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Half-metallic superconducting triplet spin valve
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We theoretically study a finite-size SF1NF2 spin valve, where a normal metal (N ) insert separates a thin
standard ferromagnet (F1) and a thick half-metallic ferromagnet (F2). For sufficiently thin superconductor (S)
widths close to the coherence length ξ0, we find that changes to the relative magnetization orientations in the
ferromagnets can result in substantial variations in the transition temperature Tc, consistent with experimental
results [Singh et al., Phys. Rev. X 5, 021019 (2015)]. Our results demonstrate that, in good agreement with
the experiment, the variations are largest in the case where F2 is in a half-metallic phase and thus supports
only one spin direction. To pinpoint the origins of this strong spin-valve effect, both the equal-spin f1 and
opposite-spin f0 triplet correlations are calculated using a self-consistent microscopic technique. We find that
when the magnetization in F1 is tilted slightly out of plane, the f1 component can be the dominant triplet
component in the superconductor. The coupling between the two ferromagnets is discussed in terms of the
underlying spin currents present in the system. We go further and show that the zero-energy peaks of the local
density of states probed on the S side of the valve can be another signature of the presence of superconducting
triplet correlations. Our findings reveal that for sufficiently thin S layers, the zero-energy peak at the S side can
be larger than its counterpart in the F2 side.
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I. INTRODUCTION

In the field of superconducting spintronics, there is interest
in spin-controlled proximity effects for manipulating the
superconductivity in ferromagnet (F ) and superconductor (S)
layered systems [1,2]. When an S layer is in contact with two
ferromagnets, creating a superconducting spin valve, the su-
perconducting state can be controlled by changing the relative
magnetization directions [3–7]. The basic superconducting
spin valve involves SFF structures [3,8] where switching
between relative parallel and antiparallel magnetizations mod-
ifies the oscillatory singlet pairing in the F regions. For strong
ferromagnets, these oscillations have limited extent, as they
become damped out over very short distances [9]. If, however,
the mutual magnetizations vary noncollinearly, the broken time
reversal and translation symmetries induces a mixture of spin
singlet and odd-frequency (or odd-time) spin-triplet correla-
tions with 0 and ±1 spin projections along the magnetization
axis [10,11]. The triplet pairs with nonzero spin projection
can naturally penetrate extensively within the ferromagnet
layers [12–18] and result in an enhancement of the DOS
at low energies [19,20]. This long-range triplet component
in SF1F2 type spin valves can be manipulated by changing
the relative magnetizations in F1 and in F2, which creates
opportunities for the development of new types of spin valves
and switches for nonvolatile memory applications [21–23].
Because of their simplicity in pinpointing fundamental phe-
nomena and promising prospects in spintronics devices, the
SF1F2 spin valve continues to attract broad interest [3,8,16,23–
29].

Recent experiments involving superconducting spin valves
have investigated variations in the critical temperature, Tc
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[30,31], when varying the relative in-plane magnetization
angle. The suppression in Tc for nearly orthogonal magne-
tizations reflects the increased presence of equal-spin triplet
pairs [8]. A spin-valve-like effect was also experimentally
realized [25,32] in FeV superlattices, where antiferromagnetic
coupling between the Fe layers permits gradual rotation of
the relative magnetization direction in the F1 and F2 layers.
Most experiments involve standard ferromagnets, leading to
�Tc sensitivity of several millidegrees Kelvin. When the outer
F2 layer is replaced by a half-metallic ferromagnet, such as
CrO2, a very large �Tc has been reported, which is indicative
of the presence of odd-frequency triplet superconducting
correlations [27].

Besides through studying Tc, the existence and type of
superconducting correlations in superconducting spin valves
can be identified through signatures of the proximity-induced
electronic density of states (DOS) [33]. When triplet correla-
tions are present in an F layer, it has been shown that a zero-
energy peak (ZEP) in the DOS can arise [28,34]. The situation
where pair correlations from both the spin-0 and spin-1 triplet
channels are present can, however, make its unambiguous
detection difficult. Nonetheless, this difficulty can be alleviated
if one of the F layers is half-metallic (supporting one spin
direction), creating an effective spin filter that can isolate the
spin-1 triplet component due to the large exchange splitting
present. Thus it is of interest to investigate SF1F2 structures
containing a half-metallic ferromagnet, where the modified
triplet proximity effects can result in effective spin valves with
high sensitivity to magnetization changes and a corresponding
Tc suppression.

To realistically and accurately model these systems,
where h � EF , we use a fully microscopic framework, the
Bogoliubov–de Gennes (BdG) equations, to determine the
singlet and triplet pair correlations self-consistently. This
approach naturally supports the study of a broad range of
intermediate ferromagnetic exchange energies, including the
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half-metallic phase, by simply setting the exchange field value
close to the Fermi energy. The half-metallic regime has also
been studied within the quasiclassical approximation [29,35]
by considering the case when the energy splitting of the spin-up
and spin-down bands greatly exceeds the Fermi energy, i.e.,
h � EF . Using the BdG formalism, we show how to identify
the existence of the equal-spin triplet components by probing
the S side of the proposed valve with an STM, revealing
signatures in the form of peaks in the density of states (DOS)
at zero energy [24,28].

