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Enigmatic 12/5 fractional quantum Hall effect

Kiryl Pakrouski,1 Matthias Troyer,1,2,3 Yang-Le Wu,4 Sankar Das Sarma,4 and Michael R. Peterson5

1Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland
2Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA

3Microsoft Research Station Q, Santa Barbara, California 93106, USA
4Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland,

College Park, Maryland 20742, USA
5Department of Physics & Astronomy, California State University Long Beach, Long Beach, California 90840, USA

(Received 23 April 2016; revised manuscript received 16 July 2016; published 4 August 2016)

We numerically study the fractional quantum Hall effect at filling factors ν = 12/5 and 13/5 (the particle-hole
conjugate of 12/5) in high-quality two-dimensional GaAs heterostructures via exact diagonalization including
finite well width and Landau-level mixing. We find that Landau-level mixing suppresses the ν = 13/5 fractional
quantum Hall effect relative to ν = 12/5. By contrast, we find both ν = 2/5 and (its particle-hole conjugate)
ν = 3/5 fractional quantum Hall effects in the lowest Landau level to be robust under Landau-level mixing and
finite well-width corrections. Our results provide a possible explanation for the experimental absence of the 13/5
fractional quantum Hall state as caused by Landau-level mixing effects.
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I. INTRODUCTION

There is interest across physics, mathematics, engineering,
materials research, and computer science in finding robust
experimental manifestations of topologically ordered phases
with non-Abelian anyonic low-energy excitations. Not only are
non-Abelian anyons (i.e., neither fermions nor bosons) suitable
for topological quantum computation, but they are described
by topological quantum field theories (TQFTs) of intrinsic fun-
damental interest [1]. The fractional quantum Hall effect [2–4]
(FQHE) is the canonical example of a system supporting
topologically ordered phases and is widely thought to support
non-Abelian anyons in the second orbital electronic Landau
level (LL), most probably at filling factor ν = 5/2 [5]. There
is a possibility that the experimentally observed FQHE at ν =
12/5 supports particularly exotic topologically ordered phases
described by the Z3 parafermionic Read-Rezayi states [6–13],
exemplifying an exotic SU(2)3 TQFT [in contrast to the 5/2
FQH state belonging to the SU(2)2 TQFT]. Since SU(2)3

TQFT supports a richer version of non-Abelian anyons that
can realize universal fault-tolerant quantum computation [1],
there is a great deal of interest in the 12/5 FQHE. In this work,
we focus on the enigmatic FQHE at ν = 12/5.

Compared to the rather ubiquitous ν = 5/2 FQHE, the
experimental literature for ν = 12/5 (= 2 + 2/5 filling) is
sparse, with only a few experimental reports of its observation.
The 12/5 FQHE was observed in a 30-nm-wide GaAs
quantum well with electron densities of n ∼ 3 × 1011 cm−2 at
magnetic field strengths of B ∼ 5 Tesla at temperatures T ∼
6–36 mK [14–19]. In addition to its fragility (the 12/5 FQHE
is observed only in the highest-quality samples with little
disorder), the real enigma is the corresponding particle-hole
conjugate FQHE at 13/5 (= 5 − 12/5), which has never been
observed in spite of other FQHEs in the second LL (e.g., 7/3
and 8/3, 11/5 and 14/5) showing both particle-hole conjugate
states with roughly equal strength. This discrepancy is puzzling
because in the lowest LL the FQHEs at ν = 2/5 and 3/5 are
both routinely observed, are to good approximation particle-
hole conjugates of one another [20–22], and are well described

by the composite fermion (CF) theory [4,23]. The exotic,
rather than CF-like, nature of the 12/5 state has been discussed
based on the analysis of the experimentally measured energy
gap [15]. Interestingly, the 12/5 and 13/5 FQHEs (with
roughly equal strength) are observed in systems where two
subbands are occupied (e.g., bilayers, thick quantum wells)
such that the chemical potential is in the lowest LL (but in the
higher subband, so two LLs are completely full) [24–26]. In
this work, we provide a possible explanation for the absence
(presence) of a 13/5 (12/5) FQHE in the second LL as
arising from the LL mixing effect that explicitly breaks the
particle-hole symmetry.

