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Electronic correlation and magnetic frustration in Li2VOSiO4 and VOMoO4
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Li2VOSiO4 and VOMoO4 have been proposed as realizations of the frustrated two-dimensional J1-J2 quantum
Heisenberg model. In this work, in order to test this picture, we study their electronic and magnetic properties
by using the local-density approximation + dynamical mean-field theory method. We calculate the magnetic
linear response function starting from material-specific Hubbard models and systematically map our results onto
those from generalized quantum Heisenberg models. We obtain the effective local magnetic moments and the
associated magnetic exchange couplings, in particular the ratio J2/J1, a measure of the frustration degree, and the
ratio 2J⊥/(J1 + J2), measuring the three-dimensionality degree. Our results support a weak frustration picture
for both materials, with small but non-negligible long-range interplane couplings, leading to three-dimensional
order at low temperature. Implications for the physics of the two systems are discussed.
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I. INTRODUCTION

The layered vanadates Li2VOSiO4 and VOMoO4 have been
proposed as possible realizations of the two-dimensional J1-J2

quantum Heisenberg model, perhaps in the strong frustration
regime [1–5]. The bonanza of unconventional phenomena
predicted by theoretical studies of frustrated systems [6–10]
has thus triggered a lot of attention towards these or similar
materials [11–18], both theoretically and experimentally. From
the point of view of the crystal and electronic structure
Li2VOSiO4 and VOMoO4 have several characteristics in
common; they are both made by VO5 pyramids forming layers;
within a single layer, the VO5 pyramids point alternately
upwards and downwards (see Fig. 1), and the V atoms at
the center of the pyramids form a squarelike lattice (see
Fig. 2). Furthermore, they both have partially filled narrow
V bands (3d1 configuration). In the quantum Heisenberg
model representation, the V atoms behave as local spins
(S = 1/2); the magnetic exchange couplings J1 and J2 are
those between V spins belonging to the same layer and forming
a squarelike lattice; J1 is associated with the V-V bond along
the side of the square (at the center of pyramids pointing
to opposite directions) and J2 to the V-V bond along the
diagonal.

The analysis of early experiments supported the strong
frustration picture (with J1 ∼ J2) [2,3]. For Li2VOSiO4,
nuclear magnetic resonance (NMR), muon-spin rotation, and
thermodynamic measurements lead to the estimates J1 + J2 ∼
8.5 K and J2/J1 ∼ 1.1. Furthermore, these experiments sug-
gest that a collinear antiferromagnetic structure is established
around TN ∼ 2.8 K, a type of ordering predicted for the
frustrated quantum Heisenberg model [19]. In such a magnetic
structure—which in the rest of the paper will be called in short
collinear—lines of parallel spins along, e.g., the a direction,
are aligned antiferromagnetically with respect to each other.
The corresponding ordered magnetic moments were estimated
to be strongly reduced, m(T → 0) = 0.24 μB [2,3], a value
again in agreement with the strongly frustrated quantum

Heisenberg model picture. In line with this view, the lattice
distortions observed around TN were interpreted as frustration
driven [2,3], with the degeneracy of the frustrated state
perhaps lifted via the so-called spin Jahn-Teller effect [11–13].
Similar conclusions, although with sizably larger couplings,
J1 + J2 ∼ 155 K, and higher critical temperature, TN ∼ 42 K,
were reached for VOMoO4, for which it was estimated that
J1 ∼ J2 [4].

This is, however, not the end of the story. Indeed, the
experiments discussed above do not probe J2/J1 directly,
but only via the theoretical framework used in analyzing the
data. In contrast to the strong frustration picture, ab initio
studies [4,20,21] placed both systems in the weakly frustrated
regime. As a matter of fact, these calculations, based on the
local-density approximation (LDA) plus perturbation theory,
yield J2/J1 ∼ 12 for Li2VOSiO4 (well inside the collinear
regime), and J2/J1 ∼ 0.2 for VOMoO4 (well inside the

FIG. 1. The structure of Li2VOSiO4 showing the VO5 pyramids
arranged in layers. In a given layer, the V atoms at the center of
pyramids form a pseudosquare lattice, with neighboring V4+ ions
occupying positions (1/4,1/4,z) and (3/4,3/4, − z).
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FIG. 2. The crystal structure of VOMoO4 seen from the c
direction, showing the pseudosquare lattice formed by VO5 pyramids
and MoO4 tetrahedra. The coupling J1 is between two V atoms
at the center of nearest-neighboring pyramids pointing in opposite
directions, while J2 is between two V atoms at the center of next-
nearest-neighboring pyramids, which point towards the same direc-
tion. Nearest-neighboring V4+ ions occupy the positions (1/4,1/4,z)
and (3/4,3/4, − z). Differently than in Li2VOSiO4 (see Fig. 1), the
VO5 pyramids point away from the interior of the layer; furthermore,
they are rotated.

Néel antiferromagnetic regime). Later on, a high-temperature
expansion study of the J1-J2 Heisenberg model pointed
out that the experimental specific heat and susceptibility of
Li2VOSiO4 (from Refs. [2,3]) are compatible with large J2/J1

values in line with LDA-based results [5]. More recently,
neutron diffraction and resonant x-ray scattering experiments
have shown that both systems order magnetically in three
dimensions [22,23], with critical temperatures close to pre-
vious estimates [2–4]: Li2VOSiO4 exhibits in-plane collinear
antiferromagnetic order with ferromagnetic stacking along the
c axis, VOMoO4 Néel antiferromagnetic order below ∼40
K. Additionally, magnetic moments larger than previously
estimated were reported [22,23], m(T → 0) ∼ 0.63 μB for
Li2VOSiO4 and m(T → 0) ∼ 0.41 μB for VOMoO4. These
theoretical and experimental results, taken together, shift the
balance in favor of a weak frustration scenario; the latter could
explain a partial moment reduction [6–10].

