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Manifestation of chirality in the vortex lattice in a two-dimensional topological superconductor
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We study the vortex lattice in a two-dimensional s-wave topological superconductor with Rashba spin-
orbit coupling and Zeeman field by solving the Bogoliubov-de Gennes equations self-consistently for the
superconducting order parameter. We find that when spin-orbit coupling is relatively weak, one of the two
underlying chiralities in the topological superconducting state can be strongly manifest in the vortex core
structure and govern the response of the system to vorticity and a nonmagnetic impurity where the vortex is
pinned. The Majorana zero mode in the vortex core is found to be robust against the nonmagnetic impurity in
that it remains effectively a zero-energy bound state regardless of the impurity potential strength and the major
chirality. The spin polarization of the Majorana bound state depends on the major chirality for weak spin-orbit
coupling, while it is determined simply by the vorticity when spin-orbit coupling is relatively strong.
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I. INTRODUCTION

One of the most promising models proposed so far for
platforms to realize topological quantum computation is the
two-dimensional (2D) s-wave topological superconductivity
(TSC) model with Rashba spin-orbit (SO) coupling and
Zeeman field [1–5]. Sato, Takahashi, and Fujimoto have
proposed the tight-binding model [1,2] that can describe
an s-wave superfluid of ultracold fermionic atoms in an
optical lattice, where an effective SO interaction can be
generated by spatially varying laser fields, or 2D s-wave TSC
in a solid device. Such TSC can be realized, as proposed
by Sau et al. in terms of the continuum model [3], in a
semiconductor heterostructure, where a semiconductor with
Rashba SO coupling is sandwiched between a conventional
s-wave superconductor and a ferromagnetic insulator. While
s-wave superconductivity is induced by the proximity effect,
the ferromagnetic insulator can generate Zeeman coupling via
exchange interactions, thus affecting only the spin degree
of freedom in the semiconductor. A vortex in the model
hosts a zero-energy Majorana bound state [3,6] and hence
vortices in a 2D s-wave topological superconductor obey
non-Abelian exchange statistics, like those in chiral p-wave
superconductors [7–11].

Inherent in the 2D s-wave TSC model are the two chiralities,
∼sin kx ± i sin ky in the tight-binding model [12,13] or kx ±
iky in the continuum model [4,14,15] (also for |k| � 1 in the
tight-binding model), where k = (kx,ky) is the wave vector.
The noninteracting Fermi surface is split sideways by the
Rashba SO interaction, which causes winding of spin as one
goes around each Fermi surface [16], and the Zeeman field per-
pendicular to the 2D system favors one spin component along
its direction over the other, resulting in two separate bands.
With large enough Zeeman splitting and the chemical potential
in the gap between the two bands, the system has a single Fermi
surface on which spin is fixed for each k and thus becomes
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effectively spinless—condition required for TSC that can sup-
port Majorana zero modes [5]. Although the Fermi surface has
a certain chirality (spin winding), in principle the two intrinsic
chiralities are always present in a 2D s-wave TSC state [15].

It is known that in a spin-triplet chiral p-wave supercon-
ductor, vortices in the px + ipy and px − ipy states, which
are degenerate at zero field, are not equivalent [17,18]. The
free energy is lower and the upper critical field is higher
when the vorticity, i.e., the angular momentum carried by the
supercurrent, is antiparallel to the chirality, i.e., the angular
momentum of Cooper pairs in the condensate [18]. Moreover,
bound states in such an antiparallel vortex are more robust
against nonmagnetic impurities due to cancellation of angular
momenta between the supercurrent and the condensate; which
makes the vortex core region s-wave-like and allows the
Anderson theorem [19] to take effect [20,21]. Most notably, in
each of the chirality domains, the order parameter of the other
chirality is induced around the vortex center, more prominently
for lower applied field [17,18].

The effects of nonmagnetic impurities on vortex bound
states in a 2D s-wave topological superconductor, depending
on the major chirality with respect to the vorticity, have been
studied recently for a single vortex in the continuum model [3]
by means of a Green-function technique for calculating the
impurity self-energy [22,23]. It has been found that when the
major chirality is opposite to the vorticity, vortex bound states
are less influenced by nonmagnetic impurities for relatively
weak SO coupling, compared to the case where the major
chirality is in the same direction as the vorticity. As to spinless
px ± ipy superconducting states per se, Ivanov has stated that
though with slightly different structure of the quasiparticle
eigenfunctions, the two types of vortices have the same low-
energy spectra and braiding statistics [9].

Volovik has studied the effects of a single nonmagnetic
impurity in a spinful chiral p-wave superconductor, where
Cooper pairs have a definite angular momentum, using
quasiclassical theory [24] and has found that the Majorana
zero mode in the vortex core is not affected by a nonmagnetic
impurity. The robustness of the Majorana fermion at zero
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energy has also been shown for a coreless vortex in an
“antidot” on the surface of a disordered three-dimensional
(3D) topological insulator [25], where superconductivity is
induced by proximity to a superconducting film with a circular
hole with radius larger than the coherence length and the
mean free path. Such a 3D TSC state is in the symplectic
class of AII, where the topological invariant belongs to
Z2, and the system has no particle-hole symmetry and is
odd under time reversal [26]. It is intriguing to study the
effects of a nonmagnetic impurity in a 2D s-wave topological
superconductor in the presence of vortices, which belongs to
symmetry class D and has particle-hole symmetry, but no
time-reversal symmetry [26]. In this system there exist two
underlying chiralities (px ± ipy in the continuum model) and
the effective (spinless) p-wave nature of the system varies
depending on the material parameters.

