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Vortex cutting in superconductors
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Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical
and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a
comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent
Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic
high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields,
creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they
approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario
under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also
reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the
vortex crossing events.
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I. INTRODUCTION

Magnetic field lines introduced by Faraday nearly two
centuries ago are a very useful abstraction that represents
the behavior of magnetic fields [1]. They provide a visual
picture of the magnitude and direction of magnetic fields
in vacuum, in magnetic media, and at their boundaries. In
reality, the presentation of the continuous magnetic fields by
a set of discrete field lines is just a convenient construction.
These imaginary magnetic field lines can be straight or curved,
converge into dense contours that portray enhanced fields, or
diverge into sparse arrays for decreased fields, but they neither
cross nor entangle.

In contrast, in a type-II superconductor below the super-
conducting transition temperature, the magnetic field actually
enters in the shape of separate flux lines—real material elastic
strings—Abrikosov vortices comprised of supercurrents cir-
culating around a normal core that can carry one or more
(in mesoscopic samples) magnetic flux quanta (�0 = h/2e)
[2–4]. The normal core of vortices has the characteristic size
of the coherence length (ξ ) and the surrounding circulating
supercurrents decay at the distance of the London penetration
depth λ � ξ . These vortices are the principal building blocks
for complex matterlike assemblies, as they form lattices and
melt into a liquid state with thermal fluctuations. The statics
and dynamics of “vortex matter” depend on their many
interactions, with surfaces, defects in the crystal structure,
applied transport currents, and with each other. Vortices and
their interactions define the basic electromagnetic response of
superconductors and hence their fundamental understanding
is crucial for fundamental science and for applications in
superconducting power lines, high-field magnets, microwave
filters [5–7], and potential quantum computer circuits [8,9].

Unlike Faraday’s abstract magnetic field lines, vortices in a
superconductor can cross, cut, and reconnect or entangle with
each other in complex dynamic processes that currently lack a
clear theoretical description. Although long-range repulsion of
vortices resists their close approach, suitable combinations of
thermal fluctuations and pinning and driving forces may bring

two flexible vortex lines together to cross, cut, and reconnect
or entangle in complex topologies.

One can imagine different outcomes when vortices ap-
proach each other. The repulsive energy at the point of closest
approach may be too large to be overcome, preventing vortices
from touching, cutting, or penetrating through each other. In
this case, further vortex motion elsewhere along their lengths
could bring the vortices close to other neighboring vortices
and create a topologically entangled configuration, such as
an orderly braid of several vortices or a randomly entangled
“bowl of spaghetti.” On the other hand, if the repulsive barrier
is sufficiently small, the vortices may penetrate each other,
preventing the formation of an entangled state. At the point of
local contact, instead of merely crossing through each other,
two vortices could exchange vortex halves on either side of the
point of contact producing a new reconnected configuration.

Vortex crossing and reconnection are often invoked in
treating the dynamics of dense vortex systems, such as pinned
vortex liquids and entangled vortex solids, particularly in
high temperature superconductors, where thermal energies
enable a larger degree of vortex motion [10–13]. Beyond
superconductivity, vortex crossing is a general physical phe-
nomenon actively discussed in the dynamics of classical and
quantum liquids including astrophysical plasmas and atomic
Bose-condensates [14–17].

In this paper, we present time dependent Ginzburg-Landau
(TDGL) simulations of arrays of vortices in a finite-sized
sample that is initially magnetized in one direction and then
remagnetized with an orthogonal magnetic field. In this pro-
cess, vortices created by the orthogonal remagnetization field
come in contact with the initially generated vortices allowing
vortices with different orientations to touch, penetrate, or cut
and reconnect. The simulations use material parameters typical
of YBa2Cu3O7−δ (YBCO) high temperature superconductors.
Our simulations reveal a complex mechanism for vortex
cutting: when two vortices approach, at the nearest point,
they locally bend so that the polarity of bent segments
becomes opposite, converting their local mutual repulsion to
local mutual attraction. The vortices then merge at the point
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of closest approach and reemerge as independent vortices
having exchanged their respective half-vortices. After cutting,
reconnecting, and straightening, the new vortices tilt towards
the applied field direction, resulting in the rotation of the
magnetic flux inside the superconductor.

II. BACKGROUND

Despite the pervasiveness of vortex crossing in many phys-
ical systems, the fundamental description of the phenomenon
remains a challenge. It has been discussed theoretically in
various contexts, often with simplifying assumptions to make
theoretical analysis tractable. The easiest simplification is to
focus on the interactions of two vortices [18] removed from
the interactions with the surrounding vortices.

