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Heat transport in nonuniform superconductors
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We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent
nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor
with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov
state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states
in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the
spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the
impurity band and produce a local transport environment with properties very different from those in a uniform
superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic
field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low
temperatures is considerably more efficient than in the uniform superconducting state.

DOI: 10.1103/PhysRevB.94.064502

I. INTRODUCTION

Electronic heat transport is a powerful tool to explore the
properties of the superconducting state. It is a bulk probe
that encodes information about both the density of electronic
states and the quasiparticle relaxation times. Heat conductivity
experiments have been used extensively to study the structure
and symmetries of the superconducting order parameter in
many different compounds [1]. The low-temperature behavior
of thermal conductivity is a signature of either the absence or
presence of low-energy excitations [2]. It can also be used as a
directional probe of the gap structure, since it depends on the
velocity of the low-energy excitations. One can measure the
anisotropy of thermal conductivity along different directions
and identify the Fermi velocity vectors of nodal quasiparticles
[3–5]. Another way to study the nodal structure is to observe
the response of nodal excitations to a rotated magnetic field [1].
The external magnetic field modifies the density of states [6,7]
and the quasiparticles scattering times [8–10]. The magnitude
of these effects depends on the orientation of the magnetic field
relative to the nodes of the order parameter and the direction
of the heat flow [1].

The power of this technique, however, is also the reason
why the interpretation of thermal transport measurements is
a difficult task, since the density of states and transport time
of quasiparticles may not be independently available. In this
respect, experiment and theory must be employed together
in the analysis of data for reaching definite conclusions. In
uniform superconductors, heat conductivity has been investi-
gated in great details, using several approaches: Boltzmann
transport theory [11], Green’s functions technique [12], and
quasiclassical methods [2] that prompted a rapid development
on the experimental side.

There is growing interest in using thermal transport to study
nonuniform superconductors [13] and topological surface
states [14–16]. However, from the theory side, little is known
about the heat flow in the presence of a spatially varying
order parameter. The challenge here is to understand how
quasiparticles transport energy from one point to another when
both the quasiparticle density of states and scattering mean-
free path depend on both energy and position. Under these

conditions, it is important to treat—on the same footing—
Andreev particle-hole conversion processes in inhomogeneous
regions [17] and scattering processes on impurities.

As a result, in nonuniform superconductors, calculation
of heat transport is difficult and so far has been carried
out only in two different approximations. In the strongly
inhomogeneous situation, as in the case of periodic and
moderately dense Abrikosov vortex lattice near Hc2, one can
average over the vortex lattice unit cell [18,19], assuming
the local formula relating the heat current to the temperature
gradient, jh(R) = −κ̂ ∇T (R), to hold everywhere. In this
approach, one can analyze the effects of disorder and magnetic
field on the density of states, lifetime, and heat transport of
spatially extended quasiparticles outside vortex cores [9,10].
In a very different setting, the heat transport through a pinhole
supporting Andreev bound states (ABS) was investigated
[20]. When a phase bias ϕ is applied across the pinhole,
highly degenerate Andreev bound states [17] appear at subgap
energies controlled by both ϕ and the transparency of the
pinhole. The sudden temperature drop across the pinhole
produces a local heat current that depends on the phase bias,
jh = −κ(ϕ)δT . The bound states lying at the subgap energy
do not directly couple to the continuum of quasiparticles
to transport heat. Nevertheless, their presence modifies the
effective transparency of the pinhole for quasiparticles above
the gap. In particular, for a pinhole with perfect transparency,
the subgap bound states reduce locally the spectral weight of
continuum states, which suppresses the heat flow, κ(ϕ) < κ(0).
By contrast, at low transparency, the ABS lie just below the
gap edge and enhance heat conductivity, κ(ϕ) > κ(0), due to
a resonance with the continuum [20]. However, in topological
insulator junctions, the zero energy ABS are topologically
protected, preventing such resonance [16].

Both of these approaches have limited applicability. In the
pinhole calculation, the sudden drop approximation means
point-localized ABS and lack of impurity scattering effects.
The averaging procedure, on the other hand, works well for
high temperature and fields where vortices are dense, but
less well at low temperatures and fields, and even worse
with fully gapped superconductors. It relies on a presence
of a significant number of spatially extended low-energy
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quasiparticles, but has no way of including the contribution of
localized vortex core states. An exact theoretical treatment of
the thermal transport that simultaneously takes into account
impurity scattering in a spatially varying order parameter
landscape, the effects of spatially localized Andreev bound
states, and a position-dependent density of states, is lacking.
In this direction, we provide, in this paper, a basis for
future explorations of general nonuniform superconducting
configurations.

