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We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a
perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor
one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being
completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum
Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system
parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the
graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the
superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.
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I. INTRODUCTION

The Cooper pairs in a superconductor can be used as a
natural source of nonlocal Einstein-Podolsky-Rosen (EPR)
electron pairs [1,2]. By splitting the electrons in a Cooper
pair, one obtains two spatially separated electrons which still
keep their spin and momentum entangled. The Cooper-pair
splitting is the inverse process of crossed Andreev reflection
(CAR), which has been extensively studied for many years
[3–20]. The CAR process occurs at the interface between a
normal conductor and the superconductor, where an electron
is injected from one terminal of the normal conductor and is
then reflected out as a hole at the other terminal, and a Cooper
pair forms in the superconductor. Except for the CAR, there
also exists local Andreev reflection (LAR), where the hole is
reflected into the same terminal. The CAR process usually
competes with the LAR one. To split a Cooper pair efficiently,
the LAR process has to be suppressed.

Up to now, many proposals have been put forward to realize
the splitting of Cooper pairs [3–18] for its promising appli-
cations in quantum communication and quantum computing
[9,21,22]. For example, some Cooper-pair splitters have been
theoretically proposed in the system by coupling a supercon-
ductor with quantum dots [9,11,12], carbon nanotubes [13,14],
Luttinger liquid wires [15], and graphene [16–18]. On the
experimental sides [23–25], the Cooper-pair splitters have
been realized in the system by coupling a superconductor with
two quantum dots, where a central superconducting finger
is connected with two quantum dots and each quantum dot
is coupled with a metallic lead. In the Coulomb blockade
regime, the electrons in a Cooper pair can tunnel into different
leads coherently from the superconductor, and the LAR
process can be considerably suppressed by tuning the energy
levels of the quantum dots. However, in this Cooper-pair
splitter, the LAR process cannot be completely suppressed,
and thus the entangled electrons are not spatially separated
completely [7]. Furthermore, to improve the efficiency of the
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CAR process, the parameters, such as the bias and the gate
voltage of the quantum dots, have to be accurate. It may be
difficult for experimental implementation of the Cooper-pair
splitter.

Recently, due to the emergence of topological insulators and
Majorana fermion, some Cooper-pair splitters are proposed
based on the hybrid system of the superconductor and the
topological insulators or the Majorana fermion [7,26–30].
For example, in a two-dimensional (2D) topological insulator-
superconductor-2D topological insulator junction, an all-
electric Cooper-pair splitter was proposed by Reinthaler et al.
[30]. James et al. [7] proposed an exclusive CAR device
by inducing superconductivity on a AIII class topological
insulator wire which supports two topological phases with
one or two Majorana fermion end states. In the phase with
two Majorana fermions, the LAR is completely suppressed at
the normal lead/topological superconductor interface at zero
bias, resulting in correlated and spin-polarized currents in the
leads.

However, all of the previous Cooper-pair splitters have
several disadvantages. Since the incoming electron and the
outgoing hole in the CAR process locate in spatially separated
terminals, the width L of the central superconductor is required
to be less than the superconducting coherent length ξ , and
the CAR coefficient would decay quickly to zero when
L > ξ . Typically, the LAR also occurs inevitably, in which
the outgoing hole comes back to the same terminal as the
incoming electron. In many Cooper-pair splitters, the LAR is
usually much larger than the CAR and the efficiency of the
Cooper-pair splitting is quite low. Furthermore, many Cooper-
pair splitters are too elaborate to be realized experimentally.
They can work only under certain special parameters and are
usually not robust against disorders and impurities, which
exist inevitably in the experiments. As a result, the CAR
process is strongly suppressed and the Cooper-pair splitting
efficiency is very low. Here we also notice that very recently,
Zhang et al. proposed a Cooper-pair splitter based on a
quantum anomalous Hall insulator (QAHI) [31]. Due to the
unidirectionality of the chiral edge states in the QAHI, the
LAR can be suppressed completely and only the CAR occurs
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in the QAHI-superconductor-QAHI junction. Consequently,
this QAHI-based Cooper-pair splitter can be very efficient
and be robust against the disorders and can work even if the
size of the superconductor electrode is much larger than the
superconducting coherent length. However, it is very difficult
to fabricate the QAHI in the experiment, although the QAHI
has been successfully realized in the magnetic topological
insulator with the temperature being at the order of mK [32,33].
Therefore, it is an urgent task to propose a Cooper-pair splitter
which is of high efficiency and is robust against the disorder
and works in large-superconductor size.

Graphene is a 2D material with a unique band structure
[34,35]. Electrons in graphene exhibit relativisticlike behavior
near the Dirac point. One of the peculiar properties of
graphene is the half integer quantum Hall effect with the
chiral edge states. In this paper, we investigate the electron
transport through a three-terminal graphene/superconductor
system and propose a robust Cooper-pair splitter with the
aid of the chiral edge states in the quantum Hall system. In
general, the quantum Hall effect and the superconductivity
are mutually exclusive because the former phenomenon exists
in the presence of strong magnetic field, whereas the latter
one will be destroyed by the strong magnetic field. However,
with modern progress in materials science, the quantum Hall
effect can be observed at a much smaller magnetic field, which
ensures the possibility of coexistence of the quantum Hall
effect and the superconductivity [36–40]. For example, both
the quantum Hall effect and the superconductivity have been
successfully realized in the junction which consists of the 2D
electron gas and the Nb compounds, where the 2D electron
gas with high mobility possesses the quantum Hall regime
under sufficiently small magnetic field and the Nb compounds
have a high critical magnetic field [38]. The coexistence
of the quantum Hall effect and the superconductivity has
also been observed in the graphene/superconductor hybrid
system [39].