Oftentimes, the analysis is carried out considering the
separate contributions to the total vortex energy, such as the
long-range magnetic repulsion due to interacting circulating
supercurrents, the short-range attraction due to overlapping
normal vortex cores and the elastic energy due to local
vortex bending. Even with these simplifying assumptions, the
analysis is challenging because these energies depend locally
on each other, making them difficult to identify and treat
independently.

The dependence of vortex interaction on the angle between
them adds a fascinating and complicating feature: as two
vortices approach, they can replace their mutual repulsion at
the point of closest approach with mutual attraction if they bend
sufficiently to point locally in opposite directions. In this case,
the elastic energy of bending, the attractive or repulsive energy
of interacting circulating supercurrents and the condensation
energy of the normal core are intimately connected and cannot
be readily separated. In the presence of such extreme local
distortions, the neighboring vortices will deform significantly
as well and their energy of local deformation must be included.
Moreover, at close distances, the current patterns near crossing
vortices transform so strongly that the concept of individual
flux lines becomes irrelevant and an accurate account of the
complete current pattern needs to be taken into account.

Vortex cutting still lacks even a qualitative coherent
description [19], although many of the general physical effects
involved in the process were clarified earlier by Brandt et al.
[18]. At close enough distances, straight rigid crossing vortex
cores experience an attractive interaction, due to the reduction
of the total normal core volume by ∼ ξ 3 (assuming that
the length of the overlap as ∼ξ ). However, to come close
enough for this to happen, vortices must overcome strong
electromagnetic repulsion due to the circulating supercurrents
surrounding the vortices over the penetration depth distance,
r ∼ λ. The repulsive force reaches a maximum at short
distances �ξ , where the strong λ-range repulsion changes
to the weak, short-range attraction. Initially, it was suggested
that the value of this maximum, characterizing the activation
barrier of the vortex crossing, Ux , is extremely high (see
references in [18]). However, calculations of the crossing
energy of straight rigid vortices in [18] demonstrated that it
can have a reasonably moderate value. It was clearly shown
that the flux cutting potential is dominated by electromagnetic
interactions, while the contribution due to the vortex core
overlap is small. Ux drops with decreasing Ginzburg-Landau

parameter κ = λ/ξ , which corresponds to the decreasing role
of λ repulsion and increasing contribution of ξ attraction. For
larger angles between straight flux lines, the crossing barrier
becomes smaller, and for vortices tilted by more than 90°, the
interactions become attractive at all distances. At the boundary
value of κ ∼ (1/2)1/2, corresponding to the transition from
type-II to type-I superconductivity, and for any angles between
vortices, their interactions become attractive, as was confirmed
by observations of coupled vortex domains in pure niobium
samples [20,21].

Further account of the local bending of flexible vortex
lines near the contact point where the vortices realign into
antiparallel configurations to reduce their mutual repulsion,
revealed that the expected value of Ux can be noticeably
smaller than for straight vortices [22]. A decrease of the vortex
crossing energy despite the increase in the self-energy due
to the increased length of bending, revealed that crossing of
straight rigid vortices is hardly a proper description. In fact,
estimates of the cutting barrier for straight nonparallel vortices
yield very large barrier, Ux ∼ 50 kBTc, which would prevent
vortex crossing (e.g., [10]).

Later, the effect of bending of the crossing vortices was
calculated for anisotropic superconductors with different pen-
etration depth along different directions (e.g., � = λc/λab ∼ 5
in YBCO) [23]. In this case, the shape of vortex bending is
determined by the anisotropy of the vortex line tension. Inter-
estingly, the line tension or rigidity of vortices is maximum
for orientations with minimum vortex line energy, and Ux

increases relative to the isotropic case. In contrast, in [24],
it was found that for moderate Ginzburg-Landau parameters
(κ = λ/ξ ∼ 10) and not very large fields, the cutting energy
should decrease with anisotropy as ∼1/�. Calculations of the
crossing barrier were also performed for anisotropic materials
in the high-field limit (H ∼ Hc2) [25,12]. In high fields, the
crossing vortices cannot be considered separately from the rest
of the vortex matter, but still a noticeable Ux of the order of a
few kBTc was reported. Thus, the value of the crossing barrier
and consequently the probability of vortex cutting remains
poorly defined. The effects of vortex rigidity, dependence on
the Ginzburg-Landau parameter, and the role of anisotropy
are important factors defining the crossing process, which still
awaits a proper description.