Several candidate wave functions for ν = 12/5 have been
proposed and studied [8–10] under idealized conditions,
using the Coulomb interaction without particle-hole symmetry
breaking. Two recent numerical studies [9,10] reinforced
initial results [6,7] that the ground state at ν = 12/5 is in
the non-Abelian Z3 Read-Rezayi (RR) phase. Both studies
perturbed the interaction finding a finite region of stability
around the Coulomb point. All works considered particle-hole
symmetric two-body Hamiltonians, so all conclusions made
therein regarding the ν = 12/5 state are equally valid for
the particle-hole conjugate state at ν = 13/5. Thus, existing
theories provide evidence that the experimentally observed
12/5 and (unobserved) 13/5 FQHEs are both in the RR
Z3 phase, but cannot explain why one (i.e., 12/5) exists
experimentally and the other (i.e., 13/5) does not. We provide
a plausible explanation for this puzzle.

LL mixing breaks particle-hole symmetry through emer-
gent three-body (and higher) terms in an effective realistic
Hamiltonian [27–30]. The importance of LL mixing can
be parameterized by the ratio κ of the Coulomb energy
e2/εl0 to the bare cyclotron energy �ω (i.e., the LL gap):
κ = (e2/εl0)/�ω, where ε is the background lattice dielectric
constant, l0 = √

�c/eB is the magnetic length, e is the electron
charge, and ω = eB/mc is the cyclotron frequency. For GaAs,
κ ≈ 2.5/

√
B[T]. For most experiments in the second LL, κ is

of the order of unity, making LL mixing an important correc-
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tion. One attempt at incorporating LL mixing at ν = 12/5 used
the approximation of including additional basis states within
exact diagonalization [31], but did not investigate 13/5.

In the present work, we numerically study a realistic model
of the FQHE in the second LL using exact diagonalization,
systematically including LL mixing effects due to (the infinite
number of) all other LLs. We find that the LL mixing-induced
particle-hole symmetry breaking strongly favors the ν = 12/5
FQHE over the 13/5 in the second LL, qualitatively in
agreement with experimental observations. By contrast, in the
lowest LL, we do not find significant particle-hole symmetry
breaking between ν = 2/5 and 3/5 FQHE. Our work gives a
probable explanation for the presence (absence) of 12/5 (13/5)
in the second LL and the existence and equal strength of 2/5
and 3/5 FQHEs in the lowest LL. Our work also strengthens
the claim that at finite LL mixing, a 12/5 FQHE arises from a
RR parafermionic non-Abelian state (rather than from Abelian
composite fermion states as for the 2/5 and 3/5 FQHEs).

II. EFFECTIVE HAMILTONIAN

Our realistic effective Hamiltonian describes Ne interacting
electrons confined to the N th LL of a quasi-two-dimensional
quantum well (modeled as an infinitely deep square well
of width w) and incorporates LL and subband mixing. The
Coulomb interaction causes virtual electron/hole excitations
to higher/lower LLs and subbands included perturbatively to
lowest order in κ (note this involves coupling all LLs [28]).
The effective Hamiltonian is

H (w/�0,κ,N ) =
∑
m

V
(N)

2body,m(w/�0,κ)
∑
i<j

P̂ij (m)

+
∑
m

V
(N)

3body,m(w/�0,κ)
∑

i<j<k

P̂ijk(m), (1)

where P̂ij (m) and P̂ijk(m) are two- and three-body projection
operators onto pairs or triplets of electrons with relative angular
momentum m. V

(N)
2body,m(w/�0,κ) and V

(N)
3body,m(w/�0,κ) are the

two- and three-body effective pseudopotentials [32,33] in the
N th LL. The full calculation of the two- and three-body
pseudopotentials is quite involved and is given in detail in
Ref. [28] for systems with finite thickness, in Ref. [29] for
zero thickness, and in Ref. [30] where the calculation is done
numerically. Here we provide a brief outline of the main details
and encourage the reader to consult the above references.