The purpose of the present work is to examine the effects
of the two chiralities inherently present in 2D s-wave TSC
states on vortex structure, by solving the Bogoliubov-de
Gennes (BdG) equations [27] on the tight-binding model
of Sato, Takahashi, and Fujimoto [1,2] self-consistently for
the superconducting order parameter in the vortex lattice.
The tight-binding model is versatile and useful for modeling
real systems in that band structure and the filling factor can
easily be incorporated in terms of hopping amplitudes and
chemical potential. We assume that the 2D system has Rashba
SO coupling and a pairing interaction that drives s-wave
superconductivity or superfluidity, and is under Zeeman field,
e.g., generated by proximity to a ferromagnetic insulator in
a heterostructure. Our model is applicable to systems such
as s-wave superfluids of fermionic atoms created by s-wave
Feshbach resonance in an optical lattice [1], one-atom-layer
TI-Pb on Si(111) [28], and ionic-liquid based electronic
double-layer transistors [29,30].

Solving the BdG equations for TSC has high numerical
demand as the dimension of the BdG Hamiltonian matrix is
four times the total number of lattice sites, and also the system
area needs to be large enough to sustain two vortices that are
well separated to have a pair of isolated Majorana fermions as
vortex bound states. Thus, the conventional way of solving the
BdG equations by direct diagonalization is not feasible. We
utilize the Chebyshev polynomial expansion method [31,32]
for solving for the order parameter self-consistently, as well
as calculating the local density of states (LDOS) after self-
consistency has been achieved. Furthermore, we use the
numerically efficient algorithm developed by Sakurai and

Sugiura [33,34] to obtain quasiparticle spectra within an
energy window of one’s choice.

The paper is organized as follows. The model is described
in Sec. II, results are presented and discussed in Sec. III, and
the work is summarized in Sec. IV.

II. MODEL

We use the tight-binding model for a 2D s-wave topological
superconductor [1,2,35]:

H =
∑
〈ij〉σ

tij c
†
iσ cjσ +

∑
iσ

(−μ + Vi)c
†
iσ ciσ

−h
∑

i

(c†i↑ci↑ − c
†
i↓ci↓)

+ α

2

[∑
i

(c†i−x̂↓ci↑ − c
†
i+x̂↓ci↑)

+ i(c†i−ŷ↓ci↑ − c
†
i+ŷ↓ci↑) + H.c.

]

+
∑

i

(�ic
†
i↑c

†
i↓ + H.c.) , (1)

where we consider hopping among nearest-neighbor lattice
sites 〈ij 〉 only with the hopping amplitude tij ≡ −t , μ is
the chemical potential, Vi is the single-particle potential due
to a nonmagnetic impurity at site i, h is the Zeeman field,
α > 0 is the Rashba SO coupling strength, �i is the s-wave
superconducting order parameter at site i, and H.c. stands for
the Hermitian conjugate. We set the lattice constant to be unity,
and x̂ and ŷ are the unit vectors in the x and y directions. c

†
iσ

and ciσ creates and annihilates, respectively, the electron at
site i with spin σ (=↑ , ↓). We solve the BdG equations with
the Hamiltonian (1) and solve for the order parameter {�i}
self-consistently for a given coupling constant for the pairing
interaction, Ui ≡ U :

�i = U 〈ci↓ci↑〉. (2)

When the system has translational symmetry, the real-
space Hamiltonian in Eq. (1) can be Fourier transformed to
momentum space and written as [2]

H = 1

2

∑
k

�
†
kH(k)�k , (3)

where �k = (ck↑ ck↓ c
†
−k↑ c

†
−k↓)T and

H(k) =
(

ε(k) − hσz + αL(k) · σ i�(k)σy

−i�(k)∗σy −ε(k) + hσz + αL(k) · σ ∗

)
. (4)

Here c
†
kσ and ckσ are the creation and annihilation op-

erators of the electron with momentum k = (kx,ky) and
spin σ , ε(k) = −2t(cos kx + cos ky) − μ, L(k) ≡ (Lx,Ly) =
(sin ky,−sin kx), and σ ≡ (σx,σy) and σz are the Pauli
matrices. The above Hamiltonian in momentum space
can be diagonalized to obtain the quasiparticle spectrum

as

E±(k) =
√

ε(k)2 + α2|L(k)|2 + h2 + |�|2 ± 2ξ (k) , (5)

where ξ (k) =
√

ε(k)2α2|L(k)|2 + (ε(k)2 + |�|2)h2 and we
have assumed an isotropic s-wave order parameter, �(k) ≡ �.
Depending on the values of μ, h, and �, the system can be in a
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trivial or nontrivial (Abelian or non-Abelian) topological phase
according to the first Chern number or the Thouless-Kohmoto-
Nightingale-Nijs (TKNN) number [36], which we denote as
ν, as classified for four different band regions in Ref. [2]. The
topological invariant ν ∈ Z [26] can be calculated by [37–39]

ν = 1

8π2

∫
dkdω

[
Tr

(
G∂kx

G−1G∂ky
G−1G∂ωG−1

)
− Tr

(
G∂ky

G−1G∂kx
G−1G∂ωG−1

)]
, (6)

where G = (iω − H(k))−1. The spectral gap E0 is the min-
imum value of E±(k) in Eq. (5) and, e.g., as h is varied
for a given set of α, μ, and �, the system transitions from
one topological (trivial or nontrivial) phase to another every
time E0 vanishes. The system is in Abelian and non-Abelian
phase when ν is even and odd, respectively (−2 and ±1 in
this model), and in trivial phase when ν = 0. Achieving non-
Abelian phase with ν = −1 in most of the band region −2t <

μ � 2t would require relatively large Zeeman field [2,40] and
accordingly large values of α and/or |U | that may be unrealistic
for actual materials in order to overcome the Pauli depairing
effect. Thus, in this work we focus on non-Abelian states with
ν = ±1 in the band regions μ � −2t and μ > 2t , where [2]

(4t − |μ|)2 + �2 < h2 < μ2 + �2 ; ν = 1 , (7)

μ2 + �2 < h2 < (4t + |μ|)2 + �2 ; ν = −1 . (8)

