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We consider the entanglement between two spatial subregions in the Lieb-Liniger model of bosons in one
spatial dimension interacting via a contact interaction. Using ground-state path integral quantum Monte Carlo
we numerically compute the Rényi entropy of the reduced density matrix of the subsystem as a measure of
entanglement. Our numerical algorithm is based on a replica method previously introduced by the authors,
which we extend to efficiently study the entanglement of spatial subsystems of itinerant bosons. We confirm a
logarithmic scaling of the Rényi entropy with subsystem size that is expected from conformal field theory, and
compute the nonuniversal subleading constant for interaction strengths ranging over two orders of magnitude. In
the strongly interacting limit, we find agreement with the known free fermion result.
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I. INTRODUCTION

The Lieb-Liniger model of δ function interacting bosons
in the one-dimensional (1D) spatial continuum [1,2] is one
of only a handful of quantum many-body systems with
pairwise interactions where the ground-state wave function
is known exactly. In addition to its theoretical importance
and connection to the Tonks-Girardeau gas [3,4] that exhibits
Bose-Fermi correspondence, the Lieb-Liniger model can be
experimentally probed in quasi-one-dimensional systems of
ultracold atoms [5–9] and used to model clusters of bosonic
solvent particles, doped with a molecular rotor [10,11]. These
experimental realizations of Lieb-Liniger systems have lead to
a renewed interest in their physical properties, with a flurry of
recent works developing a high-precision understanding of its
correlations (both in real and momentum space) and excitation
spectrum [12–17]. However, the degree to which those
correlations are nonclassical, as reflected in the entanglement
structure of the ground state, has not been fully characterized.

Entanglement is a fundamental property of all quantum
systems that is known to be a resource for quantum information
processing [18,19]. The structure and finite-size scaling of
entanglement can reveal features of quantum phases of matter
and phase transitions, [20–24] and has implications for the
simulation of quantum systems on classical computers [25,26].
While its naive measurement in an N -body system would
seem to require access to the exponentially large density
matrix corresponding to its quantum state, field theoretic [27],
algorithmic [28], and experimental [29,30] advances have led
to the ability to compute and measure it using the expectation
value of local operators.

This has led to a number of studies focusing on entan-
glement in lattice models with insulating degrees of freedom
[31–34]. In contrast, much less is known about the entan-
glement properties of quantum fluids [35]. Such continuum
systems pose significant theoretical challenges due to their
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formally infinite Hilbert spaces [36] and the indistinguisha-
bility and itinerance of their constituent particles [37]. For
noninteracting gases, studies of the bipartite spatial entangle-
ment [38,39] have confirmed the logarithmic finite-size scaling
predicted by conformal field theory. For interacting particles
in the continuum, progress has been made using Monte Carlo
methods, including variational studies of fermions [40,41], the
entanglement of bosons under a particle partition [42,43], and
the spatial entanglement of small systems of N = 4 bosons
[44]. Additionally, continuous matrix product states methods
have been used to study the entanglement of the infinite
half chain of the Lieb-Liniger model as a function of bond
dimension [45].

In this paper we introduce a quantum Monte Carlo
technique, which employs the ratio method [28,32] enabling
the unbiased calculation of spatial partition entanglement
in the ground state of the Lieb-Liniger model with large N .
This algorithm is generally applicable to systems of itinerant
nonrelativistic bosons in any spatial dimension D with the
canonical Hamiltonian:

H =
N∑

i=1

(
− �

2

2mi

∇2
i + Ui

)
+

∑
i<j

Vij , (1)

where Ui is an external and Vij an interaction potential. By
performing large-scale simulations of the Lieb-Liniger model
with N up to 32, we are able to confirm the leading-order
logarithmic finite-size scaling of the entanglement entropy,
recovering the expected value of c = 1 for the central charge
of the underlying conformal field theory. For weak interactions
and small spatial subregions, the entanglement entropy scaling
is approximately described by the known free boson result
[46] due to the short-ranged nature of the contact interaction.
We observe N -independent nonuniversal scaling corrections,
which decrease monotonically with increasing interactions,
yielding the expected free Fermion result in the strongly
interacting limit.

The rest of this paper is organized as follows. We begin
by introducing the Rényi entanglement entropy and discuss

2469-9950/2016/94(6)/064524(13) 064524-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.064524


HERDMAN, ROY, MELKO, AND DEL MAESTRO PHYSICAL REVIEW B 94, 064524 (2016)

FIG. 1. Spatial bipartition of a system of N itinerant indistin-
guishable particles in one dimension of length L with periodic
boundary conditions into two subregions A and B, where A has
length �. Particles can dynamically move between subregions.

what is currently known about its finite-size scaling in critical
1D systems. After describing the relevant details of the
Lieb-Liniger model under consideration where Ui = 0 and
Vij ∝ δ(xi − xj ) in Eq. (1) we introduce and benchmark a
quantum Monte Carlo method able to measure the entangle-
ment entropy. We present our scaling results and finally discuss
the potential of using this method to further probe so-called
unusual corrections to scaling [47,48].