In the absence of Landau-level (LL) mixing, the planar
pseudopotentials V

(N)
2body,m can be calculated as (see, for

instance, Ref. [4])

V
(N)

2body,m =
∫ ∞

0
qdqV (q)[LN (q2/2)]2Lm(q2)e−q2

, (2)

where N is the LL index, LN are the Laguerre polynomials,
and

V (q) = 1

2π

∫
d2reiq·rV (r) (3)

is the Fourier transform of the real-space interaction potential
V (r). For the case of finite width, V (q) can be written as

V (q) = e2

εq

∫
dz1

∫
dz2|η(z1)|2|η(z2)|2e−q|z1−z2|, (4)

where η(z) is the electron wave function in the z direction.
For a realistic experimental system, η(z) can be determined
from solving the Schrodinger and Poisson equations self-
consistently (see Ref. [4] for more details). In this work, we
consider an infinitely deep square well of width w to model
finite thickness, hence, η(z) = √

2/w sin(πz/w).
Pseudopotentials describing the pure Coulomb interaction

can be derived in both the spherical and planar geometries.
Because the planar pseudopotentials do not depend on the
system size, it is more convenient to compute the pseudopo-
tentials that include effects of finite thickness and Landau-level
mixing in the planar geometry. The spherical pseudopotentials
extrapolate to the planar pseudopotentials in the limit of a
sphere of infinite radius, i.e., the thermodynamic limit. Further,
it has been demonstrated that using planar pseudopotentials in
the spherical geometry does not lead to qualitative differences
compared with using spherical pseudopotentials (see, for
example, Ref. [34]).

Beyond renormalizing the two-body interactions, LL mix-
ing produces particle-hole symmetry breaking three-body
terms (cf. Ref. [28]). Equation (1) has a well-defined exact limit
as κ → 0, hence we can determine the leading-order effects of
LL mixing on the FQHE. Most experimental observations of
the 12/5 FQHE occur at fields of B ∼ 5.15 T (see Ref. [15]),
giving a quantum well width (30 nm) of w/l0 ≈ 2.65 and
κ ≈ 1.1. We estimate (an exact self-consistent calculation
is possible for a particular device [34]) that an infinitely
deep quantum well of w/l0 ≈ 3 provides approximately
the same confinement as the real quantum well, and we
consider w/l0 � 4 and κ �= 0 to model realistic samples
under realistic conditions. We assume fully spin-polarized [10]
single-component states throughout this work. We consider
V

(1)
3body,m for 3 � m � 8—previous work demonstrated that

m > 9 terms are unlikely to produce qualitative effects [34],
especially for small κ .

We use the spherical geometry [4,32] with the total
magnetic flux Nφ = Ne/f − S, and where f is the filling
factor, as Ne → ∞, of the N th LL and S is the shift [35]. The
experimental filling factor is ν = f + 2N , where 2N arises
from completely filling the lower N spin-up and -down LLs.
FQHE states are gapped uniform density ground states with
total angular momentum L = 0. The RR Z3 state describes
f = 3/5 with S = 3, while the particle-hole conjugate RR
state, conj(Z3), describes f = 2/5 with S = −2. The CF states
for ν = 2/5 and 3/5 have shifts of S = 4 and −1, respectively.
Although the pairs of particle-hole conjugate states appear at
different shifts, in the absence of LL mixing (κ = 0) they
have identical spectra and all eigenstates are particle-hole
conjugates of each other. Hence, by considering properties
such as energy gaps, overlaps, and entanglement spectra, we
can isolate the effects of LL mixing.

