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Ultracold bosons in a triangular lattice are a promising candidate for observing quantum spin liquid behavior.
Here we investigate, for such system, the role of a harmonic trap giving rise to an inhomogeneous density. We
construct a modified spin-wave theory for arbitrary filling and predict the breakdown of order for certain values
of the lattice anisotropy. These regimes, identified with the spin liquid phases, are found to be quite robust upon
changes in the filling factor. This result is backed by an exact diagonalization study on a small lattice.
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I. INTRODUCTION

Quantum spin liquids (QSL)s are at the center of interest of
contemporary condensed matter physics and quantum many
body theory (cf. Ref. [1]) for several reasons. P. W. Anderson
proposed them as a new kind of insulator: a resonating valence
bond (RVB) state [2]. The interest in these state was clearly
stimulated by the fact that they were soon associated with
high-Tc superconductivity [3]. Immediately it was realized
that RVB spin liquids might exhibit topological order [4] and
are related to fractional quantum Hall states [5] and chiral spin
states [6].

Frustrated antiferromagnets (AFM) provide paradigm play-
ground for RVB states and spin liquids (for the early reviews
see Refs. [7–9]). The most prominent example is Heisenberg
spin 1/2 model in a kagome lattice. Unfortunately, they are
notoriously difficult for numerical simulations, since due to
the (in)famous sign problem quantum Monte Carlo methods
cannot be applied. Still, a lot of information can be extracted
from exact diagonalization studies (for seminal early studies
see Ref. [10]). There was a lot of effort to describe QSLs
with various approximate analytic approaches, such as large
N expansion [11], or appropriate mean-field theory [12,13].
These studies suggested that QSLs described by RVB states
represent topologically ordered states with finite energy gap,
analogous to those of the famous Kitaev’s toric code model
[14].

In parallel to AFM in kagome lattice, the so-called dimer
model in triangular lattice was studied intensively [15]—it was
also found that it is expected to exhibit a gapped RVB phase
(see also Refs. [16,17]).

The first experimental indications of QSLs comes from
studies of Mott insulator in the triangular lattices [18] and
power-law conductivity inside the Mott gap in certain materials
[19]. More recently, observations (cf. Refs. [20–22]) combine
various standard and nonconventional detection methods in
kagome Heisenberg AFM, including measurements of frac-
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tionalized excitations [21]. There are also reports of QSL
behavior in the so-called herbertsmithites (cf. Ref. [23]).

Recently, great progress was achieved in numerical sim-
ulations of the gapped QSLs, based on the use 1D density
matrix renormalization group (DMRG) codes, “wired” on 2D
tori/cylinders. This approach allowed for better insight into the
properties of the ground state of the Heisenberg AFM in the
kagome lattice [24,25]. More importantly, it allowed obtaining
convincing signature of its topological Z2 nature. This was
based on a numerical estimate for the so-called topological en-
tanglement entropy (TEE)—the quantity that unambiguously
characterizes topological gapped QSLs [26,27]. Calculations
of TEE were earlier applied to the quantum dimer model in the
triangular lattice [28] and to the Bose-Hubbard spin liquid in
the kagome lattice [29]. They were extended to critical QSLs
[30], toric code [31], and lattice Laughlin states [32]. Since
these calculations aim at the subleading term in entanglement
entropy, it is quite challenging to achieve good accuracy (see,
for instance, Refs. [31,33]).

Recently, studies of AFM in kagome lattice were extended
to novel proposals for characterizing/detecting topological
excitations and dynamical structure factor [34]. Several papers
discuss inclusion of the chiral terms and Dzyaloshinsky-
Moriya interactions, resulting in formation of chiral QSLs
[35,36]. Considerable interest was devoted also to the J1-J2

Heisenberg model in the kagome lattice [37] and in the square
lattice [38], to the J1-J2-J3 Heisenberg model in the kagome
lattice [39,40], and to the Kitaev-Heisenberg model [41,42] in
triangular lattices [43,44].

Systems of ultracold atoms and ions provide a very versatile
playground for quantum simulation of various models of
theoretical many body physics [45,46]—QSLs have in this
context also quite long history. The first proposals for quantum
simulators of the Kitaev model in the hexagonal lattice [47],
and AFM in the kagome lattice [48–50] were formulated more
than ten years ago; all of them were based on smart designs
and use of superexchange interactions in optical lattices.
More feasible and perhaps experimentally less demanding are
proposals based on ultracold ions [51] or ultracold atoms in
shaken optical lattice [52]. The latter schemes were originally
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designed to control the value and sign of the tunneling in
Bose-Hubbard models—for original theory proposal see [53],
and for the first experiments in the square lattice see Ref. [54].
They should be regarded as specific examples of generation
of synthetic gauge fields in optical lattices [46,55], or more
precisely synthetic gauge fields in periodically driven quantum
systems [56].

Change of sign of tunneling in the triangular lattice is known
to be equivalent of the introduction of the π -flux synthetic
“magnetic” field in the Bose-Hubbard model [5,52]. In the
hardcore boson limit, one obtains then an XX AFM model
in the triangular lattice, which for isotropic bonds is known
to have a planar Néel ground state. If, however, the bonds are
anisotropic and their values t1, t2 = t3 = t t1 can be controlled,
then as the anisotropic parameter t goes from infinity to zero
the model interpolates between an AFM in a rhombic lattice
(with the conventional Néel ground state) to an AFM in the
ideal triangular lattice (with the planar Néel ground state),
and finally to an AFM in an array of weakly coupled 1D
chains (with the conventional Néel ground state again). Exact
diagonalizations and tensor network states simulations (PEPS)
indicate that between these three Néel phases there exists two
quite extended regions of gapped QSLs [51].

Interestingly, the presence and the location of the QSL
phases can be determined quite accurately using the gener-
alized spin wave theory, which signals instability at the QSL
boundaries [51,57]. The spin wave method is impressively
powerful and has been generalized and applied to frustrated
bosons and Heisenberg model with completely asymmetric
triangular lattice [58,59].

We should stress that the proposal of Ref. [52] is in principle
very promising, since it requires temperature of order of
(t/U )U � t , which is achievable in realistic experimental
conditions, here U denotes atom-atom on site interaction
energy. In fact, initial experiment demonstrated feasibility
of the scheme, but were conducted far from hardcore boson
limit. In these experiments, a triangular array of cigar shaped
Bose-Einstein condensates was realized, corresponding to a
frustrated quasiclassical AFM [60], described by a classical
XX spin model with the U(1) symmetry, and Gaussian
Bogoliubov-de Gennes quantum, or better to say quasiclassical
fluctuations. In the further works, by exploiting control over the
temporal shape of the periodic modulation, one could realize
arbitrary Peierl’s phases, i.e., arbitrary fluxes of the synthetic
“magnetic” field through the elementary plaquette of the lattice
(Ref. [61], see also Ref. [62]). This allowed for realization of
a quasiclassical spin model with competing U(1) and Ising
Z2 symmetries [63]. The route toward the strongly correlated
regime and hardcore limit seem to be obscured, however, by
uncontrolled heating mechanisms, most probably intrinsically
associated with the periodic modulation scheme [56].

Even if this difficulty is overcome, another experimental
aspect might prevent the observation of QSLs in such systems.
Indeed, the overall harmonic trapping of the atomic ensemble
leads to a nonconstant filling factor over the optical lattice. We
should expect thus a formation of a wedding cake structure,
formed by the different quantum phases (cf. Ref. [46] and
references therein). How does the phase diagram look like or
change in the presence of such “experimental imperfections”?
This is the question we want to answer in this paper. To this

aim, we apply exact diagonalization on small lattices with
open and periodic boundary conditions. On large lattices,
we apply modified spin-wave theory, adopted to the spatially
inhomogeneous situation, which turns out to be technically
much more demanding than the one pertaining to the spatially
homogeneous lattice with half-integer filling. Specifically, we
derive for the first time a modified spin-wave theory that works
for generic homogeneous filling, which allows to study large
weakly trapped systems in local density approximation. Our
work provides a starting point for the future applications of
tensor network state approaches like the projected entangled
pair states (PEPS) to a moderate size lattices. These future cal-
culations will aim at estimations of topological entropy, which,
so far, for the considered model in the triangular lattice has
not yet been accomplished even in the spatially homogeneous
case with periodic boundary conditions. Studying the influence
of the spatial inhomogeneities, induced by the presence of
the trap or disorder, on topological entanglement entropy is
a fascinating question in itself—it goes, however, beyond
the scope of the present paper. While inhomogeneity due to
confinement are instrinsict to ultracold atoms, our approach
may be also relevant for searching QSLs in other quasi-2D
condensed matter systems that present residual magnetization
or inhomogeneities, for instance, due to the presence of a
substrate.

