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We report magnetic force microscopy (MFM) measurements on underdoped BaFe2(As1−xPx)2 (x = 0.26) that
show enhanced superconductivity along stripes parallel to twin boundaries. These stripes of enhanced diamagnetic
response repel superconducting vortices and act as barriers for them to cross. The width of the stripes is hundreds
of nanometers, on the scale of the penetration depth, well within the inherent spatial resolution of MFM and
implying that the width is set by the interaction of the superconductor with the MFM’s magnetic tip. Unlike
similar stripes observed previously by scanning SQUID in the electron doped Ba(Fe1−xCox)2As2, the stripes in the
isovalently doped BaFe2(As1−xPx)2 disappear gradually when we warm the sample towards the superconducting
transition temperature. Moreover, we find that the stripes move well below the reported structural transition
temperature in BaFe2(As1−xPx)2 and that they can be much denser than in the Ba(Fe1−xCox)2As2 study. When
we cool in finite magnetic field we find that some vortices appear in the middle of stripes, suggesting that the
stripes may have an inner structure, which we cannot resolve. Finally, we use both vortex decoration at higher
magnetic field and deliberate vortex dragging by the MFM magnetic tip to obtain bounds on the strength of the
interaction between the stripes and vortices. We find that this interaction is strong enough to play a significant
role in determining the critical current in underdoped BaFe2(As1−xPx)2.
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I. INTRODUCTION

One of the hallmarks of the emergent nematic phase in the
iron-based superconductors (Fe-SCs) [1–3] are twin bound-
aries [4] (TBs) that appear in underdoped samples as they
are cooled through the transition from the high-temperature
tetragonal phase to the low-temperature orthorhombic phase
[5–12]. TBs are not limited to Fe-SCs: they occur in many
superconductors, including cuprates [13–25], and are impor-
tant for several reasons. In Fe-SCs their properties encode
information about the nature of the superconducting phase and
its competing orders [26–28]. On a more practical level, TBs
play a crucial role in the way superconducting vortices move
through a superconductor. The dissipative motion of vortices,
quantized whirlpools of charge encircling a core with sup-
pressed superconductivity, is a limiting factor in applications
of type-II superconductors [29–31]. Thus, understanding how
TBs affect vortices is important for developing superconductor
technologies.

Frequently the superfluid density (ρs) is suppressed on a
TB [32]. When this happens the TB acts as a pinning site
because of the reduced energetic cost of locating a vortex
core on it. Such pinning behavior has been observed in the
cuprates [13,14,16,21,25] where TBs also act as channels
that are easy for vortices to move along, and hard for
them to cross [17–21,25]. Other behavior is also possible.
For example, in both conventional low-TC (superconducting
transition temperature) superconductors [33], as well as in
cuprates [34–36], there have been reports of enhanced TC near
TBs. This implies that vortices can be repelled from TBs.
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In the Fe-SCs, the impact of TBs on superconductivity
is different in different materials. For example, scanning
tunneling microscopy (STM) experiments on TBs in FeSe
have reported a reduced gap as well as vortex pinning in both
thin films [37] and in single crystals [28]. Kalisky et al. [38]
used a scanning superconducting quantum interference device
(SQUID) to show stripes of enhanced diamagnetic response in
underdoped but not in overdoped Ba(Fe1−xCox)2As2. Kirtley
et al. [39,40] showed that these results are consistent with an
enhancement of ρs on thin sheets embedded in the bulk sample.
Finally, also using SQUID microscopy, Kalisky et al. [41]
showed that vortices tend to avoid the stripes of enhanced
superconducting response and that, when manipulated, they
tend to move parallel to the stripes rather than to cross them.
However, the scanning SQUID results were resolution-limited
to ≈2 μm, much larger than the in-plane penetration depth λab,
which is a few hundred nanometers in Ba(Fe1−xCox)2As2 [42].
Unexpectedly, high-resolution magnetic force microscopy
(MFM) on nominally identical samples did not detect similar
stripes [43].

We chose to study BaFe2(As1−xPx)2 for its outstanding
properties. First, BaFe2(As1−xPx)2 is less disordered [44–
46] than other members of the BaFe2As2 family. This is
due to the doping being isovalent—unlike electron doped
Ba(Fe1−xCox)2As2 and hole-doped Ba1−xKxFe2As2, the
charge density in BaFe2(As1−xPx)2 does not change with
x. A second notable property is unconventional behavior
near xopt [47], including a peak in λab(x) [48,49]. The
origin of this highly unusual and surprising effect is still
under debate [50–54]. In other respects BaFe2(As1−xPx)2

is a typical member of the BaFe2As2 family. The parent
compound is a metal that undergoes magnetic and structural
phase transitions at TN = TS ≈ 135 K. Upon doping TN and TS
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decrease and diverge until they drop sharply near x ≈ 0.3. The
superconducting TC(x) is domed, rising from zero at x ≈ 0.2
to maximum at xopt ≈ 0.3 and dropping to zero again at
x ≈ 0.7 [48].

Here we present MFM measurements on underdoped
BaFe2(As1−xPx)2. We find features with an enhanced dia-
magnetic response running parallel to TBs. These show up
as stripes of enhanced diamagnetic response at low magnetic
field. The stripes disappear as the sample is warmed towards
TC . When the sample is cooled in a finite magnetic field,
vortices favor the regions off the stripes. When we use
the magnetic tip of the MFM to deliberately try to drag
individual vortices across the stripes, they act as barriers.
Finally, we find that the stripes are mobile even below TC ,
although it is below the reported TS for our underdoped
sample.

Much of the phenomenology of our observations agrees
with the SQUID results of Kalisky et al. and Kirtley
et al. [38,39,41] on Ba(Fe1−xCox)2As2. This is significant
for several reasons. First, we provide confirmation of stripes
of enhanced diamagnetic response in a material other than
Ba(Fe1−xCox)2As2. Second, the higher spatial resolution of
our measurements allows us to show that the scale of both the
modulated diamagnetic response as well as the vortex repul-
sion is given by λab. Overall, and despite the different spatial
scale for the stripes that we find in BaFe2(As1−xPx)2, our
observations validate the interpretation and analysis put forth
by Kalisky et al. [38,41]. We also find important differences
between the stripes in the two materials. The most important
of these is that in BaFe2(As1−xPx)2 the stripes decay when we
increase temperature whereas in Ba(Fe1−xCox)2As2 they are
enhanced.