Key to this conclusion is, however, to a large extent, the
LDA estimate of the magnetic exchange couplings of the
J1-J2 Heisenberg model. It becomes therefore crucial to put
the latter to a test and study the emergence of effective
local spins and the associated magnetic couplings both in
a realistic setting and with a nonperturbative many-body
method (beyond LDA and LDA+U ). Indeed, the frustration
degree could be either enhanced or suppressed by dynamical
effects; reduced magnetic moments could, e.g., be partially
associated with charge fluctuations; long-range exchange
couplings could play a nontrivial role. To capture these effects
it is essential to start from material-specific Hubbard models,

rather than from effective J1-J2 Heisenberg models, solve
them nonperturbatively and calculate the associated magnetic
response functions and magnetic couplings. This is even more
important in view of recent high-pressure studies and the
associated LDA-based calculations of the magnetic couplings
J1 and J2 [21]; they indicate that in Li2VOSiO4 increasing the
pressure up to ∼7.6 GPa, leads to a decrease of about 40% of
the J2/J1 ratio hinting to the possibility of tuning the ground
state from collinear to disordered. Correlation effects might
further help or hinder this possibility.

In the present paper we study the correlated electronic
structure and the magnetic interactions in Li2VOSiO4 and
VOMoO4 by using the state-of-the-art approach, the local-
density approximation plus dynamical mean-field theory
(LDA+DMFT) method. To this end, the minimal material-
specific many-body model to use is the half-filled one-band
Hubbard model describing the xy low-energy states [24]. By
using linear response-function theory on top of LDA+DMFT
calculations we calculate the magnetic response function of
the Hubbard model in the high-temperature (T � TN ) regime.
This approach enables us to extract from the susceptibility
both the effective local spin [25] S and the actual effective
superexchange coupling J (q), including nontrivial many-
body effects; the Fourier transform of J (q) to real space
yields the couplings of a generalized quantum Heisenberg
model. Our results identify superexchange driven magnetic
instabilities at qC = (2π,0,0) for VOMoO4 and qC = (π,π,π )
for Li2VOSiO4. Apart from in-plane exchange couplings J1

and J2, the effective interlayer coupling J⊥ could also play a
role. We thus study both the ratio 2J⊥/(J1 + J2), a measure
of the degree of three dimensionality, and the ratio J2/J1,
a measure of the frustration degree. We find that they are
weakly dependent on both U (in a very large interval) and
the temperature. Overall, for a realistic U ∼ 5 eV our results
support for both systems the weak-frustration scenario with
a small but non-negligible interplane coupling. The effective
local spin S is very close to the ideal value S = 1/2, unless
the ratio W/U becomes unrealistically large; this indicates
that charge fluctuations are correspondingly small. Finally,
we present a simple approximate analytical expression for the
high-temperature magnetic LDA+DMFT susceptibility. This
expression could be useful for analyzing magnetic instabilities
in other frustrated Mott insulators; it can also be generalized
to the multiband case.

The paper is organized as follows. In Sec. II we shortly
present our implementation of the LDA+DMFT approach
to calculate linear response functions. This implementation
has been designed for systems described by a generalized
Hubbard model and to optimally exploit the power of modern
massively parallel supercomputers. In Sec. III we discuss
our results for Li2VOSiO4 and VOMoO4. In Sec. IV we
present the conclusions. Technical details are provided in the
Appendix.

II. METHOD

In order to study the magnetic properties of VOMoO4

and Li2VOSiO4 we use the local-density approximation plus
dynamical mean-field theory (LDA+DMFT) approach [28].
In a first step we build a generalized Hubbard Hamiltonian for
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FIG. 3. Full LDA band structure of VOMoO4 (left) and
Li2VOSiO4 (right). The narrow xy band is the band crossing the
energy zero.

the full set of the V d bands

H = −
∑
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′
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†
imσ ci ′m′σ
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(Umm′ − Jδσσ ′)nimσnim′σ ′
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∑
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Ummnim↑nim↓, (1)

where c
†
imσ (cimσ ) creates (annihilates) an electron with spin

σ in orbital m on lattice site i and nimσ = c
†
imσ cimσ . The

parameters Umm′ = U − 2J (1 − δmm′ ) and J are the screened
direct and exchange Coulomb interaction, respectively. The
elements of matrix t ii

