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Skyrmion-induced bound states in a superconductor
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We consider a superconductor proximity coupled to a two-dimensional ferromagnetic film with a skyrmion
texture. Using the T-matrix calculations and numerical modeling we calculate the spin-polarized local density of
states in the superconductor in the vicinity of the skyrmion. We predict the skyrmion bound states that are induced
in the superconductor, similar to the well-known Yu-Shiba-Rusinov states. The bound-state wave functions have
spatial power-law decay. It is suggested that superconductivity could facilitate an effective long-range interaction
between skyrmions when bound-state wave functions overlap.
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I. INTRODUCTION

Skyrmions, topological particle-like configurations of a
continuous vector field, were originally proposed in the context
of high-energy physics [1]. Nevertheless, it was suggested
theoretically [2,3] and recently confirmed experimentally
[4–8] that skyrmions exist in chiral ferromagnets in the
presence of the Dzyaloshinkii-Moriya interaction. Due to non-
trivial topological properties, skyrmions manifest anomalous
transport response to temperature gradients [9] and electric
field [10–12]. Recently, the Hamburg group demonstrated
a controllable writing and deleting of single skyrmions on
the surface of the PdFe bilayer [13–15]. Skyrmions hold a
great promise in applications such as spintronics, memory
devices, etc. [16,17]. For example, interplay of a magnetic
skyrmion and a topological insulator was recently considered
in Ref. [18]. Coupling of magnetic films with skyrmions to
novel materials may produce new functionalities in hybrid
devices not available in the constituent materials taken sepa-
rately.

In parallel, there has been a significant interest in
superconductor-ferromagnet (SC-FM) heterostructures aimed
at engineering topological superconductors [19,20]. Discovery
of the topological superconductivity would entail existence of
the Majorana edge modes necessary for realizing topolog-
ical quantum computing [21]. Motivated by the interest in
skyrmions as well as SC-FM heterostructures we connect the
two fields in the current work.

Below, we consider a FM film with a skyrmion proximity
coupled to SC as shown in Fig. 1. We search for the states in
SC localized around a skyrmion in a series of approximations.
First, consider a limit of a small skyrmion, i.e., R � ξsc.
In this case, the approximation of the skyrmion field as
a point magnetic moment is valid. Using this simplified
model, we perform an analytical T-matrix calculation and
find that skyrmion induces a bound state in the SC in a
close analogy with the well-known Yu-Shiba-Rusinov (YSR)
states [22–25]. The bound state induces a resonance with
a finite spectral width in a spin-polarized local density of
states (SP LDOS). In contrast with the conventional YSR
states, which are short-range, the skyrmion bound state is a
long-range state with a power-law decay. Therefore, in the

presence of multiple skyrmions, the SC could mediate an
effective long-range interaction between the skyrmions [26]
when the bound-state wave functions overlap. Subsequently,
we relax the requirement R � ξsc and calculate the LDOS
and wave functions for R ∼ ξsc numerically. We find that
the bound-state peak in the density of states is populated by
the multiple quasilocalized states corresponding to different
angular momenta.

We also note that a few earlier papers have considered
skyrmions in the context of superconductivity to some extent.
Reference [27] studied the skyrmion-like solitons in the multi-
band superfluids and SCs. Paper [28] discussed a possibility
of realizing a topological SC using a skyrmion lattice. The
Josephson current through a magnetic skyrmion structure
was considered in Ref. [29]. None of the papers to date
have addressed the conceptually simplest case of interaction
between a single skyrmion and SC. This is the subject of the
present paper.

II. MODEL: S-WAVE SUPERCONDUCTOR PROXIMITY
COUPLED TO A FERROMAGNETIC FILM WITH A

SKYRMION

Consider a FM film with the magnetization described by
a three-dimensional vector S(r) = (Sx,Sy,Sz) dependent on
a two-dimensional (2D) spatial coordinate r = (x,y). The
topological configurations of the field S(r) shown in Figs. 1(a)
and 1(b) are referred to as skyrmions. Depending on a specific
FM material, two distinct types of skyrmions are observed
in experiment: the Néel (hedgehog) skyrmion and Bloch
(spiral) skyrmion shown in Figs. 1(a) and 1(b), respectively.
Although the two types of skyrmions differ significantly in the
orientation of the in-plane spins both are characterized by the
same topological charge

Q = 1

4π

∫
d2r Ŝ · (∇x Ŝ × ∇y Ŝ) = 1, Ŝ = S

S
. (1)

Thus, one can transform a Néel skyrmion into a Bloch
skyrmion by a π/2 rotation [30] of the FM vector around
the ẑ axis in the spin space without a change in the topological
charge (1).
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FIG. 1. (a), (b) System under consideration: ferromagnetic (FM)
film with a skyrmion proximity coupled to a superconductor (SC).
(a) Néel-type skyrmion. (b) Bloch-type skyrmion. (c) Sketch of an
approximation of a skyrmion as a local magnetic moment floating in
a “ferromagnetic sea.”

