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Tuning Yu-Shiba-Rusinov states in a quantum dot
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We present transport spectroscopy of subgap states in a bottom gated InAs nanowire coupled to a normal lead
and a superconducting aluminium lead. The device shows clearly resolved subgap states which we can track
as the coupling parameters of the system are tuned and as the gap is closed by means of a magnetic field. We
systematically extract system parameters by using numerical renormalization-group theory fits as a level of the
quantum dot is tuned through a quantum phase transition electrostatically and magnetically. We also give an
intuitive description of subgap excitations.
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I. INTRODUCTION

Hybrid superconductor-quantum dot devices [1] are heavily
employed in recent experimental programs. For instance,
quantum dots serve as an integral component of proposals
to form [2,3], manipulate [4–6], and probe [7–9] Majorana
bound states [10,11]. In Cooper pair splitters, the dynamics of
quantum dots filter local Andreev reflections from the desired
nonlocal Andreev reflections to form a source of entangled
electrons [12–14].

In a dot-superconductor system, where the charging energy
is larger than the order parameter, quasiparticles in the super-
conductor bind to the dot by the exchange interaction and give
rise to subgap excitations [15]. When these quasiparticles form
a singlet with electrons on the dot, the resultant states are called
Yu-Shiba-Rusinov states [16–18] and have historically been
investigated primarily through scanning tunneling microscopy
[19,20]. Only recently have these excitations been observed
in transport experiments [21–33]. We will give an intuitive
description of subgap excitations in the following section.

To experimentally investigate subgap excitations, we fabri-
cated a bottom gated normal-metal/nanowire/superconductor
device (N-NW-S), which allows for the formation of a gate
defined quantum dot proximitized to the superconductor. The
device shows clearly resolved subgap states that we can
track as the device is electrostatically tuned. In this way we
follow a single charge state of the dot, through the doublet to
singlet quantum phase transitions occurring as the barrier to
the superconductor is lowered. We fit measured excitations
energies to a simulation developed for this purpose using
the nonperturbative numerical renormalization-group (NRG)
method [32,34,35], and in this way systematically extract
physical parameters of the device.

The system investigated is in many ways similar to N-NW-S
devices where Majorana bound states have been examined
[36–38], and a good understanding of the magnetic field
behavior of proximitized nanowire quantum dots is necessary
to understand transport data of these similar devices. We probe
in detail the magnetic field behavior and observe excitations
apparently clinging to zero bias as the gap is about to close,
consistent with a recent experiment [21].

*Corresponding author: k_grove@fys.ku.dk

A. Subgap states

We consider a quantum dot described by the Anderson
model (full Hamiltonian in Appendix B) with a single level
at ε and a charging energy of U , coupled to a normal lead
and to a superconducing lead with order parameter �. The
strength of the coupling to lead α (α = N,S), is governed by
the corresponding tunneling density of states, �α = 2π |tα|2νF ,
where tα is the tunneling coefficient of lead α and νF is the
density of states of lead α near the Fermi level. Our data
are collected in a regime where �N is small compared to the
other energies of the system, so we consider the normal lead
to be a tunnel probe1 which is used to probe the quantum
dot/superconductor system.

The nature of subgap excitations in such a system depends
on the relative size of � and U [15]. If � is large, the system can
be understood in terms of repeated Andreev reflections giving
rise to Andreev bound states [40]. When U is large, Andreev
reflections are suppressed, and instead we need to think in
terms of quasiparticles (Bogoliubons) in the superconducting
lead. We will here develop an intuition for excitations in this
case.

First, for vanishing �S , we know exactly what the eigen-
states of the model are, and we will be focusing, in particular,
on the states shown in Fig. 1. These are the lowest energy
singlets and doublets (only half the doublets are shown) for
different values of ε. The illustrated states are
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where we have defined γ †
σ as the operator that creates the

lowest energy Bogoliubon [41] with spin σ , and d†
σ as the

operator which creates an electron on the dot with spin σ .
The figure also shows the energy of relevant excitations
between these states.