III. OVERLAP, PERTURBATION THEORY, AND
ENTANGLEMENT SPECTRA

We first investigate whether the system remains in the Z3

RR phase under realistic conditions. The ground state of Eq. (1)
is uniform with L = 0 for the RR shifts for all system sizes
up to Nφ = 37 for κ �= 0 and Nφ = 42 for κ = 0 (we have not
studied κ �= 0 for Nφ = 42). The ground states have L �= 0 for
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the CF shifts for zero and nonzero κ , for most system sizes.
The Bonderson-Slingerland (BS) non-Abelian state for ν =
12/5 [37] has L = 0 at κ = 0, but a smaller gap than the RR
state [8]—this behavior remains with κ �= 0; see Appendix A.
Similar qualitative results were recently found in the κ = 0
limit [9,10].

Figure 1(a) presents the overlap between the exact ground
state |ψ〉 of Eq. (1) with the model wave functions [Z3

and conj(Z3)]. For small κ , the overlap remains relatively
unchanged, but the 12/5 overlap with conj(Z3) is larger
than the overlap with Z3 at 13/5 for κ � 0.5 for all system
sizes—the overlap at 13/5 decreases monotonically with κ

and both overlaps are found to collapse to zero near κ ≈ 1,
though some finite-size effects are observed for larger κ .

Since the overlaps are relatively flat for small κ , we study
the eigenstates obtained in the absence of LL mixing, at κ = 0
(denoted |ψ0〉). We calculate 〈ψ0|H (3)(κ = 0.1)|ψ0〉, where
H (3)(κ) = ∑

m V
(N)

3body,m(w/�0,κ)
∑

i<j<k P̂ijk(m) [shown in
Fig. 1(b)]—this represents the lowest-order perturbative
contribution to particle-hole symmetry breaking induced
by LL mixing. The thermodynamic limit extrapolation of
< ψ0|H (3)(κ = 0.1)|ψ0 > per particle for ν = 12/5 is more
than ten times smaller than for 13/5, indicating that LL mixing
more severely affects the energetics of 13/5 compared to 12/5.
While the ground-state energies are lowered by the three-body
terms, the excited states are lowered as well, reducing the
energy gap at 13/5 and increasing the gap at 12/5. In the

FIG. 1. (a) Wave-function overlap between Z3 and conj(Z3) and
the exact ground state of Eq. (1) at ν = 13/5 and 12/5, respectively,
as a function of κ for Nφ = 37 (14 holes/electrons). A finite well
width increases the overlaps and κ breaks particle-hole symmetry,
yielding higher overlaps with conj(Z3) for 12/5 compared to Z3 for
13/5. The inset shows the overlaps in more detail. (b) Expectation
values of the three-body terms per particle Np of Eq. (1) for
κ = 0.1 and w/l0 = 0, evaluated for the ideal Coulomb ground
and first-excited states (both denoted |ψ0〉) at 12/5 and 13/5,
respectively, as a function of inverse LL degeneracy [1/(Nφ + 1)]
extrapolated to the thermodynamic limit. Nφ = 27 is aliased with
ν = 1/3 and left out. Inset: Expectation values for each three-body
term [H (3)

L = V
(N)

3body,L(w/�0,κ = 0.1)
∑

i<j<k P̂ijk(L)] for Nφ = 37.
Lines are a guide to the eye, except in the main plot of (b) where they
represent linear extrapolations.
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FIG. 2. Entanglement spectrum for the exact ground state of
Eq. (1) for w/l0 = 3 and κ = 0.1 at (a) ν = 13/5 (shift S = 3)
and (b) ν = 12/5 (shift S = −2) for Nφ = 37. The counting for
the low-lying levels is 1, 1, 3, and 6 up to �Lz

A = 5, agreeing with
Z3 and conj(Z3). The orbital cuts, using the notation of Ref. [36],
are P [0|0] for S = 3 and P [1|1] for S = −2. �Lz

A = Lz
A − (Lz

A)root,
where (a) (Lz

A)root = 120 and (b) (Lz
A)root = 60.5. The topological gap

is indicated by the green arrow and defined as the difference between
the two lowest-lying levels at �Lz

A = 1 (see Sec. IV).

inset of Fig. 1(b), we show that V
(1)

3body,3, V
(1)

3body,5, and V
(1)

3body,6
are the three-body pseudopotentials that contribute most to
particle-hole symmetry breaking between ν = 12/5 and 13/5.
The Z3 state has a relative abundance of three-body clustering
by construction [6] and large expectation value of H (3)(κ) (not
shown), similar to |ψ0〉 at ν = 13/5. In contrast, the three-body
terms have little effect on 12/5.