II. METHODS

A schematic of the spin valve configuration is depicted
in Fig. 1. We model the nanostructure as a SF1NF2 layered
system, where S represents the superconducting layer, N

denotes the normal metallic intermediate layer, and F1,F2 are
the inner (free) and outer (pinned) magnets, respectively. The
layers are assumed to be infinite in the y-z plane with a total
thickness d in the x direction, which is perpendicular to the
interfaces between layers. The ferromagnet F2 has width dF2 ,
and fixed direction of magnetization along z, while the free
magnetic layer F1 of width dF1 has a variable magnetization
direction. The superconducting layer of thickness dS is in
contact with the free layer. The magnetizations in the F layers
are modeled by effective Stoner-type exchange fields h(x),
which vanish in the nonferromagnetic layers.

To accurately describe the physical properties of our sys-
tems with sizes in the nanometer scale and over a broad range
of exchange fields, where quasiclassical approximations are
limited, we numerically solve the microscopic BdG equations
within a fully self-consistent framework. The general spin-
dependent BdG equations for the quasiparticle energies, εn,
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FIG. 1. Schematic of the finite-size SF1NF2 multilayer, where θ1

and θ2 characterize the magnetization orientation of ferromagnets F1

and F2 with thicknesses dF1 and dF2 , respectively. The normal metal
(N ) insert with thickness dN is a nonmagnetic layer such as Cu. The
exchange field in each magnet is written hi = hi(cos θi,0, sin θi),
for i = 1,2. Here, θi is measured relative to the x axis. The
ferromagnet F2 is half-metallic (e.g., CrO2) so that |h2| = EF , and
its magnetization is fixed along the z direction (θ2 = π/2), whereas
the magnetization in F1 can rotate in the x-z plane. We thus define the
angle θ to describe the out-of-plane relative magnetization between
the two magnets, with θ ≡ θ1 − θ2.

and quasiparticle wave functions, unσ ,vnσ are written as
⎛
⎜⎝
H0 − hz −hx 0 �(x)

−hx H0 + hz �(x) 0
0 �(x) −(H0 − hz) −hx

�(x) 0 −hx −(H0 + hz)

⎞
⎟⎠

×

⎛
⎜⎝

un↑
un↓
vn↑
vn↓

⎞
⎟⎠ = εn

⎛
⎜⎝

un↑
un↓
vn↑
vn↓

⎞
⎟⎠, (1)

where hi (i = x,z) are components of the exchange
field. In Eq. (1), the single-particle Hamiltonian H0 =
−1/(2m)d2/dx2 − EF + U (x) contains the Fermi energy,
EF , and an effective interfacial scattering potential described
by δ functions of strength Hj (j denotes the different
interfaces), namely, U (x) = H1δ(x − dS) + H2δ(x − dS −
dF1 ) + H3δ(x − dS − dF1 − dN ), where Hj = kF HBj/m is
written in terms of the dimensionless scattering strength HBj .
We assume hx,i = hi cos θi and hz,i = hi sin θi in Fi , where hi

is the magnitude of exchange field and i denotes the region. To
minimize the free energy of the system at temperature T , the
singlet pair potential �(x) is calculated self-consistently [36]:

�(x) = g(x)

2

∑
n

[un↑(x)vn↓(x) + un↓(x)vn↑(x)] tanh

(
εn

2T

)
,

(2)

where the sum is over all eigenstates with εn that lie
within a characteristic Debye energy ωD , and g(x) is the
superconducting coupling strength, taken to be constant in the
S region and zero elsewhere. The pair potential gives direct
information regarding superconducting correlations within
the S region only, since it vanishes in the remaining spin
valve regions where g(x) = 0. Greater insight into the singlet
superconducting correlations throughout the structure and the
extraction of the proximity effects is most easily obtained by
considering the pair amplitude, f3, defined as f3 ≡ �(x)/g(x).

To analyze the correlation between the behavior of the
superconducting transition temperatures and the existence
of odd triplet superconducting correlations in our system,
we compute the induced triplet pairing amplitudes which
we denote as f0 (with m = 0 spin projection) and f1 (with
m = ±1 spin projections) according to the following equations
[18]:

f0(x,t) = 1

2

∑
n

[un↑(x)vn↓(x) − un↓(x)vn↑(x)]ζn(t), (3a)

f1(x,t) = −1

2

∑
n

[un↑(x)vn↑(x) + un↓(x)vn↓(x)]ζn(t), (3b)

where ζn(t) ≡ cos(εnt) − i sin(εnt) tanh[εn/(2T )], and t is the
time difference in the Heisenberg picture. These triplet pair
amplitudes are odd in t and vanish at t = 0, in accordance
with the Pauli exclusion principle. The quantization axis in
Eqs. (3a) and (3b) is along the z direction. When studying
the triplet correlations in F1, we align the quantization
axis with the local exchange field direction, so that after
rotating, the triplet amplitudes f0 and f1 become linear
combinations of the f0 and f1 in the original unprimed system
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[28]: f ′
0(x,t) = f0(x,t) cos θ − f1(x,t) sin θ , and f ′

1(x,t) =
f0(x,t) sin θ + f1(x,t) cos θ . Thus, when the exchange fields
in F1 and F2 are orthogonal (θ = π/2), the roles of the
equal-spin and opposite-spin triplet correlations are reversed.
The singlet pair amplitude, however, is naturally invariant
under these rotations.