There are several important details that we include in
a complete treatment of the problem. First, effects of
the Andreev states localized in the inhomogeneous region
are taken into account on the same footing with the effects
of the impurities that also produce midgap Andreev states
distributed throughout the sample. Both kind of bound states
result in modifications in the quasiparticle spectrum and
scattering time, and their interaction is important. Second,
the broken translation and rotation symmetry that appear in
systems with a spatially modulated order parameter in general
result in additional “vertex corrections” to the transport life-
time [21,22]. Third, the mean-free paths of the quasiparticles
can be longer than the coherence-length scale of the order
parameter variations, thus invalidating the picture of a local
equilibrium and local response even for small temperature
gradients.

As a particular model for the inhomogeneous phase we
consider a domain wall between two degenerate configurations
of the order parameter, which changes sign across the wall,
�(−∞) = −�(+∞). We also consider more complicated
configurations with a periodic collection of multiple domain
walls. We enforce the order parameter modulation through
boundary conditions on the edges of the sample, and self-
consistently compute the profile of the domain walls and
spatially dependent impurity self-energies. The domain walls
have a width of several coherence lengths, and host highly de-
generate zero-energy Andreev bound states. Such profile of the
order parameter is a realization of Larkin-Ovchinnikov config-
uration of the speculative Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase [23–25]. Building a theoretical understanding
of the thermal conductivity in this phase is important for
experimental attempts to detect spatial modulations of the
order parameter using heat transport [13]. At this point, it
is not known how anisotropic is the heat flow in the presence
of the hypothetical FFLO domain wall structures in the order
parameter. For example, the typical assumption is that the
heat flow across the domains is strongly constricted due to the
presence of the ABS that do not carry heat. We find that this
is not, in fact, true, and the combination of impurity scattering
effects with the spatially extended range of the bound states
can produce both suppression and enhancement of thermal
transport compared to the uniform state.

The organization of the paper is as follows. In Sec. II,
we describe our model and relate it to the experimental
measurement technique. In Sec. III, we develop the formalism
to compute thermal transport in a nonuniform superconduc-
tor using the Keldysh quasiclassical approach and t-matrix
treatment of disorder. The linear response is discussed in
Sec. III A; in Sec. III B, we formulate the boundary conditions
for the quasiclassical propagator amplitudes. We apply this
technique to compute heat flow across a single domain wall
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FIG. 1. A typical experimental setup for heat conductivity mea-
surements involves establishing a steady-state current in the sample
and measuring the effective local temperature T1 and T2. The
heat conductance is defined as κ = Ih × 2L/(T1 − T2). We set a
two-dimensional superconductor in the xy plane and for a given heat
current Ih along the x axis we calculate the temperature difference
between thermometers TH1 and 2 at x = ±L. The sin line is
a schematic representation of an FFLO modulation of the order
parameter with shaded regions representing domain walls.

in Sec. IV A, and in Sec. IV B, we generalize it to the case
of multiple domain walls and investigate the heat transport
dependence on the number of domains, temperature, disorder,
and spacing of domain walls. Finally, in Sec. IV C, we
address the modifications arising from the Zeeman shifts of
quasiparticle energies.

II. MODEL

We consider a spin-singlet superconductor with a quasi-
two-dimensional cylindrical Fermi surface. Our model can
be applied to both s- and d-wave superconductors, but we
will focus on the case of a d-wave symmetry, for several
reasons. First, most of the recent investigations of FFLO state
have been done on materials with d-wave pairing, such as
heavy-fermion [26] or organic [27] superconductors. Also,
unconventional superconductors have a more general order
parameter structure with low-lying nodal quasiparticles and
are sensitive to disorder. We consider �(p̂) ∝ cos 2(φp̂ − α)
and present results for α = 0, since we find that the particular
value of α is not important.