′
mm′ are hopping (i �= i ′) and crystal-field

(i = i ′) integrals; we obtain them ab initio by downfolding
to the V 3d bands and constructing a localized Wannier
function basis; to do this we adopt the downfolding procedure
based on the N th-order muffin-tin orbital (NMTO) method.
The full LDA band structure is shown in Fig. 3 [29]. For
both VOMoO4 and Li2VOSiO4 the m = xy-like band crosses
the Fermi level and the remaining d bands are empty; the
m = xz, yz, x2 − y2, and 3z2 − r2 crystal-field states are well
above the xy level. Thus for the actual dynamical mean-field
theory (DMFT) [30] and cellular dynamical mean-field theory
(cDMFT) calculations we proceed to further downfolding to
the xy band; in the absence of experimental estimates of
the gap and of measurements probing the spectral function,
we perform the calculations varying U between 1 and 5 eV
(see Fig. 4). In Sec. III C we will see that U ∼ 5 eV is the
value which best reproduces the Curie-Weiss temperature in
both systems; it is also a typical value for vanadates [29].
We use both a Hirsch-Fye quantum Monte Carlo (QMC) [31]
solver and a CT-HYB QMC quantum impurity solver [32], the
latter in the implementation of Ref. [33]. The susceptibility
calculations are mostly based on the Hirsch-Fye QMC code.
Via the quantum-impurity solver we obtain χα(ν), the Fourier
transform of the local susceptibility tensor χα(τ ), defined
as [34]

χα(τ ) = 〈
T cα1

(τ1)c†α2
(τ2)cα3

(τ3)c†α4
(τ4)

〉
− 〈

T cα1
(τ1)c†α2

(τ2)
〉〈
T cα3

(τ3)c†α4
(τ4)

〉
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FIG. 4. LDA+DMFT spectral function for VOMoO4 (left) and
Li2VOSiO4 (right) at 380 K and for 1 < U < 5 eV. The linewidth
increases with increasing U in steps of 1 eV. The metal-insulator
transition occurs for VOMoO4 for U between 1.5 and 2 eV; instead,
Li2VOSiO4 becomes insulator already between 0.5 and 1 eV.

Here T is the time order operator, τ = (τ1,τ2,τ3,τ4) and
τj are imaginary times. The indices α = (α1,α2,α3,α4) and
αj = mjσj ij are collective orbital (mj ) spin (σj ) and site
(ij ) indices; the latter label, in cDMFT calculations, the
V sites within the cluster {ic}. The Fourier transform to
Matsubara frequencies is χα(ν) = χα

n,n′ (ωm), where ν =
(νn, − νn − ωm,νn′ + ωm, − νn′ ), νn and νn′ are fermionic
and ωm bosonic Matsubara frequencies. The tensor elements
χα

n,n′ (ωm) = [χ (ωm)]N,N ′ build a square matrix with elements
N = α1n, α2n, N ′ = α3n

′, α4n
′; for the magnetic susceptibil-

ity only terms with σ1 = σ2 = σ and σ3 = σ4 = σ ′ contribute.
The χ (ωm) matrix is zero everywhere except within a quantum-
impurity block (ij = i1 in DMFT and ij = {ic} in cDMFT
calculations); for clarity, we denote with Nc the elements N

belonging to one of such blocks. The local susceptibility χ (ωm)
calculated via QMC as discussed above, together with χ0(ωm),
the bubble contribution to the local susceptibility, a sum of
product of Green function matrices, allows us to calculate
the local vertex 
(ωm). This, in turn, yields, within the local-
vertex-approximation, the lattice susceptibility χ (q; ωm). Let
us see how. In the local-vertex approximation [30,35] the
lattice susceptibility χ (q; ωm) is given by the solution of the
Bethe-Salpeter equation

χ (q; ωm) = χ0(q; ωm) + χ0(q; ωm)
(ωm)χ (q; ωm). (2)

Here χ (q; ωm), χ0(q; ωm), and 
(ωm) are all N × N matrices;
the elements of the matrix χ0(q; ωm) can be written as

[χ0(q; ωm)]N,N ′ = −βδnn′δσ2σ3δσ1σ4

× 1

Nk

∑
k

Gk+q
α2α3

(νn + ωm)Gk
α4α1

(νn), (3)

where Gk
αiαj

(νn) is the (c)DMFT lattice Green function; thus, to
calculate the lattice susceptibility it is sufficient to calculate the
Green function matrix (we obtain it from the LDA Hamiltonian
and the LDA+DMFT self-energy) and the local vertex matrix

(ωm). The latter is the solution of the local Bethe-Salpeter
equation [30,35]

χ (ωm) = χ0(ωm) + χ0(ωm)
(ωm)χ (ωm), (4)

with

[χ0(ωm)]Nc,N ′
c
= 1

Nq

∑
q

[χ0(q; ωm)]Nc,N ′
c
.
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By solving Eq. (4) we find the expression of 
(ωm) in terms
of the inverse of χ0(ωm) and the inverse of χ (ωm); the
latter is obtained, as we already discussed, directly from the
QMC solution of the quantum-impurity problem. The local
vertex, calculated in this way, is then replaced in Eq. (2),
whose solution finally yields the lattice susceptibility tensor
χα

n,n′ (q; ωm) = [χ (q; ωm)]N,N ′ .
Finally, the magnetic susceptibility is given by

χ (q; ωm) = (gμB)2

4

∑
α

(−1)σ1+σ3δσ1σ2χ
α(q; ωm)δσ3σ4 ,

where

χα(q; ωm) = 1

β2

∑
nn′

χα
n,n′ (q; ωm).

The bottleneck of the approach is the computation of the local
or cluster susceptibility tensor with the quantum Monte Carlo
method; this can be very time consuming, in particular in
the multiorbital or multisite case, although the calculation
is performed only once at the end of the self-consistency
loop. To speed up the calculations we have parallelized our
code optimizing it for modern massively parallel architectures.
Furthermore, we directly sample with QMC the Fourier
transform of the local Green-function matrix G(τ,τ ′); we do
this by shifting the discontinuities of the Green-function matrix
to the border and using the two-dimensional Filon-trapezoidal
method (see Appendix for more details), an approach which
turned out to be very efficient. Finally, we perform the
sum on the Matsubara frequencies for a finite number of
frequencies and use an extrapolation procedure to recover the
infinite number limit. Symmetries are exploited for further
optimization.