Let us consider a heterostructure of a SC and FM with a
skyrmion as shown in Figs. 1(a) and 1(b). The SC is described
by the 4 × 4 Bogoliubov–de Gennes (BdG) Hamiltonian

H = ξ ( p)τz + �τx − S(r) · σ , (2)

ξ ( p) = p2

2m
− μ, p = −i(∇x,∇y). (3)

Here, ξ ( p) describes the kinetic energy and � the self-
consistent superconducting gap, which we assume uniform
in space; the term S(r) · σ describes the proximity coupling
between the FM film and SC. We assume that the Zeeman
splitting S(r) does not exceed the Chandrasekhar-Clogston
limit and S < �. We also neglect the possible orbital effect
of the magnetic field onto the superconductor [31]. The Pauli
matrices τ and σ act, respectively, in the particle-hole and spin
subspaces of the four-component spinor � = (ψ↑,ψ↓,ψ

†
↓, −

ψ
†
↑)T . At this point, we do not include the effects of the

spin-orbit coupling or spin-triplet superconductivity [30] in
the model (2). We consider a case with a single Néel skyrmion
centered at the origin, i.e., at r = 0, and, so, assume the
following profile of the FM vector:

S(r) = S[cos φ(r) sin θ (r), sin φ(r) sin θ (r), cos θ (r)],
(4)

φ(r) = arctan(y/x), θ (r) = π

[
1 − exp

(
− r2

R2

)]
,

where R defines an effective radius of the skyrmion [32]. Let
us compare the relevant spatial scales of the problem: the SC
coherence length ξsc ≈ vF /�, the skyrmion radius R, and the
Fermi length p−1

F . Both the scales ξsc and R can vary from tens
of nanometers to a micron depending on a specific material,
whereas the Fermi length p−1

F is typically smaller than the

other two scales. In the regime R � ξsc, the skyrmion can be
viewed as a large FM domain pointing in the direction opposite
to the rest of the system. Such a regime could be interesting
in the context of topological SCs [19]. For instance, it was
recently shown [33–35] that a helical texture of spins in a
one-dimensional (1D) chain of magnetic atoms on a surface of
a SC generates an effective Rashba-like spin-orbit interaction
responsible for the Majorana edge modes. Similar effective
spin-orbit interaction is generated near a skyrmion and could
give rise to nontrivial edge states localized at the edge of
the skyrmion. We leave the discussion of this case for future
works [36]. In the current paper, we focus on the case of
relatively small skyrmions, i.e., R � ξsc.

III. MULTIPOLE EXPANSION OF THE SKYRMION
TEXTURE

Let us first consider the case of a small skyrmion, i.e.,
R � ξsc. In this limit, the superconductivity cannot “resolve”
the fine details of the field S(r). We perform the multipole
expansion of the skyrmion configuration (4) and approximate
it as a point magnetic moment floating in a “ferromagnetic
sea” as illustrated in Fig. 1(c):

Sapprox(r) = −S ẑ + S0 ẑδ2(r), (5)

where S0 is the zeroth moment of S(r),

S0 =
∫

d2r [S(r) − S(∞)]z ∼ SR2. (6)

The formal domain of validity of the multipole expansion is
R � p−1

F � ξsc [37]. The multipole expansion gives an elegant
and physically transparent description of the system, and, for
this reason, we use it even beyond the domain of validity. In the
end of the paper, we present an exact numerical modeling and
find a close agreement with a multipole analytical treatment.