A crucial point of the vortex-crossing phenomenon, which
requires special attention and still remains an open question,
is the local collapse of the vortex lines. Apparently, even a
long parallel vortex and antivortex will initially collapse at
a single point and then the resulting U-shaped vortex arcs
will shrink in opposite directions until they disappear. How
the current patterns around the cores of colliding vortices
transform in time and space during close approach and
intersection of vortex centers is not obvious. In fact, between
vortices, which are strongly bent around the crossing point
to create the vortex-antivortex configuration, supercurrents
should be strongly enhanced upon the mutual approach of
the vortex lines. Eventually, they should go through an
abrupt topological change when the cores of vortices merge.
So far, this scenario, which also emerges when vortex and
antivortex collapse in classical and quantum liquids, has not
been clarified theoretically. We found the only illustration of
the current distributions around close two-dimensional (2D)
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vortex-antivortex pairs in [26] and with a lower resolution in
[27].

Perhaps the most spectacular description of the crossing
process was obtained by TDGL simulations in [28]. There,
it was shown that two colliding perpendicular vortices first
locally bend, cut, and reconnect, exchanging vortex halves.
Subsequently, reconnected vortices cross and cut again,
exchange their halves back and reconnect into the original
vortices, which eventually diverge from each other. Such
a striking double-step process requires special conditions
that preserve the motion of the vortex tails and recover the
original vortices after collapse. It was pointed out in [28]
that in the presence of other vortices, the crossing process
could be different. Hence, the picture of two individual
crossing vortices, although important for understanding the
cutting/reconnection process, is oversimplified, as it neglects
interactions with neighboring vortices and coupling of vortices
to external fields.

III. TDGL SIMULATIONS

In this paper, we clarify the flux-cutting scenario using large
scale TDGL simulations on a sample containing an array of
longitudinal vortices, remagnetized by a perpendicular field.
The model parameters were chosen close to those of modern
anisotropic high Tc superconductors and at magnetic fields
high enough to produce multiple vortices in the simulation
volume. We reveal specific features of the flux evolution
for an ensemble of vortices generated by one direction of
the applied magnetic field (longitudinal H ||) under steadily
increasing perpendicular magnetic field (H⊥). Successive
images of the flux patterns show that new entering vortices
with perpendicular field component, cut initial longitudinal
vortices in a single stage process after an almost 180° local
twist. The shape of this twist is distinctively controlled by
the anisotropy. The crossing event occurs as an instantaneous
collapse of the antiparallel segments, leaving local bends
on the reconnected vortices. The resulting new vortices—
consisting of the halves of initial vortices—straighten and
tilt with respect to their precollision orientation. This process
rotates the flux towards the applied field direction in the
bulk of the superconductor upon progressive entry of new
flux components from the sample edges. Accompanying this
process is a helical vortex instability [29,30] induced by
currents screening the perpendicular field and flowing parallel
to the initial vortices (see details in the last section) Expanding
left-handed vortex helices cross longitudinal flux lines and
also result in a tilt of vortices towards the applied field. Some
results of our early simulations are presented in [31].

IV. MODEL

To study vortex dynamics in crossing magnetic fields, we
use a recently introduced large-scale solver for TDGL equa-
tions allowing visualization of dynamics of mesoscopically
large vortex arrays within relatively large spatial volumes [32].
It relies on the numerical integration of the TDGL in the large
λ limit using graphics card processing units (GPUs).

The TDGL model was first suggested by Schmid in a very
clever attempt to describe the relaxation in the Ginzburg-

Landau equilibrium state by adopting the kinetic description
of liquid helium by Landau-Khalatnikov [33]. Later, Gor’kov
and Eliashberg presented a microscopic derivation of TDGL
[34]. Despite limited formal range of applicability (T ∼ Tc,
[34,35]), so far TGDL is the most relevant and widely used
approximation for modeling the flux dynamics in supercon-
ductors (see, e.g., Refs. [36–41] and references therein).
Although the TGDL model has a confirmed applicability only
in the gapless superconductors [35], it is believed to provide
a reasonable approach to analyze the vortex dynamics. In this
paper, we use the dimensionless form of the TDGL equation
for the complex superconducting order parameter ψ , which
reads [32]:

∂tψ + iμψ = ε(r)ψ − |ψ |2ψ + [g
−
(∇ − i A)]2ψ + ζ (r,t)

(1)

Here, μ is the scalar potential calculated self-consistently
from the Poisson equation, g

−
is the anisotropy tensor, and

A is the vector potential. Compared to the traditional TGDL
form, (1) includes anisotropy through the anisotropy tensor
g
−
. The equation also accounts for weak disorder, represented

by the function ε(r), and thermal noise ζ (r,t). To model high
temperature superconductors, we use parameters characteristic
for YBCO. The length is scaled in units of zero-temperature
coherence length ξ0 = ξab, the unit of time is the Ginzburg-
Landau time τGL = π�/8 kBTc, and the magnetic field is scaled
to Bc2(T = 0) = �0/2πξ 2

0 . Quenched disorder imitating the
weak pinning is described by modulations of the critical
temperature in the simulation volume with random function
ε(r) = Tc(r)