II. ENTANGLEMENT ENTROPY IN CRITICAL
ONE-DIMENSIONAL SYSTEMS

We consider the bipartite entanglement between two spa-
tial subregions of the ground state |�0〉 of a critical one-
dimensional system as shown in Fig. 1. A spatial bipartition
defines two intervals A and B with the reduced density matrix
of the A subsystem, ρA, defined as

ρA ≡ TrB |�0〉〈�0|, (2)

where TrB indicates a partial trace over all degrees of freedom
in B. The entanglement between the subsystems may be
quantified by the Rényi entropy of ρA:

Sα[ρA] ≡ 1

1 − α
log

(
Trρα

A

)
, (3)

where α is the Rényi index. For α → 1 the Rényi entropy is
equivalent to the von Neumann entropy: −Tr ρA log ρA.

The entanglement entropy (EE) is bounded from above
by the logarithm of the dimension of the Hilbert space of the
subsystem. For itinerant particles in the spatial continuum, any
nontrivial partition always has an infinite-dimensional Hilbert
space, and therefore no upper bound on the entanglement
entropy would seem to exist. However, for a system with a
local Hamiltonian, finite-energy states are expected to have
finite entanglement between A and B [49,50].

Moreover, the area law of entanglement entropy states that
the bipartite entanglement of a gapped 1D system should
be a nonuniversal constant, independent of the subsystem
size [24,51–53]. In contrast, critical quantum systems in one
dimension described by conformal field theory (CFT) are know
to have an entanglement entropy the diverges logarithmically
with subsystem size � in the thermodynamic limit [21,27,54],

SCFT
α (�) � c

6

(
1 + 1

α

)
log � + · · · , (4)

where c is the central charge of the CFT and α is the
Rényi index. Therefore, whereas for gapped systems the
leading-order (constant) scaling of the entanglement entropy
is determined by the microscopic physics at the interface,
for critical systems the leading-order scaling is universal and
determined by the effective low-energy field theory.

For a critical 1D ground state in a finite-sized system of
length L with periodic boundary conditions, the interval � in
Eq. (4) is replaced by the chord length D(L,�):

D(L,�) ≡ L

π
sin

(
π

�

L

)
(5)

such that the scaling of Sα due to the CFT is [27,47]

SCFT
α (L,�) = c

6

(
1 + 1

α

)
log[D(L,�)] + cα + O(�−pα ), (6)

where cα is a nonuniversal constant and pα is the exponent
of the leading-order corrections. The power-law corrections to
this scaling can include nonuniversal terms due to irrelevant
operators in the bulk of the subsystem as well as universal
terms due to relevant operators [47,55,56]. Previous numerical
studies of these corrections to scaling have been undertaken
for 1D XXZ lattice spin models [38,55–57] as well as other
discrete symmetry systems including the Ising, Blume-Capel,
and the three-state Potts models [58], dipolar bosons on a
lattice [59], and Fermi liquids [60]. A common feature of these
studies is the observation of spatial 2kF-like oscillations in the
subleading corrections. Their origins, along with uncertainties
on the model, symmetry, and interaction dependence of the
Rényi-index-dependent power pα in Eq. (6), are not fully
understood. Thus, performing a careful scaling analysis of
the entanglement entropy in the Lieb-Liniger model where
ultraviolet effects (due to a lattice) are not present may provide
new insights into these issues. Moreover, apart from being
purely of theoretical interest, a detailed understanding of EE
scaling corrections may be essential to distinguish different
theories with the same central charge without having to resort
to studying disjoint intervals [61].

III. LIEB-LINIGER MODEL

The Lieb-Liniger model describes N spinless nonrela-
tivistic bosons interacting with a contact interaction in one-
dimensional continuous space [1,2] with Hamiltonian:

H = −λ

N∑
i=1

d2

dx2
i

+ g
∑
i<j

δ(xi − xj ), (7)

where λ ≡ �
2/2m and g is the interaction strength with

dimensions of energy × length. We consider only repulsive
interactions g � 0 and as g → +∞ the Tonks-Girardeau [3,4]
gas of impenetrable bosons is recovered. Here we consider a
finite system of length L with periodic boundary conditions,
and define the number density n ≡ N/L. There are two
relevant short distance length scales: the interparticle sepa-
ration �0 ≡ 1/n and the interaction length scale �int ≡ 2λ/g.
It is useful to parametrize finite interactions using a single
dimensionless parameter γ ≡ �0/�int, which, as mentioned in
the introduction can be experimentally tuned in ultracold Bose
gases confined in quasi-1D optical traps [7].
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The low-energy physics of the Lieb-Liniger model is de-
scribed by Tomonaga-Luttinger liquid (TLL) theory [62–65].
Tomonaga-Luttinger liquids are critical quantum phases whose
nonuniversal properties are characterized by a single energy
scale v and a single dimensionless Luttinger parameter
K , which determines the power-law decay of correlation
functions. Due to the conformal invariance of TLL theory,
the low-energy physics of the Lieb-Liniger model is described
by a CFT with universal central charge c = 1 [66,67].
Consequently, the correlation functions of the ground state
of the Lieb-Liniger model decay as nonuniversal power laws
whose exponents depend on γ since the effective Luttinger
parameter K(γ ) is a nontrivial function of γ . On the other hand,
since a TLL is described by a c = 1 CFT, the leading-order
scaling of the spatial entanglement entropy is expected to
be of the universal CFT form given in Eq. (6) with c = 1.
The nonuniversal constant cα and power-law corrections are
expected to depend γ . For the rest of this paper we will
consider only α = 2. Then, the CFT asymptotic scaling of
the second Rényi entanglement entropy for the ground state of
the Lieb-Liniger model at fixed interaction strength γ may be
written as