II. EXPERIMENT

A. Sample

Our sample is a high-quality single crystal with an area of
≈0.25 mm2 and thickness tens of micrometers, grown by the
self-flux method and annealed in vacuum [55]. This sample
is part of a series spanning the superconducting dome that we
reported on previously as part of a study of the dependence
of λab on doping [49]. The sample was cleaved and analyzed
by energy-dispersive x-ray spectroscopy (EDS) to determine
the doping x at the actual scanned surface at several different
locations using a measurement area of ≈50 μm × 50 μm.
In addition to x, the EDS reported the expected atomic
compositions for Ba (19.0%–21.0%) and Fe (38.4%–41.0%).
The scatter of the values we obtained for x = 0.26 by EDS
gives a variance of δx < 0.01.

In this work, we concentrate on a moderately underdoped
sample with x = 0.26. At this doping we determined that
λab = 220 ± 20 nm and TC ≈ 22 K [49]. The main source
of error in λab and in TC at x = 0.26 is our method of
measurement—the results were the same in multiple regions,
indicating that the sample is very uniform. In this sample,
as well as in another x = 0.26 sample, we observed vor-
tices lining up at roughly 45◦ to the crystal a-b axes as
indicated by room-temperature electron backscatter dispersive
spectroscopy (EBSD). The measured orientation of the stripes

indicates that they are parallel to TBs. In this work we study
those stripes further.

B. Measurement

We use frequency modulated MFM to measure the reso-
nance frequency (f ) of a cantilever holding a magnetic tip
that we scan across a sample. The resulting map of the spatial
dependence of the frequency shift �f = f − f0 gives a map
of a derivative of the vertical force acting on the tip:

�f ≈ −f0

2k

∂Fz

∂z
,

where f0 is the resonance frequency in the absence of a sample
and k is the cantilever spring constant [56]. The components
of the force �F = �Flat + Fzẑ are not directly imaged but can be
estimated from the MFM signal by assuming a model for the
tip [57].

After we set the tip-sample voltage (Vt-s) to compensate
for the contact potential difference (V ∗

t-s), �F is predominantly
magnetic and comes from two main sources. The first is the
superconducting screening currents that are responsible for
the Meissner shielding of the magnetic field exerted by the tip.
The second is the interaction between the magnetic tip and
magnetic field from superconducting vortices. We make use
of both forces in this work. The first gives information on the
strength of superconductivity, as encoded in λab. The second
gives information on material defects which can attract or repel
vortices.

Most of the results we report below come from two kinds
of experiments: imaging and vortex manipulation. For both,
we cool the sample through TC at finite magnetic field (field
cool [58]) along the crystal c axis. For this, we retract the
magnetic MFM tip from the surface to make sure it does not
influence the sample during the field-cool cycle. Once the
sample has stabilized at the desired T < TC , we proceed to
scan the tip at a constant height (h) above the surface.

We scan in one of three modes. In the first one, we set
Vt-s to several volts. This is much larger than V ∗

t-s and allows
us to be very sensitive to surface topography variations. The
other two modes are magnetic. For these, we set Vt-s =
V ∗

t-s to significantly enhance our sensitivity to the magnetic
interaction between the tip and the sample at the expense of
the electrostatic interaction.

The magnetic modes of operation are surveillance and
manipulation [59]. In the latter, we bring the tip so close
to superconducting vortices that the force the tip exerts can
move them away from the pinning site they are trapped in.
This is useful because the way vortices move can reveal
information that is not available to other surface sensitive
techniques [25,57,59,60].

In surveillance mode, we retract the tip far enough from the
surface for the forces the tip exerts to be too weak to depin
vortices in the sample. We then scan the tip in a raster pattern on
a plane parallel to the surface and obtain a magnetic image that
maps the vortex locations and measures the local diamagnetic
interaction between the tip and the sample [42,43,49,60]. This
gives local information on the absolute value of λab and
through it on ρs ∝ λ−2

ab .
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FIG. 1. Images showing the relationship between vortices and stripes at T = 4.5 K. The magnetic field is indicated on each panel. In all
panels, we subtracted a plane from the data. (a) Image showing three vortices and bright stripes (marked by arrows on the bottom) on a dark
background. We use a scratch (marked by a double-headed arrow in the upper left corner) to align images to each other. (b) Image showing that
vortices avoid the bright stripes. The arrows on the bottom are copied from (a) and show that the stripes have not moved. (c) After field cooling
in a higher field some vortices appear in the middle of the bright stripes. The stripes here (marked by arrows on top) are not the same stripes
that appeared in (b) (bottom arrows). (d) More vortices accumulate both on and off the stripes when we field cool in a higher field. The arrows
were copied from panel (c) to show that the stripes have not moved relative to one another. (e) The stripes are the same as in (c) and (d), as
shown by the arrows that were copied from panel (c). (f) This scan area is slightly shifted with respect to (a)–(e) but some stripes are the same
as in (c)–(e), as highlighted by the arrows from (c). [The scan heights, which do not qualitatively affect the images, are 130, 170, 100, 100, 70,
and 110 nm, respectively, for (a)–(f).]

III. RESULTS

A. Imaging

Many of our results can be seen in Fig. 1, which shows the
same area in the sample after we field cool at different values of
magnetic field. One can clearly see a modulation of the MFM
signal along stripes that we have previously determined to be
parallel to TBs in this material [49]. This modulation (and an
occasional similar modulation rotated by 90◦, see, e.g., Fig. 7
in Appendix A) appears only in parts of the sample. Figure 1
also features vortices that are repelled from the MFM tip and
appear as regular disks with a signal more positive than the
background.

The field progression in Fig. 1 shows several effects.
The first are the bright stripes, which exist even at low
field [Fig. 1(a)], that correspond to an enhanced diamagnetic
response of the superconductor. The stripes can have a
half-width down to a scale of λab but this can vary from
stripe to stripe, as can be seen in Fig. 2(b). When we
cool the sample in a slightly higher field vortices freeze
preferentially between the bright stripes [Fig. 1(b)], indicating
that the stripes are energetically unfavorable for vortices.
The vortices off the bright stripes appear to form lines
but this is due to the distance between the bright stripes
which in this particular region happens to be on the scale of
several λab.

When we cool in an even higher field some vortices nucleate
in the middle of the wider bright stripes [Fig. 1(c)]. Since the

 2 μm 1 μm
220 nm

Δf span ≈ 1.4 Hz 
(a)

(b) (c)

FIG. 2. A series of scans zooming in on a stripe at T = 4.5 K
and 0 < B < 0.5 G. In (a) and (b), a plane has been subtracted from
the data. (a) A large-range scan with h = 200 nm. The bright disks
are vortices, and the stripes are visible as bright lines. The rectangle
frames the zoom-in area shown in (b). (b) A scan with h = 100 nm.
The scan area is the red rectangle in (a). Note the two stripes, where
one is wider than the other. The rectangle shows the zoom-in area
shown in (c). (c) A scan with h = 70 nm. The scan area is the red
rectangle in (b). The length of the scale-bar is 220 nm ≈ λab, which
gives the scale for the limit of our resolution for magnetic imaging.
The small corrugations are topographic features. If the stripes have
internal structure, it is below our resolution or sensitivity.
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scale for vortex pinning is set by the coherence length ξab,
which is in the nanometer range [37], this suggests that the
stripes have internal structure—what we see as single stripes
may actually be several stripes too close for us to resolve.
This picture is supported by the apparent straight lines along
which the vortices seem to be organized (if the gap between
stripes were wider, we would expect a line connecting the
vortices to meander more). To study this point further, we
zoomed in on areas with stripes. We show an example in
Fig. 2, where the stripes are not identical. When we zoom in
on a particularly wide stripe we still cannot resolve any internal
structure. This means that it is either absent or on a scale that is
not accessible to us, because the resolution of MFM imaging
of the superconducting response is limited by λab.