Overlaps may depend on short-range physics, so we
investigate orbital entanglement spectra [36,38–42]. If the
ground state is in the RR phase, the counting of the low-lying
levels of the entanglement spectra will be related to the SU(2)3

TQFT describing the edge excitations [36]. The counting of
the low-lying levels for ν = 13/5 and 12/5 for w/l0 = 3 and
κ = 0.1 (Fig. 2) matches the counting for Z3 and conj(Z3),
respectively (including κ = 0; see Ref. [9]).

The results above confirm that the ground state of Eq. (1)
remains in the RR phase under LL mixing. Further, LL
mixing affects ν = 13/5 more than 12/5 and introduces strong
particle-hole asymmetry.

IV. ENERGY GAP AND TOPOLOGICAL GAP

The neutral gap is related to the experimentally measured
activation gap and the physical robustness of the FQHE. It is
the difference between the two lowest energies at constant Nφ ,
if the ground state has L = 0, otherwise it is taken to be zero.

Figures 3(a)–3(e) show energy gaps for our largest system
(Nφ = 37) for w/l0 = 0–4, respectively. LL mixing breaks
particle-hole symmetry, producing a larger energy gap for
ν = 12/5 compared to 13/5. The gap at w/l0 �= 0 for 12/5
increases with κ , while the 13/5 gap is suppressed (the
suppression is found for all nonaliased system sizes and values
of w/l0; however, an increasing gap at ν = 12/5 for nonzero
width is only found for the two largest system sizes Nφ = 37
and 32). Hence, LL mixing strengthens the 12/5 FQHE for
finite w/l0, while weakening 13/5 (strengthening of the FQHE
gap with LL mixing does not happen for ν = 5/2 [34]).
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FIG. 3. Energy gap for Nφ = 37 at ν = 12/5 and 13/5 for (a)–(e)
w/l0 = 0–4. Similar results are obtained for smaller system sizes.
(f) Width dependence of the gap for Ne = 8, 12, 14, and 16 for ν =
12/5 for w/l0 = 0, 2, and 3 and κ = 0. Inset: The gap as a function
of w/l0 at κ = 0 for Ne = 16 (Nφ = 42). Finite width reduces the
gap by approximately 25% at w/l0 = 3 relative to w/l0 = 0 for the
largest system size. Note the similarities in (f) to Fig. 1(b) in Ref. [9].

The thermodynamic extrapolation suffers from finite-size
effects (Nφ = 12 and 17) and aliasing (Nφ = 27). The energy
gaps at the remaining Nφ are shown in Fig. 3(f). Without LL
mixing, finite width decreases the gap from 0.012e2/εl0 at
w/l0 = 0 to 0.009e2/εl0 at w/l0 = 3 [values given are for
Nφ = 42, shown in the inset of Fig. 3(f)]. In the limit of small
LL mixing (i.e., high magnetic fields), it should be possible to
observe more robust 12/5 states in narrow quantum wells.

We expect that the equivalence of various models of finite
width demonstrated for ν = 5/2 [34] also holds here. Thus, to
determine the effective width w/l0 corresponding to a certain
experimental device, one would first calculate (for instance,
using a Schrodinger-Poisson solver) or measure [43] the square
of the absolute value of the electron wave function in the
direction perpendicular to the two-dimensional electron gas
(2DEG) and determine its variance (as defined in Ref. [34]).
Then, w/l0 should be chosen such that the variance in the
ground state of an infinitely deep quantum well of width w/l0
is the same as in the given experimental sample.