SLL
2 (N,�) = 1

4 log[2πnD(N,�)] + c2 + O(�−p2 ), (8)

where we now write the chord length as a function of N and �

at fixed density:

D(N,�) ≡ N

πn
sin

(
πn

�

N

)
. (9)

We have chosen this definition of the subleading constant c2 to
be consistent with existing literature where it was calculated for
the ground state of free fermions in the 1D spatial continuum,
and shown to be equal to the subleading constant of the XY

lattice spin model [38,39]. As it is known that the Lieb-Liniger
(LL) model maps onto free fermions in the strongly interacting
Tonks-Girardeau limit γ → ∞ we expect:

cLL
2 (γ = ∞) = cFF

2 � 0.404049. (10)

IV. QUANTUM MONTE CARLO

A. Path integral ground-state Monte Carlo

To compute the EE of the ground state of the Lieb-Liniger
model under a spatial bipartition, we use a path integral
ground-state quantum Monte Carlo (PIGS) method [68,69],
which provides unbiased access to ground-state expectation
values through imaginary time projection:

〈Ô〉 = lim
β→∞

〈�T|e−βH/2Ôe−βH/2|�T〉
〈�T|e−βH |�T〉 , (11)

where Ô an observable and |�T〉 is a trial wave function (we
now choose units with � = 1). The Monte Carlo sampling
of Eq. (11) is done over a configuration space comprising
imaginary-time world lines of N bosons in one spatial
dimension. Using a discrete imaginary-time representation,
we approximate the propagator as the product of short time
propagators:

e−βH � (ρτ )P (12)

with P ≡ int[β/τ ], which is exact in the limit β → ∞. The
imaginary-time world line configurations in the position basis
is represented such that each imaginary-time slice is described
by a state |R〉, where

R = {r0, . . . ,rN−1} (13)

is a vector of length N describing the position of all particles
in continuous space (beads) at that time slice. The short time
propagator ρτ is approximately decomposed into the product
of the free particle propagator, ρ0, which can be sampled
exactly, and an interaction propagator, ρint,

ρτ (R,R′) = 〈R|e−τH |R′〉
� ρ0(R,R′; τ,λ)ρint(R,R′; τ ), (14)

where ρ0(R,R′; τ,λ) is the free N particle propagator:

ρ0(R,R′; τ,λ) ≡
N−1∏
j=0

ρ0(rj − r ′
j ,τ,λ) (15)

with

ρ0(�x,τ,λ) = e−�x2/4λτ

2
√

πλτ
. (16)

Due to the infinitely short-ranged nature of interactions in
the Lieb-Liniger model [Eq. (7)], the short time propagator
must be sampled using a pair-product decomposition [68]
which employs the exact two-body propagator for δ-function
interacting bosons [70–72]:

ρint(R,R′; τ ) �
∏
j �=k

Wint(rj − rk,r
′
j − r ′

k; τ ). (17)

Here Wint is a weight that takes into account the pairwise
interactions, and only depends on the relative separation of
each pair across a time slice. The explicit form of Wint for
the Lieb-Liniger model is given in the Appendix of Ref. [43].
Finally, the weight of a segment of the imaginary-time path
{Rm,Rm+1, . . . ,Rm+M} of length Mτ is

W (Rm, . . . ,Rm+M ) = ρτ (Rm,Rm+1)ρτ (Rm+1,Rm+2)

× · · · ρτ (Rm+M−1,Rm+M ). (18)

Updates to the interior of these segments can be done with
conventional path integral Monte Carlo updates [68].

B. SWAP method

Although the Rényi EE is not a conventional observable,
previous literature has demonstrated that it can be successfully
computed via Monte Carlo methods, by writing Tr ρα

A as an
expectation value in a replicated configuration space, where
multiple identical copies of the same physical system are
sampled simultaneously [28]. For example, S2 is accessible
via QMC by sampling two identical, noninteracting replicas
of the physical system under consideration. We now review
this previously introduced replica (or SWAP) method [42,44]
in the context of the Lieb-Liniger model under consideration
here.

For continuous space path integral Monte Carlo, the
replica method can be utilized by sampling an ensemble of
imaginary-time world lines that are broken at the center of
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FIG. 2. Broken world line configuration used to measure the
SWAP operator. N = 6 world lines formed by projecting |�T 〉 are
continuous through the B spatial subregion, but are cut between
imaginary time slices P/2 − 1 and P in subregion A. Each bead
corresponds to the spatial location of an indistinguishable particle
at a given imaginary time slice, with the set of connected beads
forming a world line. The set of positions RP at the central time slice
make up the approximate ground-state wave function |�0〉 � |RP 〉 =
e−(P/2)τH |�T 〉 where τ is the imaginary-time step.

both paths corresponding to the A subsystem consisting of n

particles [42,44] as shown in Fig. 2. For a spatial partition,
a configuration R can be dynamically partitioned into sets of
particles in the A and B subsystems such that

R = RA ∪ RB (19)

where RA (RB) is vector of positions of particles in the A (B)
subsystems. The weight for these broken paths is

�T(R0)W (R0, . . . ,RP/2−1)ρB(RP/2−1,RP/2)

×W (RP/2, . . . ,RP )�T(RP ) (20)

where ρB is the symmetrized reduced propagator for the B

subsystem:

ρB(R,R′) ≡ (N − nB)!