The study of single-particle excitations in these systems can
reveal important signatures in the proximity-induced singlet
and triplet pair correlations. A useful experimental tool that
probes these single-particle states is tunneling spectroscopy,
where information measured by a scanning tunneling mi-
croscope (STM) can reveal the local DOS, N (x,ε), as a
function of position x and energy ε. We write N (x,ε) as
a sum of each spin component (σ =↑ , ↓) to the DOS:
N (x,ε) = N↑(x,ε) + N↓(x,ε), where

Nσ (x,ε) =
∑

n

[
u2

nσ (x)δ(ε − εn) + v2
nσ (x)δ(ε + εn)

]
. (4)

III. RESULTS

We now proceed to present the self-consistent numerical
results for the transition temperature, singlet and triplet
amplitudes, and the local DOS for the spin-valve structure
depicted in Fig. 1. We normalize the temperature in the
calculations by T0, the transition temperature of a pure bulk
S sample. When in the low-T limit, we take T = 0.05T0.
All length scales are normalized by the Fermi wave vector
kF , so that the coordinate x is written X = kF x and the F1

and F2 widths are written DFi
= kF dFi

, for i = 1,2. The
thick half-metallic ferromagnet F2 has width DF2 = 400,
and F1 is a standard ferromagnet with h1 = 0.1EF . We set
dF1 = ξF , where ξF = vF /(2h1) is the length scale describing
the propagation of spin-0 pairs. In dimensionless units we thus
have DF1 = (h1/EF )−1 = 10, which optimizes spin mixing of
superconducting correlations in the system. The S width is
normalized similarly by DS = kF dS , and its scaled coherence
length is taken to be kF ξ0 = 100. Natural units, e.g., � = kB =
1, are used throughout.

A. Critical temperature and triplet correlations

We first study the critical temperature of the spin valve
system. The linearized self-consistency expression near Tc

takes the form �i = ∑
q Giq�q , where �i are the expansion

coefficients for �(x) in the chosen basis. The Giq are the
corresponding matrix elements, which involve sums of the
normal-state energies and wave functions. To determine Tc, we
compute the eigenvalues λ, of the corresponding eigensystem
� = λG�. When λ > 1 at a given temperature, the system
is in the superconducting state. Many of the computational
details can be found in Ref. [30] and are omitted here.

It was experimentally observed [27] that a SF1F2 spin
valve is most effective at converting singlet Cooper pairs
to spin-polarized triplet pairs when F2 is in a half-metallic
phase. To examine this theoretically, we investigate the critical
temperature and corresponding triplet pair generation as a
function of h2/EF and θ (h1/EF = 0.1 remains fixed). The
width of the superconducting layer is maintained at DS = 130,
and the nonmagnetic insert has a set width corresponding
to DN = 5. The exchange field h2 varies from 0.1EF to

FIG. 2. Critical temperature Tc as a function of the relative
exchange field orientation angle θ at differing values of the ratio
of the exchange field in the F2 region, h2 to the Fermi energy EF .
The legend depicts the range of h2/EF considered, ranging from
a relatively weak ferromagnet with h2/EF = 0.1, to a fully spin
polarized half-metallic phase, corresponding to h2/EF = 1.

EF where h2 = EF corresponds to the situation where only
one spin species exists in this region (i.e., the half-metallic
phase). As seen in Fig. 2, Tc is nearly constant over the
full range of θ when both ferromagnets are of the same
type, i.e., when h2/EF = 0.1. Upon increasing h2 towards
the half-metallic limit, it is apparent that the spin valve
effect becomes dramatically enhanced, whereby rapid changes
in Tc occur when varying θ . This result therefore clearly
supports the assertion that the use of a half-metal generates the
most optimal spin-valve effectiveness [27]. Large variations
in Tc have also been found using a diffusive quasiclassical
approach involving SF1F2 heterostructures lacking the normal
layer insert [3,29]. When comparing Tc in the two collinear
magnetic orientations, the self-consistently calculated critical
temperatures in Fig. 2 reveal that the parallel state (θ = 0◦)
has a smaller Tc compared to the antiparallel state (θ = 180◦)
for moderate exchange field strengths. For these cases, the
two magnets can counter one another, leading to a reduction
of their effective pair-breaking effects. This creates a more
favorable situation for the superconducting state, causing Tc

to be larger. The situation reverses for stronger magnets with
h � 0.8, and the maximum Tc now arises for parallel relative
orientations of the magnetizations. In between the parallel
and antiparallel states, Tc undergoes a minimum that occurs
not at the orthogonal orientation (θ = 90◦), but slightly away
from it. This behavior has been observed in ballistic [5] and
diffusive [3] systems where the minimum in Tc arises from the
leakage of Cooper pairs that are coupled to the outer F layer
via the generation of the triplet component f1 that is largest
near θ = 90◦. This is also consistent with experimental results
for Co/Nb spin valves [37].

To demonstrate the correlation between the strong Tc

variations and the generation of triplet and singlet pairs, Fig. 3
shows the magnitudes of the equal-spin triplet amplitudes
(f1), opposite-spin triplet amplitudes (f0), and the singlet pair
amplitudes (f3), each averaged over the S region. For the triplet
correlations, a representative value for the normalized relative
time τ is set at τ ≡ ωDt = 4 [38]. When the ferromagnet (F2)
possesses a large exchange field, and the relative magnetization
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FIG. 3. The magnitudes of the normalized triplet (f0,f1) and singlet (f3) components are shown averaged over the S region and plotted
as a function of the relative magnetization angle θ . The temperature is set at T = 0.05T0. The top panels (a)–(c) depict differing values of the
exchange field in the F2 region as shown. All other system parameters are the same as those used in Fig. 2. Panels (d)–(f) correspond to F2

with an optimal exchange field of h2/EF = 1, and various S widths, as labeled.