T
− 1 changing in the interval [0.8,1] yielding 10%

variations of Tc. For YBCO, the anisotropy rescales the
gauge-invariant gradient along the z axis (||c) by a factor of
g = 5. In this case, we neglect the layered crystal structure
of the sample and account only for the mass anisotropy
(g = (mc/mab)1/2). The vector potential is taken as A =
y[−Bz,0,Bx]T . The thermal noise is defined by spatiotemporal
correlator 〈ζ (r,t)ζ (r ′,t ′)〉 ∝ T

Tc
δ(r − r ′)δ(t − t ′), where we

choose T = Tc/2. We do not account for the magnetization
currents defining the reduced magnetic induction in the super-
conductor compared to the applied magnetic field. However,
such a simplification is relevant in the range of relatively
large fields used in simulations. The equation is discretized
on a regular spatial mesh of 256 × 256 × 128 grid points
with ξ0/2 unit step. In such a volume, we could realistically
capture the dynamics of many interacting vortices with 0.1 τGL

time resolution within a reasonable calculation time. A typical
simulation run integrates 106 time steps and takes 3 × 104 s
real time on a K20x NVidia Tesla GPU. By choosing the
minimum discretization mesh of ξ0/2, we keep in mind that
the Ginzburg-Landau theory is phenomenological in nature
and describes physical properties on the scale larger than
the superconducting coherence length. The time integration
in our TGDL simulations is done using an implicit Crank-
Nicolson scheme [32], which is stable for arbitrary time
discretization. So, 0.1 τGL time resolution assures physically
relevant dynamic behavior of the order parameter.

To understand the effect of disorder imitating weak pinning
in the system, we compare calculations with results at ε(r) = 1
(no spatial disorder, but only thermal noise present). We model
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two different geometries to address the shape effect relevant
for thin crystal plates of high Tc superconductors. One of them
corresponds to the anisotropic plate with surfaces parallel
to the anisotropy axis c. Another corresponding to cuprate
crystals mimics a plate perpendicular to the c axis. Boundary
conditions are open at the sample surfaces (||c and ⊥c,
respectively, for the above geometries) and quasiperiodic in
the other two directions. At open boundaries, the perpendicular
supercurrent components are set to zero, while at quasiperiodic
boundary conditions, a jump of the complex phase has to
be introduced as a result of the chosen gauge of the vector
potential (see [32]). Below, we present pictures of the evolution
of the vortex distributions in time with a constant in-plane
field, while increasing the perpendicular field. Vortices are
visualized as isosurfaces with constant order parameter |ψ |.

We will first briefly comment on the general picture of
magnetization with crossing magnetic fields. Then, we will
describe in more detail the vortex cutting process. Finally, we
will discuss the helical instability induced by the perpendicular
field. Short movies of the vortex evolution can be found in the
Supplemental Material [42].

V. PLATE WITH SURFACES PARALLEL TO
THE ANISOTROPY AXIS c (||z)

In this case, sample surfaces are parallel to the xz plane
and the c axis is along z. The initial field is along the x axis,
and the perpendicular field is parallel to z. General changes of
the vortex structure are illustrated in Fig. 1, where we show
the evolution of vortices without spatial disorder (“clean”)
in the left column and with weak disorder (WD) in the
right column at the same values of time and field. Bx =
const = 0.04 and Bz changes in steps of �Bz = 0.0005
each �t = 3750 τGL from 0 to 0.0095 within the same time
protocol for both clean and WD cases. All visualizations of
the internal vortex structure are done using isosurfaces of the
order parameter amplitude, |ψ | = 0.6. There are no jump-wise
changes in the vortex system due to the field steps and the
structure does not become static between them. The vortex
array dynamically adjusts to the steps on time scales larger
than �t , indicating the overdamped character of the vortex
motion. To clearly present the arrangement of vortices we
show three projections of the vortex arrays at each time and
field.

Qualitatively, the evolution of the vortex state is very similar
in both cases. In the initial state (Bz = 0), vortices are mostly
aligned with the applied field [Figs. 1(a) and 1(a1)]. Vortices
are smoothly bending in the xy plane due to the introduced
structural disorder, or thermal noise in the clean case, but they
do not bend along z due to the anisotropy in the vortex line
tension. They have elliptic cores extended perpendicular to the
z axis as expected for the chosen anisotropy parameter. Close
comparison at the same value of the order parameter shows
that vortices are slightly wider in the WD case. There is a
clear tendency towards the formation of a vortex lattice with
a unit cell predominantly stretched along the y direction in
accordance with predictions for anisotropic superconductors
(see [43] and references therein). This feature is clearly seen
in z projections of Fig. 1 through the bunching of vortices
dominating over their wiggling in the xy plane.