N !

×
∑
RnB

∑
P(R′

B )

ρ0
(
RnB

,P(R′
B); τ,λ

)
ρint(RnB

,P(R′
B); τ ),

(21)

nB is the number of particles in R′
B , RnB

is one subset of nB

particles of R, the first sum is over all such subsets, and the
second sum is over all permutations of R′

B . The contribution to
the weight from the trial wave function is �T (R) ≡ 〈R|�T 〉.
The key point here is that in Eq. (21) there is no kinetic
propagator connecting the particles in the A subsystem of
RP/2−1 to the next time slice RP .

The estimator for Tr ρ2
A is related to the expectation value

of the short-imaginary-time propagator, which connects the
broken world lines across the replicas. We define the reduced
propagator for the A subsystem as

ρA(R,R′) ≡ ρτ (R,R′)
ρB(R,R′)

. (22)

The replica approach then requires sampling two independent,
noninteracting copies of the system, each with a weight given
by Eq. (21), with broken world lines at the P/2 time slice. The
estimator within this replicated configuration space is

Tr ρ2
A =

〈
ρSWAP

A

〉
A〈

ρDIR
A

〉
A

, (23)

where ρDIR
A and ρSWAP

A are the reduced propagators for the A
subsystems, which connect the broken beads to the same and
other replica, respectively. The notation 〈· · · 〉A indicates an
ensemble average over world line configurations with open
paths in region A. Note that the denominator in Eq. (23) is a
normalization factor that is required due to the configuration
space of open paths.

C. Ratio method

A major obstacle for using the basic SWAP method
presented in Sec. IV B is that in general both the numerator
and denominator of Eq. (23) decay exponentially with the size
of the subsystem A. This is a general problem encountered in
all SWAP Monte Carlo based approaches. Ultimately the basic
SWAP estimator is expected to decay exponentially with the
amount of entanglement between the subsystems, and, with the
exception of gapped 1D systems, this entanglement is expected
to grow (at least logarithmically) with the subsystem size. In
the context of continuous-space world line Monte Carlo, the
exponential decay of the components of the estimator arises
from the product of Gaussian factors from the free particle
propagator.

A successful route for circumventing this problem was
developed in the context of lattice models [28] where improved
performance is obtained by building up the desired estimator
from a ratio of estimators for smaller spatial subregions.
To see this, we first decompose partition A into contiguous
subregions As and Ab (s → swapped, b → broken) such that
A = As ∪ Ab. Now we define a new configuration space
where the two replicas are connected via an imaginary-time
propagator in region As but the word lines remain broken in
region Ab (see Fig. 3).

The weights for this ensemble are

�T(R0)W (R0, . . . ,RP/2−1)ρAs
(RP/2−1,R̃P/2)

× ρB(RP/2−1,RP/2)W (RP/2, . . . ,RP )�T(RP )

×�T(R̃0)W (R̃0, . . . ,R̃P/2−1)ρAs
(R̃P/2−1,RP/2)

× ρB(R̃P/2−1,R̃P/2)W (R̃P/2, . . . ,R̃P )�T(R̃P ), (24)

and we indicate statistical averages in this ensemble via
〈· · · 〉Ab ;As

. The estimator for Tr ρ2
A is formed from a product

of estimators over two different ensembles:〈
ρSWAP

A

〉
A〈

ρDIR
A

〉
A

=
〈
ρSWAP

As

〉
As〈

ρDIR
As

〉
As

〈
ρSWAP

Ab

〉
Ab ;As〈

ρDIR
Ab

〉
Ab ;As

. (25)

The improved performance of this estimator is due to the
reduced size of the broken region for which the imaginary-time
propagator is measured in each individual statistical average.
However, this gain is achieved at the cost of performing an
additional simulation over a different ensemble.
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FIG. 3. Top and side view schematic of the twice replicated (R,R̃)
configuration space of N = 6 bosons (described in Fig. 2) showing
the decomposition of subregion A = As ∪ Ab required to efficiently
compute the second Rényi entropy for large subregion size �. World
lines that pass through region As at time slice P/2 are connected via an
insertion of the short-time propagator ρτ between replicas (forming
part of the ensemble), while those in ration Ab remain broken. A
translucent connection between R and R̃ is used to indicate which
broken beads are connected during the SWAP estimation procedure.
For the case shown here we have K = 2 and δ� = �/2.

This approach can be generalized in a straightforward
manner by partitioning A into K regions such that

A = A1 ∪ A2 ∪ · · · ∪ AK. (26)

and using K independent simulations using different ensem-
bles; at the kth step, As = A1 ∪ · · · ∪ Ak−1 and Ab = Ak ,
providing an ensemble to compute the kth ratio k , defined as

k ≡
〈
ρSWAP

Ak

〉
Ak ;

⋃k−1
k′=1 Ak′〈

ρDIR
Ak

〉
Ak ;

⋃k−1
k′=1 Ak′

. (27)

Thus, the estimator for Tr ρ2
A is then a product of estimators

from K simulations:

Tr ρ2
A =

K∏
k=1

k. (28)

Another straightforward generalization of this approach is to
include updates, which change As and Ab (i.e., allowing As to
grow and shrink during a single simulation). Such an approach

would allow Tr ρ2
A to be computed from a single simulation,

taking advantage of the efficiency of the ratio method (e.g.,
see Ref. [32]).