By using the tight-binding model and the nonequilibrium
Green’s function method, we obtain expressions of Andreev
reflection coefficients and normal transmission coefficients
under different magnetic fields. In strong magnetic field, the
chiral edge states form in the graphene, and the electrons
(holes) can be reflected unidirectionally as the holes (electrons)
at the interface between the graphene and the superconductor.
Because of the unidirectionality of the chiral edge states,
the outgoing hole will be transmitted to the other graphene
terminal and only the CAR occurs, as shown in Fig. 1(a).

FIG. 1. Schematic diagram for three-terminal hybrid system
of (a) graphene/superconductor and (b) two-dimensional electron
gas/superconductor. The red lines denote the edge states due to the
strong magnetic field B. With the aid of the unidirectional chiral edge
states, the Cooper pairs in the superconductor lead can be split into
two separated terminals.

FIG. 2. Andreev reflection coefficients TA versus incident energy
ω for the graphene/superconductor hybrid system at φ = 0.003.
Due to the chiral edge states, the exclusive CAR coefficient T13A

is very large, with the other Andreev reflection coefficients being
prohibited. The parameters are listed as follows: the Dirac point
energy E0 = −5�, the width of the graphene nanoribbon N = 50,
the length of the central region L = 30, the size of the covered area
of the superconductor M = 15, the coupling strength between the
graphene and the superconductor tc = t , and the disorder strength
W = 0.

Notice that the LAR happens only if the outgoing hole is
scattered from one edge of the graphene to the other edge.
In the quantum Hall regime, the scattering between the two
edges is almost impossible, and hence the LAR is completely
inhibited and an exclusive CAR emerges. Figure 2 shows the
main results in this paper, where only the CAR coefficient T13A

has large value and the other Andreev reflection coefficients
are almost zero. As a result, this device can serve as a robust
Cooper-pair splitter with high efficiency. This Cooper-pair
splitter can be very robust against the disorder. As long as the
chiral edge states are present, the Cooper-pair splitter can work
well. Furthermore, it works well even when the width L of the
superconductor is larger than the superconducting coherent
length ξ and the width L breaks through the size limitation
of previous Cooper-pair splitters. In addition, the exclusive
CAR process, with the LAR being completely suppressed,
can hold for a wide range of system parameters, such as the
width of the graphene nanoribbon, the coupling between the
superconductor, and the graphene. Finally, a 2D electron gas
is considered instead of the graphene and similar results are
obtained due to the emergence of the chiral edge states, which
are induced by external magnetic field [see Fig. 1 (b)].

The rest of the paper is constructed as follows. In Sec. II,
the theoretical model is presented and the expressions of the
normal transmission coefficients and the Andreev reflection
coefficients are derived. In Sec. III, we numerically investigate
the transmission coefficient, the CAR coefficient, and the LAR
coefficient and discuss the characteristics of the proposed
Cooper-pair splitter in the graphene/superconductor hybrid
system. In Sec. IV, we change the Dirac point of the graphene
to demonstrate the regime of the CAR and the LAR. Finally, the
results are summarized in Sec. V. The Cooper-pair splitter in
the 2D electron gas/superconductor hybrid system is presented
in the Appendix.
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II. MODEL AND FORMULISM

We consider a three-terminal system by coupling a zigzag
edged graphene nanoribbon with a superconductor lead [as
shown in Fig. 1(a)]. The central region with width N and
length L, as labeled by the rectangular area in Fig. 1(a), is
partly covered by the superconductor lead. The covered region
is described by width M and length L with 2M(2L − 1) carbon
atoms. In Fig. 1(a), it shows a system with N = 5, L = 7, and
M = 2.

The Hamiltonian of the system is

H = HG + HS + HC, (1)

where HG, HS, and HC are the Hamiltonians of the graphene
nanoribbon, the superconductor lead, and the coupling be-
tween them, respectively. In the tight-binding representation,
HG is [41,42]

HG =
∑
i,σ

Eia
†
iσ aiσ −

∑
〈ij〉,σ

teiφij a
†
iσ ajσ , (2)

where a
†
iσ and aiσ are the creation and annihilation operators

at the discrete site i, and Ei = E0 + ωi denotes the on-site
energy. E0 is the Dirac point energy which can be controlled
experimentally by gate voltage and ωi is the on-site disor-
dered energy. In the experiment, disorder and impurity exist
inevitably. The disorder in graphene p-n junction can result in
several extra conductance plateaus [42–44]. Furthermore, the
charge puddle disorder has been confirmed in the graphene by
recent experiments [45,46]. Here we consider that the disorder
exists only in the central scattering region. ωi = 0 at the left
and right graphene terminals, while for the central region, ωi is
uniformly distributed in the range [−W/2,W/2], with W being
the disorder strength. The second term in HG describes the
nearest-neighbor hopping. Because of a uniform perpendicular
magnetic field on the graphene nanoribbon, a phase φij is

added in the hopping element and φij = ∫ j

i
�A · d�l/φ0 with the

vector potential �A = (−By,0,0) and φ0 = �/e. Note that in
the superconductor lead and the covered graphene region, no
magnetic field exists due to the Meissner effect and φij = 0 in
these regions.