The vortex lattice is formed by uniform magnetic field
applied in the +z direction, H = Hẑ. The electron wave
function acquires the Peierls phase factor while traversing from
site j to i (coordinate from rj to r i) due to the associated vector
potential so that the hopping amplitude is modified as

tij exp

[
i

e

�c

∫ rj

r i

d r · A(r)

]
, (9)

where the vector potential A(r) = (H × r)/2 in the symmetric
gauge. To ensure obtaining Majorana fermions that come in
pairs as a solution to the BdG equations [13,41], we place two
vortices in our system that is the vortex unit cell, i.e., two flux
quanta within the system area. The field strength is controlled
by the system size as H = 2φ0/NxNy with φ0 = hc/2e, where
Nx and Ny are the number of lattice sites in the x and y

directions. For the results presented below, we impose the
periodic boundary condition for the vortex lattice [42,43] such
that there is one vortex in the center of a square lattice and a
quarter vortex at each of the four corners centered right outside
the corner site, e.g., at (x,y) = (1/2,1/2). For all the results
shown, an odd number of lattice sites Nx = Ny has been used
so that the vortex inside the system is centered at the center
site of the square lattice. We have used the convention that the
electron charge is negative (e > 0) and hence the quasiparticle
bound states carry the angular momentum of −� about the
vortex center. The phase winding of the order parameter is
referred to as the vorticity (−1 in our calculation) hereafter.

To study the effects of nonmagnetic impurities, we place a
single nonmagnetic impurity with potential Vi ≡ Vimp at the
center site of the system. This is where one of the vortices
is centered at, which is a reasonable assumption as a vortex
tends to be pinned by an impurity or a defect in real materials,

and Vimp can be thought of as a pinning potential. We stop
self-consistent iterations for the order parameter at the lth
iteration step, when the order parameter as a complex vector
�� of length NxNy satisfies

‖ ��(l) − ��(l−1)‖
‖ ��(l−1)‖ < δ , (10)

where we set δ = 10−6. We have found that results do not
change with tighter convergence criteria with δ as small as
10−10.

The energy spectrum (5) depends only on the magnitude
of the Zeeman field h and so the phase transition between
different topological phases is independent of the sign of
h. In a given topological phase, however, which one of the

two underlying chiralities, η± ≡ −(Lx ± iLy)/
√
L2

x + L2
y =

±i(sin kx ± i sin ky)/
√

sin2kx + sin2ky [12,13], is more man-
ifest is determined by the sign of h [44] as well as the sign of
μ [2]. This can be seen by expressing H(k) in the “chirality
basis” that diagonalizes the normal-state Hamiltonian ε(k) −
hσz + αL(k) · σ [2]:

H̃(k) =
(

ε(k) + �ε(k)σz �̂

�̂† −ε(k) − �ε(k)σz

)
, (11)

where �ε(k) = sgn(h)
√

α2|L(k)|2 + h2 and

�̂ = 1

�ε(k)

(−α|L(k)|η+�(k) h�(k)
−h�(k) −α|L(k)|η−�(k)

)
. (12)

In the normal state, the eigenspectrum in Eq. (5) reduces to
E±(k) = ε(k) ± �ε(k), where sgn(h) in �ε(k) is necessary
for obtaining the correct eigenvalues and eigenfunctions as
can be seen by taking the limit α → 0. We note that this
factor is missing in the discussion of the chirality basis in
Ref. [2] where h was supposed to be positive. It can be seen
in Eq. (12) that the intraband pairing in the band E+ (E−) has
the chirality of η+ (η−), while the interband pairing is purely s

wave. This is analogous to the two chiralities px ± ipy present
in the non-Abelian phase of the continuum model [4,15].
Although orbital angular momentum is not a good quantum
number in the presence of SO coupling, it has been found in
Ref. [15] that when α is small enough, the average angular
momentum carried by a Cooper pair can be close to −� in
non-Abelian states dominated by px − ipy , as in chiral p-wave
superconductors.

We illustrate in Fig. 1 for μ = −3.5t and α = t the two
cases, (a) h = t and (b) h = −t , where the normal-state Fermi
surface is formed by E− and E+, respectively. This value
of α is small enough so that the respective chirality, η− and
η+, associated with the Fermi surface can be dominant over
the other, as discussed in Sec. III A for μ = 3.5t (where
the dominant chirality is η+ and η−, respectively, for h = t

and h = −t). Due to the interband pairing, however, both
chiralities are present in a TSC state in general. We will
demonstrate in Secs. III A and III C that for relatively weak
SO coupling, vortex structure and effects of a nonmagnetic
impurity can be influenced strongly by one of the chiralities η+
and η−, which we call the chirality of +1 and −1, respectively,
in the remainder of the paper.
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(a)

(b)

FIG. 1. Electron (solid curves) and hole (dashed curves) bands
±E± in the normal state for μ = −3.5t , α = t , and ky = 0 as a
function of kx for (a) h = t and (b) h = −t , where the Fermi surface
is formed by E− (orange curve) and E+ (blue curve), respectively.
The interband (intraband) pairing is represented by �(s) (�(p±ip)

corresponding to chiralities η±).

The major chirality in a non-Abelian TSC state stems from
the chirality (spin winding) of the single Fermi surface in the
normal state [2,4,15]. The latter is +1 for μ > 0, h > 0 and
μ < 0, h < 0, and −1 for μ > 0, h < 0 and μ < 0, h > 0:
The first and second μ < 0 combinations correspond to the
convention used in the continuum model in Refs. [22,23] and
Ref. [15], respectively. In the case of a trivial TSC state,
the chirality of the dominant one of the two Fermi surfaces
can manifest itself. The TKNN number ν reverses its sign
under h → −h, whereas it does not under μ → −μ. Whether
trivial or nontrivial, the underlying chirality in the TSC
state—rather than the TKNN number itself—governs how the
system responds to vorticity and nonmagnetic impurities in
the presence of a vortex.