With increasing perpendicular field, Bz, vortices remain
unchanged in the middle section while new tilted vortices,
usually arched inside as shown by white arrow in Fig. 1(b),
form at the xz sample surfaces. They move preferentially
perpendicular to the z axis and cross the inner vortices.
After cutting and reconnection through an intricate process
described below, the resulting vortices become tilted from the
xy plane. Thus, the BZ component is delivered from the surface
by newly generated vortices and transferred to the initial
vortices in the bulk through the cutting reconnection events.
The resulting tilted vortices aligned towards the external field
lower the energy of the system (see scheme in Fig. 2).

With increasing normal field, the resulting tilted vortices
move inside together with new vortices arriving from the
surfaces and the normal flux component steadily occupies
the sample [Figs. 1(b)–1(d) and 1(b1)–1(d1)]. Interestingly, at
the normal flux front, there is a sharp change of the vortex
angle. It is better observed in the illustration of the WD
case in Fig. 1(b1); see red arrow on x projection, top-right
panel. Here, the left vertical stack of vortices is tilted by
a noticeable angle compared to the inner vortices aligned
mostly in the xy plane. The difference in tilt is well resolved
in the bottom y projection of Fig. 1(b1). A moving front of
tilted flux penetration was observed experimentally in YBCO
crystals under crossing fields (see [31] and references therein).
Following Clem [44], one should expect that such fronts
will carry enhanced currents responsible for the variation
of the induction angle dθ/dr in contrast to Bean’s vortex
pinning currents limiting the transverse motion of vortices
and defining the induction density gradients d|B|/dr . At
the largest Bz = 0.0095, vortices tend to form chains, as
predicted for tilted vortices in anisotropic superconductors
[43].

The main difference between the clean and WD case
is an unexpectedly better mutual alignment of vortices in
the disordered sample. Also, counterintuitively, at larger Bz,
vortices shift to a longer distance from the xz sample surfaces
in the presence of disorder [Fig. 1(d)]. Note that the larger
wiggling of vortices in the clean case is mostly around the z

axis, while their tilt with respect to the z axis is nearly the same
over the sample.

VI. PLATE WITH SURFACES PERPENDICULAR TO
THE ANISOTROPY AXIS c (c||z)

Snapshots of the vortex structure evolution in the crossing
fields for sample surfaces parallel to the xy plane are shown
in Fig. 3 for both clean (left column) and WD (right column)
cases. They are calculated within the same time-field protocol,
as discussed above and presented with the same t and Bz

values as in Fig. 1. The emerging vortex configurations are
qualitatively similar to those in the sample with xz surfaces.
However, now vortices arrange more irregularly across the z

axis and do not show a tendency to form a regular lattice.
This can probably be associated with increased interactions of
vortices with sample surfaces perpendicular to the anisotropy
axis, which interferes with interactions between vortices
defining their order. Although vortex-vortex coupling remains
still dominating and at larger tilt angles results in a set of
distorted vortex chains [see vortex stacks vaguely aligned in
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FIG. 1. Snapshots of the vortex configurations during application of the perpendicular field (Bz) to the sample with initial vortices formed
in the longitudinal field (Bx = 0.04, By = 0). Boundary conditions imitate a plate with xz surfaces parallel to the anisotropy axis c||z (shaded
planes in the top insert). Appropriate time values t (in units of τGL) and Bz (in units of Hc2) are shown near the panels. Three projections along
z (left), x (right-top), and y axis (right-bottom), are shown for each t-Bz pair. Left column (a)–(d) presents data for the clean case (no spatial
disorder) and the right column (a1)–(d1) shows data at the same t-Bz in the case with disorder (WD). Vortices are visualized by isosurfaces of
the order parameter |ψ | = 0.6.

yz planes marked by arrows on x projection of Fig. 3(d)].
Differences between the clean and WD cases are much less
noticeable. A new feature in Fig. 3 compared to Fig. 1 (see y

projections in Figs. 1(b)–1(d) panels and top-right insert) is a

noticeable tilt of the vortex ends near the xy surfaces. This is
an expected effect (see, e.g., [45]) of the supercurrents flowing
preferentially in the xy plane near the surface and aligning
these vortices towards the z axis.
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FIG. 2. Simplified scheme of the vortex rotation in the bulk
through the cutting reconnection process. (a) and (b) New vortex, N,
delivers the normal field component (H⊥||z) from the surface to the
initial vortex, I, generated in the in-plane field H||||x. After crossing
(b), new reconnected vortices stretch due to the vortex line tension
and become tilted towards the applied field direction (c).