The paper is structured in the following way: after introduc-
ing the system and model in Sec. II, we construct the modified
spin wave theory in Sec. III. From this theory, we obtain a phase
diagram in Sec. IV. In Sec. V, we consider small systems
(N � 24) using exact diagonalization. The main conclusion
drawn from our study, summarized in Sec. VI, regards the
co-existence of spin liquid behavior at different filling factors
smaller than 1/2. Thus the spin liquid phase is expected to
be robust against inhomogeneities due to a trapping potential.
Our finding should facilitate the experimental observation of
spin liquids in optical lattice systems.

II. DESCRIPTION OF THE ATOMIC MODEL AND MAP
TO THE SPIN MODEL

Ultracold bosons in deep optical lattices are very well
described by the Bose-Hubbard model. Therefore we will
take the Bose-Hubbard Hamiltonian as a starting point for
our analysis:

Ĥ =
∑
〈ij〉

tij (b̂†i b̂j + H.c.) + U

2

∑
i

n̂i(n̂i − 1) +
∑

i

Vi n̂i .

(1)

Here, the b̂
†
i and b̂i are the creation and annihilation operators,

respectively, at the site i of the triangular lattice, and n̂i = b̂
†
i b̂i

is the number operator of the Fock space. The first term is a
possibly anisotropic nearest-neighbor hopping, with tunneling
amplitudes tij . In the standard case, one would have a minus
sign in front of the tunneling term. However, it is possible
to control the sign (or even phase) of the tunneling, which is
a crucial ingredient to generate frustration in the triangular
lattice. As here we will exclusively be interested in such
a scenario of reversed hopping amplitude, we absorbed the
sign in the definition of tij , such that standard hopping would
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FIG. 1. Local density approximation. The harmonic potential,
which for simplicity we assume to have cylindrical symmetry, is
decomposed in two contributions: a steplike profile and a smoothly
varying term. Each plateau extends between the radii rI and rI−1,
defined as the distances where the average occupation takes two
consecutive integer values, 〈n̂rI 〉 = I , 〈n̂rI−1 〉 = I − 1. The hight of
the plateau is taken to be the one corresponding to half-filling. The
smooth terms can be then treated as a perturbation, on the same
footing as the hopping term. The effective model in each plateau is
thus equivalent to an anisotropic XX-spin model with a smoothly
varying magnetic term.

correspond to tij < 0, while we will consider tij > 0. The
second term in H describes repulsive on-site interactions
of strength U > 0. The last term is the trapping potential
Vi = V r2

i − μ0,V = 1
2mω2. Although it is present in any

realistic experiment, it is often neglected in theoretical studies.
The positions of a boson on site i is denoted by ri .

If interactions U are strongly repulsive, fluctuations in
particle number are suppressed. It is then justified to restrict
the local Hilbert space to a subspace formed by the states with
occupation number two. These states may change throughout
the trap, but within a local density approximation, we may keep
them fixed within a circular area in the center of the trap, and
ring-shaped areas further outside, as illustrated in Fig. 1. Each
region is denoted by an integer I , according to the possible
occupation within the region, nI = {I − 1,I }.

This approach allows to map the Bose-Hubbard Hamil-
tonian onto a spin model, using a Holstein-Primakoff trans-
formation [64]. Within each region I , the transformation is
defined as

Ŝz
i = (−1)I

(
I − 1

2
− n̂i

)
,

Ŝ+
i = (b̂†)I√

I
, Ŝ−

i = (b̂)I√
I

, (b̂†)2 = (b̂)2 = 0. (2)

The vanishing of squared creation or annihilation operators
is due to the restriction of the local Hilbert space to two
states. Using the definition of spin operators, the tunneling
part of the original tight-binding Hamiltonian gets transformed
to I

∑
〈i,j〉 tij Ŝ

+
i Ŝ−

j + H.c. The interaction part transforms

FIG. 2. (a) A triangular lattice of N = 24 sites with a hexag-
onal shape. Horizontal hopping amplitudes are given by t1, while
hopping in the other directions have an amplitude t2 = t t1, where t

parametrizes the anisotropy of the lattice. (b) A triangular lattice of
up to N = 24 sites with a rhombic shape. For studying the behavior
upon scaling the system size (cf. Sec. V A), we use this structure.
In order to conveniently define the form factor (39), the spins are
identified by unique position index i = 1, . . . ,N , starting from the
bottom left. As displayed, i increases by one while moving on the
right, and by the length of the row, R, while moving up right.

to U (Ŝz)2 + 2U (−1)I+1Ŝz(I − 1) + U (I 2 − 2I + 3/4). The
trap potential gives rise to a term ViŜ

z
i . With (Ŝz)2 = 1/4, and

neglecting the terms that are constant within a given region I ,
the dynamical part of the transformed Hamiltonian is an XX
model in an inhomogeneous transverse field:

ĤI = I
∑
〈ij〉

tij Ŝ
+
i Ŝ−

j + H.c. +
∑

i

Vi Ŝ
z
i . (3)

Before studying this Hamiltonian in the next sections using
modified spin wave theory and exact diagonalization, let us
briefly discuss the parameter regimes which are of interest
experimentally. As mentioned before, being interested in
frustration and spin liquids, the spin-spin interactions in Eq. (3)
should be antiferromagnetic, that is, tij > 0. To simplify the
scenario, tij should only depend on the direction of the
hopping, with amplitudes along horizontal links denoted t1,
while the two links with nonzero vertical component shall have
an amplitude t2 = t t1, see Fig. 2. The anisotropy of the lattice
is then characterized by a single parameter t , which we will
tune from 0, corresponding to an effective 1D system, to values
greater than 2, where the lattice geometry is dominated by a
rhombic structure. The energy difference between neighboring
spins is of the order �Vi = V a2 ≡ η t1, where a is the lattice
constant, and η is a dimensionless parameter. We Assume the
lattice is loaded with 87Rb atoms, which has lattice constant
a = 553 nm and a trap frequency ω = 2π × 40 Hz; we have
�Vi/� = 15 Hz. This is about an order of magnitude weaker
than typical interactions strengths, t1/� ≈ 150 Hz. In the
modified spin wave approach, we will therefore take Vi = 0,
while the effect of nonzero values will be addressed within the
exact diagonalization study.

III. MODIFIED SPIN-WAVE THEORY

Let us start by analyzing the spin system for constant
nonzero magnetization, which corresponds to fillings different
from 1

2 . Classically, we expect the spin oriented along a cone
around the z axis,

Si = (sin ρ cos(Q · ri), sin ρ sin(Q · ri), cos ρ). (4)
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Here, Q = (Qx,Qy) is a vector in the xy plane, while ρ is
the azimuthal angle related to the magnetization along the z

axis, i.e., to the filling of the original bosons ν = 〈n̂〉 − [〈n̂〉],
where [x] = integer part of x. For ρ = π

2 , (4) reduces to the
ansatz considered by Refs. [57,65] at half-filling. If we follow
the standard spin-wave approach, we should choose the local
basis in such a way that the new local z axis is parallel to
the vector (4). In this way, by applying the bosonization of
the local spin we would model fluctuations along the classical
ordering represented by (4). Now, such fluctuations would
have a component also along the z axis. In other words,
they would renormalize the filling factor. Such behavior is
not acceptable from the physical point of view. Indeed, in
the original bosonic Hubbard model, the filling factor is a
well defined quantity: the hopping term conserves the particle
number, and, thus, the expectation value of the particle density
which is the filling. The same argument holds for the same
physical model as described as a spin system. In practice,
the acceptable fluctuations are restricted to the xy plane, and,
precisely, are along the projection of the ordering vector on
the xy plane. That is to say that a corrected choice for the
quantization axis is the same as at half-filling.