As for the superconductor lead, we consider the BCS
Hamiltonian and HS is

HS =
∑
k,σ

εkb
†
kσ bkσ +

∑
k

(�b
†
k↑b

†
−k↓ + �b−k↓bk↑), (3)

where � is the superconductor gap and b
†
kσ (bkσ ) is the

creation (annihilation) operator in the superconductor lead
with momentum k = (kx,ky). The coupling between the super-
conductor and the graphene is described by the Hamiltonian

HC =
∑
i,σ

tca
†
iσ biσ + H·c·, (4)

where biσ is the annihilation operator at site i and biσ =∑
k eik·ri bkσ . Here ri is the position of the ith carbon atom

in real space and tc is the coupling parameter between the
superconductor and the graphene.

By using the nonequilibrium Green’s function method, we
can obtain the normal transmission coefficient Tnm(m�=n)N , the

CAR coefficient Tnm(m�=n)A, and the LAR coefficient Tnm(m=n)A

between the graphene terminals m = 1,3 and n = 1,3 [47–49],

T σ
nm(m�=n)N (ω) = Tr[Gr�n,σ Ga�m,σ ], (5)

T σ
nmA(ω) = Tr[Gr�n,σ̄ Ga�m,σ ], (6)

where σ represents spin-up electron (↑) and spin-down hole
(↓) in the 2 × 2 Nambu space and σ̄ =↑ (↓) for σ =↓ (↑).
Since the Pauli matrices σx,y,z are commutative with the
Hamiltonian H , the transmission coefficient and the Andreev
reflection one satisfy T

↑
nmN = T

↓
nmN and T

↑
nmA = T

↓
nmA, and we

ignore the superscript “σ =↑ , ↓” in the following for repre-
sentation simplicity. T13N (T31N ) represents normal tunneling
possibility from terminal 3 (terminal 1) to terminal 1 (terminal
3). The LAR coefficient TmmA (CAR coefficient Tnm(m�=n)A)
is the probability of an electron coming from the graphene
terminal-m and getting Andreev reflected as a hole into the
same terminal-m (different terminal-n). The linewidth function
�n(ω) ≡ i[	r

n − (	r
n)†] and 	r

n(ω) is the retarded self-energy
due to the coupling between the central region and the terminal
n. Gr(a)(ω) is the retarded (advanced) Green’s function of the
central region in the Nambu space, and Gr (ω) = [Ga(ω)]† =
[ωI − HC − ∑

n=1,2,3 	r
n(ω)]−1, with HC being the Hamilto-

nian matrix for the central region. For the self-energies 	r
1(3)(ω)

of the left and right leads, we have 	r
1(3),ij (ω) = tgr

1(3),ij (ω)t ,
where gr

1(3),ij (ω) is the surface Green’s function of terminal
1 (terminal 3), which can be numerically calculated [50].
For the self-energy of the superconductor terminal, we have
	r

2,ij (ω) = tcgr
2,ij (ω)tc and gr

2,ij (ω) is [47]

gr
2,ij (ω) = −iπρβ(ω)J0(kF |ri − rj |)

⊗ (
1 �/ω

�/ω 1

)
, (7)

where ρ represents normal density of states for the supercon-
ductor and J0(kF |ri − rj |) is the 0th-order Bessel function,
with kF being the Fermi wave vector. β(ω) = −iω/

√
�2 − ω2

for |ω| < � and β(ω) = |ω|/√ω2 − �2 for |ω| > � [47–49].
For simplicity, we assume that J0(kF |ri − rj |) = 1 for i = j

and otherwise J0(kF |ri − rj |) = 0 for i �= j . This assumption

is reasonable because kF is usually in the order of Å
−1

. After
this assumption, the superconductor lead seems to be made up
of one-dimensional wires and each carbon atom in the central
region connects independently with a superconductor, which
has been assumed in Ref. [51]. Then Eq.(7) can be reduced as

gr
2,ij (ω) = −iπρβ(ω)δij

⊗ (
1 �/ω

�/ω 1

)
. (8)

By employing these transmission coefficients, the current
flowing from terminal 3 into the central region can be obtained
straightforwardly [47,52]:

I3 = 2e

h

∫
dω{ T23N (f3+ − f2) + T13N (f3+ − f1+)

+T13A(f3+ − f1−) + T33A(f3+ − f3−)}. (9)

Here fα±(ω) = 1/{ exp[(ω ∓ eVα)/kBT ] + 1} is the Fermi
distribution function for the terminal α, with the temperature
T and the bias Vα . The bias of the superconductor lead V2 is
set to zero.
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In the following numerical calculations, we set the hop-
ping energy t = 2.75 eV, the nearest-neighbor carbon-carbon
distance a = 0.142 nm, and the superconductor gap � =
1 meV. The magnetic field B is expressed in terms of
φ ≡ (3

√
3/4)a2B/φ0 and (3

√
3/2)a2B is the magnetic flux in

the honeycomb lattice. In the presence of disorder, the curves
are averaged over 500 random configurations.