III. RESULTS

A. Chirality vs vorticity

We have studied the vortex lattice states for a wide variety
of parameter sets (μ, α, h, U and the resulting bulk order
parameter � and spectral gap E0) within our tight-binding
model (1), in particular exploring the effects of the strength
of SO coupling α and the sign of the Zeeman field h. We find
that for α � t the sign of h hardly makes any difference in a

240 280 320 360 400
Index

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

E/
t

h = 1.5t
h = -1.5t

51x51: μ = -3t, U = -5.5t, α = 1.5t

FIG. 2. Quasiparticle excitation spectra for h = 1.5t (red plus)
and h = −1.5t (blue cross) in the vortex lattice in a pure 51 × 51
system for μ = −3t , U = −5.5t , α = 1.5t . The index numbers the
eigenvalues.

pure vortex lattice state (i.e., with no impurity). The converged
order parameter, the excitation spectrum, and the ground-state
energy are practically the same for positive and negative h

in the absence of impurity. We will discuss the influence of
chirality on the vortex structure that can be apparent even in a
pure system for relatively small α in Sec. III C.

In Fig. 2 we show the quasiparticle spectra for h = ±1.5t

in the vortex lattice in a pure 51 × 51-site system for μ = −3t ,
α = 1.5t , and U = −5.5t (� � 0.5t , E0 � 0.33t , and ν = 1),
where the abscissa is an index numbering the discrete eigenval-
ues. The major change caused by reversal of the Zeeman field
while keeping all other parameters the same is the average
numbers of spin-up and spin-down electrons in the system
being interchanged. Accordingly, the overall magnitude of the
spin-up and spin-down probability amplitudes of the Majorana
bound state (and low-energy quasiparticle excitations) in each
vortex core changes when the sign of h is flipped: e.g., if
the spin-up component of a Majorana is dominant over the
spin-down component for a given h, then vice versa for −h.
Other than this, the overall structure of each of the spin-up
and spin-down Majorana wave functions is little affected by
the direction of the Zeeman field. It is just barely discernible
in Fig. 2 that the first excited state has a slightly lower energy
for h = −1.5t than for h = 1.5t . We find that the opposite is
true for positive μ, though the difference tends to be very
small. The Majorana bound-state energy is ∼0.0003t and
∼0.0002t , respectively, for h = 1.5t and h = −1.5t in this
example. These energy levels are not exactly zero due to
nonzero overlap of the Majorana wave functions bound to
nearest-neighbor vortices on the finite lattice. To demonstrate
that they are indeed Majorana bound states, the minimum
eigenvalue |E| in units of the bulk spectral gap E0 is plotted in
Fig. 3 as a function of the distance between nearest-neighbor
vortices for Nx = Ny = 31, 41, 51, 55, and 61; for the two
systems shown in Fig. 2 and for μ = 3.5t , α = t , h = ±0.8t ,
and U = −4.855t (� � 0.37t , E0 � 0.18t , and ν = 1). It can
be seen that the minimum eigenvalue approaches zero as the
system size increases.
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FIG. 3. Minimum quasiparticle energy as a function of the
distance between nearest-neighbor vortices d = Nx/

√
2 for Nx =

Ny = 31, 41, 51, 55, and 61.

Presented in Fig. 4 is the magnitude of the converged
order parameter �(ix,iy) of the vortex lattice in a 41 × 41-site
system for μ = 3.5t , U = −5.25t , α = t , h = −t (� � 0.37t

and ν = 1) as a function of x ≡ ix and y ≡ iy coordinates;
with (a) no impurity and (b) a single nonmagnetic impurity
with potential Vimp = −2t at the center of the lattice, where
one of the vortices is centered at. The contour projection of
the order parameter magnitude onto the xy plane is in steps of
0.05t . For this value of α, the vortex structure in a pure system
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41x41: μ = 3.5t, U = −5.25t, α = t, h = −t

(a) Vimp = 0
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FIG. 4. Order parameter of the vortex lattice in a 41 × 41-site
system for μ = 3.5t , U = −5.25t , α = t , and h = −t , with (a)
Vimp = 0 and (b) Vimp = −2t at the lattice center.
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41x41: μ = 3.5t, U = -5.25t, α = t, h = t
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(a) Spin Up

(b) Spin Down

FIG. 5. (a) Spin-up and (b) spin-down components of the LDOS
as a function of quasiparticle energy at the center of the 41 × 41 vortex
lattice for μ = 3.5t , U = −5.25t , α = t , and h = t ; for Vimp = −2t

(red solid curves) and Vimp = 0 (green dashed curves).

barely depends on the sign of h, and |�(ix,iy)| for h = +t is
very similar to the one shown in Fig. 4(a) for h = −t . In the
presence of a nonmagnetic impurity, however, one of the two
chiralities can manifest itself in the vortex core structure. For
Vimp = −2t , while the vortex structure of the order parameter
does not change much from the pure case for h = +t (not
shown), it can be seen clearly in Fig. 4(b) that for h = −t ,
the vortex core shrinks in comparison to the no-impurity case
shown in Fig. 4(a).

The LDOS at the vortex center (where the nonmagnetic
impurity is placed at) is plotted as a function of quasiparticle
energy in Fig. 6 for the system presented in Fig. 4 and in Fig. 5
for the same system but for h = +t , where the (a) spin-up
and (b) spin-down components of the LDOS are compared
between Vimp = 0 and −2t . The Lorentz kernel [31,45] has
been used for calculation of the LDOS with the corresponding
Lorentzian smoothing width of 0.0005t . The number of terms
summed over in the Chebyshev polynomial expansion of the
Green function components for the LDOS is 3000, while
the cutoff of 2000 terms was used for the order parameter.
The bulk spectral gap in this system (irrespective of the sign
of h) is E0 � 0.26t . We first note that the Majorana bound
state is dominated by its spin-down component at the vortex
center for both h = ±t [Figs. 5(b) and 6(b)]. It turns out to be
always the case for α � t that spin of the Majorana zero mode
is dominantly down at the vortex center, regardless of the sign
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FIG. 6. Same as Fig. 5, but for h = −t .

of the Zeeman field or the chemical potential. As mentioned
above in regard to the Zeeman field, one spin component can
be dominant over the other in a Majorana for a given h and
μ, and the dominance is reversed under the change h → −h,
or μ → −μ. Whether up spin or down spin is dominant in
the wave function overall, spin of the Majorana bound state is
mostly down at the vortex center for α � t .