What is then the difference with respect to the half-filling
case? The difference resides in the magnitude of the spin
projection. If we do the reasonable assumption that the
fluctuations are proportional to such length we can relate n, the
local density of bosonic excitations, to the filling. As originally
proposed by Takahashi [66], such density at half-filling should
be taken equal to the total spin, n = S, that to say also the
bosonic excitations are at half-filling. Here, we propose a
generalized Takahashi condition

n = S| sin ρ|, (5)

where the angle ρ is related to the filling by the relation 〈Sz〉 =
ν − S = S cos ρ, which implies | sin ρ| = 1

S

√
ν(2S − ν). This

choice has further physical justification. First, it is symmetric
around half-filling as it should be: reversing the quantization

axis ẑ in the Dyson-Maleev transformation [67–69] is equiva-
lent to the replacement ν → 2S − ν. Second, fluctuations are
maximal at half-filling and are suppressed in the paramagnetic
(Mott) phases, which correspond to filling ν = 0 and 2S.

As derived in previous sections, the filling factor ν is
smoothly changing in the trap and relates to the harmonic
potential as ν = [ μ

U
+ 1

2 ], where [x] = fractional part of x

(the hopping term has zero mean). Thus our analysis can be
applied in local density approximation to trapped systems.

We define the local spin operators Ŝ′ ≡ (Ŝx ′
,Ŝy ′

,Ŝz′
) that are

related to the global ones Ŝ = (Ŝx,Ŝy,Ŝz) through the rotation

Ŝ = R(θi)Ŝ′ ≡ R(Q · ri)Ŝ′, (6)

where

R(θi) = Rz(θi)Ry(−π/2)Rz(θi) =

⎛
⎜⎝

0 − sin(θi) − cos(θi)

0 cos(θi) − sin(θi)

1 0 0

⎞
⎟⎠

is the rotation that sends the vector (0,0,−1) to
(cos θi, sin θi,0), i.e., along the projection of ordering vector
on the xy plane.

By composing with the Dyson-Maleev transformations

Ŝz′
i → −S + a

†
i ai,

Ŝ+′
i →

√
2Sai, (7)

Ŝz′
i →

√
2S

(
1 − a

†
i ai

2S

)
ai,

we find that in the original spin basis, the bosonization is

S±
i = e±iθi

{
±

√
S

2

[
a
†
i −

(
1 − n̂i

2S

)
ai

]
+ S

(
1 − n̂i

S

)}
,

(8)

where n̂i = a
†
i ai , θij = Q · r ij , and r ij = rj − r i . The effec-

tive Hamiltonian reads (up to fourth order in a or a†)

H = 1

2

∑
〈ij〉

tij (S+
i S−

j + S−
i S+

j )

=
∑
〈ij〉

tij cos θij

(
S2−S(n̂i+n̂j )−S

2
(a†

i a
†
j + aiaj )+S

2
(a†

i aj + aia
†
j ) + n̂i n̂j − 1

4
(a†

i n̂j aj + a
†
j n̂iai) + 1

4
(n̂j aj ai + n̂iaiaj )

)

− i
∑
〈ij〉

tij sin θij

(
S

√
2S

2
(a†

i − a
†
j − ai + aj ) +

√
2S

4
(n̂iai − n̂j aj ) −

√
2S

2
(n̂j a

†
i − n̂ia

†
j − n̂j ai + n̂iaj )

)
. (9)

Note that this expression does not coincide with Eq. (5)
in Ref. [57]; indeed, the odd terms in sin θij are absent
there as they have zero expectation value on a thermal gas
of excitations. It is worth noticing that the terms in cos θij

and sin θij are manifestly symmetric and antisymmetric under
the exchange of indices, i ↔ j , respectively. Indeed, by
construction the whole expression is invariant under such
exchange of summed indices. Furthermore, the Hamiltonian
(9) can be rewritten in an explicit translational invariant fashion

by noticing that the sum over the links can be performed as a
sum over there links coming out of a site, and then summing
over all the sites. As these three lattice vectors on a triangular
lattice we choose τ 1 = (1,0),τ 2 = 1

2 (1,
√

3),τ 3 = 1
2 (−1,

√
3).

As H in Eq. (9) is non-Hermitian, following Takahashi [66],
we use it in order to construct a free energy for a gas of bosonic
excitations in a generic Bogoliubov basis at temperature T , i.e.,

F = E − T S + μ(n − S| sin ρ|), (10)
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where E is the expectation value of H ,

E = 1

N

∑
k

〈νk|H |νk〉, νk ≡ 〈α†
kαk〉 = 1

exp[wk/T ] − 1
,

(11)

with αk denoting the Bogoliubov modes, see Eq. (16). The
entropy S of the bosonic gas is defined as

S = 1

N

∑
k

[(νk + 1) ln(νk + 1) − νk ln νk]. (12)

The last term in Eq. (10) is the modified Takahashi constraint
over the density of fluctuations n = 〈n̂i〉, with μ the corre-
sponding Lagrange multiplier or chemical potential. Here, wk

is energy of each mode. From the functional form of the
entropy it follows that wk is also the rate at which the entropy
changes with changing occupation, i.e., wk = T ∂S

∂νk
.

It seems natural to adopt this strategy since the expectation
value E is in general bounded from below and depends only
on the average value of the bilinears a

†
i aj , a

†
i a

†
j , and their

complex conjugates. This happens because the Bogoliubov
transformation is by definition linear and only the quadratic
bilinears above can have nonzero matrix elements while
preserving the excitation number. This physical consideration
is equivalent to state that E can be calculated using Wick
theorem and that linear and cubic terms give zero contribution.
For convenience, we define

〈a†
i aj 〉 ≡ F (rij ) − 1

2δij ,

〈aiaj 〉 ≡ G(rij ). (13)

In this notation, the generalized Takahashi constraint reads

F (0) = 〈a†a〉 + 1
2 = S| sin ρ| + 1

2 , (14)

where | sin ρ| relates to the filling ν of the original spin system,
0 � ν � 2S, as | sin ρ| = 1

S

√
ν(2S − ν). From (9), we find

E

N
= S2 C − 2S C

[
F (0) − 1

2

]
− S

2

∑
J

[cJ · (GJ + G∗
J − FJ − F ∗

J )]

+C

[
F (0) − 1

2

]2

+
∑

J

cJ (|FJ |2 + |GJ |2) + 1

4
cJ

{
(G(0)(FJ + F ∗

J − 2G∗
J ) − 2

[
F (0) − 1

2

]
(FJ + F ∗

J − 2GJ )

}
. (15)

Here, we adopt the notation FJ ≡ F (τJ ), GJ ≡ G(τJ ), and
we define (c1,c2,c3) ≡ (cos( Q · τ1),t cos( Q · τ2),t cos( Q ·
τ3)), C ≡ c1 + c2 + c3. For convenience, we fix the energy
scale such to have t1.

If we assume that the Bogoliubov transformation is real as
in Ref. [57]

ak = (cosh θk αk + sinh θk α
†
−k) ,

a−k = (cosh θk α−k + sinh θk α
†
k) , (16)

we have that FJ = F ∗
J , GJ = G∗

J , the expectation value of
energy density reduces to

E

N
= 1

2

∑
J

cJ

[(
S + 1

2
− F (0) + FJ

)2

+
(

S + 1

2
− F (0) − GJ

)2

+G(0)(FJ − GJ ) + F 2
J + G2

J

]
, (17)

which differs from the expression [57, Eq. (6)] not only due to
the mismatch between our (9) and Eq. (5) in Ref. [57]: in fact
the term G(0)(FJ − GJ ) is omitted as considered negligible.
This approximation is justified at half-filling for large S as
FJ ∼ GJ ∼ S.

It is worth noticing that the structure of the minimal solution
is not affected by the explicit form of E, while the consistency
equations obviously are. Indeed, due to (16), the expectation

values have the form

F (r) = 1

N

∑
k

cosh(2θk)e−ikr
(

νk + 1

2

)

= 1

N

∑
k′

cosh(2θk′) cos(k′r)(2νk′ + 1),

G(r) = 1

N

∑
k

sinh(2θk)e−ikr
(

νk + 1

2

)

= 1

N

∑
k′

sinh(2θk′) cos(k′r)(2νk′ + 1), (18)

where we use explicitly the symmetry k → −k: the prime
indicates that now the sum is performed over half of the first
Brillouin zone. The condition for F to be minimal reduces to

0 = ∂F
∂wk

= ∂F
∂νk

=
3∑

μ=0

[
∂E

∂Fμ

cos(kτμ) cosh(2θk)+ ∂E

∂Gμ

cos(kτμ) sinh(2θk)

]

−wk + μ cosh(2θk), (19)

0 = ∂F
∂θk

= ∂F
2∂θk

=
3∑

μ=0

[
∂E

∂Fμ

cos(kτμ) sinh(2θk)+ ∂E

∂Gμ

cos(kτμ) cosh(2θk)

]

+μ sinh(2θk). (20)
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Here, τ 0 = (0,0) while τ J , J = 1,2,3, have been introduced
above.