III. THREE-TERMINAL GRAPHENE/SUPERCONDUCTOR
HYBRID SYSTEM

We first study the electron transport properties of the
graphene/superconductor hybrid system under different mag-
netic fields. Figure 3 shows the Andreev reflection coefficients
TA and the normal transmission coefficients TN versus the
energy ω of the incident electron. In the absence of a magnetic
field (φ = 0) or for a weak magnetic field (φ = 0.0005 and
0.001), both the LAR process and the CAR one can occur for
the incident electron from terminal 1 or from terminal 3 [see
Figs. 3(a)–3(d)]. The LAR coefficients T11A and T33A can be
quite large, and the CAR coefficients T31A and T13A are rela-
tively small when the energy ω is within the superconductor
gap, i.e., |ω| < �. Both the LAR and the CAR coefficients
decay quickly when ω is beyond the superconductor gap,
which is similar to usual normal-superconductor junction [53].
The normal transmission coefficients T13N and T31N are large
when |ω| < � and are decreased when |ω| > �, because
the tunneling from the graphene to the superconductor can
happen when |ω| > �. When the magnetic field is gradually
increased to φ = 0.003, one notices the following features.
(i) For the incident electron from terminal 1, the Andreev
reflection coefficients T11A and T31A are gradually declined to
zero, and the normal transmission coefficient T31N is gradually
increased to one [see Figs. 3(a), 3(c), and 3(e)]. This indicates
that the electrons tunnel directly from terminal 1 into terminal
3 without being Andreev reflected by the superconductor.

FIG. 3. Andreev reflection coefficients TA and normal trans-
mission coefficients TN versus incident energy ω for the
graphene/superconductor hybrid system under different magnetic
fields φ. The other parameters are the same as those of Fig. 2.

(ii) For the incident electron from terminal 3, the LAR
coefficient T33A is shrunk to zero and the CAR coefficient T13A

is increased to a remarkable value [see Figs. 3(b) and 3(d)], and
T13A + T13N = 1 when |ω| < � [see Figs. 3(b) and 3(f)]. This
implies that when the electrons encounter the superconductor,
they get Andreev reflected and no backscattering occurs. It
should be mentioned that the corresponding magnetic field B

is about 75 T when φ = 0.003. Since the width of the graphene
nanoribbon in Fig. 3 is very narrow [when N = 50, the width
is about (3N − 1)a ≈ 21 nm], the magnetic field should be
sufficiently strong so that the quantum Hall effect could appear,
while for a wide graphene nanoribbon, the magnetic field can
be much weaker.

Now we explain the numerical results in Fig. 3. In the
weak or zero magnetic field, the wave function of the incident
electron can extend over the whole bulk of the graphene
nanoribbon. When the electron encounters the superconductor,
the Andreev reflections occur at the interface of the graphene
and the superconductor and give rise to either the LAR or the
CAR. Since the Fermi energy of the superconducting lead is
EF = 0, which is far away from the Dirac point E0 = −5� of
the graphene in Fig. 3, the incident electron and the reflected
hole locate in the same band [see Fig. 8(c)]. As a result, the
Andreev retro-reflection dominates in this situation and the
LAR is more pronounced than the CAR [52]. This accounts for
the phenomenon that the LAR coefficient is much larger than
the CAR one in the weak magnetic field. While in the relatively
strong magnetic field (e.g., φ = 0.003), both the Landau levels
and the edge states form, as depicted by the red lines in Fig. 1.
In this case, the incident electron from terminal 1 transports
along the bottom red line of Fig. 1(a) and tunnels directly
into terminal 3 without encountering the superconductor.
Thus, no backscattering and Andreev reflections occur, and
T11A = T31A = 0 and T31N = 1, which equals the filling factor
ν of the Landau levels. On the other hand, the incident electron
from terminal 3 transports along the top red line of Fig. 1(a) and
will be Andreev reflected at the interface of the graphene and
the superconductor. Since the reflected hole lies in the same
band as the incident electron mentioned above and their edge
states have the same chirality, the reflected hole moves along
the same direction of the incident electron. Then only the CAR
process occurs and the LAR process is completely suppressed.
Additionally, since the normal tunneling from the graphene
into the superconductor is prohibited when the energy ω is
within the superconductor gap, and the backscattering at the
interface is also prohibited due to the chiral edge states, we
have T13A + T13N = 1 because of current conservation.