As �S is turned up, the singlet states are mixed resulting
in avoided crossings, and the same happens for the different

1Recent numerical work suggests that the normal lead may have a
nonpertubative effect on the system, so this approximation may not
be entirely justified [39].
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FIG. 1. Excitations between states in a quantum dot/
superconductor system. (a) The states under consideration with
arrows in circles representing electrons in the dot and arrows in
open rectangles representing Bogoliubons. The dashed shape in the
diagram for |B〉 depicts a singlet correlation. The arrows annotated
with +e− show dominant sequential tunneling processes for transport
going from N to S at the level position marked x in (b). (b) A
schematic diagram showing subgap excitations in the system, with
and without anticrossings induced by the coupling between the dot
and superconductor. (c) NRG simulations of the lowest doublet to
singlet transitions for different values of the coupling density of states,
�S . For all curves in (c), we have U = 5�. The curve going across
the traces mark an excitation energy of zero. Traces have been offset
for clarity as indicated on the right-hand axis.

doublet states. For instance, the coupling between |A〉 and
|B〉 causes the excitation energy inside the gap to move down
towards the center of the gap. The other Bogoliubons (those of
higher energy) will all move the subgap excitation in the same
direction.

Eventually, this simple picture breaks down, as states with
more than one Bogoliubon become a significant factor in
forming the low-energy eigenstates. For higher �S , it is not
possible to find a simple theory that covers the entire range of
ε and lends itself to a clear physical understanding, and one
has to resort to numerical procedures. In this vein, Fig. 1(c)
shows the lowest energy doublet to singlet excitation as a
function of the level position and �S as found using NRG
simulations. In the middle of the Coulomb valley the doublet
to singlet excitation energy decreases with increasing �S ,
indicating a stabilization of the singlet state, and eventually

the energy crosses zero, which is an example of a second-order
quantum phase transition [21,42]. For larger �S , the ground
state remains a singlet for all level positions, even as the
expected number of electrons on the dot changes by 2.

The NRG method has been applied to the proximitized
Kondo model [43,44], the proximitized Anderson model [45],
and to the normal-metal/quantum dot/superconductor system
[39,46] in the literature, and generally recreates the features
seen in real systems fairly accurately, as our fits below also in-
dicate. Note, that we are using a newly written implementation
of the NRG program which does not exploit symmetries in the
system to speed up the algorithm [47]. Consequently, we only
keep 160 states from each link of the chain. In Appendix C
we compare results from our program to the phase diagram in
Ref. [39] to show that there is reasonable agreement between
the output from our program and that of an established program
running a simulation with more states retained.

B. Transport

We imagine that transport in the device is primarily
sequential in electrons tunneling from the N electrode to
the dot-S system. This is possible once states with different
numbers of fermions are mixed. In Fig. 1(a) we have tried to
illustrate the dominant sequential transport processes moving
electrons from N to S when the level position is near 1/2 U , i.e.,
at x in Fig. 1(b). In this case, considering again—artificially—
only one Bogoliubon state, the lowest energy singlet |s〉 is a
linear combination of primarily |A〉 but with some weight on
|B〉 and |C〉, and the lowest energy doublet |d〉 consists mainly
of |E〉 with some weight on |D〉 and |F 〉. Transport occurs by
repeatedly swapping the state between |s〉 and |d〉 by adding
electrons to the dot from the N lead.

Fermi’s “golden rule” tells us that the rate at which we go
from |s〉 to |d〉 is proportional to |〈d|d†

↑|s〉|2 which, for low
�S , is close to what we would expect for a nonproximitized
dot. Going from |d〉 to |s〉 occurs at a rate proportional to
|〈s|d†

↑|d〉|2, which is smaller because only terms involving |B〉
and |D〉 or |C〉 contribute, cf. Fig. 1(a). Intuitively, we have
to move two electrons across the barrier to S in this transport
process.