The condition (20) is always equivalent to

tanh(2θk) = Ak

Bk
, (21)

and the condition (19) to

wk =
√

B2
k − A2

k, (22)

where

Ak ≡ −
3∑

μ=0

cos(kτμ)
∂E

∂Gμ

= 1

2

∑
J

cJ [GJ − FJ + cos(kτ J )(1 + 2S − 2F0

+G0 − 4GJ )]

= 1

2

∑
J

cJ [GJ −FJ + cos(kτ J )(2S(1 − | sin ρ|)

+G0 − 4GJ )],

Bk ≡ μ +
3∑

μ=0

cos(kτμ)
∂E

∂Fμ

= μ +
∑

J

cJ

[
−2S − 1 + 2F0 + GJ − FJ

+ cos(kτ J )

(
S + 1

2
+ 1

2
G0 − F0 + 2FJ

)]

= μ +
∑

J

cJ

[
−2S(1 − | sin ρ|) + GJ − FJ

+ cos(kτ J )

(
S(1 − | sin ρ|) + 1

2
G0 + 2FJ

)]
,

(23)

in the second lines of the expression for Ak and Bk we impose
the generalized Takahashi constraint.

Thus one is getting the same result as for the diagonalization
of a quartic Hamiltonian that in momentum space is real and
symmetric under k ↔ −k. This can be the case when the
expectation value E is real, but not otherwise.

At the formal level, we can use (21) and (22) that imply

cosh(2θk′) =
√

B2
k′

B2
k′ − A2

k

,

sinh(2θk′) = Ak′

Bk′

√
B2

k′

B2
k′ − A2

k′
, (24)

to write an implicit equation for the correlation functions

F (r) = 1

N

∑
k′

√
B2

k′

B2
k′ − A2

k

cos(k′r)(2νk′ + 1),

G(r) = 1

N

∑
k′

Ak′

Bk′

√
B2

k′

B2
k′ − A2

k′
cos(k′r)(2νk′ + 1). (25)

The following physical considerations are in order. In
the zero temperature limit, we are interested in, the gas
of Bogoliubov excitations is expected to condense. Such
condensation is consistent with the spin ordering only if the
zero mode condenses, as such condensation translates into
an infinite range correlation in the original atomic system.
The requirement of zero mode to become macroscopically
occupied at low temperature, M0 = ∫

|k|<ε
νk ∼ Nn, implies

that wk=0 → 0, which also corresponds to |θk=0| → ∞. Thus
this condition can be realized only for Bk=0 ∼ Ak=0, which
implies that in the phase we are interested in, the chemical
potential has to be set to zero, μ = 0. Note that this also
means the occupation of each mode νk is much smaller than 1

2
(at least for S = 1

2 ). Thus, by singling out the zero mode and
using νk + 1

2 ∼ 1
2 in the expression for correlation functions,

they become

F (r) ∼ M0 + 1

N

∑
k′ �=0

cosh(2θk′) cos(k′r),

G(r) ∼ M0 + 1

N

∑
k′ �=0

sinh(2θk′) cos(k′r), (26)

and the constraint (14) reads

M0 + 1

N

∑
k′ �=0

cosh(2θk′) = S| sin ρ| + 1

2
. (27)

After having singled out the zero mode and constrained
the occupation the function Ak and Bk should be redefined in
form accordingly. In fact only Bk gets redefined. Indeed, by
recalculating the consistency condition for an extremum of the
F for the new definition of the correlation functions—that to
say taking into account the dependence of M0 on νk and θk, as
well as μ = 0—we have

0 = ∂F
∂wk

= ∂F
∂νk

=
3∑

μ=0

[
∂E

∂Fμ

(cos(kτμ) − 1) cosh(2θk)

+ ∂E

∂Gμ

(cos(kτμ) sinh(2θk) − cosh(2θk))

]
− wk, (28)

0 = ∂F
∂θk

= ∂F
2∂θk

=
3∑

μ=0

[
∂E

∂Fμ

(cos(kτμ) − 1) sinh(2θk)

+ ∂E

∂Gμ

(cos(kτμ) cosh(2θk) − sinh(2θk))

]
. (29)

The above equations again imply

tanh(2θk) = Ak

Bk
, wk =

√
B2

k − A2
k,

075110-6



MODIFIED SPIN-WAVE THEORY AND SPIN-LIQUID . . . PHYSICAL REVIEW B 94, 075110 (2016)

or alternatively

cosh(2θk′) =
√

B2
k′

B2
k′ − A2

k

, sinh(2θk′) = Ak′

Bk′

√
B2

k′

B2
k′ − A2

k′
.

(30)

The expression for Ak remains the same as in Eq. (23),

Ak = −
3∑

μ=0

cos(kτμ)
∂E

∂Gμ

, (31)

while Bk becomes

Bk =
3∑

μ=0

[
∂E

∂Fμ

(cos(kτμ) − 1) − ∂E

∂Gμ

]
. (32)

It is easy to check that the classical order is recovered in
the limit of S large. At leading order, the minimum of the
free energy is just determined by the minimum of C: the Q
order found is the classical result, QCl = (2 arccos(−t/2),0),
which corresponds to (c1,c2,c3) = ( t2−2

2 ,− t2

2 ,− t2

2 ). At the next
order in 1

S
, which corresponds to the linear spin wave (LSW)

calculation, we recover the ordinary spin-wave result:

Ak → S
∑

J

cJ cos(kτ J ), Bk → S
∑

J

cJ (cos(kτ J ) − 2),

(33)

which imply

wk = 2S

√√√√C

(
C −

∑
J

cJ cos(kτ J )

)
,

in particular wk=0 = 0 as expected. It is easy to check that,
for the classical order QCl , wk is always real and that is
by construction an extreme. In fact, as it can be checked
numerically that it is also the minimal energy solution, also
then the terms in 1

S
, which corresponds to the case in which

quadratic fluctuations are included. Taking into account all the
terms in Eq. (17), which include also 1

S2 corrections, known
as the modified spin wave (MSW) approach, the minimum
condition is no longer algebraic. As in Ref. [57], we will search
for solutions recursively, starting from the ordinary spin wave
solution above. The absence of a pronounced minimal value
will signal the existence of a possible spin-liquid phase. In
order to find the optimal Q = (Qx,Qy), we have to impose
that the gradient is zero:

0 = ∂F
∂Qx

=
∑

J

∂E

∂cJ

∂cJ

∂Qx

,

0 = ∂F
∂Qy

=
∑

J

∂E

∂cJ

∂cJ

∂Qy

. (34)

IV. RESULT FROM THE MODIFIED
SPIN WAVE ANALYSIS

In the previous section, we have derived a modified spin
wave theory for the XX-spin model on a triangular lattice.
We will now extract concrete results from this theoretical
framework. This amounts for a minimization problem of the

FIG. 3. Expected phase diagram as function of the filling within
the MSW approach. The two ordered phases are spiral order, 0.2 �
t � 1.55, and 2D-Néel order. Inset: A 6 × 6 lattice of rhombic shape
with periodic boundary conditions.

free energy, which is complicated due to the large amount
of variables. Using the procedure described in the subsection
below, we manage to perform minimization even for large
lattices with hundreds of sites. As the result, we then obtain
the phase diagram for a realistic experimental system as a
function of the hopping anisotropy t .