III. RESULTS

A. Correlated electronic structure

Both VOMoO4 and Li2VOSiO4 are characterized by narrow
and well separated xy LDA bands at the Fermi level (see
Fig. 3), with bandwidth W ∼ 1.1 eV in the case of VOMoO4

and sizably smaller, W ∼ 0.4 eV in the case of Li2VOSiO4. For
both systems the crystal field at the V site is octahedral in the
first approximation. In the case of Li2VOSiO4 the crystal-field
levels, taking the lowest as the energy zero, are (0,0.9,0.9) eV
for the t2g-like states and (2.25,2.4) eV for the eg-like states.
The main difference between the two systems is that t1 ∼ 0.137
eV in VOMoO4 couples V between pyramids pointing away
from the interior of the layer (see pattern for J1 in Fig. 2);
this hopping is negligible in Li2VOSiO4. The LDA hopping
integral between neighboring pyramids in the same plane is t2
(see pattern for J2 in Fig. 2). We find that t2 ∼ 0.033 eV in
VOMoO4 and t2 ∼ −0.037 eV in Li2VOSiO4, i.e., its absolute
value is comparable in the two materials; the hopping t1z

between V at the center of pyramids in first nearest-neighbor
layers is also about the same in the two materials, with t1z ∼
0.012 eV in VOMoO4 and t1z ∼ −0.010 eV in Li2VOSiO4.
The first next-nearest-neighbors hopping integral along c is
tz ∼ 0.012 eV in VOMoO4 and tz ∼ 0.013 eV in Li2VOSiO4,
hence slightly less than one half of t2 in both cases. Finally, t2z,
the hopping integrals between neighboring pyramids pointing
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FIG. 5. Left: Correlated band structure of VOMoO4 and
Li2VOSiO4 for a realistic U = 5 eV, calculated at ∼200 K. The dots
are the poles of the Green function and yield the energy dispersion.
The energy gap scales linearly with U . Right: Corresponding real-axis
self-energy �(ω).

in the same direction but belonging to neighboring layers, is
about 5 meV in Li2VOSiO4 and even smaller in VOMoO4.

In the absence of an accurate experimental determination
of the gap and, to the best of our knowledge, of experiments
probing the spectral function, we calculate the correlated
bands, the spectral function, the effective local spin, and the
magnetic response function for several values of the screened
Coulomb repulsion U . The spectral functions are shown in
Fig. 4. We find that VOMoO4 becomes an insulator for U

between 1.5 and 2 eV, and Li2VOSiO4 for slightly smaller
values, between 0.5 and 1 eV. Thus in the rest of the paper
we focus on the range 2 < U < 5 eV in particular. As we will
see in Sec. III C, U ∼ 5 eV yields Curie-Weiss temperatures
in very good agreement with experiments for both materials;
since U ∼ 5 eV is also typical value for vanadates [29],
we conclude that it is a realistic estimate for VOMoO4 and
Li2VOSiO4 as well. Experiments probing the gap and the
spectral function could put this conclusion to a test. The
correlated band structure for U ∼ 5 eV is shown in Fig. 5,
together with the corresponding self-energies on the real axis.
The figure shows that the Hubbard bands exhibit the dispersion
of the LDA bands.

B. Static magnetic susceptibility

Let us start with analyzing the case of VOMoO4. The
DMFT static magnetic susceptibility is shown in Fig. 6 for
U ∼ 5 eV and T ∼ 380 K, well above TN in the paramagnetic
phase. Including the vertex correction turns out to be crucial.
The χ0(q; 0) term alone is weakly temperature dependent; by
analyzing our LDA+DMFT results we find that χ0(q; 0) is
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FIG. 6. VOMoO4: Static magnetic susceptibility χ (q; 0)/χA(0)
in the qx,qy plane for representative values of qz, T ∼ 380 K (T �
TN ) and U = 5 eV; χA(0) ∼ μ2

eff/kBT is the atomic susceptibility
in the local spin (large βU ) limit. For each value of qz, the top
panel shows the result without vertex correction and the bottom panel
that with vertex correction. The special points in the qx,qy plane are

1 = (2π,0), X = (π,0), and M = (π,π ).

approximately given by the expression obtained by replacing
in the Green functions in Eq. (3) the self-energy with its atomic
limit, with U renormalized by a factor r0,

�(iωn) ∼ r2
0 U 2

4

1

iωn

.

The factor r0 can be obtained by fitting the actual self-energy.
After performing analytically the Matsubara sums, we find, in
the large βU limit (for more details see the Appendix)

χ0(q; 0) ∼ μ2
eff

U

[
1 − 1

2U

(
Jr0 (0) + 1

2
Jr0 (q)

)]
, (5)

where

Jr0 (q) = (χ0(q; 0))−1 − (χ0(0))−1 = JSPT(q)/2r2
0 ,

and μeff = gμB

√
S(S + 1)/3, where S is the effective local

spin (for fully localized moments, S = 1/2). In this expression
JSPT(q) is the magnetic coupling obtained via many-body
second-order perturbation theory, accounting, however, not
only for J1 and J2 but also for long range exchange couplings.