The rest of the panels in Fig. 1 show what happens in yet
higher field: vortices fill the areas between the stripes and
coalesce in high density along lines. Presumably, these high
vortex density lines are the result of vortices being repelled
from adjacent stripes, which are also apparent. Without the
low-field scans it would be very easy to conclude from such
scans that vortices prefer the areas between the wider parts.
This has been the interpretation of vortex decoration data in
Ba1−xKxFe2As2 [61] and in BaFe2(As1−xPx)2 [62] as well as
magnetization data in Ba(Fe1−xCox)2As2 [7]. Only by looking
at very low field, we can conclude that vortices avoid the bright
stripes.

Careful inspection of Fig. 1 shows that the stripes can move.
While the stripes in (a) appear at the same locations as the
stripes in (b) and the stripes in (c)–(f) are all also at the same
positions, the stripes in (b) are not the same stripes we see in
(c). We are sure this is not due to an offset of the scan area
because we see the same topographic features in both scans.
As explained in Sec. II and in Ref. [58], for each field cool, we
heated the sample to T > TC prior to applying the new field.
We chose T = 25 K, lower than the reported [9,11] TS ≈ 45 K
for samples with x = 0.26. As long as T � TS , the domains
should not be affected by heating but TS(x) follows a very
steep curve near x = 0.26 so the ≈45 K has a large error bar
and may be as low as ≈35 K [11]. Consequently, at T = 25 K,
the domains may not be totally frozen in. We thus speculate
that the shift of the stripes between (b) and (c) is due to heating
of the sample during a field change.

The morphology of the stripes and their impact on vortices
do not depend on the polarity of the applied field along the c

axis. For example, Fig. 8(a) in Appendix B shows the same
stripes that appear in Fig. 1(a) even though the field is opposite,
as evidenced by the presence of vortices that are attracted to
the tip (attractive vortices), which are the vortices we obtain
when we cool in a negative field. That the interaction between
vortices and the stripes does not depend on the field orientation,
can also be seen in Fig. 3, which shows that attractive vortices
avoid the bright stripes just like vortices that are repelled from
the tip (repulsive vortices).

Figure 4 shows that the contrast of the stripes decays with
increasing T , until we lose track of them just below TC . In
Figs. 4(a)–4(f), we show repeated scans of the same area with
increasing T up to 17 K, which show the stripes very clearly.
In scans at T = 20 K taken under comparable conditions we
did not detect any stripes. For the images in Figs. 4(a)–4(f),
we changed the field after taking the scan in (a) but once it

 2 μm

Δf span ≈ 2.7 Hz 

(b)

 2 μm

Δf span ≈ 3.2 Hz 

(a)

FIG. 3. Comparison between cooling in positive (a) and negative
(b) field. The circles mark surface features we use to align the scans to
each other. In both scans, which were taken at T = 4.5 K, a plane has
been subtracted from the data. (a) B = 20 G image. The arrows mark
stripes that are easy to identify in (b). Clearly repulsive vortices avoid
the stripes. (b) B = −1.3 G image of the same area as in (a). Visible
are attractive vortices that clearly avoid the stripes. The arrows mark
the stripes that are also visible in (a). [The scan heights, which do not
qualitatively affect the images, are 60 and 115 nm, respectively for
(a) and (b).]

was set for the scan in (b) we did not change it. This means
that the sample spent time at T > TC only between the scan in
(a) and the rest of the scans [58]. Conveniently, the scan area
contains the same scratch from Fig. 1. This scratch allows us to
align the scans to one another so that we can extract the MFM
signal along the same line [red line in Figs. 4(a)–4(f)], that
was chosen to be away from the scratch, as well as vortices.
In Figs. 4(g) and 4(h), we quantify the decay of the amplitude
of the stripes with T . Figure 4(g) shows the signal from
the stripes along the red lines in (a)–(f). In Fig. 4(h), we
combine information from several scans at each temperature to
plot the average peak-to-peak amplitude of the stripes. We use
several scans for each T in order to compare data at the same
height for all temperatures [63]. The error bars in Fig. 4(h)
give our estimate for 70% confidence intervals and reflect both
the variation from stripe to stripe as well as errors we introduce
in the data analysis.

Figure 4 shows evidence for stripes moving at T < TC . The
motion occurs in the stripe marked by the large, left pointing,
blue arrow. In panels (a) and (b), the stripe extends across the
whole scan area but in (c) one can see that the stripe terminates
in the middle of the image (at the arrow). In panels (d) and (e),
the stripe remains stationary but in panel (f) we see that it has
retracted even more towards the bottom of the scan area, as
indicated by the position of the arrow. Similar partial stripes
appear in Fig. 3 in Kalisky et al. [38]. We speculate that such
terminating stripes are needle-shaped domains, which means
that they are composed of two TBs running parallel to each
other and another short TB running across at the termination
point. The analysis we present in Sec. IV and in Appendix C
supports this claim. If the terminating stripes are domains
bounded by TBs then the fact that they can move at T < TC is
an indication that TBs are weakly pinned in our sample.
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FIG. 4. Strength of the stripes as a function of temperature for one area. (a)–(f) show maps of �f at increasing temperatures. A plane fit has
been subtracted from each image. The red lines show the trajectories of the traces shown in (g). We changed the field [58] after acquiring the
scan in (a) but kept it constant for (b)–(f). In (a)–(f), the double left-pointing arrows show the fast scan direction and the long upward pointing
arrow shows the slow scan direction along which the tip was incremented after each fast scan period of the raster pattern. The blue horizontal
arrow points out a stripe that moved at T < TC . (a) Scan for T = 4.5, (b) 7.5, (c) 10, (d) 13, (e) 15, and (f) 17 K. [The scan heights for (a)–(f),
which do not qualitatively affect the images, are 220, 180, 180, 180, 190, and 210 nm, respectively, for (a)–(f).] (g) The signal along the red
lines in scans (a)–(f) after subtracting a parabolic background and aligning based on surface features. For clarity, the curves are offset from
each other by 1.7, 1.4, 1.1, 0.8, 0.5, and 0 Hz. (h) The average amplitude (peak-to-peak) of the stripes for scans with h ≈ 150 nm vs T/TC

and T . The error bars give our estimate for 70% confidence intervals [63]. The line is a guide to the eye.