By performing the T-matrix calculation, we solve the
model given by Eqs. (2) and (5), where we treat the local
term S0 ẑδ2(r) as a perturbation. We include the constant
background magnetization −S ẑ in the BdG Hamiltonian
h( p) = ξ ( p)τz + �τx + Sσz and calculate an on-site matrix
element of the bare Green’s function g(ω, p) = [ω − h( p)]−1

g0(ω) = −πρ0

∑
λ=±1

1 + λσz

2

ω − λS + �τx√
�2 − (ω − λS)2

, (7)

where ρ = m/2π is the density of states. This Green’s function
describes a SC subject to a uniform background magnetization
−ẑS that shifts the spin subbands as shown with the dashed
lines in Fig. 2. The density of states contains two interior
and two exterior coherence peaks at the energies ±(� − S)
and ±(� + S) correspondingly. Using Green’s function (7)
we calculate the T matrix in the presence of a point magnetic
moment V (r) = −S0 σzδ

2(r) representing the skyrmion

T (ω) = −S0σz

1 + S0σzg0(ω)
. (8)

The poles of the T matrix give the energies of the skyrmion-
induced bound states

E±
SBS = ±

[
S + �

1 − (πρS0)2

1 + (πρS0)2

]
. (9)
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FIG. 2. Spin-polarized local density of states (SP LDOS) of SC
away from the skyrmion (dashed) and at the skyrmion core (solid).
The color of the curves encodes the spin polarization: blue for
spin up and red for spin down as indicated by the arrows. The
figure is obtained by using a model given by Eqs. (12) and (13)
for the parameters 2S = � = 0.1μ, R = 2.5/pF , S0 = 5SR2, and
S1 = 0.5SR3.

Let us trace the bound-state energies as a function of increasing
S0, which is an implicit function of S and R according to
Eq. (6). For small S0, the bound states lie at the outer coherence
peaks at the energies ±(� + S). With further increase of S0, the
bound-state energies split from the outer coherence peak and
move to the inner coherence peaks [38]. The spin-polarization
of the bound states is determined by the spin polarization of
the bulk bands that they split from: the positive (negative)
state is “up” (“down”) spin polarized. The bound states
closely resemble the well-known Yu-Shiba-Rusinov (YSR)
states [22–25] localized around magnetic impurities in SC.
The main difference is that the YSR energies reside inside the
actual spectral gap, whereas the bound-state energies lie in the
window of energies � + S > |E±

SBS| > � − S, which is also
filled with a continuum of delocalized states of the opposite
spin polarization.

Now let us show that the bound states give resonances of
finite spectral width due to the coupling with the continuum
of delocalized states. Indeed, the skyrmion has in-plane spins
at r ≈ R that couple the spin-up and spin-down sectors of
the Hamiltonian. In order to capture this effect we append the
multipole expansion (5) with a next-order term representing
the radial in-plane spins of the skyrmion:

Sapprox(r) = −S ẑ + S0 ẑδ2(r) − S1∇δ2(r), (10)

where ∇ = (∇x,∇y) and S1 is the first moment of the original
skyrmion configuration S(r),

S1 = 1

2

∫
d2r [S(r) − S(∞)] · r ∼ SR3. (11)

In Appendix A, we solve the Lippmann-Schwinger equation
for the T matrix for Eqs. (2) and (10):

T (ω) = −S0σz + S2
1p

2
F ḡ0(ω)

1 + S0σzg0(ω) − S2
1p

2
F ḡ0(ω) g0(ω)

. (12)

Here, the Green’s function ḡ0(ω) = 1
2

∑
j=x,y σjg0(ω)σj de-

scribes the bands with opposite spin polarization σz → −σz.

Using Eq. (12) we calculate SP LDOS

ρs(ω) = − 1

π
Im Tr

×
{

1 + τz

2

1 + σs

2
[g0(ω) + g0(ω)T (ω)g0(ω)]

}
,

(13)

where s = x,y,z denotes the spin projection axis. We plot the
LDOS (13) with solid lines in Fig. 2 and compare it with LDOS
away from the skyrmion shown with dashed lines. We observe
that the peaks corresponding to the bound states have finite
spectral width. Indeed, the denominator of T matrix (12) has an
extra term compared to that of Eq. (8). The first two terms in the
denominator of (12) give the bound-state energies (9), whereas
the last term S2

1p
2
F ḡ0(ω) g0(ω) is imaginary and defines the

spectral width of the resonances observed in Fig. 2.