angle between F1 and F2 approaches an orthogonal state,
superconductivity becomes severely weakened. Indeed, as
Fig. 2 demonstrated, the singlet pair correlations can become
completely destroyed at low temperatures (T � 0.05), and
orientations in the vicinity of θ � 90◦, whereby the system has
transitioned to a normal resistive state. This is consistent with
Fig. 3(c), where the f3 amplitudes vanish in the neighborhood
of θ ≈ 90◦ and h2/EF = 1. As Figs. 3(a) and 3(b) illustrate,
the triplet amplitudes also vanish due to the absence of
singlet correlations at those orientations. For weaker magnets,
however, the superconducting state never transitions to a
normal resistive state over the entire range of θ , and the
well-known situation arises whereby the equal-spin triplet
pairs are largest for orthogonal magnetization configurations,
i.e., when the misalignment angle is greatest (θ � 90◦). In all
cases, however, the f1 components must always vanish at θ =
0 and θ = 180◦, where the relative collinear magnetization
alignments are either in the parallel or antiparallel states
respectively. It is clear from Figs. 3(a) and 3(b) that the average
behavior of |f0| and |f1| exhibits their most extreme values
when Tc undergoes its steepest variations around θ ≈ 20◦ (see
Fig. 2). In particular, at the half-metallic phase, f1 is greatly
enhanced while f0 is dramatically suppressed. Therefore,
the considerable variations in Tc is correlated with the fact
that 100% spin-polarized compounds such as CrO2 result in
the optimal generation of spin triplet correlations [27]. The
suppression of f0 at θ ≈ 20◦ is fairly robust to changes in
the size of the S region. As the bottom panels in Fig. 3

illustrate, increasing DS by several coherence lengths causes
very little change in the location of the first minimum in f0

at θ ≈ 20◦. The angle θ that corresponds to a peak in f1,

however, noticeably shifts to larger θ , so that at θ ≈ 20◦,
f1 is no longer at its peak value. Therefore, the thinnest S

layer width considered here, DS = 130, leads to the most
favorable conditions for the generation of f1 triplet pairs in
the superconductor and limited coexistence with the f0 triplet
correlations.

Next, Fig. 4 shows Tc as a function of the out-of-plane
misalignment angle θ for differing (a) superconductor widths
DS , (b) normal layer widths DN , and (c) spin-independent
interface scattering strengths HB . If the relative magnetizations
were to rotate in plane, the Tc behavior discussed here would
be identical, thus providing additional experimental options
for observing the predicted effects. In Fig. 4(a), the sensitivity
of Tc to the S layer width is shown. The importance of having
thin S layers with dS ∼ ξ0 (100 in our units) is clearly seen.
In essence, extremely narrow S boundaries restrict Cooper
pair formation, causing the ordered superconducting state to
effectively become more fragile, consistent with other F/S

systems containing thin S layers [5]. Indeed, for the thinnest
case, DS = 100, superconductivity completely vanishes for
most magnetization configurations, except when θ is near the
parallel or antiparallel orientations. At the thickest DS shown
(DS = 200), the sensitivity to θ has dramatically diminished,
as pair-breaking effects from the adjacent ferromagnet now
have a limited overall effect in the larger superconductor. For
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FIG. 4. Critical temperature Tc as a function of the relative
exchange field orientation angle θ . In panel (a) the normal metal
insert has a width of DN = 5, and the S width varies as shown in the
legend, from DS = 100 to DS = 200. In panel (b) the S width is fixed
at DS = 130, while the N spacer is varied. In panel (c) the effects
of interfacial scattering are examined, with DS = 130, DN = 5. The
legend depicts the various scattering strengths HB considered.

all S widths considered, the minimum in Tc occurs when
θ lies slightly off the orthogonal configuration (θ = 90◦),
consistent with some quasiclassical systems [3]. Next, in
Fig. 4(b) the S layer thickness is set to DS = 130, while
several nonmagnetic N metal spacer widths are considered.
The presence of the N layer clearly plays a crucial role in
the thermodynamics of the spin valve. Indeed, an optimum
DN ≈ 5 exists which yields the greatest �Tc(θ ): Increasing
or decreasing DN around this value can significantly reduce
the size of the spin valve effect. Physically, this behavior
is related to the spin-triplet conversion that takes place in
the ferromagnets and corresponding enhancement of the
equal-spin triplet correlations in the N layer. This will be
discussed in greater detail below. For DN much larger than
the optimal width, a severe reduction in magnetic interlayer
coupling occurs and Tc exhibits little variation with θ . Finally,
in Fig. 4(c), we incorporate spin-independent scattering at
each of the spin valve interfaces. A wide range of scattering
strengths are considered. We assume Hj ≡ H (j = 1,2,3), so
that interface scattering can be written solely in terms of the
dimensionless parameter HB = H/vF . Overall, the general

features and trends for Tc seen previously are retained. With
moderate amounts of interface scattering, HB = 0.1, we find
�Tc ≡ Tc(θ = 0◦) − Tc(θ = 90◦) ≈ 0.3T0. It is immediately
evident that samples must have interfaces as transparent as
possible [27,28]: The variations in Tc with θ become severely
reduced with increasing HB , as the phase coherence of the
superconducting correlations becomes destroyed. In all cases,
we observe some degree of asymmetry in Tc as a function of
θ , similar to what has been reported in both diffusive [3] and
clean [5] spin valves lacking half-metallic elements. If it is
assumed that the band splitting in F2 is sufficiently large so
that only one spin species can exist, a quasiclassical approach
has shown that Tc can become symmetric with respect to θ in
the diffusive regime [29].