B. Vortex manipulation

Close inspection of Figs. 4(a)–4(f) shows that the vortex
configuration changes from scan to scan and that some of the
vortices move mid-scan. Similar effects are common in vortex
MFM [64] and are frequently considered a disadvantage of this
technique. Here we used this ability deliberately [25,43,57,59]
to attempt to drag vortices across stripes. To this end, we
cooled the sample in a field oriented to give attractive vortices.
After mapping out their locations with respect to the stripes
we heated the sample to reduce vortex pinning, brought the tip
closer to the surface and proceeded to scan at values of h where
we saw significant vortex motion. Figure 5 shows one example
of an attempt to drag vortices across the stripes. We estimate
that in this scan, the scale for the maximum lateral force we
exerted on the vortex was F max

lat ≈ 10 pN. For this estimate, we
use the typical tip parameters that are listed below Eq. (C16)
in Appendix C. We performed such dragging attempts many
times and at different temperatures. In all of these cases it was
clear that the stripes act as barriers for vortices, in agreement
with the results of Kalisky et al. on Ba(Fe1−xCox)2As2 [41].

IV. DISCUSSION

Despite the difference in scale, the stripes we report
are similar to those reported by Kalisky et al. [38,41] in
Ba(Fe1−xCox)2As2. Following similar reasoning, we conclude
that the enhanced diamagnetic response we observe is there-
fore probably also due to TBs. Our results validate the inter-
pretation of the results on Ba(Fe1−xCox)2As2 [39,40], which

Δf span ≈ 1.7 Hz Δf span ≈ 0.6 Hz 

(b)

1 μm
1 μm

(a)

FIG. 5. Experiment which shows that it is hard to drag vortices
across the stripes (which are marked by white downward arrows).
The crossed arrows show the raster pattern for this scan (in each
scan the thin double arrows show the fast scan direction and the
thick arrow shows the slow scan direction). For both scans T = 12
K and B = −0.3 G (attractive vortices). (a) A surveillance scan (h =
600 nm). At this scan height, the force applied by the tip is smaller than
the vortex pinning force, as can be seen from the regular shape of
the vortex. For this plot, we subtracted a plane from the raw data.
(b) Manipulation scan for the same vortex (h = 150 nm). The
elongated shape of the vortex in the direction of the slow scan axis
indicates that the vortex moves as a result of the force exerted by the
tip. Even though the tip exerted sufficient force in order to move the
vortex we were not able to drag it across the stripe. Note that in this
scan two stripes can be seen.
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did not explain why contemporaneous MFM measurements
did not detect such stripes [43]. We speculate that TBs did
not appear in MFM scans of Ba(Fe1−xCox)2As2 because they
do not appear everywhere in the sample. Even in this work
we saw stripes only in some areas. This is probably due
to inhomogeneous strain induced in the sample by thermal
contraction.

As a test for our interpretation, we extend analysis put
forth by Kogan and Kirtley [40] for SQUID microscopy to
MFM. The derivation is in Appendix C where we also apply
the analysis to our data. As shown in Fig. 10 in Appendix C,
the Kogan and Kirtley [40] model is consistent with our data
and the comparison gives model parameters similar to the
Ba(Fe1−xCox)2As2 model parameters.

There are also differences between our results and the
results on Ba(Fe1−xCox)2As2 [38,39,41]. The first of these is
that our measurements indicate that stripes can be composed
of several TBs. The evidence for this is threefold. First, our
stripes are not all the same (see, e.g., Fig. 2)—some are wider
and some are brighter. Second, when we field-cool vortices
nucleate in the middle of some of the stripes but not in
others [e.g., Fig. 1(c)], indicating that different stripes can
have different internal structure. Third, there are stripes that
terminate in the middle of a scan area (Fig. 4). This indicates
that at least some of the stripes correspond to narrow domains.
This interpretation is further supported by the analysis in
Appendix C.

Another important difference between our results and
the results on Ba(Fe1−xCox)2As2 is the temperature depen-
dence [38,39]. In Ba(Fe1−xCox)2As2, the stripes were en-
hanced when the sample was heated, although they were absent
above TC . A fit of the temperature dependence suggested that
TC on the Ba(Fe1−xCox)2As2 stripes was higher than the bulk
TC . Here we see a very clear decay of the stripes [Figs. 4(g)
and 4(h)], which disappear at T < TC .

The contrasting observations on TBs can be considered in
the context of other differences between Ba(Fe1−xCox)2As2

and BaFe2(As1−xPx)2. In Ba(Fe1−xCox)2As2, λ−2
ab increases

monotonically from the underdoped edge of the supercon-
ducting dome to xopt [42]. The enhanced superconducting
response on stripes might lead one to hypothesize that
in Ba(Fe1−xCox)2As2 TBs attract electrons and make the
effective doping on a TB closer to optimal than the bulk
underdoped sample [65]. In BaFe2(As1−xPx)2, the mechanism
has to be different because λ−2

ab has a minimum near xopt

[48,49].
We can rule out several alternative explanations for the

stripes. The lack of dependence of the properties of the stripes
on the direction of the magnetic field along the c axis implies
that the stripes are likely not signatures of magnetic domains,
which would have flipped with the field after a field cool [58].
This independence also rules out the stripes as the signature of
Josephson junctions between domains that have been invoked
to explain the properties of TBs in cuprates [66].

We can also place an upper bound on topographic variations
associated with TBs. As explained in Appendix B, if there are
height variations associated with stripes they are well below
our nanometer-scale resolution for height variations. This is
in-line with the 10-pm scale for the height variations measured
across TBs by STM in FeSe thin films [37]. We can also rule

out the accumulation of localized charge on the TBs. Since
our tip is metallic, this would give rise to attraction rather then
the repulsion we detect.

Finally, we note that the impact of TBs on superconductivity
depends on material parameters. For example, it has been
shown that the interaction between a vortex and a TB can
be either repulsive or attractive [33,35,36]. When TBs have an
adverse effect on superconductivity they can act as traps for
vortices. This is the case in FeSe, where the superconducting
gap has been shown to be reduced on TBs [28,37]. An impor-
tant difference between FeSe and the BaFe2As2 family is that
in the latter magnetic order competes with superconductivity
whereas in FeSe it does not [67,68]. This raises the possibility
that the competition with the magnetic phase plays a role in
enhancing superconductivity on TBs in the BaFe2As2 family.