This spin polarization at the vortex center is consistent with
the findings of Ref. [46], where Majorana bound states in a
three-dimensional topological superconductor with spin-orbit
coupling have been found to be spin-polarized in a vortex core.
Assuming circular symmetry around the vortex center, the
spin-up and spin-down wave functions are given by the Bessel
function of the first kind, Jn(r) and Jn−1(r), respectively, where
n and n − 1 are the orbital angular momentum carried by the
spin-up and spin-down components of a quasiparticle, for the
chirality of +1 [46]. The Majorana bound state has either
n = 0 or n = 1, whichever yields the lowest (zero) energy,
depending on the vorticity. In Ref. [46] the vorticity of +1 was
used that resulted in the Majorana wave function dominated
by its spin-up component in the vortex core.

It can be seen in Fig. 5 that both spin-up and spin-down
(Majorana) bound-state energies are hardly affected by the
impurity for h = +t . This can be understood in terms of the
major chirality being +1: the angular momentum +� carried
by Cooper pairs in the condensate is mostly canceled by the
angular momentum −� carried by the supercurrent, making
the system effectively s-wave-like in the vortex core region.
In contrast, the spin-up (non-Majorana) bound-state energies
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FIG. 7. Excitation spectra in the 41 × 41 vortex lattice for μ =
3.5t , U = −5.25t , α = t , comparing the cases with Vimp = 0 (red
plus) and Vimp = −2t (blue cross) at a vortex center for (a) h = t and
(b) h = −t . The index numbers the eigenvalues.

are shifted substantially by the presence of the impurity for
h = −t [Fig. 6(a)], where the chirality has the same sign as
the vorticity. Also in this case, however, the Majorana bound
state is robust in that its energy is unchanged, albeit with
reduced amplitude at the impurity site [Fig. 6(b)].

Figures 7(a) and 7(b) show the quasiparticle spectra for
the systems presented in Figs. 5 and 6, respectively. It can be
seen that even for h = t , the first excited state is pushed up in
energy though slightly, resulting in an increased minigap, by
the nonmagnetic impurity at the vortex center. Note that each
energy level is doubly degenerate as there are two vortices in
the lattice, though numerically not exactly as the two vortices
are not equivalent: Only one of them has its center in the
system, where we place a single nonmagnetic impurity, hence
shifting the energy of only one of the two states (in each level).
The only perceptible change caused by the impurity for h = t

is the small shift of the first excited level, and this is reflected
in the LDOS in Fig. 5(a) as the slight shift in the peak position.
For h = −t , on the other hand, the first few excited states are
affected by the impurity, and this results in the substantial shift
of the bound-state peak in the LDOS at the vortex center, as
can be seen in Fig. 6(a).

For both signs of h, the energy of the Majorana bound
state remains practically the same (∼0.001t on the 41 × 41
lattice) with or without the impurity. This turns out to be
the case also for stronger impurity potential, or stronger
spin-orbit coupling as discussed in Sec. III B, where the vortex
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bound states are significantly affected by the impurity for
h > 0 as well as for h < 0. We also find that the minigap
is increased by the presence of a nonmagnetic impurity at
the vortex center, regardless of the (nonzero) magnitude, or
the sign of the potential—in case of a positive potential,
as long as the magnitude is large enough so that the order
parameter is suppressed at the impurity site in the absence
of vortices. The order parameter can be enhanced at the
impurity site for a relatively weak, positive potential [47,48],
and the BdG equations tend to have difficulty converging when
such an impurity is placed at the vortex center, especially for
h > 0 presumably due to competition between the dominant
chirality and the vorticity. By including a Gaussian impurity
potential in the core of a single vortex in the continuum
model [3], the authors of Ref. [49] showed that the minigap
simply increased continuously as the magnitude of the positive
Gaussian potential was increased from zero. This result may
have been possible because these authors did not solve the
BdG equations self-consistently for the vortex state within the
topological superconductor.

B. Strong SO coupling

For the systems studied in the previous subsection, the
chemical potential μ = 3.5t is fairly close to the top of the
band and also the SO coupling constant α = t is relatively
small so that the Fermi surface in the normal state is nearly
perfectly circular. This means that the system has rotational
symmetry to a good approximation and the difference between
the two intrinsic chiralities can be apparent in vortex states.
In this subsection, we examine a case where the chemical
potential is far away enough from the top or bottom of the
band and/or SO coupling is relatively strong so that the Fermi
surface is nowhere close to having circular symmetry. For this
purpose we use μ = −2t and α = h = 2.5t . The normal-state
Fermi surface E− is shown in Fig. 8, which is centered at (π,π )
like the Fermi surface (E+) for μ = 3.5t and α = h = t (not
shown). One can see that a large portion of this Fermi surface
is almost flat and perpendicular to the directions ky = ±kx .

The converged order parameter for μ = −2t , α = 2.5t ,
and U = −8t (� � 0.67t , E0 � 0.39t , and ν = −1) in the

FIG. 8. Normal-state Fermi surface E− for μ = −2t , α = 2.5t

and h = 2.5t as a function of kx and ky .
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FIG. 9. Order parameter of the vortex lattice in a 41 × 41-site
system for μ = −2t , U = −8t , α = 2.5t , and Vimp = −2t at the
lattice center, for (a) h = 2.5t and (b) h = −2.5t . Contour projection
in steps of 0.05t .

