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Origin of DC and AC conductivity anisotropy in iron-based superconductors:
Scattering rate versus spectral weight effects
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To shed light on the transport properties of electronic nematic phases, we investigate the anisotropic properties
of the AC and DC conductivities. Based on the analytical properties of the former, we show that the anisotropy
of the effective scattering rate behaves differently than the actual scattering rate anisotropy and even changes
sign as a function of temperature. Similarly, the effective spectral weight acquires an anisotropy even when the
plasma frequency is isotropic. These results are illustrated by an explicit calculation of the AC conductivity due
to the interaction between electrons and spin fluctuations in the nematic phase of the iron-based superconductors
and shown to be in agreement with recent experiments.
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In-plane resistivity anisotropy measurements have been
employed as the primary tool to investigate the nematic phase
of both cuprate and iron-based superconductors [1–5]. In these
systems, the onset of electronic nematic order, characterized
by an Ising order parameter ϕ �= 0, lowers the point-group
symmetry from tetragonal to orthorhombic, making the two
in-plane x and y directions inequivalent [6–8]. As a result, a
nonzero conductivity anisotropy arises, �σ = σx−σy �= 0 [9].

In general, the longitudinal DC conductivity along direction
μ = x,y can be expressed in terms of the Drude form σμ =
τμ�2

p,μ/(4π ), where τ−1
μ is the transport scattering rate and

�p,μ is the plasma frequency. Therefore, an anisotropy in the
DC conductivity can arise from an anisotropic scattering rate,
which is sensitive to impurities and low-energy excitations of
the system, and/or from an anisotropic Drude weight, which
is sensitive to the electronic structure. In the nematic phase of
the iron-based superconductors, different effects contribute to
these quantities. Anisotropic magnetic fluctuations triggered
by nematic order [10,11] give rise to an anisotropy in the
inelastic scattering rate [12–14], whereas the dressing of
an impurity potential by magnetic correlations promotes an
anisotropy in the elastic scattering rate [15,16]. Conversely,
the distortion of the Fermi surface caused by the ferro-
orbital order triggered at the nematic transition affects the
plasma frequency [17–20]. Disentangling these contributions
would provide important insight into the dominant sources of
anisotropy in the nematic phase. Furthermore, it would offer
important benchmarks to test theories proposed to explain
the nematic instability—particularly of the hotly debated
compound FeSe, where a variety of scenarios have been
proposed, such as magnetic fluctuations [21,22], charge-
current fluctuations [23], a Pomeranchuk instability [24,25],
and different types of orbital order [26].

At first sight, a natural way to disentangle τ−1
μ and �p,μ

is via the width and the area of the Drude peak of the AC
conductivity, σμ(ω). In this paper, however, we show that
these quantities are unavoidably entangled. This general result
follows directly from the memory function formalism, which
is valid even in the absence of quasiparticles, and yields the

following form for the AC conductivity [27]:

σμ(ω) = �2
p,μ

4π

1

τ−1
μ (ω) − iω[1 + λμ(ω)]

. (1)

The main point is that, besides �p,μ and τ−1
μ , the

AC conductivity depends on the optical mass enhancement
λμ [28]. While λμ does not contribute to the DC conductivity
σμ(ω → 0), it does modify the effective plasma frequency
�̃2

p,μ (as extracted from the area of the Drude peak) and
the effective scattering rate τ̃−1

μ (as extracted from the width
of the Drude peak), yielding �̃2

p,μ = �2
p,μ/(1 + λμ) and

τ̃−1
μ = τ−1

μ /(1 + λμ). Consequently, the effective scattering
rate anisotropy depends on both the actual scattering rate
anisotropy �τ−1 ≡ τ−1

x − τ−1
y and the optical mass anisotropy

�λ ≡ λx − λy via �τ̃−1 = �τ−1 − τ−1
0 �λ, where we as-

sume the impurity induced scattering rate τ−1
0 to be isotropic.

The DC conductivity anisotropy, in contrast, is sensitive only
to �τ−1. Because of the analytical properties of the AC
conductivity, �τ−1 and �λ are related by a Kramers-Kronig
transformation, which very generally enforces the same sign
upon them [see Supplemental Material (Ref. [41])]. As a
result, �τ̃−1 is suppressed with respect to �τ−1. Even more,
because inelastic scattering is suppressed as temperature is
lowered, the effective scattering rate anisotropy can change
sign as a function of temperature, while the DC conductivity
anisotropy retains the same sign. Analogously, the effective
plasma frequency can acquire an anisotropy even if the actual
plasma frequency is isotropic, since ��̃2

p = −�2
p,0�λ.