It is given by

JSPT(q) ∼ 4J1 cos
qx

2
cos

qy

2

[
1 + 2

J1z

J1
cos qz +

(
J1z

J1

)2
]1/2

+ 2J2(cos qx + cos qy)

+ 2Jz cos qz + 4J2z(cos qx + cos qy) cos qz + · · · ,

(6)

where Ji ∼ 4t2
i /U . For VOMoO4 we find that the renor-

malization factor r0 ∼ 1. The expression Eq. (5) shows that
χ0(q; 0) does not exhibit the Curie-Weiss temperature behavior
associated with a local-moment system, and the effective
magnetic exchange coupling extracted from χ0(q; 0) is about
a factor 2 smaller than in second-order perturbation theory.
The DMFT vertex correction has several effects. First, via
the Bethe-Salpeter equation it enhances the susceptibility in
a slightly nonuniform way. Then, it yields a high-temperature
Curie-Weiss-like behavior, so that χ (q; 0) ∼ μ2

eff/(T − Tq),
where Tq is a generalized Curie-Weiss temperature. It follows
from this that we can define the magnetic coupling as J (q) =
−Tq/μ

2
eff . In first approximation we find J (q) ∼ Jr (q) and the

value of the renormalization factor is reduced from r0 ∼ 1
to r ∼ 0.7. Thus our results show that for VOMoO4, in
first approximation, Jr (q) ∼ JSPT(q). Furthermore, we find
that the local susceptibility is close to the atomic magnetic
susceptibility, and the effective static local vertex 
(0) is
approximately given by


(0) ∼ 1

μ2
eff

[
U

(
1 + 1

2U
Jr (0)

)
− kBT

]
.

Remarkably, in the large temperature limit the r factor can
be estimated expanding the Bethe-Salpeter equation (in the
matrix form) around the atomic limit

χ (q; 0) ∼ χA(0) − r2
0

r2
χA(0) Jr0 (q) χA(0),

where

r2
0

r2
∼ 1

β2

∑
nn′

[χA(0)Jr0 (q)χA(0)]n,n′

χA(0)Jr0 (q)χA(0)
(7)

and [
Jr0 (q)

]
n,n

= [(χ0(q; 0))−1 − (χ0(0))−1]n,n.

The analytic expression of the atomic susceptibility matrix
is given for completeness in the Appendix. This yields for
VOMoO4 a renormalization factor r ∼ 0.7, close to the actual
value obtained from fitting the DMFT data.

The susceptibility of Li2VOSiO4 is shown in Fig. 7. The
conclusions are similar as for VOMoO4; the susceptibility
jumps from about zero without vertex correction to about 1
(in units of the atomic susceptibility) with vertex correction.
The renormalization parameters are slightly larger than in
VOMoO4, r0 ∼ 1.1 and r ∼ 0.84. For both Li2VOSiO4 and
VOMoO4 we find that at q = qX ≡ (0,π,π/2) the magnetic
susceptibility χ (qX; 0) ∼ χA(0) ∼ μ2

eff/kBT , indicating that
J (qX) is basically zero.
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FIG. 7. Li2VOSiO4: Static uniform magnetic susceptibility
χ (q; 0)/χA(0) in the qx,qy plane for representative values of qz,
T ∼ 380 K (T � TN ) and U = 5 eV; χA(0) ∼ μ2

eff/kBT is the atomic
susceptibility in the local spin (large βU ) limit. For each value of
qz, the top panel shows the result without vertex correction and the
bottom panel that with vertex correction. The special points in the
qx,qy plane are 
1 = (2π,0), X = (π,0), and M = (π,π ).

C. Uniform Curie-Weiss temperature and effective
magnetic moments

The inverse high-temperature susceptibility obtained with
the LDA+DMFT approach exhibits a linear dependence on T

in a wide temperature range, for all q (see Fig. 8 for q = 0)
and for a remarkably large set of U values. It is thus natural
to define the actual Curie-Weiss temperature as TCW = −T0.
For U ∼ 5 eV we find TCW ∼ 191 K for VOMoO4 and
TCW ∼ 8 K in Li2VOSiO4, in very good agreement with
NMR measurements, 155 ± 20 K for VOMoO4 [4] and
8.2 ± 1 K for Li2VOSiO4 [2,3]. This comparison confirms
the strength of our approach. Next, we calculate the effective
magnetic moment from the static magnetic susceptibility in
the T → ∞ limit, μeff ∼ limT →∞

√
(T + TCW)χ (0), and also

directly from the equal time correlation function matrix. The
result obtained from the second approach is shown in Fig. 9.
We find that for U = 5 eV in both systems this moment is
quite close to S = 1/2, indicating that charge fluctuations are
small for this (realistic) U value. Thus, if U ∼ 5 eV, charge
fluctuations do not reduce S enough to explain alone the small
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FIG. 8. Inverse uniform static magnetic susceptibility for
VOMoO4 and Li2VOSiO4. The lines are a least-square fit of the
calculated points; the intersect with the temperature axis yields the
Curie-Weiss temperature TCW. For a realistic U ∼ 5 eV we obtain
TCW ∼ 191 K for VOMoO4 and 8 K for Li2VOSiO4. We find a linear
behavior also for relatively small values of U .