41 × 41 vortex lattice with Vimp = −2t at the center of the
system is shown in Fig. 9 for (a) h = 2.5t and (b) h = −2.5t .
The contour projection onto the xy plane is again in steps of
0.05t . It can be seen that the vortex core size is not much
different for the positive and negative h in this case: It also
turns out that it does not change much from the pure case
(Vimp = 0) for either sign of h. Furthermore, in contrast to the
results for μ = 3.5t , α = t , and h = −t in Fig. 4, the contour
projection shows that the order parameter has more squarelike
symmetry rather than circular about the vortex center. We note
that it is more so for negative h than positive h, and even in the
μ = 3.5t result for h = −t shown in Fig. 4 the order parameter
has square symmetry (45◦ rotated with respect to the xy axes)
very close to the vortex center.

Figures 10 and 11 present the (a) spin-up and (b) spin-down
components of the LDOS at the vortex center as a function
of quasiparticle energy for the systems shown in Fig. 9, in
comparison with the pure case. The influence of the impurity is
visible for both h = ±2.5t , with some energy shifts for spin-up
quasiparticles. In fact, vortex bound states are more affected
by the impurity for positive h than for negative h: the shift of
the spin-up LDOS peak for h = 2.5t is a reflection of the first
excited state moved up in energy from ∼0.11t to ∼0.21t , thus
increasing the minigap by about 0.1t . Interestingly, unlike the
results for μ = 3.5t , α = t , and h = ±t in Figs. 5 and 6, the
Majorana bound state for h = 2.5t and some of the spin-up
bound states for h = −2.5t become more bound to the vortex
center by the presence of the impurity. Yet, the energy of
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FIG. 10. (a) Spin-up and (b) spin-down components of the LDOS
as a function of quasiparticle energy at the vortex center for the system
presented in Fig. 9(a) for h = 2.5t (red solid curves) in comparison
with the pure case (green dashed curves).
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FIG. 11. Same as Fig. 10, but for h = −2.5t .
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FIG. 12. Particle (left column) and hole (right column) probabil-
ity amplitudes of the Majorana bound state for the system shown
in Fig. 10 for h = 2.5t ; for spin up (a),(b) and spin down (c),(d) for
Vimp = 0, and for spin up (e),(f) and spin down (g),(h) for Vimp = −2t .

the Majorana bound state (�0.003t in this example) is barely
changed by the impurity for both signs of h.

We show in Figs. 12 and 13 the Majorana wave functions
for the systems presented in Figs. 10 and 11, respectively.
In each of Figs. 12 and 13, the spin-up (a) particle and (b)
hole probability amplitudes and the spin-down (c) particle and
(d) hole probability amplitudes for Vimp = 0 are plotted as a
function of x and y coordinates for the entire 41 × 41-site
system. Respective probability amplitudes are plotted for
Vimp = −2t in (e) and (f), and (g) and (h). We first note that
the particle and hole probability amplitudes in a given spin
component are practically identical for all the cases shown,
as expected for a Majorana fermion. Fourfold-symmetric
extension of the wave functions can be discerned especially for
the spin-up components (and the spin-down components for
h = −2.5t and Vimp = −2t), reflecting ky = ±kx in the Fermi
wave vector. The bound-state energy for this finite-size system
being slightly higher than the counterpart for μ = 3.5t , α = t ,
and h = ±t mentioned at the end of Sec. III A can be attributed
to the nonzero overlap of the Majorana wave functions among
the nearest-neighbor vortices.
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FIG. 13. Same as Fig. 12, but for h = −2.5t .

Masaki and Kato have found [22,23] in terms of the
continuum model [3] that for weak SO coupling, vortex bound
states are more robust against nonmagnetic impurities when
the chirality is opposite to the vorticity, compared to the case
where the chirality and vorticity are in the same direction,
and that this difference between the two chiralities diminishes
as SO coupling is made stronger. They have also found that
the scattering rates of zero-energy bound states are very small
regardless of the major chirality and the strength of SO cou-
pling [23]. Our results, though only with a single nonmagnetic
impurity at the vortex center, are consistent with their findings.

C. Weak SO coupling

In this subsection, we illustrate that when SO coupling is
relatively weak, vortex structure can be markedly different for
the two opposite directions of the Zeeman field even in a pure
vortex state. It has been found in Ref. [15] that the weaker the
SO coupling, the closer the average angular momentum per
Cooper pair to −� in the (px − ipy)-dominated states. Thus,
in terms of the direction of the Zeeman field (or alternatively
the external field applied to create the vortex lattice) one can
make one of the two intrinsic chiralities strongly manifest in
the vortex core structure.

Shown in Fig. 14 is the order parameter in the pure 51 × 51
vortex lattice for μ = 3.5t , α = 0.5t , and U = −6.33t (� �
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FIG. 14. Order parameter of the vortex lattice in a pure 51 × 51-
site system for μ = 3.5t , U = −6.33t , and α = 0.5t ; for (a) h = t

and (b) h = −t . Contour projection in steps of 0.05t .

0.48t , E0 � 0.21t , and ν = 1); for (a) h = t and (b) h = −t .
Compared with the order parameter for μ = 3.5t and α = t

shown in Fig. 4(a) (for h = −t , but it is very similar to the
order parameter for h = t), it can be seen in Fig. 14(a) that for
h = t , the coherence length in the sense of a recovery length
of the order parameter from the vortex center to the bulk value
is much larger for α = 0.5t than α = t . Note that the system
size, namely, the size of the unit cell of the vortex lattice is
41 × 41 and 51 × 51, respectively, in Figs. 4(a) and 14(a).
In fact, we have tried the coupling constant of U = −6.255t

for α = 0.5t that yields a similar bulk order parameter as for
α = t ; however, the coherence (recovery) length in this case
is so large that there is substantial overlap of vortex cores and
it is not useful for comparison of the vortex structure with the
α = t case.