D. Updates for the ratio method

To ergodically sample the configuration space used in the
ratio method, we use updates that can be grouped into four
general categories: closed segment updates, open segment
updates, break-connect updates, and cross segment updates.
Closed segment updates address closed world line pieces
entirely within a single replica and can be performed within
the conventional path integral Monte Carlo (PIMC) scheme
[68]. Open segment updates address imaginary time segments,
which are open at one end and remain open throughout the
update. These updates are performed in tandem with those
used for conventional PIGS methods to sample a single
replica of a system (e.g., see Refs. [44,69]). Break-connect
updates are those that break or reconnect a world line at the
central imaginary-time slice of a single replica and have been
discussed in detail in Ref. [44].

Cross segment updates compose a new class that is required
to ergodically sample the configuration space of the ratio
method where world lines of different replicas are connected
at the center of the path in the ensemble. We introduce a
cross-staging update that chooses a bead in one replica with
imaginary-time slice index p < P/2 and another bead with
p � P/2 in the other replica separated by M < P time slices
and attempts to perform a nonlocal staging update [73] that
can either connect or disconnect these world lines across the
break at the center of the path. Algorithmically:

(i) Choose a replica at random; we denote this as replica
1 and the other replica 2. Choose a bead at time slice p =
P/2 − 1 in replica 1 out of all world lines that are either
broken or cross linked, and label this bead b−; we denote the
number of such beads as nA

1 . Follow the world line back to
p< = p − M/2 and label this bead b<.

(ii) Define the number of beads in replica 2 at time slice
P/2 that are in subregion A as nA

2 . If b− is on a broken world
line, choose one of the nA

2 beads and label it b+. If b− is cross
linked between replicas, define b+ to be the bead it is linked
to. Follow the world line of b+ to time slice p> = p + M/2
and label this bead as b>.

(iii) Generate a new world line segment between b< and b>

of length M with a weight given by the free particle propagator.
Denote the updated beads about the center time-slice as b′

−
and b′

+. The updated segments in each replica are denoted by
(b<,b′

−) and (b′
+,b>).

(iv) The acceptance probability Pacc of such an update
depends on the ratio of the initial and final potential weights,
which we denote as e−δU as well as which of the four scenarios
occur:

(a) b+ ∈ Ab & b′
+ ∈ Ab:

Pacc = ρ0(b−,b+)

ρ0(b′−,b′+)
e−δU (29)

(b) b+ ∈ Ab & b′
+ ∈ As :

Pacc = nA
2 ρ0(b−,b+)e−δU (30)
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(c) b+ ∈ As & b′
+ ∈ Ab:

Pacc = 1

nA
2 ρ0(b′−,b′+)

e−δU (31)

(d) b+ ∈ As & b′
+ ∈ As :

Pacc = e−δU . (32)

We note this update only operates on configurations with
at least one broken or cross-linked world line in each replica.
We reject all updates that move b+ into region B as these
configurations are ergodically sampled with break-connect
updates (e.g., see Ref. [44]).

Another type of update we use for efficiency (although it
is not generally required for ergodicity) is a cross-segment
center-of-mass update. This update displaces the positions of
all beads on a cross-linked world line by a constant, and thus the
acceptance rate only depends on the potential weights. This
update is implemented identically to a conventional PIMC
center-of-mass update [68], with the exception that if the bead
at time slice P/2 + 1 is displaced out of As , the move is
rejected.

E. Benchmarking

Having described the algorithmic details for continuous
space world lines, we now present proof of principle results for
the ratio QMC method. To benchmark the QMC, we numeri-
cally compute S2(�) using the exact Bethe-Ansatz ground-state
wave function for a system of N = 2 particles (see Appendix A
for details). We take subsystem A to be an interval of length
� and consider a variety of interaction strengths γ . For such
a small system size, numerical integration of the Bethe-ansatz
ground state is tractable, so we can compare the QMC data to
the exact ground-state Rényi entropies. We consider the ratio
method using K steps of size δ� such that k , defined in (27),
is computed at step k with �k = kδ� where δ� ≡ �/K . The
ratio method can then be employed to compute S2(�) from K

independent simulations. We compute S2(�) using the direct
(poorly scaling) QMC approach with a single interval, as well
as using the ratio method for a variety of step sizes δ� for
interaction strengths γ = 0.5,5,50 and compare these to the
Bethe-ansatz in Fig. 4. In all cases, we find agreement with the
exact ground-state values.