To correlate the large spin-valve effect observed in Fig. 4
with the odd-time triplet correlations, we employ the expres-
sions in Eqs. (3a) and (3b), which describe the spatial and
temporal behavior of the triplet amplitudes. We normalize the
triplet correlations, computed in the low T limit, to the value
of the singlet pair amplitude in the bulk S. The normalized
averages of |f0| and |f1| are plotted as functions of θ in
Fig. 5, at a dimensionless characteristic time of τ = 4. For
comparison purposes, the singlet pair correlations, f3, are also
shown (third column). In each panel, spatial averages over
different segments of the spin valve are displayed as separate
curves (see caption). Each row of figures corresponds to
different DS : DS = 130, 150, 300 (from top to bottom). One of
the most striking observations is the effect of the normal metal
spacer, which contains a substantial portion of the equal-spin
triplet pairs. We will see below that the f1 triplet correlations
within the normal metal tend to propagate into the adjacent
regions of the spin valve as time evolves. As shown in the top
two panels of Fig. 5, the equal-spin f1 triplet component in S

clearly dominates its opposite spin counterpart when θ ≈ 20◦.
Thus, only slight deviations from the parallel state (θ = 0◦)
generate triplet correlations within S that have spin projection
m = ±1. For each DS case studied, the singlet f3 amplitudes
are clearly largest in the S region where they originate and
then decline further in each subsequent segment. It is evident
also that the f1 triplet pair amplitudes are anticorrelated to Tc

(governed by the behavior of the singlet amplitudes), which
indicates a singlet-triplet conversion process.

Therefore as more singlet superconductivity leaks into the
ferromagnet side, Tc is suppressed, and triplet superconduc-
tivity is enhanced. It is evident that both triplet components
vanish around θ = 90◦, as was also observed in Fig. 3.
This is due to the highly sensitive nature of the gapless
superconducting state that arises in thin S systems, whereby
the singlet pair correlations become rapidly destroyed as
the magnetization vector in F1 approaches the orthogonal
configuration. Increasing the size of the superconductor causes
the superconducting state to become more robust to changes
in θ , and consequently the system no longer transitions to a
resistive state at θ ≈ 90◦. The triplet correlations reflect this
aspect as seen in the middle and bottom panels of Fig. 5,
whereby both triplet components have finite values for the
orthogonal orientation. Overall, there is a dramatic change in
both triplet components when the S part of the spin valve
is increased in size. For example, the f1 triplet correlations
in N and in F2 evolve from having two peaks to a single
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FIG. 5. Normalized triplet (f0,f1) and singlet (f3) amplitudes vs the relative magnetization angle θ . The magnitude of each quantity is
averaged over a given region in the SF1NF2 spin valve, as identified in the legend. The top, middle, and bottom rows correspond to DS = 130,
DS = 150, and DS = 300 respectively.

maximum at θ = 90◦. The DS trends also reflect the impor-
tance of self-consistency of the pair potential �(x) for thinner
superconductors, where a self-consistent singlet component
f3(x) can substantially decline, or vanish altogether, in contrast
to simple step function. Indeed, the observed disappearance of
the singlet and triplet pair correlations for thin superconductors
at θ � 90◦ (see top panels) can only occur if the pair potential
is calculated self-consistently [Eq. (2)], thus ensuring that
the free energy of the system is lowest [36]. This important
step permits the proper description of the proximity effects
leading to nontrivial spatial behavior of the pair amplitudes
in and around the interfaces for both the superconductor
and ferromagnets [39]. In common non-self-consistent ap-
proaches, where �(x) is treated phenomenologically as a
prescribed constant in the S region, this vital behavior is
lost.

Next, in Fig. 6 we present the spatial behavior of the real
parts of the triplet and singlet pair correlations throughout
each segment of the spin valve. We choose θ = 20◦ in
order to optimize the f1 triplet component in S. The other
parameters used correspond to DS = 130, DN = 5, and T =
0.05. Proximity effects are seen to result in a reduction of
the singlet f3 correlations in the S region near the interface
at X = 130. As usual, this decay occurs over the coherence
length ξ0. The singlet amplitude then declines within the F1

region before undergoing oscillations and quickly dampening
out in the half-metal. Thus, as expected, the singlet Cooper

pairs cannot be sustained in the half-metallic segment where
only one spin species exists. Within the half-metal, the
triplet component, f0 (also comprised of opposite-spin pairs),

FIG. 6. Normalized triplet (f0,f1) and singlet (f3) amplitudes
vs the dimensionless coordinate X. The relative magnetization
orientation is set to θ = 20◦. The dashed vertical lines identify the
locations of the interfaces for the SF1NF2 structure. Each segment
corresponds to the following ranges: X < 130 (S region), 130 �
X � 140 (F1 region), 140 < X � 145 (N region), and X > 145 (F2

region). The singlet component has been reduced by a factor of 10
for comparison purposes.
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FIG. 7. Time evolution of the localized spatial dependence of the
f0 and f1 triplet correlations. The insets depict magnifications of
the N regions (140 � X � 145). The dimensionless time parameter
τ ≡ ωDt varies from 0.8 to 5.6 in increments of 0.8. Initially,
the f1 component predominately populates the N region and then
progressively moves outward into each segment of the spin valve
with increasing time. The f0 component initially occupies the F1 and
N layers and then remains confined to those regions at higher τ . Each
dashed vertical line identifies the S interface.