staggered magnetic moment m reported in neutron-scattering
experiments [25]; they could however play a role if the gap was
smaller (i.e., U ∼ 2 eV). An experimental determination of the
gap and the spectral function would be therefore desirable to
reach the final conclusions. Interestingly we observe sizable
effective local spins even deep in the (hypothetical) metallic
regime, with S ∼ 0.436 for VOMoO4 for U = 1 eV, to be
compared with S ∼ 0.498 for U = 5 eV. For Li2VOSiO4 the
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FIG. 9. Normalized local spin-spin correlation function 4〈SzSz〉
as a function of U ; the points are calculated at ∼200 K but change little
when the temperature is raised to 380 K. The spin-spin correlation
function yields the effective local spin S [25]; in particular, a local spin
S = 1/2 corresponds to 4〈SzSz〉 = 1. Squares: VOMoO4; circles:
Li2VOSiO4.
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effective spin is ∼1/2 in the whole range of U values because
the system is on the verge of the metal-insulator transition
already for U ∼ 0.5 eV.

D. Magnetic superexchange couplings

As previously discussed, in first approximation we find
that the LDA+DMFT magnetic coupling is given by J (q) ∼
Jr (q). To a closer look nontrivial many-body effects partially
modify also the q dependence. This can be understood from
a reexamination of the approximate renormalization factor
r2

0 /r2 given in Eq. (7), which is, in principle, q dependent. Let
us here focus on two aspects, the degree of two-dimensional
frustration and the interlayer coupling. A measure of the degree
of frustration is the ratio J2/J1. Since even in the general case
the exchange coupling has an expansion of the type (6), ratio
J2/J1 can be approximately written as

J2/J1 ∼ − χ (qM ; 0)−1 − χ (qX; 0)−1

χ (q1; 0)−1 + χ (q2; 0)−1 − 2χ (qX; 0)−1
,

where q1 = (π/2,π/2,0), q2 = (π/2,π/2,π ), qM =
(π,π,π/2), and qX = (0,π,π/2). We find that, in the
full range U ∼ 2–5 eV the ratio J2/J1 is weakly temperature
dependent and only slightly U dependent, in line with the
weak charge fluctuation picture and indicating that corrections
beyond O(U−1) are weak. In the case of VOMoO4 for
U ∼ 5 eV we obtain J2/J1 ∼ 0.06, a value close, but slightly
larger than the ratio obtained via LDA and perturbation theory.
For Li2VOSiO4 the value J2/J1 ∼ 10 is partially reduced with
respect the LDA value J2/J1 ∼ 12. Such a 20% reduction is
not sufficient to drive the system out of the weak frustration
regime. It is worth noting, however, that such a change is
comparable with the reduction reported in high-pressure
studies up to 7.6 GPa on the basis of LDA calculations [21].
This indicates that it might be interesting to push the pressure
even higher; everything else remaining the same, J2/J1 could
move under pressure closer to the spin-liquid regime than it
was previously estimated.

The actual phase transition to three-dimensional antifer-
romagnetic order crucially depends on the coupling between
planes [36], hence it is important to study the degree of three
dimensionality as well. Let us define the average interplane
coupling as J⊥ ∼ 1

7 (Jz + 2J1z + 4J2z) and the degree of three
dimensionality as f⊥ = 2J⊥/(J2 + J1). The latter can be
estimated as

f⊥ ∼ − χ (
; 0)−1 − χ (Z; 0)−1

χ (qM ; 0)−1 − χ (qX; 0)−1

2J2/J1

7(1 + J2/J1)
,

where Z = (0,0,π ) and 
 = (0,0,0). Remarkably, also f⊥
is weakly temperature dependent. For both VOMoO4 and
Li2VOSiO4 the value of f⊥ is slightly larger with respect
to the LDA value. Furthermore, in the case of VOMoO4 we
find that 2J1z and Jz + 4J2z are comparable, with 2J1z slightly
larger; instead, in Li2VOSiO4 we find that 2J1z is smaller than
the sum Jz + 4J2z.

Finally, we investigated nonlocal effects on the exchange
couplings via cellular DMFT (cDMFT), always in the T � TN

limit. In particular, we perform two-sites cDMFT calculations,
which should already give strong effects; we restore the full
3D periodicity of the original lattice on the susceptibility

directly, at the end of the calculation. Remarkably, in the
high-temperature regime, relevant to extract the effective
exchange couplings, we find no sizable changes in J (q), in the
ratio J2/J1 or 2J⊥/(J2 + J1). This is perhaps due to the fact
that V sites have, despite of the layered structure, a relatively
large coordination number. The overall effective coupling J (q)
is partially reduced with respect to single-site DMFT; this
reduction is slightly larger in the case of VOMoO4, with a
reduction factor ∼0.95.

Putting all our results together, our LDA+DMFT calcula-
tions support a weakly frustrated picture and magnetic order
in three dimensions at low temperature. In VOMoO4 the mag-
netic coupling J (q) points to an instability at qC = (2π,0,0),
i.e., the 
1 point in the qz = 0 panel of Fig. 6. This corre-
sponds to Néel antiferromagnetic order in the ab plane and
ferromagnetic stacking along the c axis (2J1z � Jz + 4J2z).
In Li2VOSiO4 the critical vector is qC = (π,π,π ), yielding
collinear order in the ab plane and antiferromagnetic stacking
along the c axis (Jz + 4J2z � 2J1z). Thus, in the ab plane, the
magnetic instabilities predicted via LDA+DMFT are in full
agreement with those reported experimentally [22,23]; along
c, instead, apparently neutron-scattering experiments [23]
yield ferromagnetic stacking in Li2VOSiO4; this suggests that
either the interplane ferromagnetic local Coulomb exchange
dominates over superexchange, reversing the sign of 2J1z −
Jz − 4J2z, or that, most likely, the structural changes observed
around TN modify the relative weights of 2J1z and Jz + 4J2z.
Since to the best of our knowledge no detailed structural data
are yet available across the magnetic transition, we cannot
identify which of the two mechanisms actually dominates [37].