Next we study the transport properties of the
graphene/superconductor hybrid system in the regime of high
magnetic fields. In Fig. 4 we plot the Andreev reflection
coefficients TnmA and the normal transmission coefficients
T13N versus the incident energy ω for different strong magnetic
fields. The T11A, T33A, and T31A are completely suppressed
and are almost zero, and only T13A and T13N are remarkable.
In addition, T13A + T13N = 1 when ω is within the supercon-
ductor gap �. These are similar to the results of φ = 0.003
in Fig. 3. When the bias of terminal 1 is equal to that of
terminal 3, i.e., V1 = V3, the normal tunneling term T13N

does not contribute to the current [see Eq. (9)]. In the case
of small bias (|eV | < �), the tunneling from the graphene

064516-4



CROSSED ANDREEV EFFECTS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 94, 064516 (2016)

FIG. 4. (a) Andreev reflection coefficients TA and (b) transmis-
sion coefficient T13N versus incident energy ω in the regime of strong
magnetic fields φ. In panel (a), only T13A has large value; T11A, T31A,
and T33A are almost zero, and their curves overlap together and are
shown by the black bold lines. The other parameters are the same as
those of Fig. 2.

to the superconductor is also prohibited (T23N = 0) due to
the existence of the superconductor gap. Then the current in
Eq. (9) can be reduced to

I3 = (2e/h)
∫

dω{ T13A(f3+ − f1−) + T33A(f3+ − f3−)},
(10)

in which only the Andreev reflection contributes to the
current. Because T11A = T33A = 0 at strong magnetic field,
the differential conductance is G3 = dI3

dV
= 2e2

h
[T13A(eV ) +

T13A(−eV )] at zero temperature. Thus, in the regime of strong
magnetic field, an exclusive CAR T13A is obtained, with
both the LAR and the normal tunneling being completely
prohibited. Notice that since the relation T

↑
13A = T

↓
13A always

holds, and the spin-up and spin-down electrons from a Cooper-
pair transport to terminal 1 and terminal 3 randomly, the
two spatially separated electrons can keep their spin and mo-
mentum entangled. By setting the bias of the superconductor
slightly higher than one of the graphene terminals, the current
can be driven from the superconductor to the graphene, and
the Cooper pair can be split into two separated electrons which
will flow into different leads [see Fig. 1(a)]. This generates
two spatially separated electron flows with entangled spin and
momentum.

Here we emphasize that the efficiency of this Cooper-pair
splitter is very high, although the value of the CAR shows
oscillation behavior. From Eq. (10), we can define splitting
efficiency as

η =
∫

dω{T13A(f3+ − f1−)}∫
dω{T13A(f3+ − f1−) + T33A(f3+ − f3−)} . (11)

Here η describes the probability to obtain two spatially
separated electrons when a Cooper pair is split. Because the
LAR is completely suppressed with T33A = 0 in the quantum
Hall regime, the splitting efficiency η of a Cooper pair is always
100%.

Now let us study how the exclusive CAR coefficient
T13A in the graphene/superconductor system is affected by
the system parameters. Figure 5(a) shows T13A versus ω

for different length L of the central region. We find that
T13A can always reach large value by varying L from 30 to
1000. In addition, T13A oscillates with the energy ω, and the

FIG. 5. Energy-dependent CAR coefficient T13A by considering
different L (a), M (b), N (c), and tc (d) in the graphene/superconductor
hybrid system. If the parameters are not shown in the legend, they are
as follows: L = 30, N = 50, M = 15, tc = t , E0 = −5�, φ = 0.01,
and W = 0. Here T11A, T31A, and T33A are not shown in the figure
because they are all zero.

oscillation frequency is increased by increasing the length L

[54,55], because the Fabry-Pérot-like interference occurs in
this three-terminal system. In particular, for L = 1000, the
length of the central region is

√
3aL ≈ 246 nm, which is much

greater than the superconducting coherent length. However,
the CAR coefficient T13A is still very large in this case.
As compared with previously proposed Cooper-pair splitters
that the length of the central region should be less than the
superconductor coherent length ξ , we show in the present
study that the CAR process is not confined by the length L

because of the unidirectional chiral edge states. The exclusive
CAR coefficient T13A can also be quite large by changing the
width N of the graphene nanoribbon [as shown in Fig. 5(c)]. In
fact, as long as the graphene nanoribbon is wide enough so that
the top and bottom chiral edge states do not mix together, an
exclusive CAR process can always be obtained. Figures 5(b)
and 5(d) show how T13A be affected by the covered area and
the coupling strength between the superconductor and the
graphene. By varying the width M of the covered area of
the superconductor on the graphene and the coupling strength
tc, T13A can still have large value. These results show that the
exclusive CAR process in our system can hold very well in
a wide range of the system parameters, which is helpful for
experimental implementation of the Cooper-pair splitter.

Let us study the effect of the disorder on the exclusive
CAR. Here we consider the on-site Anderson disorder which
only exists in the central region. Figure 6 shows the Andreev
reflection coefficients TA and the normal transmission coef-
ficient TN versus the incident energy ω for different disorder
strengths W . By increasing the disorder strength W from 1
to 100 meV, the above coefficients are almost unaffected,
indicating that our Cooper-pair splitter is very robust. By
further increasing W to 1000 meV, the LAR coefficients T11A
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FIG. 6. TA and TN versus ω for different disorder strengths W .
The parameters are E0 = −5�, N = 50, L = 30, M = 15, tc = t ,
and φ = 0.01.

and T33A become nonzero, and the oscillation behavior of T13A

and T13N disappears. This is due to the fact that the system
goes into the diffusive regime at large disorder and the edge
states are destroyed by the disorder. Therefore, as long as the
edge states survive, the exclusive CAR T13A can persist. This
means that the exclusive CAR, i.e., the Cooper-pair splitter, is
robust owing to the quantum Hall effect.