IV. NUMERICAL ANALYSIS

So far we have analyzed the skyrmion using the analytical
multipole approximation. Now let us present the results of an
exact numerical modeling. We set the BdG Hamiltonian on
the N × N tight-binding square lattice with parameters: the
lateral size of the system N = 200, nearest-neighbor coupling
t , on-site superconducting pairing and Zeeman coupling
� = 2S = 0.1t , and chemical potential μ = −3t . This choice
of parameters corresponds to ξsc ≈ 17a in the units of the
elementary cell constant a. The skyrmion is described by the
vector S(r) given by Eq. (4) with the effective radius R = 6a,
so that 2R ∼ ξsc. From the numerical wave functions, we
calculate SP LDOS, apply the Gaussian smoothing kernel and
plot the resulting SP LDOS in Fig. 3(a). We use the same
plotting style as in Fig. 2: the solid (dashed) line represents
LDOS at (away from) the skyrmion, whereas colors encode
spin polarizations. We observe that the calculated LDOS
is consistent with the results of the analytical calculation.
Away from the skyrmion, SP LDOS contains the shifted spin
subbands. At the skyrmion core, the skyrmion induces a strong
resonance in the energy window � − S < |ω| < � + S. In
order to further analyze the numerical wave functions ψ(r),
we also calculate the expression

Iψ = 1∑
r,j |ψj (r)|4 , (14)

where the sum is carried over all lattice sites r as well as all
components j = 1, . . . ,4 of the four-component BdG wave
function on each site. The function Iψ characterizes a degree
of a localization of the wavefunction ψ(r) [39]. The function
is small Iψ ∼ 1 for an extremely localized wave function
and large Iψ ∼ N2 for a delocalized wave function. For each
numerical BdG wave function ψ(r), we plot a map of Iψ

versus the eigenenergy in Fig. 3(b). We observe a number of
distinct quasilocalized states that stand out from the rest of
states as emphasized by the red rectangle in Fig. 3(b). These
states have the energy of the bound-state peak. The number
of the quasilocalized states grows with skyrmion size. We
visualize the spatial profile of the electron part of the BdG
wave function |�(r)|2 = |u↑(r)|2 + |u↓(r)|2 for a few of these
states in Fig. 4. In contrast with the analytical results, we find
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FIG. 3. Numerical modeling of a skyrmion. (a) Spin-polarized
LDOS at the skyrmion core (solid) and away from the skyrmion
(dashed). (b) The function Iψ characterizing a degree of localization
of each BdG wave functions ψ versus eigenenergy ω. A few of the
quasilocalized wave functions emphasized by the red rectangle are
shown in Fig. 4.

FIG. 4. Spatial profile of the quasilocalized wave functions
obtained numerically, which are indicated in Fig. 3(b). The wave
functions are shown in the order of increasing Iψ .

a wave function with multiple lobes corresponding to a higher
angular momentum state, shown in panel (a), as well as a state
with a single peak, shown in panel (d). It is known that higher
angular momentum states do form bound states. The analytic
solution presented above is based on the on-site T matrix and is
not sufficient to capture the higher-angular-momentum bound
states.

We also observe that all wave functions in Fig. 4 exhibit
characteristic oscillations at the scale ξsc. In order to understand
this behavior, consider a generic wave function of an impurity-

induced state �λ(r) ∼ eipF r−r
√

�2−(ω−λS)2/vF /
√

r , where λ

denotes the eigenvalues of the σz operator. The terms in the
exponent term describe behavior at two scales p−1

F as well as
ξsc. For clarity, let us focus on the positive bound state, i.e.,
ω = E+

SBS. From the point of view of the spin-up subband,
i.e., λ = 1, the E+

SBS state is subgap, i.e., |ω − S| < �, and
so the square root term in �+(r) gives an exponentially
localized wave function. However from the point of view of the
spin-down subband, i.e., λ = −1, the E−

SBS state is supragap,
i.e., ω + S > �, and, so, the square root in �−(r) gives
oscillations at the scale of ξsc superimposed with a long-range
1/

√
r decay. These oscillations as well the long-range behavior

can be seen in Fig. 4.

V. INTERACTION BETWEEN SKYRMIONS MEDIATED
BY A SUPERCONDUCTOR

Reference [40] reported the STM study of the YSR
states induced by the magnetic dopants in a quasi-2D
superconductor. In contrast with the previous experiments,
which observed YSR states only on the atomic scale, it was
demonstrated the YSR wave function can extend over the range
of tens of nanometers, i.e., two orders of magnitude greater
than observed before. Theoretical paper [26] argued that
superconductivity induces an effective interaction between the
magnetic spins when the corresponding YSR wave functions
overlap. Thus, motivated by Refs. [26,40], we propose that
superconductivity could mediate an effective interaction be-
tween the distinct magnetic skyrmions when the corresponding
long-range skyrmion bound states overlap.