Regardless of the reason stripes repel vortices in
BaFe2(As1−xPx)2, we can use vortex decoration to characterize
the repulsion. Since the interactions between vortices are well
understood [69], we can convert vortex positions into the net
force per unit length the sample exerts on each vortex in order
to keep it stationary ( �fi). To do this, we extract the vortex
positions {�ri} from an image like Fig. 1 and use

�fi = �2
0

2πμ0λ
3
ab

∑
j �=i

�ri − �rj

|�ri − �rj |K1(|�ri − �rj |/λab). (1)

Here, μ0 is the permeability of free space and K1(x) is a
modified Bessel function of the second kind. In Eq. (1), we
ignored the small in-plane anisotropy of the penetration depth.
As a result, the force between two vortices depends only
on the magnitude of λab. Figure 6 shows histograms of the
results for Fig. 1(f) where we separate between the component
perpendicular to the stripes [ �f ⊥

i in (a)] and along them [ �f ‖
i

in (b)], as well as between the first row of vortices next
to a stripe (stripe vortices, �f s

i ) and the rest (bulk vortices,
�f b
i ). In generating Fig. 6, we used the low-temperature value

for λab and not the value at the unknown vortex freezing
temperature. The information we extract is thus for the net
force at low temperature, well below the freezing temperature
of the vortices.
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FIG. 6. Distribution of the vortex-vortex interaction net force per
unit length derived by Eq. (1) from the positions of 586 bulk vortices
and 646 stripe vortices in Fig. 1(f). In the summation in Eq. (1), we
included only vortices within a radius of 1.44 μm. (a) Histograms of
�f ⊥
i . For stripe vortices, the sign gives which side of the stripe they

are—the interaction is always repulsive. (b) Histograms of �f ‖
i .

064510-6



DIAMAGNETIC VORTEX BARRIER STRIPES IN . . . PHYSICAL REVIEW B 94, 064510 (2016)

The effect of the stripes on the force between the vortices
is obvious in Fig. 6: on average, stripe-vortices experience a
repulsion from the stripes and bulk-vortices experience a zero
mean, randomly oriented, force. A more quantitative analysis
gives information on the pinning force and on the force exerted
by the stripes. The net force on each stationary vortex is zero
and if we assume the same is true for the force per unit length
then �fi + �fp,i + �fs,i = 0, where �fp,i and �fs,i are the bulk
pinning and stripe repulsion force densities exerted on vortex
i. For a bulk-vortex we can assume �fs,i ≈ 0 so �fp,i = − �f b

i .
As Fig. 6 shows, the distribution of �fp,i is isotropic, has a
zero mean, and a standard deviation of fp = 〈| �f b

i |2〉1/2 ≈
8 pN/μm, where 〈...〉 denotes an average over vortex positions.

The side peaks in Fig. 6(a) show that stripe-vortices ex-
perience an average force density of f s,⊥ = |〈 �f s,⊥

i 〉| = 16 ±
2 pN/μm pushing them away from the stripes [the average was
calculated for each of the peaks separately; the error accounts
for a 95% confidence interval as well as for the different
positions of the peaks]. The typical force density that these
vortices experience along the stripes is f s,|| = 〈| �f s,||

i |2〉1/2 ≈
14 pN/μm, but like �fp,i , it is randomly directed and averages
to zero. The large difference between f s,|| and fp is a reflection
of the heavy tails of the �f s,||

i distribution, which are apparent
in Fig. 6(b). Note that the values for the force density that we
extract from a particular vortex decoration scan give a lower
bound on the maximum repulsion a stripe can exert on a vortex.
This bound is set by the applied field (in this case ≈150 G),
which sets the average distance between vortices and hence
the scale for vortex-vortex interactions.

It is useful to compare the pinning and stripe repulsion
forces to published measurements of the critical current jc. To
convert the magnitude of the force density to the magnitude
of the current density, we use f = �0j . We can obtain lower
bounds for the critical current jc from the force per unit length
we extract from vortex decoration, where there is no vortex
motion, or from our vortex dragging attempts. For example,
at T = 4.5 K, we obtain from the analysis of Fig. 6 that
for current flowing along the TBs jc � 0.8 MA/cm2. We
obtain a similar scale from the maximum force density we
applied in our attempt to drag a vortex across a stripe at T =
12 K (f max ≈ F max

lat /λab). This result is similar to the scale in
Ba(Fe1−xCox)2As2 [7] and is larger than the value determined
in a previous study for underdoped BaFe2(As1−xPx)2 [46].

We are of course not the first to perform vortex decoration
in the Fe-SCs. Previous measurements have almost exclusively
reported disordered vortex configurations [e.g., in slightly un-
derdoped (MFM [43]) and overdoped (Bitter decoration [70])
Ba(Fe1−xCox)2As2, in optimally doped Ba1−xKxFe2As2 (Bit-
ter decoration [71]), in optimally doped and overdoped
BaFe2(As1−xPx)2 (the Bitter decoration [46,62,72]), in slightly
underdoped NdFeAsO1−xFx (MFM [60])]. There have also
been reports on vortices organizing along lines in the Fe-SCs.
Apart from our MFM work on BaFe2(As1−xPx)2 [49], this
includes MFM measurements on underdoped Ba1−xKxFe2As2

[61] as well as vortex decoration in optimally doped
BaFe2(As1−xPx)2 [62], where it was speculated that regions
of the sample were underdoped. In the last two works, the
interpretation was that the lines form on the TBs themselves.
Here we have shown that, at least in BaFe2(As1−xPx)2, this is

not the case—vortices form lines because they are repelled by
stripes that are close to one another.

The microscopic origin of the stripes is not clear at this
point. Qualitatively, they seem to be consistent with numerical
results for a two-orbital model [65]. The model gives magnetic
domain walls pinned to existing TBs and on which the
superfluid density as well as the gap are enhanced. While
these results were obtained for electron doping, they are
consistent with our results for BaFe2(As1−xPx)2. These results
raise the possibility that vortices avoid TBs when we field
cool (cf. Fig. 1) not only because the superfluid density is
enhanced but also because the gap is larger on TBs. This
is of course a speculation because the tunneling density of
states, which gives the gap, has not been measured on TBs in
BaFe2(As1−xPx)2.

V. CONCLUSION

We have shown that the diamagnetic response is enhanced
along stripes that are parallel to TBs in BaFe2(As1−xPx)2.
These stripes, whose width is on the scale of several λab,
repel vortices and act as barriers for their motion. The stripes
move at elevated temperatures and disappear when we warm
the sample towards the superconducting TC . We have ruled
out topography as the primary cause of the stripes, as well as
the existence of a nonsuperconducting boundary area between
domains.

The stripes that we see exist on a much smaller spatial
scale than stripes with similar phenomenology that have been
observed in Ba(Fe1−xCox)2As2 by Kalisky et al. [38,41]. Our
interpretation, which is based on the direction of the stripes
relative to the crystal axes and on the Ba(Fe1−xCox)2As2

results [38,41], is that the stripes are on TBs in the isovalently
doped BaFe2(As1−xPx)2.