In the Appendix, we show the electron transport properties
of a three-terminal 2D electron gas/superconductor hybrid sys-
tem and obtain similar results as the graphene/superconductor
hybrid system. Although the two systems have different band
structures and electronic behaviors, both of them can work as
a robust Cooper-pair splitter, owing to the chiral edge states
which are induced by strong magnetic field. However, in gen-
eral, the graphene/superconductor system has more advantages
as compared with the 2D electron gas/superconductor one.
This is attributed to the fact that the graphene has a unique
band structure with a linear dispersion relation near the Dirac
point, and the zeroth Landau level at the Dirac point is well
separated from the first Landau level.

IV. GRAPHENE/SUPERCONDUCTOR SYSTEM WITH
DIRAC POINT NEAR FERMI ENERGY

Let us change the Dirac point energy E0 from −5�

to −0.5� to see the interesting behavior of the LAR and
the CAR in the graphene/superconductor system. In the
experiment, the Dirac point energy can be easily tuned by the
gate voltage. At zero magnetic field, the Andreev reflection
in the graphene/superconductor interface can be divided
into the retroreflection and the specular reflection, according to
the situation that the incoming electron and the reflected hole
locate in the same bands or different ones [see Figs. 8(b) and
8(c)] [6,52,56]. When the Dirac point is near the Fermi energy,
the specular reflection is dominant. While in the presence of
the magnetic field, the movement of the reflected hole will be
changed and the results are totally different. Figure 7 shows the
Andreev reflection coefficients TA and the normal transmission
coefficients TN versus the incident electron energy ω under
different magnetic fields. Similar to the case of E0 = −5�,

FIG. 7. Andreev reflection coefficients TA and normal transmis-
sion coefficients TN versus energy ω for the graphene/superconductor
hybrid system under different magnetic fields, with the Dirac point
energy E0 = −0.5�. The other parameters are N = 50, L = 30,
M = 15, tc = t , and W = 0.

the edge states gradually form in the three-terminal system
by increasing the magnetic field and some unique properties
appear. Here we emphasize the following two facts: (i) When
|ω| > |E0| = 0.5�, the incident electron and the reflected hole
locate in different bands, i.e., the valence band (E < E0) with
negative chirality and the conduction band (E > E0) with
positive chirality [see Fig. 8(b)]. Thus, under strong magnetic
field, the direction of the unidirectional chiral edge states is
opposite for the incident electron and the reflected hole. (ii)
When |ω| < |E0|, the incident electron and the reflected hole
locate in the same band [see Fig. 8(c)], and the direction of the
chiral edge states is the same.

Now we focus on the case of high magnetic field (e.g.,
φ = 0.007) in Fig. 7. For the incident electron from terminal
1, the electron transports along the top edge state from left to
right when ω < E0 = −0.5� [see Fig. 8(a)], then it meets the
superconductor and will be Andreev reflected. The reflected
hole transports along the opposite direction as compared with

FIG. 8. (a) Schematic diagram of positive chiral edge states
(red lines) for the conduction band and negative chiral edge
states (blue lines) for the valence band in the three-terminal
graphene/superconductor system. (b),(c) Schematic view of the
specular reflection and the retroreflection in the energy space. While
in the presence of the magnetic field and the chiral edge states, the
specular reflection and the retroreflection are changed into the LAR
and the CAR, respectively.
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the incident electron. As a result, T11A is considerably large
and T31A = 0 [see Figs. 7(a) and 7(c)]. In this case, the two
electrons in the Cooper pair get into the same terminal [see
Fig. 8(a)]. When the incident energy ω is above E0, the
electron goes along the bottom edge state from left to right and
does not encounter the superconductor. Then T11A = T31A = 0
and T31N = 1, as shown in Figs. 7(a), 7(c), and 7(e). Similar
results can be obtained for the incident electron from terminal
3. When ω < E0, the electron goes along the bottom edge
state from right to left without meeting the superconductor,
and T13A = T33A = 0 and T13N = 1 [see Figs. 7(b), 7(d), and
7(f)]. When E0 < ω < −E0 [see Fig. 8(c)], both the incident
electron and the reflected hole are in the conduction band and
go along the top edge states from right to left. This corresponds
to the exclusive CAR process and T13A has large value with
T33A = 0 [see Figs. 7(b) and 7(d)]. When −E0 < ω, the
incident electron and the reflected hole are in different bands,
and only the LAR happens in the graphene/superconductor
interface. Note that in Figs. 7(a)– 7(d), the LAR and the CAR
can be separated completely by tuning the bias. Therefore,
this provides us a good way to control and investigate these
processes.