Let us briefly sketch the argument given in Appendix B,
where a perturbative in S1 derivation of the skyrmion-
skyrmion interaction is given. Consider two skyrmions in the
ferromagnetic film proximity coupled to a superconductor.
As was shown in the previous sections, each skyrmion
induces a spin-polarized resonance in the window of energies
� − S < |ESBS| < � + S also populated by the delocalized
states of the opposite spin polarization. In the limit S1 = 0,
the bound state wave functions, being subgap states of the
corresponding spin-polarized sector of the Hamiltonian, are
exponentially localized. If S1 �= 0, the corresponding perturba-
tion S1 (σ · ∇)δ2(r) contains in-plane Pauli matrices (σx,σy),
which mix the opposite spin sectors of the Hamiltonian.
Therefore, the skyrmion bound states corresponding to the
distinct skyrmions can couple and hybridize via the long-range
delocalized states of the opposite spin polarization. This will
have an energetic effect leading to an effective long-range
interaction between the skyrmions.
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VI. CONCLUSION AND OUTLOOK

In this paper, we predict the new skyrmion bound states
in the superconductor proximity coupled to the ferromagnetic
film with a skyrmion texture. We calculate spin-polarized local
density of states and show the signatures of the bound states
in the tunneling spectrum that could be measured by the spin-
polarized scanning tunneling microscopy. By using an analogy
with the well-known YSR states, we show that the skyrmion
induces a resonance in between the spin-split coherence peaks
corresponding to the opposite spin polarizations. We show
that the corresponding wave function is long-range in contrast
with the YSR states, which are short-range. Thus in the
case of the two skyrmions, the corresponding wave functions
will overlap and induce a long-range interaction between the
skyrmions [26,40].

Note added. Recently we learned about further theoreti-
cal studies [41,42] of the hybrid skyrmion-SC heterostruc-
tures. The authors of Ref. [41] found the Majorana bound-
state solution in the vicinity of the skyrmions of higher
winding numbers. The authors of Ref. [42] studied an
interaction between a skyrmion and vortex in a type-II
superconductor.
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APPENDIX A: DERIVATION OF THE T MATRIX

In this section, we provide details on the derivation of the
T matrix (12) for the model given by Eqs. (2) and (10). In the
momentum space, the local terms defined via the δ functions
in Eq. (10) generate the following perturbation:

V ( p) = −S0 σz + i S1 σ · p. (A1)

Using Eq. (A1) and the bare Green’s function (7), we write the
Lippmann-Schwinger integral equation for the T matrix

T ( pout, pin) = V ( pout − pin)+ (A2)∫
d2p′

(2π )2
V ( pout − p′)g(ω, p′)T ( p′, pin). (A3)

We focus on the scattering close to the Fermi surface, so
we use pout = pF nout and pin = pF nin, where nout and nin

are the in-plane unit vectors. Then, we choose the following
ansatz for the T matrix:

T (nout,nin) = T 0 + T 1
i nout

i + T 1
j

†
nin

j + T 2
ij nout

i nin
j , (A4)

where T ,T 1
i ,T 2

ij are the 4 × 4 matrices in the σ ⊗ τ space,
which give the expansion of the T matrix in vectors nout

i and
nin

j . We substitute the ansatz (A4) in Eq. (A3) and rewrite the
integral equation as

T (nout,nin) = −S0 σz + i S1pF σi

(
nout

i − nin
i

)
+

∫
dn′[ − S0 σz + i S1pF σi

(
nout

i − n′
i

)]
× g0(ω)

[
T 0 + T 1

j n′
j + T 1

j

†
nin

j + T 2
kj n′

kn
in
j

]
,

(A5)

where after an integration in the radial variable p′ the Green’s
function in the momentum space g(ω, p′) transformed into an
on-site matrix of the Green’s functions g0(ω). Next, we take
an integral over the angular variable n′, i.e.,

∫
dn′ n′

i = 0 and∫
dn′ n′

in
′
j = δij /2, and obtain a closed set of equations for

the unknown matrices

T 0 = −S0σz − S0σzg0 T 0 − 1
2 iS1pF σig0 T 1

i , (A6)