Since TBs are common in underdoped Fe-SCs it is
important to understand their properties. This is especially
true because of their role in vortex motion, which is one of the
most important factors determining the technological utility of
superconducting materials [29–31]. As an example, we take
measurements of the critical current as a function of doping
in Ba(Fe1−xCox)2As2 [7] and in BaFe2(As1−xPx)2 [46], which
show a peak near optimal doping. At first glance, this appears to
contradict our interpretation of the role of TB as barriers rather
than traps for vortices but it is completely consistent—when
TBs create an interwoven mesh [7] of barriers for vortices they
can be efficient at preventing vortex motion and thus increase
the critical current.

ACKNOWLEDGMENTS

We would like to thank J. E. Hoffman, B. Kalisky, A.
Kanigel, A. Keren, D. Podolsky, and V. Kogan for discussions,
A. Ribak and A. Brenner for help with EDS and EBSD as
well as the Micro Nano Fabrication Unit at the Technion.
Y.L. acknowledges support from the Technion Russell Berrie
Nanotechnology Institute (RBNI). This work was supported
by the Israel Science Foundation (Grant No. 1897/14).

064510-7



A. YAGIL et al. PHYSICAL REVIEW B 94, 064510 (2016)
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FIG. 7. Two orthogonal sets of stripes from different areas in
the sample. (a) A scan at T = 4.5 K, h = 280 nm and B = 1.5 G.
The scan shows vortices (bright disks) and faint stripes. (b) A zoom
on the area marked by the red square in (a) with an expanded color
scale to highlight the stripes. A black line marks the direction of the
stripes. Inset: The image shown in Fig. 1(a), with a black line marking
the direction of the stripes. As can be seen they are perpendicular to
the stripes in the main panel. The �f span for the inset is 2.5 Hz.

APPENDIX A: 90◦ STRIPES

Most of the stripes we saw were along one direction.
Occasionally, we observed stripes at 90◦. An example is
in Fig. 7, where we compare the direction of the stripes
in Fig. 1(a) to their direction in another area which is
≈500 μm away.

APPENDIX B: TOPOGRAPHY OF THE SURFACE
NEAR STRIPES

We can rule out that the stripes are associated with
topographic features higher than several nanometers. This
conclusion is based on several facts. The first is that the stripes
disappear near TC , even when Vt-s is a few volts. At such a
large Vt-s even steps a few nanometers high would be visible
because of the strong electrostatic interaction between the tip
and the sample. The signal-to-noise ratio of our scans gives
upper bounds on the size of topographic features associated
with the stripes. If the stripes are associated with wide trenches
or bumps their height is no more than ≈1 nm. For features
much narrower than our spatial resolution the bound on height
is inversely proportional to the width. For the scans in this
work, the resolution is set by the scan height to ≈100 nm.
With this number, we estimate an upper bound of 20 nm on
the height for 10-nm-wide features and 4 nm for 50-nm-wide
features.

Additional evidence against height variation as an expla-
nation for the stripes is a series of measurements that show
that there are no surface features taller than a few nanometers
associated with the stripes. For these measurement, we located
several conveniently spaced stripes and then brought the tip
down to the surface at several points, marked 1–7 in Fig. 8(a).
The resulting curve at each point is called a “touchdown.”
Typically, such a curve includes a very sharp drop of the MFM
signal that is associated with strong interactions between the
tip and the sample [49]. We use the sharp drop to locate the
surface. As Fig. 8(b) shows, when we compare the position of
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FIG. 8. Within our accuracy the stripes are not associated with
variations of the topography of the sample. (a) Scan (with a plane
subtracted) at T = 4.5 K and B = −0.5 G with h = 70 nm. Also
shown are points 1–7 where we performed touchdowns. The scale
bar for this panel is given by the horizontal axis in (b). (b) Difference
in the position of where the tip stops at points 1–7. One can see that
the variation, which we attribute to creep of the piezoelectric scanner
and the tilt of the sample, has no systematic relationship with the
stripes.

the surface at different points near and on stripes we do not
see anything systematic that we can associate with the stripes
themselves. The large scale systematic trend that is in Fig. 8(b)
is the result of creep of our piezoelectric scanner and the tilt
of the sample.

APPENDIX C: MFM RESPONSE FOR A SHEET
OF REDUCED λ

Here we closely follow Kogan and Kirtley [40] in order to
calculate the expected MFM signal near a sheet of enhanced
ρs . In the spirit of Kogan and Kirtley [40], we model the
enhanced ρs by a reduced λ2. In order to calculate the MFM
signal, we need to find the response magnetic field (�hr ) to
the magnetic field induced by the MFM tip (�hs). It is �hr that
interacts with the MFM tip’s magnetization and gives rise to
the force which is responsible for the MFM signal. We note
that in this appendix �h denotes the local magnetic field and h

denotes the distance of the MFM tip from the surface.
We choose coordinates such that the superconductor fills the

z < 0 half-space and the MFM tip resides in the z > 0 half-
space (see Fig. 9). To calculate the response to the magnetic
field from the tip we must solve the London equations for
z < 0 and the Maxwell equations for z > 0.
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h columnar 
defect

�p

FIG. 9. Sketch showing the coordinates used in the derivation.
The apex of the MFM tip is at ( �R,h) = (X,Y,h). The planar defect
overlaps the y-z plane and the narrow columnar variation of λ is along
the z axis at �r0 = (x0,y0).

Since there are no currents for z > 0, it is convenient
to define a magnetic scalar potential �hr = �∇ϕr . This poten-
tial is defined for z > 0 and satisfies: ∇2ϕr (�r,z) = 0 with
ϕr (z → ∞) → 0 and where �r ≡ (x,y) are the coordinates
parallel to the surface.

Our first task is to calculate ϕr (�r,z) given the magnetic
scalar potential of a source ϕs(�r,z). More specifically, we
want to determine the difference made by a variation of
λ2: ψ(�r,z) = ϕr (�r,z) − ϕr,0(�r,z). ϕr,0(�r,z) and ϕr (�r,z) are the
magnetic scalar potentials without and with the variation. For
the response, it is convenient to use

ϕr (�r,z) =
∫

d2k

(2π )2
ei�k·�r−kzϕr

�k (C1)

with �k ≡ (kx,ky), k ≡ |�k|, and where we assume z > 0.