V. CONCLUSION

In summary, we investigate the electron transport in a
three-terminal graphene/superconductor hybrid system. In
high magnetic field, an exclusive crossed Andreev reflection
is obtained with the aid of the edge states in the quantum Hall
regime, with the other Andreev reflections being prohibited.
This exclusive crossed Andreev reflection can hold by varying
the size of the system and the coupling strength between the
graphene and the superconductor. In particular, it can also work
well for a large width of the central superconductor and is very
robust against the disorder. As a result, a robust Cooper-pair
splitter with high efficiency is proposed in this study. Finally,
a two-dimensional electron gas/superconductor quantum Hall
system is also considered, where similar results are obtained
due to the chiral edge states in the system.
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APPENDIX

In this appendix, we provide the electron transport prop-
erties of a three-terminal system, which is composed of a
2D electron gas nanoribbon and a superconductor lead [see
Fig. 1(b)]. In the tight-binding representation, the Hamiltonian
of the 2D electron gas nanoribbon is

HEG =
∑
i,σ

Eia
†
iσ aiσ −

∑
〈ij〉,σ

teiφij a
†
iσ ajσ . (A1)

FIG. 9. Andreev reflection coefficients TA and normal transmis-
sion coefficients TN versus incident energy ω for a 2D electron
gas/superconductor system under different magnetic fields. The
parameters are Eb = −0.02t , N = 100, L = 50, M = 20, tc = 0.03t ,
and W = 0.

Here t = �
2

2ma2 is the kinetic energy, Ei = Eb + 4t + wi with
Eb the bottom of the conduction band, and the magnetic field
is described by the magnetic flux φ in a square lattice. The
Hamiltonians of the superconductor and the coupling between
the superconductor and the electron gas are the same as
Eqs. (3) and (4), respectively. Then the Andreev reflection
coefficients TA and the normal transmission coefficients TN

can be calculated from Eqs. (5) and (6). In the numerical
calculation, we set the superconductor gap � = t/200, the

FIG. 10. T13A versus ω for different φ (a), L (b), tc (c), and W (d)
in the electron gas/superconductor hybrid system, with Eb = −0.02t ,
N = 100, and M = 20. The other parameters are (a) L = 50, tc =
0.03t , and W = 0; (b) tc = 0.03t , φ = 0.005, and W = 0; (c) L = 50,
φ = 0.005, and W = 0; and (d) L = 50, tc = 0.03t , and φ = 0.01.
T11A, T31A, and T33A are almost zero, so they are not shown in the
figure.
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conduction band bottom Eb = −0.02t , and the Fermi energy
of the superconductor EF = 0.

Figure 9 shows the transport properties under different
magnetic fields. In zero or weak magnetic field, both the
LAR process and the CAR one occur [see Figs. 9(a)–9(d)].
By increasing the magnetic field to φ = 0.003, the edge states
gradually form just as the graphene-based hybrid system. Since
φ = a2B/φ0, the corresponding magnetic field B is about
0.078 T for φ = 0.003 and a = 5 nm. Due to the edge states, an
exclusive CAR T13A can be obtained, with the other Andreev
reflection coefficients T11A, T31A, and T33A being zero [see
Figs. 9(a)–9(d)]. In addition, some Hall plateaus emerge in
the curve of T31N [see Fig. 9(e)], where the plateau values are
determined by the filling factor ν of the Landau levels. This
indicates that the incident electron from terminal 1 tunnels
directly into terminal 3 without the interface scattering. With
the aid of the edge states, these results can also be well
understood. Now both the incident electron and the reflected
hole are in the conduction band and move anticlockwise along
the edge of the electron gas under high magnetic field, as
shown in Fig. 1(b). For the incident electron from terminal 3,
both the CAR T13A and the direct tunneling T13N occur. For
the incident electron from terminal 1, only the direct tunneling

T31N occurs. The LAR is completely prohibited, regardless
of the terminal where the electron is injected. Therefore, the
Cooper-pair splitter is also very efficient in the 2D electron
gas/superconductor system. In fact, as long as the edge states
form, one can always demonstrate a robust Cooper-pair splitter
in such quantum Hall systems.

Finally, we study the exclusive CAR coefficient T13A

by considering the influence of the magnetic field φ,
the length L of the central region, and the coupling
strength tc between the superconductor and the electron gas.
Figures 10(a)–10(c) show T13A under large magnetic field,
where the Hall edge states emerge in the system. It can be
seen that T13A is quite large for a wide range of the system
parameters, and the other Andreev reflection coefficients T11A,
T31A, and T33A are almost zero. Thus, the proposed Cooper-pair
splitter based on the quantum Hall chiral edge states can
work well for the large width of the central superconductor
and for a wide range of the system parameters. We also
consider the situation when the on-site energy disorder is
introduced in the central region, as illustrated in Fig. 10(d).
It is evident that T13A is very robust against the disorder. These
results are similar to the case of the graphene/superconductor
system.
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[51] R. Mélin, F. S. Bergeret, and A. Levy Yeyati, Phys. Rev. B 79,
104518 (2009).

[52] S.-G. Cheng, Y. Xing, J. Wang, and Q.-F. Sun, Phys. Rev. Lett.
103, 167003 (2009).

[53] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B
25, 4515 (1982); G. Deutscher, Rev. Mod. Phys. 77, 109 (2005).

[54] J. Cayssol, Phys. Rev. Lett. 100, 147001 (2008).
[55] J. Linder, M. Zareyan, and A. Sudbø, Phys. Rev. B 80, 014513

(2009).
[56] Y. Xing, J. Wang, and Q.-F. Sun, Phys. Rev. B 83, 205418

(2011).