Vortex loops penetrating from the xz surfaces and crossing-
reconnecting with initial vortices produce new tilted vortices
in the bulk. The tilted vortices move further inside, forming
a front, which is less pronounced than in the sample with
xz surfaces. Near the front, we observe helical instability
(see the last section), also resulting in tilted vortices. For
the maximum Bz [Figs. 3(d) and 3(d1)], tilted vortices are
assembled closer to the center of the sample than in Fig. 1.
We do not observe the entry of new vortices from the xy

surfaces, but they always propagate from the xz edges of
the simulation volume. This can be referred to the advanced

FIG. 3. Same as in Fig. 1 but for boundary conditions imitating a plate with xy surfaces (shaded planes in the top-left sketch) perpendicular
to the anisotropy axis c||z. Top-right insert illustrates the tilt and expansion of vortices near the xy sample surface.
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FIG. 4. Close-up of the vortex crossing process in clean plate with xy surfaces perpendicular to the anisotropy axis c. B = (0.04, 0, 0.0025).
Time values in units of τGL are shown on the (a)–(f) panels. Initial vortex is yellow, and new entering vortex is green. Bottom panels (a1)–(f1)
show the same crossing stages in a slightly tilted projection.

mobility of anisotropic vortices in the direction across the z

axis.

VII. VORTEX CROSSING

As pointed out above, the main phenomenon resulting in
the tilt of flux lines in the bulk is cutting and reconnection of
vortices followed by their straightening in a new direction. To
study details of the cutting, we first identified crossing events
with time steps of τGL and then decreased the time steps to
0.1 τGL within the event duration. This allowed us to reveal
characteristic features of the process and follow the dynamics
using reasonable calculation efforts. For all studied geometries
and both clean and WD cases, the process was very similar and
below we illustrate it with a couple of characteristic pictures.

Figure 4 presents typical consecutive stages of the cutting
and reconnection of two vortices on a large time scale. Two
different projections (with shown coordinate axes) of the same
event are visualized in the top two and bottom two rows. The
moving vortex loop entering from the edge at increasing Bz

is green, and the initial vortex, generated by the longitudinal
field Bx , is yellow.

As the two vortices approach each other, they mutually
bend to acquire a local antiparallel orientation [Figs. 4(a) and
4(a1)]. The local bending of vortices increases their length and
their elastic energy but strongly reduces their repulsion energy,
ultimately resulting in their local attraction. The more mobile
entering vortex (generated by the increasing perpendicular
field Bz) usually bends more than the initial vortex (created
by the parallel field Bx). The cores of two vortices touch
[Figs. 4(b) and 4(b1)] and merge locally [Figs. 4(c) and 4(c1)].
Then, the merged core segment deforms [Figs. 4(d) and 4(d1)]
and breaks resulting in a pair of new highly twisted vortices
consisting of exchanged halves of the initial vortices [Figs. 4(e)
and 4(e1)]. The peculiar strong twist [marked by arrow in
Fig. 4(e1)] of vortices around the z axis is a consequence
of the superconducting anisotropy leading to much smaller
line tension in the xy plane [23]. Eventually, strong twists of

the departing vortices stretch out, resulting in a pair of tilted
vortices [Figs. 4(f) and 4(f1)].

The second example, Fig. 5, illustrates the crossing of an
initial linear vortex with an expanding helical vortex (details of
the helical instability are discussed later). The main features

FIG. 5. Crossing of the expanding helical vortex (green) and the
initial straight vortex (yellow). Time values are shown in (a)–(d).
Panels (a1)–(d1) show the same stages in different projection. Bx =
0.04, Bz = 0.006. Clean case: plate with surfaces perpendicular to
the c axis.

064505-7



GLATZ, VLASKO-VLASOV, KWOK, AND CRABTREE PHYSICAL REVIEW B 94, 064505 (2016)

FIG. 6. Time dependence of the minimum distance between
vortex centerlines, rmin, for several crossing events. Individual
crossing events are taken at different time and Bz values, in different
parts of the sample and with different arrangement of neighboring
vortices, which causes varying initial and final rmin. However, the
time evolution of the process looks the same. Time coordinates for
different events are adjusted so that ta = 0 corresponds to the collapse
moment; rmin is in units of ξ0 and ta in τGL. Note that our procedure
of tracing the centerlines of vortices yields a subgrid resolution and
a smoothed trajectory of the vortex core motion.

are the same as in the previous case but the helical vortex
is already in a twisted configuration before it approaches the
linear vortex [Figs. 5(a) and 5(a1)]. When the vortices are
close, the linear vortex also starts to bend and the twist on
the helix becomes more pronounced [Figs. 5(b) and 5(b1)].
Subsequently, the vortex cores merge [Figs. 5(c) and 5(c1)]
and then deform and split forming two different vortices with
exchanged halves. These new vortices produced by cutting
reconnection depart [Figs. 5(d) and 5(d1)] and later straighten
(not shown), resulting in a pair of vortices tilted towards the
field direction.