1. The Green function

Kogan and Kirtley [40] solved the problem of determining
the response for any source and for any variation of λ2

provided that it is the same for all z < 0 and that it is weak
in a perturbation theory sense. For this, they calculated the
response of a superconductor with a narrow columnar variation
of λ2 of the form

λ2(�r) = λ2
0 − η4δ(�r − �r0). (C2)

Here, λ2
0 gives the bulk value of ρ−1

s , η gives the strength
of the variation, and �r0 ≡ (x0,y0) is its position (see Fig. 9).
Below we will construct a thin plane from a single file of
the narrow columns. Consequently, the end result will feature
the length-scale β instead of η, where β3 ≡ η4n and n is the
density of columnar variations in the single file.

With Eq. (C2) given, Kogan and Kirtley [40] found that
when a magnetic source is at ( �R,h) ≡ (X,Y,h) (see Fig. 9) the
leading order correction is

ψ�k(�r0; �R,h) = 2η4

λ2
0

∫
d2q

4π2

(P − q)�q · �kei(�q−�k)·�r0

k(p + k)(P + p)
ϕs

�q( �R,h).

(C3)

Here, �q ≡ (qx,qy), q ≡ |�q|, p2 ≡ λ−2
0 + k2, and P 2 ≡ λ−2

0 +
q2. ψ�k(�r0; �R,h) can be converted back to real space with the

transformation in Eq. (C1). ϕs
�q ( �R,h) in Eq. (C3) is the magnetic

potential of the magnetic tip for z < h:

ϕs(�r,z; �R,h) =
∫

d2q

(2π )2
ei �q·�r+zqϕs

�q( �R,h), (C4)

where ϕs
�q( �R,h) ≡ e−i �q· �R−hqϕs

�q and ϕ�q is the two-dimensional
Fourier transform of the field from the tip on the z = h plane
when �R = 0.

a. Approximation for large height

Several scales determine the range of q that contributes
to the integral in Eq. (C3). One is the scale for p and P :
λ−1

0 . Other scales come from ϕs
�q( �R,h). One of these is h−1

[see the definition of ϕs
�q( �R,h) below Eq. (C4)]. Therefore if

h � λ0 only k,q � λ−1
0 are important and we can replace

terms by their small k,q values: P − q ≈ λ−1
0 exp(−qλ0),

p + k ≈ λ−1
0 exp(kλ0), and p + P ≈ 2λ−1

0 . Plugging these
approximations into Eq. (C3), we obtain

ψ�k(�r0; �R,h) ≈ η4

λ0

∫
d2q

4π2

e−λ0q �q · �kei(�q−�k)·�r0

keλ0k
ϕs

�q( �R,h)

= η4

λ0
e−i�k·�r0−λ0k

�k
k

·
∫

d2q

4π2
�qei �q·�r0−λ0qϕs

�q( �R,h).

(C5)

This can be written as

ψ�k(�r0; �R,h)

≈ η4

λ0
e−i�k·�r0−λ0k

�k
ik

· ∂

∂�r0

∫
d2q

4π2
ei �q·�r0−λ0qϕs

�q( �R,h). (C6)

Using Eq. (C4), we see that this given by

ψ�k(�r0; �R,h) ≈ η4

λ0
e−i�k·�r0−λ0k

�k
ik

· ∂

∂�r0
ϕs(�r0,−λ0; �R,h). (C7)

Plugging this result into Eq. (C1), we obtain

ψ �R,h(�r,z; �r0)

≈ η4

λ0

∂

∂�r0
ϕs(�r0,−λ0; �R,h) ·

∫
d2k

4π2

�k
ik

ei�k·(�r−�r0)−(z+λ0)k,

which gives

ψ �R,h(�r,z; �r0) ≈ η4

2πλ0

�hs,||
�R,h

(�r0,−λ0) · (�r − �r0)

[(�r − �r0)2 + (z + λ0)2]3/2
. (C8)

In the last expression, the dot product is between two vectors
in the plane, the in-plane part of the source field from the tip
evaluated at (�r0,−λ0) and (�r − �r0).

2. MFM signal

In order to estimate the MFM signal, we need to calculate
∂Fz

∂h
( �R,h) = − ∂2U

∂h2 ( �R,h; �r0). Here, Fz is the ẑ component of
the extra magnetic force exerted on the tip because of the
modulation in λ, and U ( �R,h; �r0) is the associated potential
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energy. Therefore

U ( �R,h; �r0) = −1

2

∫
dv′ �M(�r ′,z′)· �∇ψ �R,h( �R+�r ′,z′+h; �r0),

(C9)

where the dot product is between two three-dimensional
vectors. The integration over �r ′,z′ is over a coordinate system
that is centered at the apex of the tip. Every point described
by this coordinate system is located at (�r ′ + �R,z′ + h) in the
global coordinate system, we defined in Fig. 9. We start the
integration over z′ at an arbitrary point z′ = z0 < 0 beneath
the tip, remembering that �M(�r ′,z′) will always contain a step
function that is zero for any z′ < 0.

If we assume the tip is sharp, then

U ( �R,h; �r0) ≈ −1

2

∫
dz′ �̃m(z′) · �∇ψ �R,h( �R,z′ + h; �r0),

(C10)

where we defined a magnetization per unit length �̃m(z′) ≡∫
d�r ′ �M(�r ′,z′).

a. Monopole tip approximation

As a simple example we shall assume that the tip is an
infinity long needle with the magnetization pointing along its
axis, ẑ. It will therefore produce a magnetic field of a monopole
with an effective magnetization per unit length m̃ [59]. The
resulting field is

�hs
�R,h

(�r,z) = −μ0m̃

4π

(�r − �R) + (z − h)ẑ

[(�r − �R)2 + (z − h)2]3/2
. (C11)

We now return to Eq. (C9) and obtain

Umono( �R,h; �r0) = − m̃

2

∫ ∞

z0

dz′�(z′)∂zψ �R,h( �R,z′ + h; �r0),

where m̃ ≡ ∫
d�r ′M(�r ′,z′). Integration by parts gives

Umono( �R,h; �r0) = m̃

2
ψ �R,h( �R,h; �r0),

where we used �′(z) = δ(z′) and the fact that
ψ �R,h( �R,z′ + h; �r0) vanishes for large z′. Finally, we use
the in-plane part of the field from Eq. (C11) in Eq. (C8) and
obtain

Umono( �R,h; �r0) = m̃

2

η4

2πλ0

�hs
�R,h

(�r0,−λ0) · ( �R − �r0)

[( �R − �r0)2 + (h + λ0)2]3/2

= m̃

2

η4

2πλ0

μ0m̃

4π

( �R − �r0)2

[( �R − �r0)2 + (h + λ0)2]3
.