II. EXPERIMENTAL RESULTS

The device is a bottom gated 70-nm-diameter InAs
nanowire with one Ti/Au contact and one Ti/Al contact
approximately 330 nm apart. The bottom gates have a 55-nm
center-to-center distance and are separated from the nanowire
by a 24-nm HfO2 dielectric. The contacts are both well coupled
to the nanowire compared to the deliberate transport barriers
we impose with the bottom gates to form the dot, and the
Ti/Al contact is superconducting with � = 0.14 mV. Further
fabrication details can be found in Appendix A. Figure 2(a)
shows a scale model of our device and our designation of
a “tuning gate,” VT , and a “plunger gate,” VP . A scanning
electron microscopy (SEM) micrograph of a similar device
is shown in Fig. 2(b), where only the nanowire segment
between the N and S electrodes is probed by transport. In
all plots, we apply a bias Vsd to the aluminium contact and
measure differential conductance dI/dV through the device
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FIG. 2. (a) Artist impression of a 0.6-μm × 0.4-μm cutout of the device, to scale. The model shows the surface of the SiO2 substrate,
bottom gates, insulating HfO2 (shown in green), InAs nanowire, gold contact, and aluminium contact. Details are in Appendix A. We assign
names to two of the gates as shown. (b) SEM micrograph of a lithographically similar device. Note that only the part of the device between the
gold electrode, N, and the aluminium electrode, S, is used.

at a temperature of 35 mK. Figure 3(a) shows typical transport
data with the aluminium contact driven normal by a field,
and Fig. 3(b) shows corresponding bias spectroscopy at zero
field where the superconducting gap is visible as a horizontal
band of low differential conductance between Vsd = −0.14
and 0.14 mV. The normal-state data show the usual Coulomb
diamonds for VP < 1.6 V, but for VP > 1.6 V these diamonds
become difficult to resolve, as the excitations are heavily tunnel
broadened by the coupling of the aluminium contact. In regions
where the excitations are broadened in the normal-state data
[cf. Fig. 3(a)], which we attribute to a strong coupling to
the aluminium contact, we see that the subgap excitations in
Fig. 3(b) are pushed far inside the gap. In the remainder of this
paper, we investigate how these subgap excitations respond to
gate tuning and to small (less than Bc) magnetic fields.

A. Gate tuning

Figure 4 shows the zero-bias differential conductance of
the device as a function of the potential, VP and VT , of the
plunger and tuning gate. Both gates couple to the dot and
have capacitances of CP ≈ 5.5 aF and CT ≈ 3 aF (lever arms
αP ≈ 0.035 and αT ≈ 0.02) for the plunger and tuning gates,
respectively. We define V ′

P = VP + (VT − 0.3 V) × 0.57 to
compensate for this cross capacitance, and will use this for all
subsequent figures instead of VP . Note the overall increase in
conductance for increasing VT , which we ascribe to a lowering

of the barrier to the normal lead consistent with the position
of the tuning gate. Later, we shall see that �N depends on VT

exponentially, which supports this assertion. Also evident in
these plots is a quantum phase transition (at the *), which will
become clearer in later plots.

Figure 5 shows how the subgap excitations respond to
tuning, and a few trends are apparent going from low (a0)
to high (a6) VT . First, we see again the overall increase in
conductance with higher VT . Second, as VT is changed, the
subgap excitations of Fig. 5 shift in energy, with no overall
trend, which we interpret as mesoscopic fluctuations of �S

as the wave functions of the dot states are perturbed by the
changing VT and VP . The quantum phase transition is very
clear in this plot, occurring for the charge state labeled IV
around VT = 0.44 V, i.e., between a3 and a4. The other charge
states do not undergo this kind of quantum phase transition
in the data shown. We point out that the transitions are not
significantly tunnel broadened compared to the size of the
gap, so we can assume that normal lead is weakly coupled to
the dot.