To follow the dynamics of the vortex cutting process, we
calculated the time dependence of the minimum distance (rmin)
between centerlines of mutually bent vortices. The position of
the centerlines was found using closed contour integration
of the gradient of phase of the complex order parameter over
the mesh faces and choosing subsets that produce 2π phase
shift within (see [46]). Subsequent triangulation and tracing
of the center point then yield the vortex line with a subgrid
resolution. Remarkably, this procedure reveals the centerlines
even when vortex cores are already well merged. Figure 6
shows a set of rmin(t) dependences for a number of crossing
events. Here, the time coordinate for each event is shifted
so that the moment of collapse corresponds to t = 0. The
events are taken at different real time and Bz values at different
points in the sample. Despite that, they show practically the
same time duration of the crossing process. First, vortices
approach with relatively low velocity (negative times on the
plot). Then, at small distances (separations), they accelerate
(at t → 0). At this stage, they experience a strong mutual

twist. Finally, after the collapse (the exact position rmin = 0 is
not resolvable in our simulations), they first depart with high
velocity and then decelerate to a lower speed. The difference
in separation, across which the approach and departure of the
crossing event occurs, is not surprising because the events
take place in different neighboring vortex environment and
at different Bz. Interestingly, these factors do not change the
average duration of the events, which is also independent of the
presence of the weak spatial disorder. However, we believe that
the introduction of strong pinning should introduce noticeable
changes in the dynamics of the vortex cutting due to the pinning
of the bent vortex segments.

Our numerical calculations of the total Ginzburg-Landau
energy, EGL, in the volume surrounding the vortex collision
point show that during the crossing process, EGL drops and
then increases again. The value of the EGL drop yields an
estimate of the crossing barrier as Ecr ∼ 10.5 Tc. From the
simulated vortex behavior, such a barrier is not a serious
obstacle for the cutting reconnection process in our case. At
the same time, such a considerable Ecr leaves the possibility
of vortex entanglement under different conditions (orientation
and magnitude of the field and presence of stronger pinning
centers).

VIII. LEFT-HANDED HELICAL VORTICES

The helical deformation of straight initial vortices is an
independent and simultaneous process that emerges during
the application of a perpendicular field. It also leads to vortex
crossing and results in the orientation of vortices along the
new field direction. A model of the helical vortex instability
accompanied by flux-cutting was introduced by Clem [29] to
explain the behavior of current carrying superconducting wires
in longitudinal field. The self-field of the current I is circular
(azimuthal) at the surface of the wire and couples to the applied
longitudinal field H to generate clock-wise twisted (right-
handed) helical vortices at large enough I and H. The Lorentz
force of the current squeezes these helices towards the wire
axis, where they become parallel to H, resulting in a process
akin to longitudinal field pumping. Experimentally, such
pumping was never observed and instead, inhomogeneous
oscillations of the voltage along the wire were detected [47].
Clem suggested [29] that counterclockwise twisted helices
(left-handed) nucleate from the straight vortex lines in the
middle of the wire and naturally expand towards the periphery
of the wire due to the Lorentz force of the same current (Fig. 7).
These left-handed helices collapse when they come in contact
with the inward propagating right-handed helices, preventing
parallel field pumping and resulting in voltage oscillations.

Brandt [30] showed that a similar helical instability should
occur in the vortex lattice in the presence of currents flowing
parallel to vortices. Later, Genenko analyzed the appearance of
helical vortices in different samples accounting for the effect
of surface barrier on vortex entry [48]. So far, the experimental
efforts to confirm the above theoretical predictions of nucle-
ation and collapse of the helical vortices are mostly limited to
macroscopic measurements, as discussed in [49,19].

In our simulations, the appearance of helical vortices with
increasing Bz can be seen in the large-scale pictures of
Figs. 1(c) and 3(c) (see top-right x projections). A more
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FIG. 7. Helical deformations of vortices parallel to the magnetic
field H at strong longitudinal currents J [in accordance with
Refs. [29,30]. Lorentz force (small arrows) on the clockwise twisted
[right-handed, (RH)] vortices should squeeze them into a straight line,
but it should expand counterclockwise twisted [left-handed, (LH)]
vortices.

detailed illustration is presented in Fig. 8. Here, we show by
arrows the direction of both Bx and Bz along with the screening
Bz currents JC. Circles with arrows around the current lines
indicate the chirality of the expected right-handed vortices that
would be supported by these currents. Our simulations reveal
vortex helices that are all left-handed, following Clem’s [29]
predictions. The resulting Lorentz force FL = JC × �0, where
�0 defines locally oriented helical vortex flux, is directed
outwards from the helix axis and thus should expand the
left-handed helix in accordance with our simulations. The
expanding helices cross and reconnect with the initial vortices
introduced by Bx , as, e.g., shown in Fig. 5, and produce new
tilted vortices. Segments of helices that are tilted opposite to
the applied Bz expand towards the xz sides and exit the sample.