Impurities are randomly distributed throughout the sample
with concentration cimp. The impurity scattering potential is
assumed pointlike and isotropic with amplitude u. The system
is set out of equilibrium by introducing a thermal current
flowing along the x axis. As the stationary state is reached, a
temperature gradient builds up. We define the heat conductivity
between two points as κ = Ih × 2L/(T1 − T2), where Ih is
the stationary-state heat flow, and T1 and T2 are the local
temperatures as if measured by two distant thermometers
positioned at x = ±L. Our goal is to compute the effective
temperature bias dT = T1 − T2 for a given Ih, in the presence
of spatially modulated order parameter as shown in Fig. 1.

III. THEORY

A convenient approach to study nonuniform superconduc-
tors out of equilibrium is the quasiclassical formulation of the
Keldysh technique [28]. It is formulated in terms of the Green
function ĝ(R,p̂,ε), which for stationary states depends on the
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center of mass coordinate R, the direction of the momentum on
the Fermi surface p̂, and the energy ε. It is an 8 × 8 matrix in
particle-hole (Nambu), spin, and Keldysh space. In the Keldysh
space, it is given by

ĝ =
(

gR gK

0 gA

)
, (1)

where the superscripts R/A/K stand for Retarded, Advanced,
and Keldysh. The Retarded and Advanced components gR/A

carry information about the density of states and correlations,
while gK encodes the quasiparticles’ dynamics and distribu-
tion function. Each of the three components are 4 × 4 matrices,
parametrized by outer products of 2 × 2 Pauli matrices in spin
and particle-hole spaces σi ⊗ τj (i,j = x,y,z).

We use the quasiclassical propagator to compute the density
of electronic states (DoS) N (R,p̂,ε)

N (R,p̂,ε)

NF

= − 1

π
Im

[
1

4
Tr{τzg

R(R,p̂,ε)}
]

, (2)

and the local heat current jh(R), and its spectral density
jh(R,ε),

jh(R) = 2NF vF

∫ +∞

−∞

dε

4πi

∫
dp̂ εp̂

1

4
Tr{gK (R,p̂,ε)}

≡
∫ +∞

−∞
dε jh(R,ε) . (3)

Here, NF is the density of state at the Fermi energy per spin
in the normal metallic state, vF is the Fermi velocity, and
Tr = Tr4 is the trace operator over spin and Nambu space.∫

dp̂ · · · = 〈. . . 〉p̂ = ∫ dφp̂

2π
. . . is the normalized Fermi sur-

face integral. We note that to write the heat current as a
4-trace over spin and particle-hole space instead of a usual
spin-trace over just the upper left component of gK , we
used the symmetry of the Keldysh component gK (R,p̂,ε)tr =
τyg

K (R,−p̂,−ε)τy [28].
The quasiclassical Green function ĝ is normalized

ĝ2(R,p̂,ε) = −π2 , Tr{gR,A} = 0 , (4)

and satisfies the Eilenberger equation

[ετ̂z − σ̂ ,ĝ] + ivF p̂ · ∇ĝ = 0 , (5)

where the 8 × 8 self-energy σ̂ (R,p̂,ε) has the same structure
in Keldysh space as Eq. (1) and τ̂z = diag(τz,τz). The retarded
and advanced components for a singlet superconductor are
parametrized as follows (x = R,A):

σ x =
(

�x �x(iσy)
(iσy)�̃x �̃x

)
, (6)

and the Keldysh part is

σK =
(

�K �K (iσy)
−(iσy)�̃K −�̃K

)
. (7)

The components of these matrices are related to each other
through symmetries [28] defined by the ˜-operation, which
reverses the momentum and energy of complex-conjugated
quantities, e.g., �̃x(R,p̂,ε) = �x(R,−p̂,−ε)∗. The diagonal

self-energy terms �,�̃ are due to impurity scattering effects.
The off-diagonal terms contain the mean-field order parameter
and impurity contributions:

�R/A(R,p̂,ε) = �(R,p̂) + �R/A
imp (R,ε),

while the Keldysh mean fields are identically zero, leaving
only the impurity contributions

�K (R,ε) = �K
imp(R,ε) .