T 1
i = iS1pF σi[1 + g0(ω) T 0], (A7)

T 2
ij = iS1pF σig0(ω) T 1

j

†
. (A8)

The solution of Eqs. (A6)–(A8) gives

T 0 = [ − S0σz + S2
1p

2
F ḡ0(ω)

]
D, T 1

i = iS0pF σi D,

T 2
ij = S2

1p
2
F σig0Dσj ,

where D = [
1 + S0σzg0 − S2

1p
2
F ḡ0(ω) g0(ω)

]−1
. (A9)

Note that the relative order of the matrices in Eq. (A9)
is important because the spin Pauli matrices do not com-
mute. For brevity, ḡ0(ω) = 1

2

∑
j=x,y σjg0(ω)σj denotes the

Green’s function obtained from g0 by replacing σz → −σz.
So, in the presence of the skyrmion, the Green’s function
becomes

G(ω, p1, p2) = g(ω, p1) (2π )2δ( p1 − p2)

+ g(ω, p1)T ( p1, p2)g(ω, p2), (A10)

using which the spin-polarized local density of states (SP
LDOS) can be expressed

ρs(ω,r) = (A11)

− 1

π
Im Tr

[
1 + τz

2

1 + σs

2

∫
d2p1 d2p2

(2π )4

× ei( p1− p2)rG(ω, p1, p2)

]
, (A12)

where s = x,y,z denotes the spin quantization axis. At the
skyrmion core, i.e., at r = 0, only the T 0 part of the T matrix
contributes to local density of states,

ρs(ω,0) = − 1

π
Im Tr

{
1 + τz

2

1 + σs

2

[
g0(ω) + g0(ω)

−S0σz + S2
1p2

F ḡ0(ω)

1 + S0σzg0(ω) − S2
1p

2
F ḡ0(ω) g0(ω)

g0(ω)

]}
, (A13)
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whereas T 1 and T 2 drop out. Equation (A13) gives the
expression in Eq. (12).

APPENDIX B: INTERACTION BETWEEN SKYRMIONS

In order to estimate the superconductivity-induced interac-
tion between skyrmions we use the formalism of the TGTG
formula usually discussed in the context of the Casimir interac-
tion. It was also recently used in the condensed matter context
to describe the interaction between impurities in graphene [43]
and topological insulators [44] mediated by electrons. At zero
temperature T = 0, the free energy interaction between the
skyrmions can be expressed as

Uint(r) = 1

π

∫ 0

−∞
dω Im Tr log

× [1 − gr (ω)T1(ω)g−r (ω)T2(ω)], (B1)

where the integral is taken over all negative energies, i.e., filled
states, in the Bogoliubov–de Gennes formulation. In Eq. (B1),
T1 and T2 are the T matrices corresponding to individual
skyrmions, and the Green’s function gr is calculated in the
real space for large r � ξsc � p−1

F ,

gr (ω) = −
√

2π

pF r

∑
λ=±1

1 + λσz

2

[
τz cos

(
pF r + π

4

)

+ ω − λS + �τx√
�2 − (ω − λS)2

sin

(
pF r + π

4

)]

× ρ0 e−r
√

�2−(ω−λS)2/vF . (B2)

Here, the projector 1+λσz

2 selects the spin-up and spin-down
sectors of the Hamiltonian, which are shifted in energy due to
the constant FM field −S ẑ as discussed in the paper. Note a
square root term in the exponent of Eq. (B2). For |ω − λS| <

�, the exponent produces an exponential decay at the scale
of r ∼ vF /

√
�2 − (ω − λS)2. In contrast, the square root

becomes purely imaginary −i sgn(ω − λS)
√

(ω − λS)2 − �2

for |ω − λS| > �, and so the exponential term gives periodic
oscillations rather than exponential decay. This observation
motivates the explanation of the long-range coupling: the
skyrmion bound states couple to the delocalized states of
the opposite spin polarization, for which the square root is
imaginary. Then the Green’s function, which has a long-range
power-law behavior, can propagate between the skyrmions at
large distances r > ξ and, thus, couple their bound states and
generate an effective interaction between skyrmions.