To extract quantitative parameters for the system, we fit
a model to the data consisting of single levels independently
interacting with the superconductor, such that each level is
described by the proximitized Anderson model. In this model,
each level is described by the following parameters: the
charging energy U , the potential of the plunger gate at the
center of the corresponding Coulomb valley V0, the plunger
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FIG. 3. Differential conductance at 35 mK with and without an externally applied 150-mT in-plane field. The field drives the aluminium
contact normal in (b). Regions that show heavily tunnel-broadened Coulomb diamonds also show subgap excitations far inside the gap when
the Al contact is superconducting.
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FIG. 4. Conductance at zero bias as a function of the tuning gate
and the raw plunger gate potential, with and without a magnetic
field driving the aluminium contact normal. The lines in these plots
shows the cuts done by a0–a6 of Fig. 5. For certain configurations of
the tuning gate, the ground state remains a singlet as a dot level is
brought past the Fermi level with the plunger gate, and this is evident
at the *.

gate capacitance CP , and the coupling strengths �S and �N .
We will find quantitative estimates for all these parameters.

Specifically, we find U from the height of the corresponding
Coulomb diamond in Fig. 3(a), and we find V0 by looking at
Fig. 5. We initially assume �N is weak, in which case it has
little effect on level positions and does not drive the NW-S
system out of equilibrium, and we find CP and �S using one
of two methods both involving a fit based on the NRG method:
for method 1, we find CP from the normal-state data in Fig. 4
and use �S as a fitting parameter to fit the observed level
positions. For method 2, we use both CP and �S as fitting
parameters. Fits to two of the datasets are shown in Fig. 5
for both methods; the rest are included in the Supplemental
Material [48].

Generally both methods reproduce the gate dependence
of the subgap state excitations well. The most significant
divergence is around V ′

P = 1.70 V and V ′
P = 1.76 V, where

additional excitation lines are present inside the gap. The pres-
ence of these lines suggest that the levels are not independent
in this region.

Having found the values of �S at each level crossing from
our NRG fits, we extract �N from the conductance at each
Coulomb peak when the superconductor is driven normal by an
external magnetic field, i.e., from the data in Fig. 4. Specifically

Gpeak = e2

h

4�S�N

(�S + �N )2
, (1)

where Gpeak is the maximal conductance of the device at the
Coulomb peak [49]. The values of �N and �S that we extract
are shown in Fig. 6. �N shows an exponential dependence
on the tuning gate potential, as expected for an electron
tunneling through a potential barrier. In contrast, �S varied
nonmonotonically and did not have a systematic dependence
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tuning gate is set to (300 + 40n) mV. We adjust for cross capacitance
as described in the text. Example NRG fits are overlaid plots a0 and
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in all these plots, and the bias range is ±125 μV. The roman numerals
on odd charge states refer back to the labels in Fig. 5.

on gate. Therefore, we attribute the variations we do see in �S

to mesoscopic fluctuations caused by perturbations of the dot
wave functions, rather than a changing potential barrier.

B. Results: Behavior at field

We now turn to the magnetic field dependence of the subgap
states. Figure 7 shows what happens to the plot a1 in Fig. 5 as
a field is applied in the plane of the sample in a direction
perpendicular to the nanowire. As the field increases, the
doublet states Zeeman split, which is clear where the ground
state is a singlet. When the ground state is a doublet, only one
excitation is possible from the ground state, and only one peak
is seen in transport [21]. When analyzing our data, we will
augment the Anderson model Hamiltonian of the dot from the
introduction with a Zeeman term of the form

HZ = gμBB · S, (2)

where g is the g factor of the level, μB is the Bohr magneton, B
is the strength of the magnetic field, and S is the spin of the dot;
note that we always align the z axis of the spin basis with the
magnetic field. In our quantum dot, the effective g factor varies
significantly between levels [50], and even within a single
level. For instance, in the charge state labeled II in Fig. 7,
the splitting of the excitations line left of center (near more
negative VP ) is very different from the splitting right of center.

At the charge state labeled IV in Fig. 5 we are able to
induce a quantum phase transition by a applying a magnetic
field, so we focus on this level crossing. Figure 8 shows the
dependence of transport at the center of the crossing both as
the field magnitude is increased and as the field is rotated. As
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FIG. 8. Magnetic field dependence of subgap transport in the center of a level transition for different values of the tuning gate potential. In
the data sets b0 through b5 the field was applied in the plane of the sample perpendicular to the nanowire, and in the data sets c0 through c5 the
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corrected for a drifting zero bias across the device as detailed in the Supplemental Material. The plots also show data from an NRG simulation,
specifically the allowed excitations from the ground states of the system (red lines). The black lines show a phenomenological model of the
gap closing used as an input to the simulation. Additional input to the simulation includes the �S values from Fig. 6 and a g factor found by
fitting the plot c1 at 0 radians.
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in our other dataset, we again note the absence of a transition
from the excited member of the doublet to the singlet, which is
what causes the peaks in Fig. 8 for VT > 0.42 V to only move
in one direction instead of splitting.