undergoes damped oscillations similar to the f3 correlations. It
is notable that the triplet f0 component is severely limited in the
S region, in stark contrast to the singlet correlations. Therefore,
the f0 correlations in this situation are confined mainly to the
F1 and N regions. The equal-spin f1 triplet component, on the
other hand, is seen to pervade every segment of the spin valve:
The f1 correlations are enhanced in the N region, similar in
magnitude to f0, but then exhibit a slow decay in both the S

and half-metallic regions.
To further clarify the role of the triplet correlations in the

spin valve, we now discuss the explicit relative time evolution
of the triplet states in Fig. 7. Snapshots of the real parts of
the triplet amplitudes are shown in equal increments of the
relative time parameter τ . The angle θ is fixed at θ = 20◦,
again corresponding to when the triplet correlations with
m = ±1 projection of the z component of the total spin in the
superconductor is largest (see Fig. 5). The spatial range shown
permits visualization of both triplet components throughout
much of the system. Starting at the earliest time τ = 0.8, we
find that f1 mainly populates the nonmagnetic N region and
then, as τ increases, propagates into the F1 and F2 regions
before extending into the superconductor (left of the dashed

vertical line). Meanwhile, f0 is essentially confined to the
F1 and N regions, with limited presence in the S and F2

layers. Since the characteristic length ξF over which the f0

correlations modulate in F2 is inversely proportional to h2, f0

declines sharply in the half-metallic region. Also, in agreement
with Fig. 5, for θ = 20◦ and DS = 130, there is also a limited
presence of f0 in the superconductor. The superconductor
therefore has |f1| � |f0|, which by using the appropriate
experimental probe can reveal signatures detailing the presence
of equal-spin pairs f1 [24].

B. Density of states

To explore these proximity induced signatures further, we
investigate the experimentally relevant local DOS. An impor-
tant spectroscopic tool for exploring proximity effects on an
atomic scale with sub-meV energy resolution is the scanning
tunneling microscope (STM). We are interested in determining
the local DOS in the outer S segment of the SF1NF2 spin valve.
By positioning a nonmagnetic STM tip at the edge of the S

region, the tunneling current (I ) and voltage (V ) characteristics
can be measured [24]. This technique yields a direct probe
of the available electronic states with energy eV near the
tip. The corresponding differential conductance dI (V )/dV

over the energy range of interest is then proportional to the
local DOS. The vast majority of past works only considered
the DOS in the ferromagnet side where the f1 correlations
were expected to dominate [24,26,28]. However, unavoidable
experimental issues related to noise and thermal broadening
can yield inconclusive data. As we have shown above, with
the proper alignment of relative magnetizations, one can
generate a finite f1 in S accompanied by relatively limited f0,
thus presenting an opportunity to detect the important triplet
pairs with spin s = ±1. By avoiding comparable admixtures
of the two triplet components, experimental signatures of
the equal-spin triplet correlations should be discernible. To
investigate this further, the six panels in Fig. 8 show the
normalized DOS evaluated near the edge of the superconductor
for a wide variety of orientation angles θ . All plots are
normalized to the corresponding value in a bulk sample of
S material in its normal state. As shown, each panel ranges
from a mutually parallel (θ = 0◦) to a nearly orthogonal
magnetization state (θ = 80◦). In each case considered, we
again have DN = 5 and DS = 130. In the top row of panels,
traces are seen of the well-known BCS peaks that have now
been shifted to subgap energies due to proximity and size
effects. There also exist bound states at low energies that arise
from quasiparticle interference effects. By sweeping the angle
θ from the relative parallel case (θ = 0◦) to slightly out of
plane (θ = 20◦), the zero-energy quasiparticle states become
significantly more pronounced. This follows from the fact that
strong magnets tend to shift the relative magnetizations leading
to maximal f1 generation away from the expected orthogonal
alignment at θ = 90◦ [28]. The top panels reflect the gapless
superconducting state often found in F/S heterostructures
[40], superimposed with the triplet induced zero-energy peaks.
The modifications to the superconducting state in the form of
a subgap DOS in the superconductor is another signature that
is indicative of the presence of spin-triplet pair correlations
[24]. Finally, as θ rotates further out of plane (θ > 20◦),
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FIG. 8. Signatures of equal-spin triplet correlations: The normalized local DOS in the superconductor for various relative magnetization
orientations, θ . In the range 0◦ � θ � 20◦, the DOS possesses peaks at zero energy which grow until they become inverted at θ = 30◦. The
well-defined, prominent ZEP at θ = 20◦ corresponds to the maximal generation of equal-spin triplet amplitudes in the S region, as shown in
Fig. 5.

the former ZEP’s become inverted and vanish when θ =
80◦, exhibiting a relatively flat DOS where the system has
essentially transitioned to the normal state (see Fig. 4).

A complementary global view of the above phenomena
is presented in Fig. 9, where both the spatially and energy-
resolved DOS are shown at various θ (top panels) and DS

(bottom panels). Figures 9(a)– 9(c) depict the DOS for the
same parameters and normalizations used in Fig. 8, and at
three orientations: θ = 0◦,10◦,20◦. It is evident that increasing
the misalignment angle θ causes the ZEP in the S region to
become enhanced, reaching its maximum at θ ≈ 20◦. At this
angle the ZEP extends through much of the system, including
to a small extent the F2 side. However, within S, the ZEP is
clearly more dominant [24]. For Figs. 9(d)– 9(f), the relative
magnetization orientation is fixed at θ = 20◦, and three larger
S layers are shown: DS = 150,DS = 200, and DS = 300.
Increasing the S layer widths illustrates the ZEP evolution
towards a familiar gapped DOS of a BCS form. As seen, the
ZEP is maximal in the superconducting region near the S/F1

interface. By increasing DS , the ZEP in the S side becomes
diminished until for sufficiently large DS , that is, DS ≈ 200,
the well-known singlet superconducting gap begins to emerge
throughout much of the superconductor. At an even larger
DS (DS = 300), the ZEP has clearly weakened even further.
Finally, for the experiment reported in Ref. [27], a peak in
the resistive transitions at external fields of B > 0.25 T was
observed immediately before the critical temperature whereby
the system has transitioned to the superconducting phase. This
peak in the transition curves was believed to be caused by the
influence of the external field, effectively creating a SF1F