Striking is the difference between the α = 0.5t and α = t

cases for h = −t [Figs. 14(b) vs 4(b)] and also between
positive and negative h in Figs. 14(a) and 14(b). As can
be seen in Fig. 14(b), for h = −t as the order parameter
tends toward zero at the vortex center, it oscillates and is
enhanced slightly around the vortex center. At first glance, this
is reminiscent of the px + ipy order parameter induced in the
vortex core with vorticity +1 in the px − ipy domain of a chiral
p-wave superconductor [18]. In our calculation, however, the
vorticity is −1 and thus parallel to the major chirality for
h = −t . Moreover, we only have the superconducting order
parameter stemming from spin-singlet s-wave pairing, and the
enlargement of the vortex core for h = t and the enhancement
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FIG. 15. Quasiparticle spectra for h = t (red plus) and h = −t

(blue cross) in the pure 51 × 51 vortex lattice for μ = 3.5t , U =
−6.33t , and α = 0.5t . The index numbers the eigenvalues.

around the vortex center for h = −t are happening within the
same s-wave order parameter. Both underlying chiralities ±1
are always present and mixed except for α � t [15], and it
is not clear as to whether there is a way to define a unique
order parameter for each of the two chiralities separately.
It is apparent nonetheless that some extra order is induced
in the h = −t system inside the vortex core, increasing the
superconducting order somewhat.

The suppression and enhancement of the order parameter
around the vortex center for h = t and h = −t , respectively,
seen in Figs. 14(a) and 14(b) are reflected in the quasiparticle
spectra presented in Fig. 15. One can see that the first
few excited levels of the vortex bound states are higher for
h = −t than for h = t , with the minigap of ∼0.04t and
0.03t , respectively (∼0.05t for α = t for both h = ±t). By
comparison, the Majorana bound-state energy is not much
different between h = −t (∼0.001t) and h = t (∼0.0006t).
The ground-state energy of the system and equivalently the
average energy gain per electron are also hardly different for
h = t and h = −t . Björnson and Black-Schaffer have solved
the BdG equations on the Hamiltonian (1) self-consistently
(without the vector potential) for a vortex in a square lattice
with open boundaries and have also found asymmetry in
low-energy spectra between positive and negative h for a given
vorticity for α ≈ 0.5t [50].

The Majorana wave functions are shown in Fig. 16 for
the above two systems; where the spin-up (a) particle and
(b) hole probability amplitudes and the spin-down (c) particle
and (d) hole probability amplitudes for h = t , and respective
probability amplitudes for h = −t in (e) and (f), and (g) and
(h), are plotted as a function of x and y coordinates for the
entire 51 × 51 lattice. Once again, the particle (left column)
and hole (right column) probability amplitudes are virtually
identical in each spin component. For h = t , the bound-state
peak of the spin-down component is strongly localized at the
vortex center [(c) and (d)], while the spin-up component,
though much smaller in magnitude, extends substantially
outside the core region [(a) and (b)].
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FIG. 16. Particle (left column) and hole (right column) probabil-
ity amplitudes of the Majorana bound state for the systems shown in
Figs. 14 and 15; for spin up (a),(b) and spin down (c),(d) for h = t ,
and for spin up (e),(f) and spin down (g),(h) for h = −t .

Remarkably, the spin-down probability amplitudes are not
peaked at the vortex center for h = −t , as clearly visible in
Figs. 16(g) and 16(h). They are peaked at surrounding sites
and though small in magnitude, have substantial extension
outside the vortex core. The spin-up amplitudes are a little
more confined: They are also suppressed right at the vortex
center, although it is not discernible in Figs. 16(e) and 16(f).
Furthermore, the spin-up amplitudes are one order of mag-
nitude larger than the spin-down amplitudes, contrary to the
h = t case as well as the systems in Figs. 12 and 13 with
strong SO coupling. The LDOS at the vortex center as a
function of quasiparticle energy shown in Fig. 17(b) confirms
the absence of the spin-down Majorana component at the
vortex center for h = −t , in stark contrast to the examples
shown in Figs. 5, 6, 10, and 11, as well as the LDOS for h = t

in Fig. 17(a). The peak in the spin-up LDOS for h = −t seen
in Fig. 17(b) corresponds to the first excited state (the minigap
at ∼0.04t).

Placing a nonmagnetic impurity at the vortex center can
enhance the unusual structure of the vortex core for h = −t .
This is illustrated in Fig. 18, where the order parameter is
shown for the systems analogous to those presented in Fig. 14,
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FIG. 17. Spin-up (red solid curves) and spin-down (blue dashed
curves) components of the LDOS as a function of quasiparticle energy
at the vortex center for the systems presented in Fig. 16.

but with Vimp = −2t at the center of the 41 × 41 vortex lattice,
for (a) h = t and (b) h = −t . For h = t , compared to the
pure system (with 41 × 41 lattice sites), the size of the vortex
core is little changed by the nonmagnetic impurity, while its
shape is modified slightly. For h = −t , on the other hand, the
enhancement of the order parameter around the vortex center
is exaggerated by the presence of the impurity so much that
the order parameter at its peaks is significantly larger than the
bulk value.

Finally, we demonstrate the manifestation of chirality in the
vortex lattice in the trivial phase. Shitade and Nagai [15] have
found in the (px − ipy)-dominated states that when α � t ,
the average angular momentum per Cooper pair can be close
to −� already in the trivial phase as h(>0) approaches the
critical value for the phase transition from the trivial to non-
Abelian phase. We present in Fig. 19 the order parameter in the
pure 41 × 41 vortex lattice for μ = 3.5t , α = 0.5t , and U =
−4.66t , for (a) h = 0.5t and (b) h = −0.5t . These systems
are in the trivial phase with ν = 0. The coupling constant
U has been chosen so as to make the bulk order parameter
(� � 0.48t) similar to that in the non-Abelian systems for μ =
3.5t , α = 0.5t , and h = ±t discussed above. It can be seen in
Figs. 19(a) and 19(b) that the suppression and enhancement
of the order parameter around the vortex center for h > 0
and h < 0, respectively, are more substantial than in the non-
Abelian systems shown in Figs. 14(a) and 14(b). This signifies
the fact that the angular momentum carried by Cooper pairs
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FIG. 18. Order parameter of the 41 × 41 vortex lattice with
Vimp = −2t at the center site for μ = 3.5t , U = −6.33t , and α =
0.5t ; for (a) h = t and (b) h = −t . Contour projection in steps of
0.05t .

governs vortex core structure, even though the current TSC
model can be mapped onto a spinless p-wave superconductor
with chiralities ±1 only in the nontrivial phase [2].