Figure 4 shows the energy gap as a function of κ for Nφ =
32 and 37 [12 and 14 electrons (holes) for ν = 12/5 (13/5),
respectively] to the experimental value of κ ∼ 1.1 for w/l0 =
3. All of the sharp features in the κ dependence are associated
with the change of L in the first-excited states. The behavior

FIG. 4. Energy gap for ν = 12/5 and 13/5 as a function of κ for
w/l0 = 3 for Nφ = 32 and 37. Energy gap for 12 holes at 13/5 is
put to 0 for κ � 0.72, where the ground state has gone through a
phase transition into a nonhomogeneous state with L = 2. We note
for κ � 0.6 the gap behavior is no longer consistent between system
sizes.

of the different system sizes is consistent up to κ = 0.6–0.7
and demonstrates a larger energy gap at 12/5 than at 13/5.
Finite-size effects are observed for larger κ , which could be
a result of our perturbative (in κ) approach to LL mixing
breaking down or the smallness of the energy gap.

Finally, we investigate the topological gap. Following
Ref. [36], we define the topological gap as the difference
between the two lowest-lying levels in the entanglement
spectrum at �Lz

A = 1 (see Fig. 2). It represents the “energy
difference” between the universal part of the entanglement
spectrum, describing the [non-Abelian in the case of RR and
conj(RR)] modes and the generic continuum of states. In Fig. 5,
we identify two trends: first, the topological gap increases with
increased finite width, and second, Landau-level mixing leads
to the suppression of the topological gap at 13/5 relative to
12/5 in the same way as observed for the energy gap, giving
support to the main conclusion of this work based on a different
measure.
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FIG. 5. Topological gap for 12/5 and 13/5 as a function of κ for
w/l0 = 0–4 and Nφ = 37.
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FIG. 6. (a) Relative gap difference δ�ν = (�ν − �1−ν)/�ν (in-
duced by κ = 0.1) between particle-hole conjugates at 12/5 (13/5)
and 2/5 (3/5). Np is the number of particles for ν = 12/5 and 2/5 or
number of holes for ν = 13/5 and 3/5. (b) Particle-hole symmetry
breaking [quantified by 〈ψ |conj(ψ)〉] in the second LL compared to
the lowest LL for w/l0 = 0 and 3. The system sizes are Nφ = 32 for
ν = 12/5 (13/5) and Nφ = 31 for ν = 2/5 (3/5).

V. SECOND VERSUS LOWEST LANDAU LEVEL

Finally, we compare the second with the lowest LL. In
Fig. 6(a), we show the relative energy gap difference induced
by LL mixing between ν = 12/5 and 13/5 and between ν =
2/5 and 3/5 as a function of particle number. The LL mixing
induced difference is much larger in the second LL than in
the lowest LL (the sign is also different between the two,
with 12/5 strongly favored in the second LL while 3/5 is
slightly favored in the lowest LL). The LL mixing induced
gap difference between 12/5 and 13/5 grows with system size
and is likely a robust feature in the thermodynamic limit.

We can further quantify the particle-hole symmetry break-
ing by calculating the overlap between the exact ground state
|ψ〉 at ν = 12/5 (2/5) and the particle-hole conjugate of the
exact ground state |conj(ψ)〉 at ν = 13/5 (3/5). At κ = 0,
this overlap is unity since the two states are particle-hole
conjugates. In Fig. 6(b), particle-hole symmetry is much
more strongly broken for the ν = 12/5 (13/5) FQHE than
for the ν = 2/5 (3/5) FQHE. In fact, particle-hole symmetry
is hardly broken at all in the lowest LL [in the lowest LL,
〈ψ |conj(ψ)〉 � 0.9 up to κ ∼ 2.4]. This apparent particle-hole
symmetry could be a property of the lowest LL or of the CF-like
states in any LL.