Now we can calculate the result for a planar defect,
Umono

plane ( �R,h). Let us assume that the plane is the y-z plane

(Fig. 9). With �R = (X,Y ), we find

Umono
plane ( �R,h) =

∫ ∞

−∞
dy0nUmono( �R,h; �r0)

= Am̃2β3 π

8

4X2 + (h + λ0)2

[X2 + (h + λ0)2]5/2
, (C12)

where we defined A ≡ μ0[(4π )2λ0]−1. Since we are interested
in ∂zFz we take two derivatives with respect to h and obtain

∂F mono
z

∂h
= −Am̃2β3 π

8

{
12

[(h + λ0)2 + X2]5/2

+ 75X2

[(h + λ0)2 + X2]7/2
− 105X4

[(h + λ0)2 + X2]9/2

}
.

(C13)

b. Truncated cone tip approximation

A more realistic model for an MFM tip than the model
in the previous section is the truncated cone approxima-
tion [43,49]. We thus assume that our tip is an infinity long cone
shaped needle for which the magnetization per unit length is
m̃cone(z) = ˜̃m(z + h0)�(z) where we defined ˜̃m ≡ �φtαM0

(�φ is the azimuthal angle of the tip that is magnetically
coated, t is the thickness of the coating, α is the cone half-angle,
M0 is the magnetic dipole density of the coating), and h0

is the truncation height. If the magnetic coating is thin and
magnetized along ẑ, the magnetic field in free space is

�hs
�R,h

(�r,z) =
˜̃mh0

m̃
�hs,mono

�R,h
(�r,z) + μ0

4π
˜̃m

×
[
−

(
1 + z′′

√
r ′′2 + z′′2

) �r ′′

r ′′2 + ẑ√
r ′′2 + z′′2

]
,

(C14)

where �hs,mono
�R,h

(�r,z) is the source field in Eq. (C11). In Eq. (C14),

�r ′′ ≡ �r − �R and z′′ ≡ z − h. Therefore the in-plane part of the
field [to be used in Eq. (C8)] is

�hs,||
�R,h

(�r0,−λ0)

= μ0

4π
˜̃m

[
−

(
1 − λ0 + h

ρ

)
1

( �r0 − �R)2
− h0

ρ3

]
( �r0 − �R),

where we defined ρ2 ≡ ( �R − �r0)
2 + (h + λ0)2.
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(b)
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FIG. 10. Comparison between MFM data and Eq. (C15).
(a) MFM scan [the same as Fig. 4(a)] showing an array of stripes.
The triangles show the locations of the TBs that we use in the model
and the red arrow shows the line along which we extract data for the
comparison with the model. (b) Comparison between data along the
red arrow in (a) [blue x marks and line, also shown in Fig. 4(g)] and
the implementation of Eq. (C15) for several stripes (red line). The
triangles show the location of the TBs that we used in the model to
obtain a curve similar to the data.
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Returning to Eq. (C10), we obtain

U cone( �R,h; �r0) ≈ −1

2

∫ ∞

z0

dz′m̃cone(z′)∂z′ψ �R,h( �R,z′ + h; �r0).

This integral can be done by parts. Since ∂zm̃cone(z) = ˜̃m[(z + h0)δ(z) + �(z)] = ˜̃m[h0δ(z) + �(z)], we find

U cone( �R,h; �r0) ≈
˜̃m

2

[
h0ψ �R,h( �R,h; �r0) +

∫ ∞

z0

dz′�(z′)ψ �R,h( �R,z′ + h; �r0)

]

= η4

2πλ0

˜̃m

2
�hs,‖

�R,h
(�r0,−λ0) · ( �R − �r0)

[
h0

ρ3
+

∫ ∞

z0

dz′ �(z′)

[( �R − �r0)2 + (z′ + h + λ0)2]3/2

]

= η4 ˜̃m

4πλ0

�hs,‖
�R,h

(�r0,−λ0) · ( �R − �r0)

[
h0

ρ3
+ ρ − (h + λ0)

ρ( �R − �r0)2

]

= μ0

4π

η4 ˜̃m2

4πλ0

[(
1 − λ0 + h

ρ

)
( �R − �r0)−2 + h0

ρ3

]2

( �R − �r0)2.

Next we integrate over a planar modulation just like we did in order to obtain Eq. (C13). With the planar modulation along the
y-z plane, we find

U cone
plane( �R,h) ≈ A ˜̃m2β3

[
4

X
sin−1

(
X√

(h + λ0)2 + X2

)
− π√

(h + λ0)2 + X2

]

+A ˜̃m2β3h0

[
4

(h + λ0)2 + X2
− π (h + λ0)

[(h + λ0)2 + X2]3/2

]
+ (h0 ˜̃m)2

m̃2
Umono

plane ( �R,h),

where Umono
plane ( �R,h) is defined in Eq. (C12). Taking two derivatives with respect to h gives

∂Fz

∂h
≈ −A ˜̃m2β3

{
8(h + λ0)

[(h + λ0)2 + X2]2
− π [2(h + λ0)2 − X2]

[(h + λ0)2 + X2]5/2

}

−A ˜̃m2β3h0

{
24(h + λ0)2 − 8X2

[(h + λ0)2 + X2]3
− π (h + λ0)[6(h + λ0)2 − 9X2]

[(h + λ0)2 + X2]7/2

}
+ (h0 ˜̃m)2

m̃2

∂F mono
z

∂h
. (C15)

3. Implementation and comparison to data

Here we compare MFM data acquired with a MikroMasch
tip [56] [Fig. 10(a)] with Eq. (C15). Because of uncertainties
in the tip shape, we are unable to go beyond a qualitative
comparison. To describe the data, we use the simplest version
of the truncated cone model [43]. For uniform penetration
depth, this model gives

∂F 0
z

∂h
= −μ0 ˜̃m2

2π

[
1

h + λ0
+ h0

(h + λ0)2
+ h2

0

2(h + λ0)3

]
.

(C16)
We set the parameters ˜̃m = 0.027 A/m and h0 = 100 nm to
reasonably describe actual touch-down curves [43,49].

Based on the observations in the main text, we model the
narrow stripes in Fig. 10(a) by two TBs each. The different
stripe amplitudes can be described by different spacings
between the TBs. The only other parameters we need in order

to emulate the data are the scan height h = 220 nm, the exact
locations of the individual TBs, and the length scale β, which
we assume is the same for all stripes. We fit for β and the stripe
location iteratively. First we fit for the TB locations using an
initial guess for β. With the locations fixed, we then fit for
a new value of β and then use the result to fit for the TB
locations again. The result is in the plot in Fig. 10(b), with
the TB locations indicated and β = 232 nm. The emulation
mimics our data very well. Considering all of the uncertainties
one should not conclude too much from this agreement but it
appears to validate our hypothesis for the internal structure of
the stripes, which is below our resolution threshold.

It is interesting to use the above value for β to estimate the
strength of the TB-vortex repulsion. This can be done with the
aid of Appendix E in Kogan and Kirtley [40], from which we
obtain a scale of 10 pN/μm for a vortex at a distance of λ0

from the TB. This matches the scale we obtain from Fig. 6(a).
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