A. Optimization and stability

In search for a long-range order in the quartic case, we
adopt an iterative procedure. We start from the ordinary spin-
wave (33) solution with Q = QCl as initial configuration. The
recursive procedure works as follows. First, the values of Ak,
Bk at the cycle m are used to get the new correlation functions
Fμ,Gμ, using Eq. (26). Once the correlations are substituted
in the free energy, which at zero temperature reduces to the
expectation value of the energy (17), the latter becomes a
function of the ordering vector Q only, E = E( Q). The new
value at the cycle m of Q is, thus, determined by minimizing
the E( Q) in the neighborhood of optimal value of Q at the
cycle m. Finally, (31) and (32) are used to update Ak and
Bk as a function of the correlation functions and of the order
vector. Convergence of the iterative process is assumed when
the difference between the old and the updated values of Ak

and Bk are below a certain threshold.
We have benchmarked the performance of this iterative

approach against brute force minimization of the energy as
a function of the free parameters θk and Q for different
shapes and sizes of lattices with periodic boundary conditions.
While the success and efficiency of the iterative approach, i.e.,
the number of iterations needed for achieving convergence,
strongly depends on the shape of the lattice, it performs
generally better than a brute force minimization and the
scalability with the lattice size is pretty good. Best performance
is achieved for rhombic lattices, see Fig. 3. Converge or failure
occurs after few tens of iterations. The latter manifests when
|Ak| becomes greater than |Bk| for some k, which corresponds
to wk becoming imaginary. In fact, more than a real instability,
the absence of convergence signals that the approximation we
have used of neglecting the occupation νk of the modes k �= 0
is not respected. That is to say, the physical assumption of the
existence of an ordered phase behind the spin-wave analysis
is not verified. The comparison between the iterative approach
and the brute force minimization of the free energy, which we
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FIG. 4. Values of the optimal Qx : comparison of results from
LSW and from MSW for different sizes of the rhombic-shape lattices
with periodic boundary conditions.

have performed without assuming νk � 1 on L × L rhombic
lattices with L up to 10, confirmed this scenario.

Next, we have extended our iterative minimization to
larger lattices. We have first studied the half-filling case for
L = 24 and 100 and for the infinite L limit, obtained by
replacing the sum over k with an (numeric) integral over the
first Brillouin zone.

B. Phase diagram predicted by spin wave at half-filling

We have first started by studying the half-filling case,
ρ = π

2 . Our results are very close to the one of [57] and
display the same qualitative behavior (see Fig. 3). In particular,
we observe a failure of convergence around t ∼ 0 and for
t between 1.55–1.8. The first region is easily explained: in
the limit t → 0, the system reduces to disconnected 1D-XX
chains that can order separately in 1D-Néel orders with
arbitrary relative phases. Thus there is a huge degeneracy in
the ground state that should correspond to a gapless spin-liquid
phase. The region around t ∼ 1.65 appears at the interface
between two classically ordered phases, the spiral order and a
2D-Néel order, which appear at lower and higher values of t ,
respectively. Both phases are well described by the classical
order ansatz we used. It is worth noticing that the initial
condition and the reflection symmetry of the Hamiltonian
around the x axis implies that our solution is respecting such
symmetry, i.e., the ordering vector remains parallel to the x

axis and the correlation functions respect the relations F2 =
F (τ 2) = F (τ 3) = F3, G2 = G(τ 2) = G(τ 3) = G3. This im-
plies that we can work at fixed Qy = 0. For this choice, the
2D-Néel order corresponds to Qx = 2π , while the spiral order
corresponds to Qx smoothly interpolating between 2π and
π for decreasing values of the anisotropy t . While at the
classical level, the 2D-Néel order is predicted to be stable
for t � 2, the quantum corrections incorporated by MSW
approach stabilize it also for lower values of t , as displayed in
Fig. 4. Similar results are obtained by exact diagonalization,
see Fig. 17(a). By reducing further the values of t the system
enters in a nonordered phase signaled by the absence of
points from MSW. While in the neighboring regions above
and below the nonconvergence window, the occupancy of the
zero-momentum states remains large, see Fig. 5, the values
of the relative susceptibility ρxx is small in the vicinity of
such window, Fig. 6. Similarly to Ref. [57], we estimate the

FIG. 5. Occupation of the ground state at zero momentum
corresponding to the ordered solution: comparison of results from
LSW and from MSW for different sizes of the rhombic-shape lattices
with periodic boundary conditions.

susceptibility by calculating the Hessian of the energy for
fixed correlation functions at the minimum. In order to get
an adimensional quantity, we divide by the absolute value of
the energy minimum, thus, ρxx = 1

E
∂2E
∂Q2

x
, and ρyy = 1

E
∂2E
∂Q2

y
.

Note that ρxy = 1
E

∂2E
∂Qx∂Qy

is identically zero because of the
symmetry argument given above. As expected, ρyy is not
signaling any instability for 1.5 � t � 2—the optimal Qy is
identical for the spiral and 2D-Néel order—while it detects the
instability at t ∼ 0, see Fig. 6. While for all the observables
represented in Figs. 4–6 the MSW results deviate considerably
from the ones predicted by the LSW, they are quickly
converging to a stable behavior for moderate size lattices—for
a rhombic shape lattice L × L the deviation between L = 24
and the continuous limit are tiny.

C. Phase diagram predicted by spin wave at generic filling

Then, we have considered lower values of ρ between 0 and
π
2 , corresponding to lower densities of Bogoliubov excitations
n = 1

2 sin ρ = 1
2

√
ν(1 − ν), where ν is the filling. We have

considered the same observables as in the half-filling case. We
have found again that the results quickly saturate to a stable

FIG. 6. Values of the rescaled susceptibility ρxx and ρyy : com-
parison of results from LSW and from MSW with different lattice
dimensions. Around the nonconvergence window, ρxx is small, sig-
naling instability of the order. Around the nonconvergence window,
ρyy is large as expected because the y-component of the order vector
Qy is the same for spiral and 2D-Néel order. Instead, ρyy signals the
instability that leads to 1D-Néel order for t ∼ 0.
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FIG. 7. The value of the optimal Qx depends in sizable way on
the filling only close to the transition to the nonordered region.

value for growing size of the lattices. For simplicity, we present
here the results L × L rhombic-shaped lattices with periodic
boundary conditions for L = 100. First, we notice that the
values of the optimal order vector Q remains substantially
unchanged with respect to the half-filling case. While by
construction Qy = 0, the x-component of the order vector
Qx displays a moderate dependence on n only close to the
nonconvergence window, Fig. 7. In fact, the nonconvergence
window changes: while it remains centered around t ∼ 1.65,
its extension shrinks smoothly while n decreases. Indications
of such behavior can be detected both in the condensate
fraction and in the susceptibility. Indeed, the shrinking of
the nonconvergence window is well evident in Fig. 8(a)
where the occupation of the zero mode M0 is depicted. As
expected M0 is directly proportional to n, that is to say the
condensate fraction M0

n
depicted in Fig. 8(b) is independent

of n. This behavior supports the picture that the nature of the
ordered phases is unchanged while their stability increase by
moving away from half-filling n = 1

2 . Further confirmation
comes from the calculation of the relative susceptibilities ρxx

and ρyy . While ρyy does not display a strong dependence
on n, Fig. 9, ρxx displays a sizable dependence on n only
around the nonconvergence window. In particular, ρxx weakly
increases when n decreases, showing that the ordered phase
gets smoothly more stable, Fig. 10. Thus we conclude that by
moving out of half-filling the conjectured spin-liquid phase
signaled by the nonconvergence window of MSW does not
disappear but shrinks rather gently.

FIG. 9. The value of the rescaled susceptibility ρyy does not
depend considerably on the filling. Indeed, it is sensitive only on
the transition at very low t to the 1D behavior, which is unaffected
by the filling, while is order 1 around the transition at t ∼ 1.65.

V. EXACT DIAGONALIZATION STUDY

In this section, we will study the Hamiltonian (3) by
means of exact diagonalization. Therefore we first note that it
conserves the z component of total spin, Sz ≡ 1

N

∑
i S

z
i . This

symmetry reflects conservation of particles, and allows to work
in Hilbert space blocks with fixed spin polarization. Using this
symmetry, we are able to exactly diagonalize systems of up to
24 sites. We mostly consider open boundary conditions (i.e.
hard walls), which not only mimicks best the trapped scenario
we have in mind, but also allows for arbritrary ordering vectors.
We have studied different geometries, in particular the highly
symmetric arrangement depicted in Fig. 2(a), but also rhombic
arrangements shown in Fig. 2(b), which can systematically be
scaled from 12 to 24 by adding rows of four spins.