As is apparent in the plots c0–c5 of Fig. 8, the g factor
of our system shows a high degree of anisotropy. This is a
common property of quantum dots in InAs nanowires [50,51]
and was also addressed by Lee et al. for Yu-Shiba-Rusinov
(YSR) states [21].

In the bias vs field strength plots of Fig. 8, specifically plots
b0, b1, and b2, we note that the excitation of the doublet that
moves down in energy has an apparent tendency to stick to
zero bias. This effect has been observed before and can be
understood in terms of a level repulsion from the gap states as
the gap closes, pinning the excitations near zero energy [21].
We estimate the level positions from the data plotted in c1 of
Fig. 8, and fit the g factor at angles of 0, 0.9 π , and 1.4π rad
using our NRG model. The latter two angles correspond to
minimal and maximal Zeeman splitting; note that the splitting
at 0.9π rad is hard to estimate precisely. For these angles, we
find g factors of approximately 22, 8, and 23 respectively.

We use the g factor at 0 rad, along with the values of �S

found for each tuning gate value earlier, to simulate how the
states split with applied field, i.e., to recreate the level positions
seen in the plots b0–b5. The resulting level transitions are
plotted in the figure and show good agreement with the data.
We plot excitations from the ground state only, but in the plot
b2, transport is also possible from the doublet state, presumably
because the doublet is thermally excited.

III. CONCLUSION

The device presented in this paper had two features that
complement each other: Transparent contacts and well coupled
bottom gates with a large admissible voltage range. This made
it feasible to make completely gate defined contact barriers in
the device, and tune coupling parameters over a large range
while keeping mostly single-dot behavior. In combination with
well resolved subgap states, the device provided an excellent
platform to study the dependence of Yu-Shiba-Rusinov states
to �S tuning and to magnetic fields. Future studies may
involve testing the recent theoretical predictions that the
singlet-doublet phase diagram is modified by the normal-metal
coupling [39].

For the data presented in this paper, we used a gate between
the quantum dot and the normal contact to tune our device. This
had a large effect on �N which in turn has only a small effect
on level positions. On the other hand, mesoscopic fluctuations
of �S (on the other side of the device) caused by this tuning
has a large and, a priori, unpredictable effect on �S . Effects
like this can appear in gated quantum dot devices, whether it
involves a superconducting contact or not, but this device is
an interesting example as the two contact barriers influence
transport in very dissimilar ways.

Modeling the device using the proximitized Anderson
model by means of the NRG method yielded excitation
energies in good agreement with our data, and the coupling
parameters extracted from these fits follow the potentials of
the bottom gates in a physically reasonable way. The behavior
under magnetic field is entirely consistent with a simple

Zeeman splitting in combination with the gap closing. This
behavior has been described before [21]. However, here we
model this scenario quantitatively using the NRG method
starting from parameters determined at zero field, and show
good agreement with observed data.
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APPENDIX A: FABRICATION DETAILS

The bottom gates were fabricated on a Si substrate with
500-nm oxide, and are composed of 5 nm Ti and 12 nm Au.
These gates have a center-to-center distance of 55 nm. The
gates are covered with 24 nm HfO2 deposited by atomic layer
depositioning. This HfO2 is deposited in three 8-nm layers of
successively smaller extent to avoid fencing, where the oxide
does not break off cleanly where it meets resist walls and
instead protrudes off the surface after lift-off.