Figure 5 shows the QMC results for a N = 8 system with
dimensionless interaction strengths γ = 0.5,5,50 as a function
of aspect ratio �/L where it is not feasible to obtain the
exact answer form the Bethe-ansatz. The diverging statistical
uncertainties (for γ = 5,50) for the direct QMC method for
large � demonstrates the inefficiency of the direct estimator. We
find an improved statistical performance when employing the
ratio method, as shown for several step sizes. The agreement
between the ratio method for different steps sizes and the direct
method (where it does not fail) provides confirmation of both
its efficacy and accuracy. In practice we find that the statistical
performance of the direct SWAP estimator breaks down when
the broken interval (of length δ�) has order 4 particles on aver-
age (although this is presumably strongly action and model de-
pendent). Therefore, in all subsequent results, we choose ratio
method intervals that are sufficiently small to obtain this value.
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FIG. 4. Second Rényi entanglement entropy S2(�) of the ground
state of N = 2 Lieb-Liniger bosons as a function of spatial subsystem
aspect ratio �/L computed with QMC using both the direct and ratio
method with step size δ�. The interaction strength γ is labeled on
each plot, and increases from top to bottom. The solid lines are the
exact results from the Bethe ansatz.

V. RÉNYI ENTANGLEMENT ENTROPY IN THE
LIEB-LINIGER MODEL

Having suitably benchmarked the ratio method, we now
present results of numerical calculations of the spatial Rényi
entanglement entropy of the ground state of the Lieb-Liniger
model using the quantum Monte Carlo method described in
Sec. IV. Using periodic boundary conditions, we consider
system sizes up to N = 32 at constant density, and bipartition
the system into intervals of length � and L − �. For each system
size we consider the range 0.5 � γ � 50 corresponding to
moderate and strongly interactions regimes. For N > 8 we
use the ratio method, choosing a step size to be small enough
for efficient performance of the estimator (as described above).
In all cases we use a constant trial wave function at the ends of
the imaginary time path and a sufficiently small finite time step
τ and large imaginary time length β such that systematic errors
are smaller that the reported statistical errors. See Appendix B
for details of the τ and β scaling of S2.
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FIG. 5. The second Rényi entanglement entropy S2(�) of the
ground state of N = 8 Lieb-Liniger bosons as a function of spatial
subsystem aspect ratio �/L computed with QMC using both the
direct and ratio method with step size δ�. The interaction strength
γ is labeled on each plot, and increases from top to bottom. The
diverging statistical errors are indicative of the inefficiency of the
direct method for larger subsystems.

To test the scaling predicted by CFT in Eq. (8) we fit the
QMC data to the two-parameter logarithmic scaling form

Sfit
2 (N,�) = c

4
log[2πnD(N,�)] + c2, (33)

where c and c2 are two fit parameters. Additionally, we
compare the QMC data for these interacting systems to
the result for noninteracting bosons, where entanglement is
generated purely from number fluctuations, which may be
computed exactly from the result

Sfree
2 (N,�)

= − log

[
N∑

nA=0

(
N

nA

)2(
�

L

)2nA
(

1 − �

L

)2(N−nA)
]

(34)

(see, e.g., Refs. [42,46]).
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FIG. 6. (a) The second Rényi entanglement entropy S2(�) of the
ground-state of the Lieb-Liniger model with interaction strength
γ = 0.5 and systems sizes up to N = 32 (at constant density) as a
function of the subsystem aspect ratio �/L. (b) The same data is shown
collapsed to a nearly pure function of chord length D. In both (a) and
(b) the solid lines represents a two parameter fit to the asymptotic
scaling form given in Eq. (33) while the dashed line represents the
free boson result from Eq. (34). The dashed lines represents the free
boson result from Eq. (34). The free boson results collapses nearly
perfectly to a pure function of chord length within this regime, so the
N dependence is not visible in (b).

A. Moderate interaction regime (γ < 1)

Figure 6 shows QMC data for γ = 1/2, in the moder-
ately interacting regime of the in the Lieb-Liniger model
as functions of both aspect ratio �/L and chord length
D(N,�). We find that the numerical data collapses onto a
pure function of chord length. Fixing the leading coefficient
to the CFT prediction c = 1, we perform a one-parameter fit
for c2 assuming the logarithmic scaling given in Eq. (33).
As expected, due to finite-size effects (e.g., the CFT predicted
power-law corrections), we only find a logarithmic fit on larger
length scales. This is clearly seen as the solid line in Fig. 6(b)
represents a single fit to all the QMC data with 2πnD � 20.

The dashed lines in Fig. 6 show the exact finite-size free
boson entanglement entropies given by Eq. (34). Within this
moderately interacting regime, the free boson EE collapses
nearly perfectly to a pure function of chord length, and
therefore there is no visible system size dependence in the
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FIG. 7. Deviations from the fit to the leading-order logarithmic
scaling of S2(�) for the Lieb-Liniger model with interaction strength
γ = 0.5 as a function of chord length. A reliable power-law fit to
these corrections is not feasible with this data.

dashed line of Fig. 6(b). We find that for sufficiently small
chord lengths, (D � � � �0) the interacting results are well
described by the free boson prediction, showing a clear
deviation from the asymptotic logarithmic CFT scaling. Thus,
for �int/�0 = 2 we find that for length scales � � �int the EE
is described by the free bosons result while for � � �int it
converges to the CFT scaling form.

As mentioned in Sec. II, previous literature has demon-
strated universal power-law corrections to Eq. (33) in related
models [47,55,56,58]. To investigate such possible corrections
to the leading-order scaling given in Eq. (33), in Fig. 7 we
have plotted the difference between the QMC data and a
one-parameter fit to Eq. (33) with c = 1 for γ = 0.5. While
this plot is suggestive of such power-law corrections, a reliable
fit is not possible with this existing data. Our data for stronger
interactions have even less visible corrections. Thus, we leave
a thorough analysis of these higher-order corrections to the
CFT scaling in the Lieb-Liniger ground state to future work.