Results of the simulations shown in Fig. 8 correspond to the
plate perpendicular to the z axis, i.e., normal to Bz. However,
very similar left-handed helices appear in the plate parallel
to the z axis. The spatial disorder also does not introduce
any noticeable changes in this picture. Due to the anisotropy,
helical vortices expand preferentially perpendicular to the
z axis (Fig. 9) and outline a flat cylinder extended along
the xy direction, as schematically shown Fig. 9(d). Thus,
helical instability is a universal component of the crossing-field
magnetization process, with some geometrical distortions
introduced by the superconducting anisotropy.

FIG. 8. Development of the helical instability at increasing Bz

observed in the simulations. Helices at the left and right sides
have opposite chirality, but they are all left-handed with respect
to the screening currents Jc; t = 57250, Bx = 0.04, Bz = 0.0065.
Clean plate perpendicular to the c axis. Similar patterns appear in
the plate parallel to the c axis.

FIG. 9. (a)–(c) Three projections of the helical vortex near the
right side of the sample illustrated in Fig. 8 (clean plate with surfaces
perpendicular to the c axis, t = 57500, Bx = 0.04, Bz = 0.0065). (d)
The scheme of the elliptical trajectory of helix in the anisotropic
material. (e) Front of helices formed near the left side of the
sample illustrated in Fig. 1 (clean plate parallel to c, t = 73250, Bz =
0.0085).

IX. CONCLUSIONS

In this paper, we used TDGL model to simulate the
vortex cutting and reconnection process under applied crossed
magnetic fields. Using massive parallel simulations on GPUs,
we managed to follow the behavior of a relatively large array
of vortices with high time resolution of 0.1 τGL in anisotropic
high TC superconductor, accounting for weak disorder, thermal
noise, and specific geometry of the sample.

The vortex cutting process emerges when longitudinal
magnetic field induced vortices in a superconductor intersect
with incoming orthogonal vortices induced by an applied
perpendicular field. Two approaching vortices bend to form
local twists near the crossing point to arrive at a locally
antiparallel configuration. Their vortex cores merge and then
deform and break away locally, leaving two new vortices
consisting of the exchanged halves of the initial vortex lines
with strong local twists. Eventually, the twisted sections
straighten out and the resulting vortices end up tilted towards
the direction of the applied magnetic field. The simulated
time-lapse images of the cutting process reveal the acceleration
of the vortex, as it approaches the crossing point, and a
deceleration of the newly cut and reconnected vortices, as
they retreat from each other. We believe that the introduction
of strong pinning can substantially delay vortices in the close
vicinity of the crossing point due to the trapping of strongly
bent segments at the pinning centers.

The entry of the tilted flux from the surface is accompanied
by a helical deformation of longitudinal vortices induced by
currents that screen the perpendicular field and are parallel
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to the vortices. These helical vortices are left-handed in
accordance with the predictions by Clem [29]. They expand
under the Lorentz force of the same screening current and
cut-reconnect with initial straight vortices, resulting in tilted
flux lines. We find that both the expansion of helices and the
cutting reconnection of vortices are noticeably modified by
anisotropy.

Our paper of the vortex cutting phenomenon yield crossing
patterns that are very similar to those observed in hydrody-
namic stimulations of the reconnection process of vortices
in classical and quantum liquids [17,50,51]. This similarity
is not accidental. In fact, in the case of quantum liquids the
dynamic Gross-Pitaevskii equation (see, e.g., Ref. [52]) has
nearly the same form as TGDL. In usual liquids, the similarity
is not that obvious and points to a qualitative analogy between
transformations in the viscous flow and in the electric current
variations in superconductors. It hints at the possibility of a
coarse-grain hydrodynamic approach to describe the current
and magnetic flux dynamics in superconductors.

Our results are a first step towards a fundamental
understanding of “bulk” vortex crossing phenomena in

superconductors. Further studies of vortex crossing should
address different scenarios for vortex cutting, characteristic
times of the event, accurate statistical estimates of the crossing
barrier, and topological changes in the current patterns around
the crossing points. Answers to these questions should depend
on the material parameters defining the shape, coupling
efficiency, and cutting barrier of intersecting vortices, such
as anisotropy, sample geometry, layered crystal structure,
and different pinning landscapes. This opens a vast field for
exploration that can be extended to many vortex phenomena in
other physical systems. We hope our results will attract wide
attention to this exciting problem, which can be approached
using comprehensive TDGL simulations.
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