VI. CONCLUSION

LL mixing strongly breaks the particle-hole symmetry
between ν = 12/5 and 13/5 FQHE in the second LL, but
has little effect on ν = 2/5 and 3/5 FQHE in the lowest
LL. Our work implies that the absence of 13/5 FQHE in the
second LL is likely a direct consequence of LL mixing effects.
This is mainly due to the suppression of the energy gap at
ν = 13/5—the FQHE might simply be too fragile (in terms
of energy gap) since LL mixing affects 13/5 more severely
than 12/5, and because in experimental measurements, at
constant density, κ is larger at 13/5 compared to 12/5 (since
the magnetic field at 13/5 is smaller than at 12/5). The 12/5
ground state at shift S = −2 remains in the non-Abelian
parafermionic (conjugate) RR Z3 phase when finite-width

and nonzero LL mixing are taken into account extending
the validity of previous conclusions [6,7,9,10,31] obtained for
idealized conditions. We do not rule out the ν = 13/5 FQHE
in the Z3 RR phase, but establish that the 13/5 FQHE is always
much weaker than 12/5. Future experiments with smaller κ

could show a very weak FQHE at ν = 13/5 in extremely
high-mobility samples at ultralow temperatures with a very
small activation energy.
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APPENDIX A: ENERGETICS AT THE
BONDERSON-SLINGERLAND SHIFT

In this appendix, we explore the perturbative change in
the FQHE gap Landau-level mixing induced at the shifts
corresponding to the Bonderson-Slingerland (BS) state and
its corresponding particle-hole conjugate. Shown in Fig. 7 are
the expectation values of the three-body terms of our effective
Hamiltonian [Eq. (1)] for the ground and first-excited states
[the results are presented in the same way as in Fig. 1(b)].
Both the ground and excited states reduce their energy by
approximately the same amount at 12/5. For 13/5, the energy
of the excited state is reduced significantly more than that
of the ground state meaning that the gap of 13/5 is reduced,
whereas the gap of 12/5 remains relatively constant.

APPENDIX B: ROBUSTNESS OF THE COMPOSITE
FERMION STATES FOR THE 2/5 AND 3/5 FQHE UNDER

LANDAU-LEVEL MIXING

To further characterize the evolution of the states in the
lowest Landau level, we approximate the CF-like states at
2/5 and 3/5 with the exact ground state of a “hard-core”
model Hamiltonian with V1 �= 0 and all other Vm = 0 at
Nφ = 5Ne/2 − 4 and Nφ = 5Ne/3 + 1, respectively. This
Hamiltonian produces the 1/m Laughlin state exactly as the
zero-energy ground state for Nφ = m(Ne − 1) and produces
ground states with large overlaps (> 0.99) with CF wave
functions for filling factor ν = n/(2pn + 1) at the appropriate
flux as checked via Monte Carlo. As shown in Fig. 8,
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FIG. 7. Expectation values of the three-body terms per particle
Np of Eq. (1) for κ = 0.1 and w/l0 = 0,1,2,3, and 4 evaluated
for the ideal Coulomb ground and first-excited states at 12/5 and
13/5, respectively, as a function of inverse Landau-level degeneracy
[1/(Nφ + 1)] extrapolated to the thermodynamic limit. The only
difference from Fig. 1(b) is that the ground state at the Bonderson-
Slingerland shift and its particle-hole conjugate (S = 2 and S = 1/3)
were taken instead of the ones for the Read-Rezayi and conjugate
shifts. Lines represent linear extrapolations, excluding the Nφ = 28
data point which appears to behave differently from all other system
sizes [these points are indicated in blue (12/5) and magenta (13/5),
respectively].
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FIG. 8. Overlap between the realistic ground state and the
ground state of the hard-core (V1 �= 0 and Vm = 0 for all other m)
Hamiltonian for Nφ = 31. w = 0 (left panel) and w = 3 (right panel).

the overlap remains stable under Landau-level mixing and only
starts to significantly decrease around κ = 3–4, well beyond
the typical experimental values.

It is an open question whether the observed robustness of
the FQH states at 2/5 and 3/5 is due to their CF-like nature
or to the specific form of the effective interaction in the lowest
Landau level.
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