As in the spin-wave analysis, we will first consider the
system within a local density approximation, assuming homo-
geneity within shells of different Sz. Our exact diagonalization
study is expected to capture the system behavior in the center
of the trap, and we set Vi = 0. Afterwards, we study effects of
the trapping potential on small scales, diagonalizing Eq. (3) at
finite Vi . The exact diagonalization study presented here covers
the case at half-filling (Sz = 0) known from Refs. [51,57], with
a possible quantum spin liquid for t ≈ 0.5 and t ≈ 1.5. We
extend this study to other polarization sectors, which become
relevant if the trap leads to an increased density in the center.

FIG. 8. (a) Occupation of the state at zero momentum for different filling: the nonordered region shrinks smoothly with the filling. (b) The
condensate fraction is independent of the filling in the ordered regions.
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FIG. 10. The value of the rescaled susceptibility ρxx depends
sizably on the filling only close to the transition to the nonordered
region. A slighter increase of ρxx at lower n translates in an increased
stability of the ordered phases.

A. Homogeneous system (Vi = 0)

As an experimentally accessible quantity which allows to
chararacterize the order of the system, we have calculated the
magnetic structure factor S(Q):

S(Q) = 2

N

∑
i,j

exp[iQ · (ri − rj )]〈S+
i S−

j + H.c.〉. (35)

Here, 〈·〉 denotes the quantum average of the ground state. This
quantity is the Fourier transform of the total magnetization in
the Sx-Sy plane, and therefore magnetic order is signalled by a
pronounced peak. The momentum space position Q of the peak
further characterizes the spatial ordering of the magnetization.
Based on S(Q), we define magnetization M as a relevant order
parameter

M =
√

S(Q)/N. (36)

At all fillings and for all anisotropies, M has a global maximum
for Qy = 0, with the corresponding Qx varying between π

and 2π as a function of t , see Fig. 11(a). The two limiting
values Qx = π and Qx = 2π , obtained for t = 0 and t � 1.6,
correspond to an intrachain Néel order, and to a square-lattice
Néel order, respectively. Remarkably, for most values of t , the

peak momentum Qx hardly depends on the spin polarization,
with the exception of a small region around t ≈ 1.5, where
dQx/dt tends to infinity. This means that in a trapped system,
composed of subsystems with different Sz, each subsystem
would produce the same signal when the magnetic structure
factor is measured. As a result, one would measure same
peak as in the homogeneous system, except for a possible
broadening of the peak near t ≈ 1.5.

In Fig. 11(b), we show the order parameter M for different
polarization sectors. In comparison to Qx , there are some quan-
titative dependencies on the polarization, but qualitatively,
the curves still share many qualitative properties: with few
exceptions, M always increases with t , but typically regions
of rapid increase are followed by rather flat regimes. A strong
tendency for rapid increase occurs at t ≈ 0.6 and for t �≈ 1.5.
For most Sz, a small region in which M decreases with t , is
found within a small region at t � 1.5. Note that for Sz = 0 this
dip is absent, but instead the curve exhibits a kink at t ≈ 1.5,
with dM/dt = 0. These dips/kinks might be interpreted as a
signal for quantum spin liquid behavior, as they indicate the
loss of the magnetic order.

We also note that, based on a PEPS study in Ref. [57] in a
20 × 20 lattice, another spin liquid regime is expected around
t ≈ 0.5, that is, just before the first rapid increase of M . This
expectation is based on a dip in M(t) near t ≈ 0.5, which
is found in larger systems. Within our study on the N = 24
lattice, though, the magnetic order parameter does not signal
spin liquid behavior in this region.

Additional information regarding the presence or absence
of magnetic order can be obtained from the dependence of the
order parameter on the number of spins N . For such scaling
analysis, we perform exact diagonalization at half-filling on a
graph as shown in Fig. 2(b). The results are shown in Fig. 12.
Before analyzing the size dependecies in Fig. 12, we may focus
on the curve for N = 24 and compare it with the corresponding
in Fig. 11(b). As finite-size effects should strongly depend on
the geometry of the system, such comparison may help to
distinguish bulk behavior from edge effects. We find that, for
t � 1, the magnetization M exhibits very similar behavior in
both geometries, in particular regarding the kind at the t ≈ 1.5
followed by a sharp increase. For larger values, t � 1.6, the

FIG. 11. In different polarization sectors Sz, we evaluate (a) the position of peak of structure factor S(Q) as a function of anisotropy t , and
(b) the magnetic order parameter M , as defined in Eq. (36) from the peak value of S(Q). We consider a homogeneous system (Bi = 0) with
N = 24 spin, arranged in the hexagonal geometry shown in Fig. 2(a).
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FIG. 12. Magnetic order parameter M as a function of lattice
anisotropy t , for different number of spins N in the rhombic
arrangement depicted in Fig. 2(b). The inlays show the results of
extrapolating the data to 1/N → 0 using the fit function f (N ) =
αN−β + m, with m > 0. For t � 1, we get m = 0 and an exponent
β ≈ 0.5, as shown in the left inlay. For 1 < t < 1.35, the data
extrapolate to finite values of m, see right inlay. In the shaded
region, 1.35 < t < 1.56, the system is disordered in the sense that
the data do not behave monotonically with N . For larger t , the data
converges quickly to a size-independent value which approaches the
value M0 = 0.437 for a Neel-ordered square lattice (cf. Ref. [70]).

magnetization saturates. As discussed before, the kink could be
the sign of a spin liquid phase, and strikingly, this feature does
not depend on the geometry of the system. Also the flat regime
for large t is barely affected by the geometry, and is interpreted
the Neel ordered phase in a square lattice (equivalent to the
rhombic lattice structure for t → ∞). A striking observation
which backs this interpretation is the value of M obtained at
large t in the rhombic geometry: it approaches precisely the
value M = 0.437 expected for a square lattice [70].

Next, we will analyze size dependencies, which play an
important role for t �<1.6. The whole region can be divided
into two regimes; while for t < 1.35 the order parameter M

behaves monotically with N , this is not the case for 1.35 < t <

1.6. We may interpret this nonmonotonic behavior as a signal
for the lack of magnetic order. The finite value of M can then
be seen a random effect due to the limited system size. Such
scenario agrees with a spin liquid phase, however, we cannot
rule out complicated orderings which are, in a nonmonotonic
way, sensitive to the finite size of the system.

For t < 1.35, the monotonic behavior of M(N ) allows for
a quantitative scaling analysis. Using the fit function f (N ) =
αN−β + m with real fit parameters α, β, and m, we obtain
the unphysical result m < 0 for t < 1. We conclude that in
this regime, no magnetization survives in the thermodynamic
limit, and set m = 0. We then find an exponent β ≈ 0.5
as shown in the left inlay of Fig. 12. The exponent 1/2
agrees with exponential decay of correlations, S(Q)/N ∼∫ √

N

0 dr r exp(−r/ξ ) ∼ 1/N , with ξ denoting the correlation
length. For t > 1, we obtain finite positive values of m, as
shown in the right inlay of of Fig. 12, indicating that the
system remains magnetized in the thermodynamic limit.

FIG. 13. Width σ of the structure factor peak as a function of t ,
for a rhombic arrangement of the spins. A broadening of the peak
near t ≈ 1.5 is observed for all system sizes, but is most pronounced
for smaller systems (N = 16 and N = 20).

Another relevant quantity which can be obtained from the
magnetic structure factor is the width of the peak. To account
for the difference in height, we normalize S(Q) with S(Qpeak).
For simplicity, let us assume that the peak of the structure factor
has a Gaussian shape. The width of the peak is then given by the
standard deviation σ , which can be obtained from the second
derivative at the peak. Along the Qx direction, we have

σ =
(

1

S(Qpeak)

[
d2

dQ2
x

S(Qx,Qy)

]
Q=Qpeak

)−1/2

. (37)

We have evaluated this quantity for rhombic systems as shown
in Fig. 13. The most remarkable feature is the rapid increase
of σ near t = 1.5, i.e., a significant broadening of the peaks
for N = 16 and N = 20, indicating a loss of magnetic order.
For N = 24, however, the data shows a slightly different
behavior: Although a global maximum is still exhibited at
t = 1.5, the extremum is less pronounced than in the other
cases. Interestingly, no size dependence of σ occurs in the
two limits t → 0 and t → ∞.