These general results strongly impact the interpretation of
transport data in nematic phases. To highlight their importance,
we refer to recent measurements of �σ (ω) in detwinned
BaFe2As2, which reported a larger anisotropy in the effective
plasma frequency than in the effective scattering rate [4,29].
In Fig. 1 we plot Re[σμ(ω)] in Eq. (1) considering four cases:
(i) anisotropy only in the plasma frequency (�p,y < �p,x);
(ii) anisotropy only in the scattering rate (τ−1

y > τ−1
x ); (iii)

anisotropy only in the optical mass (λy > λx); (iv) anisotropy
in both scattering rate and optical mass (τ−1

y > τ−1
x and
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SCHÜTT, SCHMALIAN, AND FERNANDES PHYSICAL REVIEW B 94, 075111 (2016)

FIG. 1. AC conductivity σμ(ω) of Eq. (1) as a function of
frequency ω for both x and y directions. In case (i), only the
plasma frequency is anisotropic [�2

p,y = (3/4)�2
p,x], while in (ii)

and (iii) only the scattering rate [τ−1
y = (4/3)τ−1

x ] and the optical
mass [λy = (4/3)λx] are anisotropic, respectively. Panel (iv) shows
the case in which both the scattering rate and the optical mass are
anisotropic, yielding AC and DC conductivities very similar to those
in panel (i). The causality properties of the AC conductivity do not
allow cases (ii) and (iii) to exist, i.e., both τ−1

μ and λμ must be present.

λy > λx). The system in cases (i) and (ii) have very similar
DC conductivities but different AC conductivities in the inter-
mediate frequency range. In the presence of an optical mass
anisotropy only, case (iii), the system does not display a DC
conductivity anisotropy, instead the intermediate frequency
range is similar to that of case (i). The key point is that cases (ii)
and (iii) are not allowed due to the causality properties of the
AC conductivity, which require both τ−1

μ and λμ to be present.
After combining these two effects, case (iv), the system
displays DC and AC conductivities very similar to case (i).
Thus, the AC conductivity anisotropy observed in Refs. [4,29]
is equally consistent with either case (i) or (iv), which have very
different physical origins—electronic-structure anisotropy and
scattering rate anisotropy, respectively.

To illustrate our results, we explicitly compute the AC
conductivity of a multiband model for the iron pnictides in
which the electrons interact with spin fluctuations, which
become anisotropic in the nematic phase [10,11]. While this
interaction does not promote anisotropy in the bare plasma
frequency (��p = 0), it causes �τ−1 �= 0 and �λ �= 0 with
the same relative sign. Physically, the first effect arises from
real collisions of electrons and magnetic fluctuations, whereas
the latter effect stems from the reduction of the electronic
Fermi velocity (or, equivalently, the enhancement of the
effective electron mass) promoted by the exchange of virtual
spin fluctuations (see Fig. 2). Interestingly, because collisions
are suppressed at low temperatures, �τ−1 decreases as the
temperature is lowered. In contrast, �λ remains finite as
T → 0, since it is proportional to the electronic mass renor-
malization. Consequently, one generally expects a sign change
of �τ̃−1 = �τ−1 − τ−1

0 �λ as a function of temperature,
accompanied by an increase in ��̃2

p = −�2
p,0�λ, despite the

FIG. 2. Illustration of the Fermi surface, consisting of holelike
(at 
) and electronlike pockets (at X and Y ), and the anisotropic
processes promoted by spin fluctuations. On one hand, scattering
off of spin fluctuations is stronger for the hot spots exchanging
QX = (π,0) (red dots) than QY = (0,π ) (green dots) fluctuations.
On the other hand, the renormalized Fermi velocity suppression (or,
equivalently, mass renormalization) caused by the exchange of spin
fluctuations (arrows) is larger at the red hot spots than at the green
hot spots.

fact that �σ (ω → 0) ∝ �τ−1 retains the same sign. These
behaviors agree with the AC conductivity measurements in
detwinned BaFe2As2 [4,29]. We note that anisotropies in the
electronic structure, not considered here, will generically cause
anisotropy in �p but not in τ−1 or λ.