IV. CONCLUSIONS

In this work we study the electronic and magnetic proper-
ties of two materials regarded as paradigmatic realizations
of the square-lattice two-dimensional quantum Heisenberg
model, Li2VOSiO4 and VOMoO4. To do this we adopt the
LDA+DMFT approach and its cluster extension. We calculate
the magnetic susceptibility in the local-vertex approximation
and in the high-temperature (T � TN ) regime. This enables
us to calculate the effective magnetic moments and to extract
the actual effective superexchange coupling J (q), i.e., to
systematically build the realistic quantum-Heisenberg model
associated with the two systems. This approach yields Curie-
Weiss temperatures in excellent agreement with experiments.
For realistic values of U we find no sizable charge fluctuations
and well defined S ∼ 1/2 effective local moments. We derive a
practical approximated expression for the local vertex and the
susceptibility, which can be used to analyze other frustrated
Mott insulators, and extended, e.g., to multiband systems. By
analyzing our results for J (q), we find that both systems are
only partially well described by the quantum two-dimensional
J1-J2 Heisenberg model; long-range couplings, in particular
in the third dimension, play an important role. Our results
support for both systems the weak frustration picture, with
three-dimensional order below the critical temperature. This
level of in-plane frustration, although weak, together with
small long-range couplings, could alone explain (see, e.g.,
studies of the 2D Heisenberg models in Refs. [7–10]) the
partial reduction of ordered magnetic moments observed via
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neutrons scattering experiments [22,23]. In the ab plane,
our calculations indicate collinear order for Li2VOSiO4 and
Néel order for VOMoO4, in line with neutron-scattering
experiments. The delicate balance between the small but
competing interactions along the c direction suggests that the
layered vanadates are close to an effective zero coupling (or
high frustration) in the third dimension (2J1z − Jz − 4J2z ∼
0); for this reason they behave as effectively two-dimensional
systems in a wide temperature range. Structural distortions at
TN are likely to be essential to determining the actual type of
stacking along the c axis. Finally, we point out the analogies of
the low-energy electronic structure (t − t ′ one-band model)
of these layered vanadates with that of high-temperature
cuprate superconductors [24]; in that view it would be
interesting to study experimentally the effects of electron or
hole doping.
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APPENDIX

1. Fourier transform of G(τ ′,τ ′′)

To perform the Fourier transform of G(τ ′,τ ′′), needed
to calculate the local response function, we proceed as
follows. We construct inside the QMC block a new Green
function G̃(τ + τ ′′,τ ′′), whose discontinuities are shifted on
the boundaries, i.e., at τ = 0 and τ = β

G̃(τ + τ ′′,τ ′′) =
{

G(τ + τ ′′,τ ′′), τ + τ ′′ < β,

−G(τ + τ ′′ − β,τ ′′), τ + τ ′′ � β,

where G̃ is β periodic in τ ′′ and β antiperiodic in τ . The
Fourier transform of G can be expressed as a function of G̃ as
follows:

G(νn,νn′ ) =
∫∫

dτ ′dτ ′′eiνnτ
′−iνn′ τ ′′

G(τ ′,τ ′′)

=
∫∫

dτdτ ′′eiνnτ+i(νn−νn′ )τ ′′
G̃(τ + τ ′′,τ ′′),

where the integrals are in the interval [0,β]. We calculate it by
using the two-dimensional Filon-trapezoidal method [38,39].
We split the interval [0,β] in L time slices τl = lτ with l =
0, . . . ,L, τ = β/L and approximate the G̃(τ + τ ′′,τ ′′) by
a piecewise polynomial function in the interval τ ∈ [τl1 ,τl1 +
τ ] and τ ′′ ∈ [τl2 ,τl2 + τ ],

G̃(τ + τ ′′,τ ′′) ∼ G̃l1,l2 + (
τ − τl1

)G̃l1+1,l2 − G̃l1,l2

τ

+ (
τ ′′ − τl2

)G̃l1,l2+1 − G̃l1,l2

τ

+ (
τ − τl1

)(
τ ′′ − τl2

)
× G̃l1+1,l2+1 − G̃l1+1,l2 − G̃l1,l2+1 + G̃l1,l2

τ 2

+ · · · ,
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FIG. 10. Fourier transform of a typical Green function. Top:
Real part. Bottom: Imaginary part. Full lines: Numerically exact
Green function, calculated via a spline at the end of the QMC run.
Open circles: Fourier transform of the Green function calculated
after moving the singularities to the border and using then the
Filon-trapezoidal method. These results are obtained for τ ∼ 0.17.
The error remains less than 5% even for τ ∼ 0.33, twice as large.

where G̃l1,l2 = G̃(τl1 + τl2 ,τl2 ). Through this approximation

G(νn,νn′ ) ≈
∑
l1l2

wl1 (θ1)wl2 (θ2)ei(νn−νn′ )τl2 +iνnτl1 G̃l1,l2 ,

where θ1 = τνn, θ2 = τ (νn − νn′ ) and

wl(θ ) =

⎧⎪⎨⎪⎩
w0(θ ) = τ

[
1+iθ−eiθ

θ2

]
, l = 0,

wL(θ ) = w0(−θ ), l = L,

w0(θ ) + wL(θ ), l �= 0,L.