To shed more light onto the regime 1.35 < t < 1.6, we
will now consider the possibility of nonmagnetized order. A
clear candidate for a nonmagnetized but ordered phase is the
so-called valence-bond crystal (VBC). In this phase, nearest-
neighbor spins are dimerized, and the dimers form a regular
pattern. Since t > 1, dimerization should preferably occur
along the two diagonal directions (i.e., those with strength
t2). We assume the simplest case, in which (spontaneously or
due to the finite size) one of these two direction is chosen
by all dimers. In our case, the rhombic shape in Fig. 2(b)
enhances dimerization along the links pointing to the upper
neighbor on the right. Denoting each spin with a single index
i, possible dimers might be formed between spin i and spin
i + R, where R is the number of spins in a row, see also Fig. 3
for an illustration of this notation. Correlations between these
dimers are measured by the following structure factor:

SD(Q) = 1

N

∑
i �=j

eiQ·(ri−rj )[〈(Si · Si+R)(Sj · Sj+R)〉

− 〈Si · Si+R〉〈Sj · Sj+R〉]. (38)
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FIG. 14. Dimer order parameter D as a function of lattice
anisotropy t , for different number of spins N in the rhombic
arrangement depicted in Fig. 2(b). We consider both open boundaries
(a), and periodic boundaries (b). Most curves are relatively flat at a
constantly small value of D, suggesting that there is no VBC-ordered
regime. The peak around t ≈ 1.5 for N = 16 in an open geometry
seems to be a finite-size effect, as this effect is not present for other
values of N . It may be due to the limited number of perfect dimer
coverings possible in small lattices.

Again we define an order parameter D by considering the peak
value of SD:

D = SD(Qpeak)/N. (39)

Both the vector Qpeak as well as the behavior of D as a function
of t depend sensibly on the size of the system, and on the
geometry, see Fig. 14 showing results for a rhombic system
with open or periodic boundary conditions (i.e., hard walls
or period). We conclude that the small finite values of D

are random finite-size effects, and the flatness of most curves
suggest that at no value of t VBC order is established. A single
exception occurs for N = 16 with open boundary. However,
as other sizes (in particular N = 24 with even number of rows)
does not show any sign of a similar peak, we shall not interpret
this as a sign for VBC order. Note that, due to the boundary
conditions, there is only a single way of perfectly covering the
whole lattice with nearest-neighbor dimers (for even number
of rows). Alternative coverings leave few spins without dimer,
with an energy cost which plays the biggest role in small
systems. This might cause enhanced VBC order in very small
systems, while does not give rise to any effects in systems with
larger bulk.

The order parameters M and D discussed so far directly
measure certain types of order, or, by excluding the corre-
sponding order, they can give hints for spin liquid behavior.
However, they cannot positively detect a spin liquid and
its topological order. It is subject to current research which
quantities may serve as topological order parameters, and the
entanglement spectrum has been shown to be a promising
candidate. In fact, Ref. [71] demonstrates that for the Haldane
phase of a S = 1 chain, the entanglement spectrum is doubly
degenerate due to a hidden symmetry. The presence of
magnetic order can be detected by the entanglement spectrum
through tower-of-states structures, which have been shown

FIG. 15. Entanglement spectrum (eight lowest values) for dif-
ferent spin polarizations (b)–(d), obtained in a N = 24 hexagonally
shaped lattice with the cut shown in (a). DEG denotes the number of
(quasi-)degenerate levels in the ground state.

to be in correspondence with the low energy spectrum in a
DMRG study of the J1-J2 Heisenberg model on the triangular
and the kagome lattice [72]. Here, we restrict our discus-
sion in the following to degeneracies of the entanglement
spectrum, which does not require the determination of the
quantum numbers of each entanglement eigenvector. Although
degeneracies of the entanglement spectrum are not a robust
criterion for topological order, it will be interesting to see
whether degeneracies occur in those regimes which we have
identified above as possible spin liquid phases.

The entanglement spectrum is obtained from the eigen-
values of the reduced density matrix ρL ≡ TrR|�〉〈�|. Here,
TrR denotes a trace over half spins, localized on the right
side of the lattice. The entanglement spectrum is then defined
as λi = − ln ρi , where ρi denote the eigenvalues of ρL. In
Figs. 15 and 16, we plot the eight lowest values of the
entanglement spectrum as a function of the anisotropy t in
a homogeneous system of 24 spins. In Fig. 15, we consider
a hexagonal spin arrangement and study the dependence of
the entanglement spectrum on the spin polarization Sz. In
Fig. 16, we focus on a rhombic system and consider different
ways of cutting it into two subsystems. While in general the
entanglement eigenvalues are not universal, certain properties
of the entanglement spectrum, like degeneracies of levels, may
reflect certain symmetries, and should thus be independent
from the cut.

Comparing the entanglement spectra at different spin
polarizations, the most interesting behavior is exhibited at
Sz = 0. Here, the number of degeneracies strongly depends
on the parameter t . In contrast, for odd polarization sectors
(as illustrated in Fig. 15 for Sz = 1), each level is doubly
degenerate for any t . For Sz = 2, the ground-state level
remains unique for all t , and only higher levels exhibit some
t-dependent degeneracies. For Sz = 0, in Fig. 15, the most
notable feature is a degenerate regime for t � 0.5 with an
exact double degeneracy of each level. Doubly degenerate
levels give further rise to quasidegenerate manifolds: the
ground-state level is has a fourfold quasidegeneracy, followed
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FIG. 16. On a rhombic shaped lattice (N = 24 sites), we evaluate
the entanglement spectrum for different cuts shown in (a). The eight
lowest values of each entanglement spectrum are shown in (b)–(d).
The spin polarization is fixed to Sz = 0. DEG denotes the number of
(quasi)degenerate levels in the ground state. The grey area around t ≈
1.4, mark the regime where each level exhibits a twofold degeneracy.

by quasiflat manifolds containing 24, 76, and 176 levels.
Note that the regime in which the entanglement spectrum
exhibits degeneracies coincides with the regime in which a
spin liquid phase was suspected by Ref. [57]. In contrast, for
0.5 < t < 1.48, the entanglement spectrum exhibits a unique
ground state level, with double degeneracies present in the
excited levels. Strikingly, at t = 1.48, a level crossing leads to
double degeneracy not only of the ground state, but crossings
also occur between other levels at the same (or a similar) value
of t . This leads to the scenario that, around t ≈ 1.48, levels are
pairwise quasidegenerate (or degenerate). Interestingly, this
region coincides with the regime where, based on our previous
analysis of order parameters M and D, we expect to have a
spin liquid.

In Fig. 16, we focus on the fully unpolarized system
(Sz = 0), and investigate the dependence of the entanglement
spectrum for different cuts through a rhombic system, as
illustrated in Fig. 16(a). The most natural cuts are the ones
parallel to one side of the rhombus. Clearly, in one of these
two cases, the entanglement between the subsystems fully
vanishes in the highly anisotropic regime t → 0, because
different rows do not interact. With our choice of having an
even number of spins per row, also the other cut produces low
entanglement, since in each row the two spins on the left and
right sides produce dimers, with little entanglement between
the second and the third spin. Accordingly, these two cuts do
not reproduce the exact twofold degeneracy which we had
found in the hexagonally shaped lattice at small t . However,
the unsymmetric cut shown in Fig. 16 again leads to a fourfold
quasidegeneracy of the ground state up to values of t as large
as 0.8.

A clearer picture arises around t ≈ 1.4. Independent of
the cut, we find a sizable interval 1.38 � t � 1.55, in which
all levels are exactly twofold degenrate. This finding gives
a much stronger support for a spin liquid phase than the
quasidegeneracies due to level crossings, which we had found

FIG. 17. (a) Position Qx of peak of structure factor S(Q) as a
function of anisotropy t at Sz = 0 in a homogeneous system and for
η = 0.1. (b) Order parameter M as defined in Eq. (36).

for t ≈ 1.48 in the hexagonal system. We also stress that the
lowest entanglement eigenvalue barely depends on neither the
cut nor the system geometry, suggesting that the system forms
a uniform liquid in this region of t .