Our starting point is the minimal three-band model shown
in Fig. 2 [30], and previously employed to investigate the
DC conductivity anisotropy due to the scattering by spin
fluctuations [12]. This model has a holelike circular pocket
centered at the 
 = (0,0) point of the Fe-square lattice
Brillouin zone, and two elliptical electron pockets centered at
X = (π,0) and Y = (0,π ). Hereafter, for convenience, these
bands are labeled β = 0, β = 1, and β = −1, respectively. We
also include in the model pointlike impurities, giving rise to
the isotropic band-independent elastic scattering rate τ−1

0 . We
emphasize that our goal here is not to provide a quantitative
fitting to the AC conductivity data, which requires detailed
electronic structure calculations [31–35], but rather to illustrate
the general properties of �σ (ω) discussed above.

In our problem, the AC conductivity can be written in
a band-resolved manner, σμ = ∑

β σ β
μ . Without interactions,

we have σ
β

0,μ = 1
4π

(�β
p,μ)

2
/(τ−1

0 − iω), where the subscript

0 denotes the noninteracting system and �
β
p,μ =

√
2e2N

β

F

�
v

β

F ,

with density of states N
β

F and averaged Fermi velocity v
β

F . The
tetragonal symmetry of the system implies �

β
p,x = �

−β
p,y , i.e.,

σ
β

0,x = σ
−β

0,y , yielding �σ0 ≡ σ0,x − σ0,y = 0, as expected for
a tetragonal system.

The contribution arising from the interaction with
spin fluctuations is conveniently expressed in terms
of the memory function Mβ

μ(ω), defined such that
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FIG. 3. Interaction corrections to the optical conductivity dia-
grams: self-energy �self (left) and vertex corrections �vert (right).
Solid lines refer to the electronic propagator, wavy lines denote the
spin fluctuation propagator, and v is the velocity vertex.

σβ
μ = 1

4π
(�β

p,μ)
2
/[τ−1

0 − iω + Mβ
μ(ω)] [27]. Hence, while

Re(Mβ
μ) renormalizes the scattering rate, −Im(Mβ

μ)/ω renor-
malizes the optical mass. The fact that these two quantities are
related by Kramers-Kronig relations implies that an anisotropy
in the scattering rate must be accompanied by an anisotropy
in the optical mass, as stated in the introduction. In this
framework, calculating the band-resolved AC conductivity
anisotropy, �σβ ≡ σ

β
x − σ

−β
y , is equivalent to calculating

the anisotropic memory function �Mβ = M
β
x − M

−β
y , since

�σβ = −(
σ

β

0,x

τ−1
0 −iω

)�Mβ . Consequently, expansion of �Mβ

for small frequencies yields the anisotropic scattering rate and
optical mass, �Mβ = (�τβ)−1 − iω�λβ .

To leading order in the interaction parameter g between
the electrons and the spin fluctuations, the memory function is
given by the two Feynman diagrams depicted in Fig. 3 [36],
where solid lines denote the electronic Green’s function
Gβ

k = (iω̃n − ε
β

k )−1 and the wavy lines denote the spin fluc-
tuation dynamic susceptibility χk . Here, k = (iωn,k) is both
momentum k and Matsubara frequency ωn, ε

β

k ≈ vβ

F · k is the
linearized dispersion of band β, and ω̃n = ωn + sgn(ωn)/(2τ0)
incorporates the effect of impurity scattering within the Born
approximation. In particular, the memory function is given by

the combination of (
σ

β

0,μ

τ−1
0 −iω

)Mβ
μ = e2

iω
(2�self,β

μ + �vert,β
μ ) with:

�self,β
μ,p = g2

∑
β ′

∫
k,k′

χ
(ββ ′)
k−k′ Gβ

k v
β

μ,kG
β

k+pG
β ′
k′+pG

β

k+pv
β

μ,k+p, (2)

�vert,β
μ,p = g2

∑
β ′

∫
k,k′

χ
(ββ ′)
k−k′ Gβ

k v
β

μ,kGλ
k+pG

β ′
k′ v

β ′
μ,k′+pG

β ′
k′+p, (3)

where v
β

μ,k is the velocity, p = (i�n,0), and
∫
k

=
T

∑
ωn

∫
BZ d2k/(2π )2. As shown by inelastic neutron scatter-

ing data [37], the magnetic susceptibility is peaked at the order-
ing vectors QX = (π,0) and QY = (0,π ). Therefore, only the
terms χ