B. Strong interaction regime (γ � 1)

Figure 8 shows S2 for the ground state of the Lieb-Liniger
model in the strongly interacting regime, with γ = 50 as a
function of both aspect ratio and chord length. Once again, we
see convergence to the logarithmic CFT scaling (solid lines) at
large length scales, and agreement with the free boson result
(dashed lines) at short length scales. However, in this case,
the divergence from the free boson result occurs on shorter
length scales than with weaker interactions—this is consistent
with the reduced interaction length scale �int/�0 = 0.02 in this
case. One strikingly different feature for strong interactions
is the clear oscillations about logarithmic scaling that decay
with the cord length D. Such oscillations have been previously
observed in the α > 1 Rényi EE of lattice spin models [57],
dipolar lattice bosons [59], and noninteracting fermions in
the continuum [38], where they are related to power-law
corrections to asymptotic logarithmic scaling.

C. Scaling coefficients

For all interaction strengths γ , we can fit the asymptotic
behavior of S2(�) to the logarithmic finite-size scaling form
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FIG. 8. (a) The second Rényi entanglement entropy S2(�) of the
ground sate of the Lieb-Liniger model with dimensionless interaction
strength γ = 50 and systems sizes up to N = 32 (at constant density)
as a function of subsystem aspect ratio �/L. (b) The same data is
shown collapsed to a nearly pure function of chord length D. In both
(a) and (b) the solid lines represent a two-parameter fit to the CFT
prediction from Eq. (33) while the dashed lines are free boson results
from Eq. (34). The free boson results collapses nearly perfectly to a
pure function of chord length within this regime, so the N dependence
is not visible in (b).

of Eq. (33) and extract the coefficients c and c2 using
no prior knowledge of their values. Figure 9(a) shows
the leading coefficient c as function γ extracted in this
way.

From Luttinger liquid theory, we expect c = 1, as c is
the central charge of the CFT and our finite-size QMC
data agrees with this prediction to within 10%. The residual
discrepancy of the numerically extracted value of the central
charge c is likely due to finite-size effects; indeed this analysis
ignores the possible power-law corrections inferred in Eq. (6).
Additional complications arise in the fitting procedure due to
the oscillatory nature of S2 for large interactions γ .

In an attempt to mitigate these residual finite-size effects
while extracting an estimate of the subleading constant c2, we
now fix c = 1 and perform a one-parameter fit, which is shown
in Fig. 9(b). In the limit γ → ∞, we expect c2 to converge to
the free-fermion value, which is shown as a horizontal line in
Fig. 9(b); indeed we find c2(γ ) ≈ cFF

2 � 0.404049.
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FIG. 9. The coefficients c (a) and c2 (b) of the leading-order
logarithmic scaling form of S2(�) given in (33) for the ground state
of the Lieb-Liniger model determined by QMC as a function of the
interaction strength γ . (a) The coefficient of the logarithmic scaling
c was determined by a two-parameter fit to the scaling form given
in (33). It is expected that c = 1, the central charge of the associate
conformal field theory. The resulting deviations from the expected
value on the order of 10% are likely due to finite-size effects. (b) The
interaction dependence of the nonuniversal additive coefficient c2 in
the one-parameter fit (with c = 1) to the logarithmic scaling given in
(33) as a function of γ . The horizontal line corresponds to the free
fermion value cFF

2 � 0.404049, which represents the Tonks-Girardeau
limit of strongly interacting bosons.

VI. DISCUSSION

In this paper, we have numerically studied the finite-size
scaling of the second Rényi entanglement entropy of the
ground state of the Lieb-Liniger model of contact interacting
bosons in the one-dimensional spatial continuum. We find
that the asymptotic scaling of S2 agrees with the predicted
logarithmic scaling of conformal field theory, with a leading
coefficient consistent with central charge c = 1. We note that
the uncertainty of ∼10% is not much larger than that inferred
from a recent continuous space matrix product state study
on the same model [74], which employed a sort of effective
finite-size scaling based on the bond dimension. Systematic
and statistical errors could be further reduced by pushing our
simulations to larger values of N .

We have measured the nonuniversal subleading constant
as a function of the dimensionless interaction strength γ

and find it to be a monotonically decreasing function of
γ that converges to the free-fermion value for sufficiently
strong interactions. This behavior is consistent with the c2

dependence found for increasing anisotropy in the XXZ model
[57], which corresponds to stronger nearest-neighbor repulsion
in the equivalent itinerant hardcore boson model. On shorter
length scales there is a crossover to free boson behavior,
where the crossover length scale depends on interaction
strength.