′F2

type of configuration. We investigated such a configuration
for various strengths and orientations of the F ′ ferromagnet,

and no evidence was found that was suggestive of anomalous
behavior near Tc for F ′ with weak exchange fields. Note that
the system under consideration is translationally invariant in
the yz plane (see Fig. 1). Therefore, the spin-valve structure
may experience a Fulde-Ferrell-Larkin-Ovchinnikov phase
during its phase transition from the superconducting to normal
phase, although in a narrow region of parameter space [41,42].

C. Spin currents

To reveal further details of the exchange interaction which
controls the behavior and type of triplet correlations present
in the system, we next examine the characteristics of the
spin currents that exist within the spin valve. When the
magnetizations in F1 and F2 are noncollinear, the exchange
interaction in the ferromagnets creates a spin current S
that flows in parts of the system, even in the absence of
a charge current. If the spin current varies spatially, the
corresponding nonconserved spin currents in F1 and F2

generate a mutual torque that tends to rotate the magnetizations
of the two ferromagnets. This process is embodied in the
spin-torque continuity equation [43,44], which describes the
time evolution of the spin density η:

∂

∂t
〈ηi(x)〉 + ∂

∂x
Si(x) = τi(x), i = x,y,z, (5)

where τ (x) is the spin transfer torque (STT): τ (x) =
−(2/μB )m(x) × h(x). Here m(x) is the magnetization and
μB is the Bohr magneton (see the appendix). The spin
current tensor here has been reduced to vector form due to
the quasi-one-dimensional nature of the geometry. We calcu-
late S(x) by performing the appropriate sums of quasiparticle
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FIG. 9. Top panels: The normalized spatially and energy resolved DOS at three different orientations of the relative magnetization angle:
(a) θ = 10◦, (b) θ = 20◦, and (c) θ = 30◦. Panels (a)–(c) pertain to a single system with a narrow S layer of width DS = 130. The spatial
region extending from X = 0 to 130 therefore corresponds to the superconducting region, and X > 130 pertains to the remaining layers of the
spin valve. Bottom panels: the DOS is shown for three different S layer thicknesses: (d) DS = 150, (e) DS = 200, and (f) DS = 300, where θ

is now fixed at 20◦. The dashed vertical lines identify the interface between S and F1.

amplitudes and energies [see Eq. (A10)]. In the steady state, the
continuity equation, Eq. (5), determines the torque by simply
evaluating the derivative of the spin current as a function of
position: τi(x) = ∂Si(x)/∂x. The net torque acting within the
boundaries of, e.g., the F1 layer, is therefore the change in spin
current across the two interfaces bounding that region:

Sy(dS + dF1 ) − Sy(dS) =
∫

F1

dxτy. (6)

In equilibrium, the net τy in F2 is opposite to its counterpart
in F1. Since no spin current flows in the superconductor, we
have Sy(dS) = 0, and the net torque in F1 is equivalent to the
spin current flowing through N .

In our setup, the exchange field in F1 is directed in the x-z
plane, and therefore the spin current and torque are directed
orthogonal to this plane (along the interfaces in the y direction).
Likewise, if the magnetizations were varied in the y-z plane,
the spin currents would be directed along x. Figure 10 thus
illustrates the normalized spin current Sy as a function of
the dimensionless position X. The normalization factor S0

is written in terms of nevF , where ne = k3
F /(3π2), and vF =

kF /m. Several equally spaced magnetization orientations θ are
considered, ranging from parallel (θ = 0◦) to orthogonal (θ =
90◦). Within the two F regions, Sy tends to undergo damped
oscillations, while in N there is no exchange interaction (h =
0), and consequently the spin current is constant for a given θ .
The main plot shows that when θ = 0◦, Sy vanishes throughout
the entire system, as expected for parallel magnetizations. By
varying θ , spin currents are induced due to the misaligned
magnetic moments in the F layers. If the exchange field is
rotated slightly out of plane, such that θ � 30◦, it generates
on average negative spin currents in the N and F1 regions. As
shown, these spin currents reverse their polarization direction

for larger θ . This behavior is consistent with the inset, which
shows how tuning θ affects Sy (or equivalently, the net torque)
in N . Thus, by manipulating θ , the strength and direction
of the spin current in the normal metal can be controlled
or even eliminated completely at θ ≈ 34◦. By varying θ

about this angle, the overall torque, which tends to align
the magnets in a particular direction, can then reverse in a
given magnet. For θ ≈ 15◦ and θ ≈ 160◦, the inset also clearly
shows an enhancement of the magnitude of the spin currents,
which coincides approximately to the orientations leading
to an increase in the spin-polarized triplet pairs observed in
Fig. 5.