(10)
k ≡ χX,k and χ

(−10)
k ≡ χY,k contribute. At low ener-

gies and in the tetragonal phase, these susceptibilities are equal
and described by χ−1

j,k = χ−1
0 (ξ−2 + |k − Qj |2 + |ωn|/γ ),

where χ−1
0 is the magnetic energy scale, ξ is the correlation

length (in units of the lattice constant), and γ is the Landau
damping. Indeed, this form has been widely used to fit the
neutron data in pnictides [37–39]. In the nematic phase, the
susceptibilities become different, since magnetic fluctuations
become stronger along either QX or QY . Specifically, the
correlation lengths are renormalized by the nematic order
parameter ϕ, yielding χ−1

j,k = χ−1
j,k ∓ χ−1

0 ξ−2ϕ [10].

Such an anisotropy in the spin fluctuation spectrum, which
is observed experimentally [11], controls the memory function
anisotropy. Consequently, it is useful to expand �Mβ for
small ϕ. In contrast to the isotropic part of the memory
function [40], the behavior of �Mβ is dominated by the
hot spots, i.e., points of the Fermi surface connected by
the magnetic ordering vectors QX = (π,0) and QY = (0,π ),
ε

β

k = ε
β ′
k+Qj

(see Fig. 2). Focusing on this contribution, we find
the analytical expression:

�Mβ(ω) = −ϕg̃2C
β

effωK
(

ξ−2

2π

γ

T
,

ω

ξ−2γ

)
. (4)

where we defined the dimensionless coupling constant g̃2 =
g2χ0ν

β

F and the complex function:

K(s,t) = −1

t

[
1 − 1

2s
+

(
1 + i

t

)

×
(

1

s
+ ψ(s) − ψ(1 + s − ist)

)]
, (5)

with ψ denoting the digamma function. Equation (4) naturally
separates the contributions arising from the Fermi surface
geometry, into C

β

eff (see Supplemental Material [41] for
the full expression), and the contributions arising from the
spin dynamics, encoded in K(s,t) via the two dimensionless
parameters s ≡ ξ−2γ /(2πT ) and t ≡ ω/(ξ−2γ ). While s

depends on the ratio between the spin correlation length ξ and
the length of thermal spin fluctuations ξ 2

T ≡ γ /T , t depends
explicitly on the frequency. Because we are interested in the
interaction-induced corrections to the Drude formula, hereafter
we take the limit t 	 1. Terms beyond this approximation
are particularly important near quantum critical points, where
ξ → ∞, and at frequencies larger than the scale set by the
isotropic scattering rate τ−1

0 , which is of the order of 300 meV
in BaFe2As2 [see Supplemental Material (Ref. [41]) and also
Ref. [42]]. Although the study of these contributions is beyond
the scope of this paper, we note that for ω � τ−1

0 they give rise
to a slower decay of Re[σ (ω)] than the standard ω−2 Drude
behavior [43].

In terms of the function K(s,t), the anisotropies in
the bare scattering rate and in the optical mass are
given by (�τβ)−1 = −ϕg̃2C

β

effω ReK(s,t → 0) and �λβ =
ϕg̃2C

β

eff ImK(s,0), yielding the effective scattering rate and
plasma frequency anisotropies:

(�τ̃β)−1 = −ϕg′2Cβ

eff

[
ω ReK(s,t → 0) + τ−1

0 ImK(s,0)
]

(
��̃β

p

)2 = −ϕg̃2C
β

eff

(
�β

p,x

)2
ImK(s,0). (6)

As can be confirmed by explicit evaluation of Eq. (5), the
analytical properties of the complex function K(s,t) enforce
its real part to be positive and its imaginary part to be negative.
This is due to the origin of the former from collisions of
electrons by spin fluctuations—the same process that causes
a electronic lifetime via the imaginary part of the self-
energy, whereas the latter arises from the suppression of the
electronic Fermi velocity—the same process that enhances the
electronic mass via the real part of the self-energy (see Fig. 1).
Consequently, the two contributions to (�τ̃β)−1 in Eq. (6)
have opposite signs, resulting in a suppression of the effective
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scattering rate compared to the bare scattering rate (�τβ)−1.
Furthermore, because of their different physical origins—
inelastic collision versus Fermi velocity renormalization—the
two contributions to the effective scattering rate (�τ̃β)−1

display a different temperature dependency. Using Eq. (5),
we find that at high temperatures (T � γ ξ−2) the behaviors
ω ReK(s,0+) ∝ T and ImK(s,0) ∝ − 1

T
, whereas at low

temperatures (T 	 γ ξ−2) we have ω ReK(s,0+) ∝ T 2 and
ImK(s,0) = − 1

2 . Thus, while ReK > 0 dominates the high-
temperature regime, ImK < 0 governs the low-temperature
regime. This can be physically understood from the fact
that ReK arises from the collision between electrons and
spin fluctuations, which are completely suppressed at T = 0,
whereas ImK arises from the suppression of the Fermi
velocity, which persists down to T = 0.