The T matrix given in Eq. (A9) has a complicated form. So,
for simplicity, let us demonstrate the long-range interaction
between skyrmions perturbatively in S1. First, at S1 = 0, i.e.,
where the in-plane scattering is neglected, the T matrix (A9)
reduces to a simpler Eq. (8) of the main text. The corresponding
SP LDOS is shown in Fig. 5. The skyrmion bound states are
represented by the sharp peaks in the density of states which
lie in the energy windows between the Zeeman split coherence
peaks, i.e., � + S > |E±

SBS| > � − S. In this approximation,
the scattering by the in-plane spins is absent, and, therefore,
the localized states do not couple to the delocalized states of
the opposite spin polarization. Now, we consider the higher-

FIG. 5. Spin-polarized local density of states in the absence of the
in-plane spins, i.e., at S1 = 0. The localized skyrmion bound states do
not couple to the delocalized states of the opposite spin polarization
and are described by the sharp poles given by Eq. (B3). Blue and red
colors encode the up and down spin polarization.

order terms of the T-matrix expansion in S1. We look for the
terms that would couple the skyrmion states to the delocalized
states of the opposite spin polarization. In the second order
in S1, there is one such term generated by the contribution
T 2

ij in Eq. (A9). So, in the vicinity of the energy close to the
bound-state energies, the relevant part of the T matrix can be
written as

σin
out
i

[
S2

1

∑
λ=±1

1 + λτx

2

1 + λσz

2

α

ω − Eλ
SBS

]
σjn

in
j , (B3)

where the terms 1+λτx

2 and 1+λσz

2 are the projectors in the
Nambu and spin space, whereas constant α gives a strength of
the bound-state poles. Observe that Eq. (B3) is dressed with the
in-plane Pauli matrices σi on both sides of the expression. The
in-plane Pauli matrices σi = (σx,σy) flip the spin σz and, thus,
couple the bound-state poles to the background delocalized
states. Then, we substitute Eqs. (B2) and (B3) in Eq. (B1).
The integral in Eq. (B1) is dominated by the poles in the T
matrix, so we approximate the integrand as

Im Tr log

[
1 − β

S4
1

pF r

∑
λ=±1

1 + λσz

2

1(
ω − E−λ

SBS

)2

× e−iλr
√

(E−λ
SBS−λS)2−�2/vF

]
, (B4)

where β is a constant absorbing other parameters. Observe that
the argument in the exponent is imaginary. Since the integral
in Eq. (B1) runs over negative energies, λ = 1 dominates the
integral and we focus only at the vicinity of ω around E−

SBS.
So, after shifting the integration variable ω − E−

SBS → ω, and
reexpressing the imaginary part of the logarithm, we rewrite
the integral as

Uint(r) = 1

π

∫ ∞

−∞
dω atan

[
sin κr

pF r

βS4
1
ω2 − cos κr

]

= S2
1

√
β

pF r
I (κr), (B5)

064513-6



SKYRMION-INDUCED BOUND STATES IN A SUPERCONDUCTOR PHYSICAL REVIEW B 94, 064513 (2016)

where κ =
√

(E−
SBS − S)

2 − �2/vF , and I (r) = 1
π

∫ ∞
−∞

dx atan[ sin κr
x2−cos κr

] is a periodic function of κr:
I (κr) = 2 cos ( κr

2 ) for 4πn + 2π > κr > 4πn, and
I (κr) = −2 cos ( κr

2 ) for 4πn + 4π > κr > 4πn + 2π .
So, we find that interaction between skyrmions (B5) decays
as 1/

√
r and oscillates at a scale of 1/κ . In colloquial terms,

the oscillating long-range wave functions corresponding
to distinct skyrmions determine the effective interaction
between skyrmions. Note that we have calculated the
contribution to the energy only due to the subgap states,
and neglected the supragap states. The full analysis
using Eqs. (A9) and (B1) will be given in a subsequent
work.
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Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch,
and C. Pfleiderer, Skyrmion lattice in the doped semiconductor
Fe1−xCoxSi, Phys. Rev. B 81, 041203 (2010).

[6] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang,
S. Ishiwata, Y. Matsui, and Y. Tokura, Near room-temperature
formation of a skyrmion crystal in thin films of the helimagnet
FeGe, Nat. Mater. 10, 106 (2011).

[7] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka,
R. Wiesendanger, G. Bihlmayer, and S. Blugel, Spontaneous
atomic-scale magnetic skyrmion lattice in two dimensions, Nat.
Phys. 7, 713 (2011).

[8] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of
skyrmions in a multiferroic material, Science 336, 198 (2012).
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