This study demonstrates how algorithmic advances are
important for the study of universal scaling of entanglement
entropy in interacting itinerant bosons. In the case of the Lieb-
Liniger model with moderate interaction strength, reliable
finite-size scaling data plays a crucial role in identifying pos-
sible power-law corrections to the leading-order logarithmic
scaling expected for the low-energy effective conformal field
theory description. We expect that high-precision quantum
Monte Carlo simulations such as this will be vital in the
continuing exploration of entanglement entropy in systems
of itinerant particles in the future.
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APPENDIX A: RÉNYI ENTROPY FROM THE
BETHE ANSATZ

Here we briefly describe the method used to compute the
Rényi entropy of the ground state of the Lieb-Liniger model
using the Bethe ansatz. For N = 2, the Bethe ansatz wave
function is:

�(x1,x2) = A1,2e
i(k1x1+k2x2) + A2,1e

i(k2x1+k1x2)

for x1 � x2, where k1 & k2 are real quasimomenta with k1 <

k2, and the A’s are complex coefficients. We restrict ourselves
to the k1 = −k2 = −k state and choose the coefficients such
that � is an energy eigenstate of Eq. (7) with energy 2λk2; this
fixes � to be

�(x1,x2) = 1√
Z

(
2 cos[k(x2 − x1)]

+ 1

k�int
sin[k(x2 − x1)]

)
, (A1)

where Z is a normalization factor:

Z = 1

4

(
L

k�int

)2(
1 + 4

�int

L
+ 4(k�int)

2

)
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and k is a solution to the Bethe equation:

kL = πn − 2 arctan [2k�int]. (A2)

Equation (A2) can be solved numerically for k and using this
value of k in Eq. (A1) provides the exact ground-state wave
function.

We can write the reduced density matrix of an interval of
length � as

ρA = P0ρ0 + P1ρ1 + P2ρ2,

where Pn is the probability of finding n particles in A and
ρn is the reduced density matrix projected onto the n particle
subspace of ρA. The purity of ρA may then be written as:

Tr ρ2
A = P 2

0 Tr ρ2
0 + P 2

1 Tr ρ2
1 + P 2

2 Tr ρ2
2

= P 2
0 + P 2

1 Tr ρ2
1 + P 2

2 . (A3)

Pn and ρ1 may be computed analytically and are found to be
the following:

P0 =
∫ L

�

dx1

∫ L

x1

dx2�
∗(x1,x2)�(x1,x2)

= 1

4k2Z

{(
4 − 1

k2�2
int

)
sin2 [k(L − �)] +

(
L − �

�int

)2(
4k2�2

int + 1 + 4
�int

L − �

)
− 2

k�int
sin [2k(L − �)]

}
(A4)

P2 =
∫ �

0
dx1

∫ �

x1

dx2�
∗(x1,x2)�(x1,x2)

= 1

4k2Z

{(
4 − 1

k2�2
int

)
sin2 [�k] +

(
�

�int

)2(
4k2�2

int + 1 + 4
�int

�

)
− 2

k�int
sin [2�k]

}
(A5)

P1ρ1(x,x ′) =
∫ L

�

dx ′′�∗(x,x ′′)�(x ′,x ′′)

= 1

4kZ

{
− 8k� cos[k(x − x ′)] − 4 sin[k(2� − x − x ′)] + 4

k�int
cos[k(2� − x − x ′)]

+ 1

k2�2
int

sin[k(2� − x − x ′)] − 2�

k�2
int

cos[k(x − x ′)] + 8kL cos[k(x − x ′)] + 4 sin[k(2L − x − x ′)]

− 4

k�int
cos[k(2L − x − x ′)] − 1

k2�2
int

sin[k(2L − x − x ′)] + 2L

k�2
int

cos[k(x − x ′)]
}
. (A6)

Using Eq. (A6), P 2
1 Tr ρ2

1 may be computed by numerical
integration:

P 2
1 Tr ρ2

1 =
∫ �

0
dx

∫ �

0
dx ′P 2

1 ρ1(x,x ′)2. (A7)
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FIG. 10. Quantum Monte Carlo convergence of the second Rényi
entanglement entropy S2(a) with decreasing imaginary time step
size τ for a symmetric partition with �/L = 1/2 for N = 2 Lieb-
Liniger bosons with γ = 1/2 and β/(Lg−1) = 0.64. The dashed line
corresponds to the exact Bethe-ansatz value.

Finally, S2(�) is computed from Eq. (A3), using Eq. (A4),
Eq. (A5), and Eq. (A7).
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FIG. 11. Quantum Monte Carlo convergence of the second Rényi
entanglement entropy S2(a) with decreasing imaginary time length
β for a symmetric partition with �/L = 1/2 for N = 2 Lieb-Liniger
bosons with γ = 1/2 and τ/(�0g

−1) = 0.02. The solid line is a fit to
Eq. (B1) with S0 = 0.9544(1), cβ = 0.10(2), and δ/(gL−1) = 33(2).
The dashed line corresponds to the exact Bethe-ansatz value.
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APPENDIX B: CONVERGENCE WITH QUANTUM
MONTE CARLO PARAMETERS

In this appendix we demonstrate the convergence of
the Rényi entropies calculated with quantum Monte Carlo
with the imaginary time length β and finite-time step τ .
Discrete imaginary-time world line QMC methods introduce
a controlled systematic error due to the finite imaginary-time
step size τ . Figure 10 shows the convergence of the QMC
data to the exact Bethe-ansatz value for an N = 2 system of
Lieb-Liniger bosons.

Path integral ground-state based QMC methods also in-
troduce a systematic error based on a finite imaginary-time
length β. We characterize this error by scaling β and fitting to
the exponential:

S(β) = S0 + cβe−δβ (B1)

with prefactor cβ and δ has units of energy.
Figure 11 shows the convergence of the QMC
data to the exact Bethe-ansatz value for an N = 2
system.
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