Therefore, one expects that as temperature is lowered, the
anisotropy of the effective scattering rate changes sign. Using
characteristic values for BaFe2As2 [see Supplemental Material
(Ref. [41]) and also Ref. [42]], τ−1

0 ∼ 300 meV from the
residual resistivity and γ ∼ 100 meV, ξ ∼ 5a from neutron
scattering [39], we find that the two contributions become com-
parable at the temperature scale T ∗ ∼ 100 K. Interestingly, re-
cent optical conductivity data in this compound [29] find such
a behavior, with (�τ̃β)−1 changing sign below the nematic
transition at Tnem ∼ 150 K. Although these compounds also
display long-range magnetic order, at these temperatures the
resulting reconstruction of the Fermi surface is incipient [44],
suggesting that the mechanism discussed here could be at play.

We emphasize that the sign change in the effective scat-
tering rate (�τ̃β)−1 does not cause a sign change in the DC
conductivity anisotropy—also in agreement with the experi-
ments. Indeed, as is clear from Eq. (1), the DC conductivity
anisotropy depends only on the bare scattering rate (�τβ)−1,
which in turn is solely determined by ReK, �σ (ω = 0) =
− 1

4π

∑
β (�β

0,x)
2
τ 2

0 (�τβ)−1. The main consequence of the

reduction of the effective scattering rate (�τ̃β)−1 is an
accompanying enhancement of the anisotropic Drude spectral

weight �SW ≡ ∫ ∞
0 �σ (ω)dω, since �SW = 1

8

∑
β (��̃

β
p)

2

depends only on ImK, as shown in Eq. (6). This means that
any suppression of the effective scattering rate is compensated
by an enhancement of the effective Drude weight, keeping the
DC anisotropy the same.

The global sign of �σ (ω = 0) and �SW depend on the
same parameters C

β

eff via Eq. (6), which are determined by the
Fermi surface geometry. We calculate them explicitly in Fig. 4
for a toy model in which the hole pocket is a circle, ε
 =
ε0 − p2

2m
, whereas the electron pockets are ellipses, εX/Y =

p2
x

2m(1±δ) + p2
y

2m(1∓δ) − ε0 [12,45]. By fixing the ellipticity δ, we

FIG. 4. The coefficient C
β

eff , as a function of the chemical
potential μ (in units of the Fermi energy ε0), for a circular hole
pocket at the 
 point and elliptical electron pockets centered at X and
Y . The ellipticity here is set to δ = 0.35.

find that in general the weighted sum of C
β

eff is positive for
electron-doped compounds (μ > 0) and negative for hole-
doped compounds (μ < 0). Consequently, because ϕ > 0 for
a detwinned sample with tensile strain applied along the x

direction [11], we find �σ > 0 and �SW > 0 for electron-
doped compounds, and �σ < 0 and �SW < 0 for hole-doped
compounds. This agrees with previous theoretical calculations
using the Boltzmann equation instead of the diagrammatic
approach [12,14], as well as with experiments [46,47].

In summary, we studied the impact of anisotropic spin
fluctuations on the optical conductivity anisotropy of the
nematic phase of iron-based superconductors. Our main result
is that, while the DC conductivity anisotropy is determined
solely by the collision of electrons and spin fluctuations, the
electronic Fermi velocity renormalization induced by spin fluc-
tuations causes opposite changes in the effective scattering rate
and plasma frequencies anisotropies that exactly compensate
each other in the DC limit. Our results qualitatively agree
with recent optical conductivity experiments in detwinned
BaFe2As2. Experimental optical studies of compounds that
display nematic order without magnetic order, such as FeSe,
would be desirable to further elucidate this unavoidable
entanglement between scattering rate and plasma frequency
anisotropies in these materials.
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