B. Inhomogeneous system (Vi �= 0)

In the previous paragraph, we have shown that the system, to
some extent, behaves similarly in different polarization sectors
upon tuning the anisotropy t . This allows one to argue that
the same behavior should persist in a shallow trap, where
the system is approximated by homogeneous subsystems of
different polarizations. In the present paragraph, we go a step
further, and analyze the effect of a trap on short scales by
diagonalizing Hamiltonian (3) for Vi = m

2 ω2r2
i = ηr2

i , with
η = 0.1 (in units t1/a

2) for typical trapping frequencies of
40 Hz. We will focus on the Sz = 0 sector, corresponding to
half-filling.

On the small lattice studied here, the inhomogeneities in-
troduced by the trap, are rather weak: for the isotropic system,
t = 1, we find an average population of 0.46 atoms on the 14
sites at the edge of the lattice, while the remaining 10 sites have
an average population of 0.56 atoms. Accordingly, also the
structure factor is barely modified: as shown in Figure 17(a),
the peak position Qx is practically indistinguishable for the two
cases η = 0 and η = 0.1. Also the magnetic order parameter
M , shown in Fig. 17(b), exhibits a similar shape, though
slightly smoothened near t = 1.5. Also the entanglement
spectrum, plotted in Fig. 18, shares important qualitative
features with the one of the homogeneous system shown in
Fig. 15(a): for small values of t the ground-state level has a
perfect twofold degeneracy, and a fourfold quasidegeneracy.
Again, the lifting of the degeneracy occurs abruptly near
t ≈ 0.5, although the precise value of the anisotropy is slightly
increased by the trap. However, the level crossing observed in
the homogeneous case around t ≈ 1.5 does not take place
in the trapped scenario. Whether this result questions the
presence of a spin liquid phase in the trapped system, or
whether degeneracies in the entanglement spectrum provide
a relevant criterion for spin liquid behavior, cannot be decided
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FIG. 18. Entanglement spectrum (eight lowest values) at Sz = 0
in a trapped system at η = 0.1. D denotes the number of degenerate
levels in the ground state.

here. Here, we find it interesting to notice that, while the
behavior of the magnetic order parameter is hardly affected
by the trap, the entanglement spectrum changes considerably.

To shed more light onto the role of the trap, we finally
turn our attention to the excitation spectra. For selected t ,
we compare the spectra of the trapped and the homogeneous
system in different polarization sectors in Figs. 19(a)–19(d).
For the spectra of the homogeneous system, a tower-of-state
feature [73,74] has been noticed in Ref. [57]. In all polarization
sectors, around t = 1 and t = 2, a small number of states at
low energy is separated from states at higher energy by a large
gap. This low-energy manifold is the basis from which Néel or
spiral order can arise. In the thermodynamic limit, low-energy
states at different Sz approach the same energy, and U(1)
symmetry can spontaneously be broken. In contrast to this,
relatively homogeneous level spacings are observed around
t ≈ 0.6 and t ≈ 1.4 in all polarization sectors. Accordingly,
a tower-of-state argument cannot be applied to those spectra,
giving some evidence that no ordered phase will occur in these
regions.

To quantify this different behavior, we shall look at the
gap in each polarization sector. However, quasidegeneracies
make it difficult or impossible to distinguish between levels
which still should be considered ground states and excited
states. For this reason, we will simply consider the largest
level spacing smax(Sz) within the ten lowest states. The “tower
of states” argument is applicable, if smax is large in many
or most polarization sectors. This would result in a large
average value 〈smax〉, where the average is taken with respect
to different spin polarizations. We further normalize this value
by dividing by full spacing between the ten levels, such
that smax is maximal (=1) if the ten states are divided into
two degenrate manifolds, while it is minimal (=0.1) if the
levels are spaced homogeneously and the spectrum lacks a
clear separation between low- and high-energy manifolds.
Accordingly, a breakdown of the tower-of-state argument
is indicated by minima of smax. This average is shown in
Fig. 19(e), for both a trapped and a homogeneous system. In
both cases, it exhibits one pronounced minimum near t ≈ 0.6.
A second, less pronounced minimum is found around t ≈ 1.65,
which becomes further washed out in the presence of a trap.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have studied the fate of QSL phases in
realistic experimental conditions, namely, in presence of an
harmonic confinement. The modified spin wave theory, which
was previously formulated for bosons in a triangular lattice
at half-filling, has been re-derived for arbitrary filling factors.
With this generalization, it can be used to capture, within a
local density approximation, the physics of inhomogeneous
systems. We have shown that the prediction of spin liquid
behavior for an anisotropy t ≈ 1.65 does not depend much
on the filling factor, and should therefore survive in a trapped
gas. This expectation has been backed by results from exact
diagonalization in lattices of different sizes and geometries, up
to 24 sites. Our exact diagonalization analysis has also ruled
out the presence of an ordered nonmagnetic phases like VBC
that could explain the breaking of magnetic order in alternative

FIG. 19. (a)–(d) Energy vs spin polarization at different t’s for Sz = 0 in a trapped system for η = 0.1 and η = 0. (e) Largest level spacing
smax amongst ten lowest levels averaged over all polarization sectors, for a trapped system at η = 0.1 and for η = 0.
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to a QSL phase. These results support the existence of another
QSL region at lower anisotropy, t ≈ 0.6, which is not detected
by MSW. Such discrepancy is not surprising. It is reasonable
to expect that the MSW is able to detect a QSL phase only
between two classical ordered phases—the QSL phase at t ≈
1.65 appears between spiral and 2D-Néel phases–while it is
blind to transitions that are purely quantum. One may wonder
that this happens only because the optimization is done starting
by the classical solution. In fact unbiased direct searches of
global minima provided the same or more energetic metastable
solutions. Apparently, the optimal solution of the MSW is
always a deformation of the classical one: perhaps, this is not so
surprising because the spin wave approach is an expansion in
n

2S
and the terms in ( n

2S
)2 included in the MSW are corrections

to the terms considered in the LSW. The exact diagonalization
approach have allowed us also to go beyond the local density
approximation, and to study inhomogeneities on small scales.
On this level, we have found no essential effect due to the
trap for realistic choices of the trapping frequency. While the
finite-size corrections are certainly expected to affect the exact
diagonalization results, they should not exceed the 10%–20%.
As the observables computed are global one would argue that
the QSL behavior extends at least to entire lattice (of 24 spins)
considered. The finite-size scale analysis we have performed
in the homogeneous case further supports this picture. While
final-size effects are not directly visible in the MSW because
we have used periodic boundary conditions, they enter by
determining the quality of local density approximation. Until
the trap is not steep, and at the center is never so, the MSW
suggests that, by taking optimal value of t ≈ 1.65 at the center
of the QSL region, the QSL phase should be visible even if
the filling is changing considerably. Suppose, for instance,
that the trap is tuned to have an occupation of around 3.7
atoms per site at the center, that to say 20% above the half-
filling condition. Then, we could conclude that if we reach an
occupation of 3.3 atoms per site –20% below half-filling—at
10 lattice sites or more from the center, at the same time,
we are within validity of local-density approximation in the
QSL phase as predicted by MSW theory, and we limit the
corrections due to the finite size as they are expected to go down

as the inverse of the diameter of the region considered. Our
study therefore provides strong hints for a robust QSL phase of
bosons in anisotropic triangular lattices with antiferromagnetic
tunnelings, which is not affected by weak trapping potentials
as used in experiments.

The robustness of the QSL phase in presence of a weak
harmonic confinement allow for the experimental investigation
of these exotic quantum phases. The realization of the XX
Hamiltonian for bosons in the strongly correlated regime relies
on the periodic driving of the triangular optical lattice, which
allows inverting the sign of the tunneling matrix elements
as well as controlling their amplitude. The ability to tune the
tunneling amplitude independently from the on-site interaction
allows reaching strongly correlated phases where U � |Jeff|
without increasing the lattice depth. Indeed, as the effective
tunneling Jeff follows a zeroth-order Bessel function as the
shaking amplitude is increased, the system shall first enter a
Mott-insulating phase before reaching the anti-ferromagnetic
side of the phase diagram and thus the quantum spin liquid
phase. Such a trajectory has allowed for a reversible crossing
of the superfluid to Mott-insulator phase transition in a
driven cubic lattice [54]. One limiting factor, however, are
multiphoton resonances to higher lying Bloch bands, which
critically reduce the coherence of the bosonic gas [75]. These
resonances occur when a multiple of the shaking frequency
matches the gap between the renormalized bands. Therefore
an optimized scheme for crossing the quantum phase transition
while avoiding such resonances has to be developed.
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