FIG. 10. Spin current Sy as a function of position X in the spin
valve. Several magnetization orientations θ are considered as shown
in the legend. The dashed vertical lines identify the interfaces of each
layer as labeled. The inset corresponds to the spin current within the
N region.
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In conclusion, motivated by recent experiments [24,27],
a hybrid SF1NF2 spin valve containing a half-metallic
ferromagnet has been theoretically investigated, revealing a
sizable spin-valve effect for thin superconductors with widths
close to ξ0. Through self-consistent numerical calculations,
the contributions from both the equal-spin (f1) and opposite-
spin (f0) triplet correlations have been identified as the
relative magnetization angle θ varies. We found that when
the magnetization in F1 is directed slightly out of plane, the
magnitude of f1 in S is maximized, while for f0 it is very
small. By investigating the DOS in the superconductor over
a broad range of θ , we were able to identify the emergence
of zero-energy peaks (ZEPs) in the DOS that coincide with
peaks in the averaged |f1|. Our results show, to a large
extent, good agreement with experimental observations as
well as the physical origins of these effects. We have thus
established a clear, experimentally identifiable role that the
triplet correlations play in this class of half-metallic spin
valve structures. For future work, it would be interesting to
study the transport properties of these types of spin valves by
investigating the self-consistent charge and spin currents as
they pertain to dissipationless spintronics applications.
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APPENDIX: SPIN CURRENTS

In order to calculate the spin currents flowing within the
spin valve, it is convenient to employ the Heisenberg picture
to determine the time evolution of the spin density, η(r,t),

∂

∂t
〈η(r,t)〉 = i〈[Heff,η(r,t)]〉, (A1)

where η(r) is the spin density operator, defined as

η(r) = ψ†(r)σψ(r). (A2)

We define the effective BCS Hamiltonian [36], Heff , via

Heff =
∫

d3r{ψ†(r)[H0(r) − h(r) · σ ]ψ(r)

+ �(r)ψ†
↑(r)ψ†

↓(r) + �∗(r)ψ↓(r)ψ↑(r)}, (A3)

where ψ†
σ (r),ψσ (r) denotes the fermionic field operators

with spin projections σ =↑ , ↓ along a given quantization
axis and σ is the usual vector of Pauli matrices. Inserting

the Hamiltonian, Eq. (A3), into (A1) yields the following
continuity equation:

∂

∂t
〈η(r,t)〉 + ∂ S

∂x
= τ , (A4)

where S is the spin current which in our geometry is a vector
(in general it is a tensor). The spin-transfer torque, τ , is given
by

τ = −i〈ψ†(r)[h · σ ,σ ]ψ(r)〉 = 2〈ψ†(r)[σ × h]ψ(r)〉.
(A5)

Recalling the expression for the local magnetization, m(r),

m(r) = −μB 〈η(r)〉, (A6)

permits the torque in Eq. (A5) to be written as

τ = 2〈ψ†(r)σψ(r)〉 × h = − 2

μB

m × h. (A7)

In the steady state, and when a torque is present, the spin
current therefore must have at least one spatially varying
component. After taking the commutator in Eq. (A1), the
explicit expression for the spin current is found to be

S = − i

2m

〈
ψ†(r)σ

∂ψ(r)

∂x
− ∂ψ†(r)

∂x
σψ(r)

〉
, (A8)

where for our quasi-one-dimensional systems, the vector S
represents the spin current flowing along the x direction with
spin components (Sx,Sy,Sz). To write the spin current in terms
of the calculated quasiparticle amplitudes and energies, the
field operators are directly expanded by means of a Bogoliubov
transformation [36]:

ψ↑(r) =
∑

n

[un↑(r)γn − v∗
n↑(r)γ †

n ], (A9a)

ψ↓(r) =
∑

n

[un↓(r)γn + v∗
n↓(r)γ †

n ], (A9b)

where unσ and vnσ are the quasiparticle and quasihole

amplitudes, and γn and γ
†
n are the Bogoliubov quasiparticle

annihilation and creation operators, respectively. By directly
considering the commutation relations for the quantum me-
chanical operators, the following expectation values must
be satisfied throughout our calculations: 〈γ †

n γm〉 = δnmfn,
〈γmγ

†
n 〉 = δnm(1 − fn), and 〈γnγm〉 = 0. Here fn is the Fermi

function which depends on the temperature T and quasiparticle
energy εn: fn = {exp[εn/(2T )] + 1}−1. We can now expand
each spin component of the spin current in terms of the
quasiparticle amplitudes to obtain [43,44]

Sx =− i

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂x

+u∗
n↓

∂un↑
∂x

−un↓
∂u∗

n↑
∂x

− un↑
∂u∗

n↓
∂x

]
− (1 − fn)

[
vn↑

∂v∗
n↓

∂x
+ vn↓

∂v∗
n↑

∂x
− v∗

n↑
∂vn↓
∂x

− v∗
n↓

∂vn↑
∂x

]}
,

(A10)

Sy =− 1

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂x

−u∗
n↓

∂un↑
∂x

−un↓
∂u∗

n↑
∂x

+un↑
∂u∗

n↓
∂x

]
−(1 − fn)

[
vn↑

∂v∗
n↓

∂x
−vn↓

∂v∗
n↑

∂x
+v∗

n↑
∂vn↓
∂x

−v∗
n↓

∂vn↑
∂x

]}
,

(A11)
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Sz =− i

2m

∑
n

{
fn

[
u∗

n↑
∂un↑
∂x

−un↑
∂u∗

n↑
∂x

−u∗
n↓

∂un↓
∂x

+un↓
∂u∗

n↓
∂x

]
−(1 − fn)

[
−vn↑

∂v∗
n↑

∂x
+v∗

n↑
∂vn↑
∂x

+vn↓
∂v∗

n↓
∂x

− v∗
n↓

∂vn↓
∂x

]}
.

(A12)

In the case of F layers with uniform magnetization, there is no net spin current. The introduction of an inhomogeneous
magnetization texture, however, results in a net spin current imbalance that is finite even in the absence of a charge current.
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