Thanks to the shift of the singularities to the border we
automatically recover the proper limit at equal times

G̃(τ + τ ′′,τ ′′) → G̃(0+,0),

as well as the correct 1/νn decay of G(νn,νn). This is shown
in Fig. 10 for a test case. The Fourier transform based on
the Filon-trapezoidal deviates from the exact result at νp =
2πM/τ , where M is an integer; the actual error decreases
with increasing M . At these frequencies, for typical values of
β/L, due to the prefactor wl(θ1)wl′(θ2), the Green function
G(iνn,iνn) is already small even for M = 1.
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2. Atomic susceptibility

The atomic magnetic susceptibility matrix for an idealized
one-level atom is given by[

χA(0)

(gμBS)2

]
n,n′

= Mn′
dMn

dy
+ Mn

dMn′

dy

+ δm,0βn(−y)MnMn′

−βn(y)[δn,n′ + δn,−n′ ]
dMn

dy

− 1

y
{Mn′ − β[n(y)δn,−n′ − n(−y)δn,n′ ]}Mn,

where y = U/2, S = 1/2 is the spin, ωm is a bosonic Matsub-
ara frequency, νn, νn′ are fermionic Matsubara frequencies,
n(y) is the Fermi function, and

Mn = 1

iνn − y
− 1

iνn + y
.

By summing over all fermionic frequencies we have

χA(ωm) = 1

β2

∑
nn′

[χA(ωm)]n,n′ = (gμBS)2

kBT

eβU/2

1 + eβU/2
δm,0.

In the large βU limit

χA(0) ∼ (gμBS)2

kBT
.

3. Susceptibility tensor χ (q; 0) in the large U limit

Here we derive an approximate analytic form for the
LDA+DMFT magnetic susceptibility, valid in the very large
U limit. The static magnetic susceptibility is a tensor with
elements [χ (q; 0)]ii ′,jj ′ , where the indices i,i ′,j , and j ′ label
the Nc equivalent V sites in the unit cell (cluster). In the case
of the systems considered in this work Nc = 2; the relevant
elements of the static magnetic susceptibility tensor thus built
the Hermitian matrix

χ (q; 0) =
(

[χ (q; 0)]11,11 [χ (q; 0)]11,22

[χ (q; 0)]22,11 [χ (q; 0)]22,22

)
,

where by symmetry [χ (q; 0)]11,11 = [χ (q; 0)]22,22. The
χ0(q; 0) tensor has the same structure. For the latter we can
write the elements explicitly

[χ0(q; 0)]ii,jj = − 1

4β

1

Nk

∑
nkσ

Gσ
ij (k; iνn)Gσ

ji(k + q; iνn),

where Gσ
ij (k; iνn) is the Green-function matrix. In the large

U limit, we can assume that the local self-energy matrix is

atomiclike, i.e., that it has the form

�ij (iνn) = δij

r2U 2

4

1

iνn

,

where r is a material-specific renormalization factor. By
replacing the elements of the self-energy matrix in the
Green function with this approximated expression and then
performing the Matsubara sums we obtain the elements of the
χ0(q; 0) tensor. Finally, from this we calculate the magnetic
coupling matrix

Jr (q) = [χ0(q; 0)]−1 − [χ0(0)]−1.

We obtain that, in first approximation,

J ij
r (q) ≡ [Jr (q)]ii,jj ∼ [JSPT(q)]ii,jj /2r2.

The elements of the second-order perturbation theory (SPT)
exchange coupling tensor are

[JSPT(q)]11,11 = 2J2(cos qx + cos qy) + 2Jz cos qz

+ 4J2z(cos qx + cos qy) cos qz

and

[JSPT(q)]11,22 = 4(J1 + J1ze
iqzc) cos

qx

2
cos

qy

2
eiq·(R1−R2),

where Ri are cluster lattice vectors. To calculate χ (q; 0) we
still need the local susceptibility. It turns out that, to a good
approximation, the latter is also atomiclike

χii,jj (0) = χA(0)δi,j ,

and χA(0) ∼ μ2
eff/kBT . We can now solve analytically the

Bethe-Salpeter equation matrix in the local-vertex approxima-
tion, and obtain

[χ (q; 0)]−1 = Jr (q) + [χ (0)]−1.

The components of the tensor χ (q; 0) are

2[χ (q; 0)]ii,jj
T χA(0)

∼
[

1

T + μ2
eff

(
J 11

r (q) + J̃ 12
r (q)

)
+ (−1)i+j

T + μ2
eff

(
J 11

r (q) − J̃ 12
r (q)

)]
eiq·(Ri−Rj ),

where J̃ 12
r (q) = √

J 12
r (q)J 21

r (q). Finally, we restore the peri-
odicity and obtain the static lattice magnetic susceptibility

χ (q; 0) = 1

2

Nc∑
ij

[χ (q; 0)]ii,jj e
−iq·(Ri−Rj ) ∼ μ2

eff

T − Tq
,

where Tq = −μ2
eff[J

11
r (q) + J̃ 12

r (q)].
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