064516-9

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.84.1804
http://dx.doi.org/10.1103/PhysRevLett.84.1804
http://dx.doi.org/10.1103/PhysRevLett.84.1804
http://dx.doi.org/10.1103/PhysRevLett.84.1804
http://dx.doi.org/10.1134/1.1358428
http://dx.doi.org/10.1134/1.1358428
http://dx.doi.org/10.1134/1.1358428
http://dx.doi.org/10.1134/1.1358428
http://dx.doi.org/10.1103/PhysRevLett.95.107001
http://dx.doi.org/10.1103/PhysRevLett.95.107001
http://dx.doi.org/10.1103/PhysRevLett.95.107001
http://dx.doi.org/10.1103/PhysRevLett.95.107001
http://dx.doi.org/10.1021/nl204415s
http://dx.doi.org/10.1021/nl204415s
http://dx.doi.org/10.1021/nl204415s
http://dx.doi.org/10.1021/nl204415s
http://dx.doi.org/10.1103/PhysRevB.88.165415
http://dx.doi.org/10.1103/PhysRevB.88.165415
http://dx.doi.org/10.1103/PhysRevB.88.165415
http://dx.doi.org/10.1103/PhysRevB.88.165415
http://dx.doi.org/10.1103/PhysRevB.73.233406
http://dx.doi.org/10.1103/PhysRevB.73.233406
http://dx.doi.org/10.1103/PhysRevB.73.233406
http://dx.doi.org/10.1103/PhysRevB.73.233406
http://dx.doi.org/10.1103/PhysRevLett.101.166806
http://dx.doi.org/10.1103/PhysRevLett.101.166806
http://dx.doi.org/10.1103/PhysRevLett.101.166806
http://dx.doi.org/10.1103/PhysRevLett.101.166806
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1103/PhysRevB.81.245417
http://dx.doi.org/10.1103/PhysRevB.81.245417
http://dx.doi.org/10.1103/PhysRevB.81.245417
http://dx.doi.org/10.1103/PhysRevB.81.245417
http://dx.doi.org/10.1038/nphys781
http://dx.doi.org/10.1038/nphys781
http://dx.doi.org/10.1038/nphys781
http://dx.doi.org/10.1038/nphys781
http://dx.doi.org/10.1038/nphys1365
http://dx.doi.org/10.1038/nphys1365
http://dx.doi.org/10.1038/nphys1365
http://dx.doi.org/10.1038/nphys1365
http://dx.doi.org/10.1088/0953-8984/21/34/344204
http://dx.doi.org/10.1088/0953-8984/21/34/344204
http://dx.doi.org/10.1088/0953-8984/21/34/344204
http://dx.doi.org/10.1088/0953-8984/21/34/344204
http://dx.doi.org/10.1103/PhysRevB.59.3831
http://dx.doi.org/10.1103/PhysRevB.59.3831
http://dx.doi.org/10.1103/PhysRevB.59.3831
http://dx.doi.org/10.1103/PhysRevB.59.3831
http://dx.doi.org/10.1103/PhysRevB.59.13126
http://dx.doi.org/10.1103/PhysRevB.59.13126
http://dx.doi.org/10.1103/PhysRevB.59.13126
http://dx.doi.org/10.1103/PhysRevB.59.13126
http://dx.doi.org/10.1103/PhysRevB.23.4997
http://dx.doi.org/10.1103/PhysRevB.23.4997
http://dx.doi.org/10.1103/PhysRevB.23.4997
http://dx.doi.org/10.1103/PhysRevB.23.4997
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/14/5/016
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1088/0305-4608/15/4/009
http://dx.doi.org/10.1103/PhysRevB.79.104518
http://dx.doi.org/10.1103/PhysRevB.79.104518
http://dx.doi.org/10.1103/PhysRevB.79.104518
http://dx.doi.org/10.1103/PhysRevB.79.104518
http://dx.doi.org/10.1103/PhysRevLett.103.167003
http://dx.doi.org/10.1103/PhysRevLett.103.167003
http://dx.doi.org/10.1103/PhysRevLett.103.167003
http://dx.doi.org/10.1103/PhysRevLett.103.167003
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/RevModPhys.77.109
http://dx.doi.org/10.1103/RevModPhys.77.109
http://dx.doi.org/10.1103/RevModPhys.77.109
http://dx.doi.org/10.1103/RevModPhys.77.109
http://dx.doi.org/10.1103/PhysRevLett.100.147001
http://dx.doi.org/10.1103/PhysRevLett.100.147001
http://dx.doi.org/10.1103/PhysRevLett.100.147001
http://dx.doi.org/10.1103/PhysRevLett.100.147001
http://dx.doi.org/10.1103/PhysRevB.80.014513
http://dx.doi.org/10.1103/PhysRevB.80.014513
http://dx.doi.org/10.1103/PhysRevB.80.014513
http://dx.doi.org/10.1103/PhysRevB.80.014513
http://dx.doi.org/10.1103/PhysRevB.83.205418
http://dx.doi.org/10.1103/PhysRevB.83.205418
http://dx.doi.org/10.1103/PhysRevB.83.205418
http://dx.doi.org/10.1103/PhysRevB.83.205418