D. Minigap

We show in Fig. 20 the quasiparticle spectra for μ = 3.5t

and α = t in the pure 51 × 51 vortex lattice; for h = −t (red
plus), h = −0.9t (blue cross), and h = −0.8t (magenta star).
The coupling constant has been chosen to be U = −4.855t

and U = −5.05t , respectively, for h = −0.8t and h = −0.9t

so that the bulk order parameter � ≈ 0.37t as for h = −t

(U = −5.25t). The bulk spectral gap (independent of the sign
of h) is E0 � 0.18t , E0 � 0.27t , and E0 � 0.26t for h = 0.8t ,
h = 0.9t , and h = t , respectively. As mentioned in relation to
Fig. 2 in Sec. III A, μ > 0 in these systems and the minigap is
larger for h < 0 than for h > 0 by a very small amount (of the
order of 10−3t). The minigap is 0.065t , 0.058t , and 0.054t ,
respectively, for h = −0.8t , h = −0.9t , and h = −t .

For these and other systems we have examined, we have
not found any direct correlation between the minigap and the
bulk order parameter nor the spectral gap. In this particular
example (also for h > 0), simply the smaller the |h|, the larger
the minigap. The formula for the minigap for s-wave or chiral
p-wave superconductors, ∼�/kF ξ ∼ �E0/k2

F , where kF is
the magnitude of the Fermi wave vector and ξ is the coherence
length [27,51], has been used in the literature for the s-wave
TSC model with Rashba SO coupling and Zeeman field. For
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FIG. 19. Order parameter of the vortex lattice in a pure 41 × 41
system in trivial phase for μ = 3.5t , U = −4.66t , and α = 0.5t ; for
(a) h = 0.5t and (b) h = −0.5t . Contour projection in steps of 0.05t .

a given α and h, E0 is determined uniquely from Eq. (5)
once � is fixed. However, kF also depends on α and h. Thus,
it is unclear as to whether this common formula applies to
the minigap in s-wave TSC vortices with the two inherent
chiralities.

As discussed at the end of Sec. III A, the minigap is
increased by a nonmagnetic impurity which the vortex is
pinned by, and the increase in the minigap can be substantial as

300 400
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FIG. 20. Quasiparticle spectra for μ = 3.5t and α = t in a pure
51 × 51 vortex lattice. U has been chosen so that � is roughly the
same for different values of h. The index numbers the eigenvalues.

illustrated in Figs. 6 and 10, depending on the major chirality
and the strength of SO coupling. The larger the minigap, the
shorter the minimum time required for braiding operation of
vortices to avoid nonadiabatic transitions of the Majorana zero
mode to excited states [23]. Therefore, further exploration
of the effects of α and h on the minigap, especially in the
presence of a nonmagnetic impurity in the vortex core, is of
great interest from the application point of view for topological
quantum computation.

IV. CONCLUSIONS

In summary, we have performed a self-consistent study
of the vortex lattice in a two-dimensional topological
superconductor with an s-wave pairing interaction, Rashba
spin-orbit coupling, and Zeeman field. When a vortex is
pinned at a nonmagnetic impurity, one of the two intrinsic
chiralities in the non-Abelian topological superconducting
state can manifest itself in the vortex structure and affect the
low-energy excitation spectrum for relatively weak spin-orbit
coupling. One can make one chirality dominant over the
other by changing the direction of the Zeeman field, or
alternatively, the sign of the chemical potential. In such states,
(non-Majorana) vortex bound states are less influenced by the
impurity if the dominant chirality is opposite to the vorticity,
compared to the case where it is in the same direction as
the vorticity. For stronger spin-orbit coupling, where orbital
angular momentum is less of a “good quantum number,”
low-energy spectra tend to be more affected by the impurity
regardless of the direction of the Zeeman field. The Majorana
zero mode effectively remains a zero-energy bound state, and
its spin is polarized according to the vorticity unless spin-orbit
coupling is rather weak, in which case the spin polarization
depends on the major chirality as well.

We have shown in Sec. III C that when spin-orbit coupling
is weak, the vortex core structure can be strikingly different for
the two directions of the Zeeman field: The order parameter is
suppressed and enhanced around the vortex center when the
major chirality is antiparallel and parallel, respectively, to the
vorticity. We have demonstrated this phenomenon not only in
non-Abelian topological phase, but also in trivial phase where
the TKNN number is zero. The major chirality in such a trivial
TSC state is the chirality of the dominant (or single) Fermi
surface. The enhancement of the order parameter implies
some extra superconducting order being induced. This occurs,
however, in the vortex core region where the chirality and the
vorticity are in the same direction, and appears to be counter-
intuitive in view of the vortex physics in spin-triplet px ± ipy

superconductors. Moreover, it is not immediately obvious how
to map out chirality-based order parameters [15,52] from the
sole order parameter in the model that is of s-wave pairing
symmetry. The chiral nature of 2D s-wave TSC states and
the role that the angular momentum carried by Cooper pairs
plays in determining various properties of the system are to be
explored in further detail in a future publication.

Finally, the suppression (the enlargement of the vortex
core) and enhancement of the self-consistent order parameter
around the vortex center will be reflected in the supercurrent
and hence the field distribution in the vortex core area.
Thus, particularly in a 2D s-wave topological superconductor
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where spin-orbit coupling is relatively weak, manifestation
of different chiralities can be detected by probing the field
distribution in the vortex lattice, e.g., by NMR and by
switching the direction of the applied magnetic field.
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