pair-pair correlation functions of Fig. 3(b) of Ref. [46]
(unfortunately not within the reach of the present study that
uses the full two-orbital Hubbard model) suggest a dominant
pairing tendency in the doped Kondo lattice on two-leg ladders.
Perhaps having holes primarily at orbital a (as shown before),
while orbital b remains singly occupied at strong coupling,
effectively transforms our model into a Kondo lattice model.

To further test the pairing implication of finding a negative
binding energy in Fig. 8, we have also analyzed the real space
distribution of holes in the doped system. In Fig. 9(a), the
electronic density is shown for orbital a, where the holes are
mostly located, for each of the 16 sites of the 8 × 2 lattice at
coupling U/W = 2 where �E is negative. For N electrons,
i.e., half-filled, the electronic density is basically uniform. In
the case of N − 1 electrons, i.e., one hole, this hole is located
in the middle of the cluster as expected for a system with open
boundary conditions. For the case of two holes corresponding
to N − 2 electrons, these two holes are also located near the
center of the cluster but in a tight manner compatible with
pairing. The most important result is for the case of four holes,
corresponding to N − 4 electrons, since Fig. 9(a) indicates
the presence of two minima in the electronic density, a result
compatible with the presence of two hole pairs, as opposed
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FIG. 10. (a) For the case of the two holes ground state on an 8 × 2
ladder, this panel shows the probability of a hole to be located at a site
“i” assuming the other hole is fixed at site 9 of the bottom leg (Leg-1).
Results are normalized to one. Since sites are labeled with a snakelike
geometry where site zero starts from the upper leg (Leg-0), this panel
indicates that the two holes in the bound state are primarily located in
different legs. See Fig. 6(a) for site labeling details. (b) and (c) Results
from the DMRG ground state wave function of two holes on an 8 × 2
cluster, using U/W = 2.0 (binding region) and J/U = 0.25, and
with short-range hoppings at P = 12.36 GPa [Eq. (3)]. Shown are
spin-spin correlations for the case where the two holes are projected
to be at the white circles, i.e., (b) along a plaquette diagonal and
(c) along a rung. These are the two most dominant configurations
in the hole pair. The spin-spin magnetic correlations are defined
as 〈ψ |Sma · SnaPha(i)Pha(j )|ψ〉/〈ψ |Pha(i)Pha(j )|ψ〉, involving only
orbital a because it is the primary location for the doped holes. In (b),
i = 7 and j = 8 and in (c), i = 6 and j = 7. Blue (red) lines are AFM
(FM) bonds. For all hole configurations, the (π,0) magnetic order is
substantially distorted only near the holes. Note also the presence of
“across the hole” AFM correlations in both panels.

to a single broad minimum which would indicate independent
holes or four minima which would signal a charge density wave
of holes. There are also no indications of phase separation. The
results in Fig. 9(b) for orbital b simply mirror those of orbital
a but with a far more suppressed hole density.

Figure 10(a) illustrates the internal structure of the hole
pairs that we have found using the 8 × 2 cluster. This figure
is based on the wave function of two holes, with one of the
holes projected to site “9,” which is on “Leg-1”. This panel
shows that the second hole is primarily located on the other
leg, i.e., “Leg-0”, mainly at the sites either in the same rung
as “9” or diagonally across the plaquettes. Projecting now the
two holes to those particular locations, these two dominant
“plaquette diagonal” and “rung” states for the pair of holes
are shown in Figs. 10(b) and 10(c), respectively. Similarly,
as for the case of one hole, there is a notorious “across the
hole” antiferromagnetic coupling between spins that otherwise

should be ferromagnetically coupled in the undoped system.
This AFM correlation facilitates the movement of the hole.
Note also that if in panel (b) the hole located at “8” and the spin
at “6” are interchanged, as it would happen via the action of
electronic hopping and asssuming that the AFM and FM bonds
remain the same as if they were elastic bands, then panel (c)
is obtained. In fact, this panel (c) has an AFM across-the-hole
coupling between “4” and “8” and a FM coupling between “8”
and “9” that was originally a FM coupling along the diagonal
from “6” to “9” in panel (b). Then panels (b) and (c) are
compatible with one another with regards to hole pairing:
the two holes are oscillating in different legs close to one
another due to an attraction created by the antiferromagnetic
background.

V. CONCLUSIONS

In this publication, we have presented the first study of
a realistic (derived from first principles) electronic model
Hamiltonian for the two-leg ladder compound BaFe2S3 that
was recently shown to become superconducting at high
pressure [26,27]. The model has two orbitals and electronic
hoppings beyond nearest-neighbor iron sites, rendering its
study difficult even with the powerful DMRG method. For
this reason, our analysis has been restricted to relatively small
clusters. Nevertheless, we have been able to extract interesting
information from the model that is in good agreement with
experiments. For example, the parent compound has magnetic
order involving ferromagnetic rungs that are coupled antifer-
romagnetically along the legs, as found in neutron scattering
experiments [26]. In the strong coupling limit, this order
emerges from the competition between antiferromagnetic
Heisenberg couplings along rungs and legs and along the
diagonals of the plaquettes. With hole doping, we observed
that only one of the two Wannier orbitals used here becomes
populated. This indicates a tendency towards effective models
involving a combination of itinerant and localized orbitals,
as in the context of an orbital selective Mott phase. Even
more exciting, we have found that at strong coupling and
using an 8 × 2 cluster with two holes, there are indications
of hole pair formation induced by antiferromagnetism. While
this result must be confirmed using larger systems and more
DMRG states, a challenging task, it suggests that this type of
two-orbital models contains the essence of the mechanism for
superconductivity in iron-based two-leg ladders, a mechanism
that could be similar to that in layered systems. As a
consequence, our present effort paves the way and motivates
further studies in this context. We believe that the theoretical
and experimental analysis of iron-based two-leg ladders may
prove to be as interesting and illuminating as the early studies
in copper oxide two-leg ladders were for cuprate physics,
providing a novel playground in the context of iron-based
high-Tc superconductivity.
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