70-nm-diameter InAs nanowires were deposited from a
suspension in isopropanol. In the evaporation chamber, imme-
diately prior to metalization of each contact, argon ion milling
was used to remove the native oxide from the nanowire. The
Au contact uses a 10-nm Ti sticking layer, and the Al contact
uses a 5-nm Ti sticking layer. Compared to the data shown in
this paper, the device is significantly more conductive when a
higher potential is applied to the bottom gates, suggesting that
the tunnel barriers seen in the data are gate defined as opposed
to contact defined.

Tuning the potentials of the gates allows the device to be
operated in different regimes; in this paper we focus on single
dot behavior by forming a central potential dip (see Fig. 9). We
note that bottom gates under a contact, for instance the second
bottom gate from the right in Fig. 2, generally do not show any
significant effect on transport through the device. This suggest
that the gates are strongly screened, or that the contacts—by
diverting current out of the wire already very near the edge
of the contact—make it a moot point whether the sections of
nanowire above these gates are depleted or not.

1 2 3 4 5 6 7

Gate number

−1
0
1
2
3
4
5
6
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n
ti
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(V

)

FIG. 9. Electric potentials applied to each relevant bottom gate.
The gates are numbered starting from the gold side of the device (left
side in Fig. 2). Gate no. 2 we call the tuning gate and gate no. 5, which
is more strongly coupled to the energy levels of the dot, we call the
plunger gate.
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The device investigated in this paper forms part of a larger
two-sided device. To avoid complications from the other side
of the device, this part of the nanowire was electrostatically
depleted during measurements.

APPENDIX B: MODEL DETAILS

For the discussions in the paper and in our models, we use
the following Hamiltonian:

H = Hd + HS + HtS + HtN, (B1)

with each part given below. The quantum dot has the
Hamiltonian

Hd =
∑

σ

εσ c†σ cσ + U

2

(∑
σ

c†σ cσ − 1

)2

, (B2)

where c†σ creates an electron with spin σ on the dot, U is the
charging energy of the dot, and ε is the single-particle energy
of the dot. The dot is coupled to the two leads by

HtS =
∑
kσ

tS c
†
σ ckσ + HC, (B3)

HtN =
∑
kσ

tNc†σ fkσ + HC, (B4)

where c
†
kσ creates an ordinary fermion in the superconducting

lead with momentum k and spin σ , f
†
kσ creates a fermion in

the normal lead, and the t’s are tunneling coefficients assumed
spin and momentum independent. The Hamiltonian of the
superconductor is

HS =
∑
kσ

ξkσ ckσ c
†
kσ +

∑
k

(�ck↑c−k↓ + �c
†
−k↓c

†
k↑), (B5)

where � is the order parameter of the superconductor which
we assume is real.

For our NRG simulations, we assume that tN and the
temperature of the system are negligible, we discretize the
leads logarithmically using a discretization factor � of 2.5,
and map the system to a chain of fermions starting with the
quantum dot. We add sites of the chain one at a time and at each

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

Γ
S

(Δ
)

U (Δ)

Our program. ΓN = 0.
Žitko et al. ΓN = 0.
Žitko et al. ΓN = 2 × 10−4 Δ.

FIG. 10. This figure compares output from our NRG program to
Fig. 1 in Ref. [39].

step retain the lower 160 eigenstates. The subgap excitation
energies converge quickly [43], so we only extend the chain
to 25 sites. To simulate the gap closing with applied field, we
created, by hand, a table of gap size as a function of applied
field based on the data in Fig. 8.

When calculating the peak conductance with the supercon-
ductor driven normal, in Eq. (1), we assume kBT 	 �S + �N

consistent with our findings, and use a result from the
Supplemental Material of Ref. [49].

APPENDIX C: EVALUATING THE NRG PROGRAM

Since we are not exploiting symmetries in our NRG
program, we cannot keep as many states as others do in
the calculations. Therefore we compared the output of our
program to a plot in Žitko et al. [39] showing the quantum
phase transition in a proximitized dot (see Fig. 10). Žitko et al.
also include simulations for a small coupling to the normal
lead, which we reproduce in Fig. 10 to show that the error
made by using our program is small compared to the error
made by not considering finite �N . Note that our definition of
�S differs from the one used in Žitko et al. by a factor of 2, so
we scaled ours for this plot.
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