The mean-field order parameter is computed self-consistently
from

�(R,p̂) =
∫ +εc

−εc

dε

4πi

∫
dp̂′ V (p̂, p̂′) f K (R,p̂,ε) . (8)

The pairing interaction is V (p̂,p̂′) = V0 Y(p̂)Y∗(p̂′) and
f K = 1

4 Tr{ τx+iτy

2 (−iσy)gK} is the upper-right singlet com-
ponent of the Keldysh Green’s function. The momentum
space basis functions are Y(p̂) = 1 for s-wave, and Y(p̂) =
cos 2(φp̂ − α) for d-wave symmetries. The cutoff energy εc

and the interaction amplitude V0 are eliminated, in the usual
manner, in favor of the clean-case transition temperature Tc.

The impurity self-energy part is self-consistently deter-
mined within the t̂-matrix approximation. For randomly
distributed isotropic scattering centers, the 8 × 8 t̂-matrix
equation is t̂ = u1̂ + u〈ĝ〉p̂ t̂ , and the self-energy is defined
as σ̂imp = cimp t̂ . Using traditional definitions of impurity
scattering rate 
 = cimp/πNF and phase shift tan δ = uπNF

in terms of impurity concentration cimp and amplitude u of the
pointlike scattering potential, the 4 × 4 self-energy matrices
are determined from (x = R,A)

σ x
imp(R,ε) = 
 tan δ + tan δ

〈
gx(R,p̂,ε)

π

〉
p̂

σ x
imp(R,ε) ,

σK
imp(R,ε) = 1



σR

imp(R,ε)

〈
gK (R,p̂,ε)

π

〉
p̂

σA
imp(R,ε) .

(9)

Impurity scattering suppresses the amplitude of d-wave order
parameter (completely, when Tc � 
 sin2[δ]), however, the
more important effects come in through the density of states
and self-energies. In the following, we will mainly make
comparison between the Born (δ → 0) and unitary (δ = π/2)
limits. In the absence of inelastic scattering, the self-consistent
calculation of impurity σimp and order parameter � that
includes nonequilibrium effects, guarantees conservation of
energy and charge. In particular, self-consistent calculations
of self-energies including corrections due to the heat flow will
automatically satisfy div jh(R,ε) = 0 - condition of no energy
accumulation, see Appendix A.

The solution of the self-consistent system of coupled
equations for nonuniform states is most conveniently obtained
using Riccati parametrization [29]. The retarded (− sign) and
advanced (+ sign) Green’s functions are given by

gx = ∓iπ

1 + γ xγ̃ x

(
1 − γ xγ̃ x 2γ x(iσy)
−2γ̃ x(iσy) −(1 − γ̃ xγ x)

)
, (10)

where γ x(R,p̂,ε) are retarded/advanced scalar coherence
functions that are zeros in the bulk normal state. The Keldysh
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component takes the form

gK = −2πi

(1 + γ Rγ̃ R)(1 + γ Aγ̃ A)

×
(

xK + γ Rx̃Kγ̃ A −(γ Rx̃K − xKγ A)iσy

−iσy(γ̃ RxK − x̃K γ̃ A) x̃K + γ̃ RxKγ A

)
,

(11)

where xK (R,p̂,ε) is the (scalar) distribution function.
We explicitly took out the singlet spin dependence of co-
herence amplitudes, compared with Ref. [29], where the
coherence functions are spin matrices. The coherence and
distribution amplitudes are related to each other through ˜
relation, as well as [29]

γ A(R,p̂,ε) = −γ̃ R(R,p̂,ε)∗ ,

xK (R,p̂,ε) = xK (R,p̂,ε)∗ .
(12)

The distribution function is not unique, and the usual choice
in equilibrium is

xK
0 = �0(ε/T )(1 + γ Rγ̃ A) , (13)

where

�0(ε/T ) = tanh(ε/2T ) = 1 − 2f (ε/T )

and f (ε/T ) = [exp(ε/T ) + 1]−1 is the Fermi distribution at
temperature T . Transportlike equations for coherence and
distribution functions follow from Eq. (5):

ivF p̂ · ∇γ x + (2ε − �x + �̃x)γ x + �̃x (γ x)2 + �x = 0 ,

ivF p̂ · ∇xK + (γ R�̃R − �R + �Aγ̃ A + �A)xK

= γ R�̃Kγ̃ A − �Kγ̃ A − γ R�̃K − �K . (14)

A. Linear response

In the absence of heat current, jh = 0, the system is
assumed in global equilibrium at temperature T , with xK =
xK

0 (R,p̂,ε) given by Eq. (13), and equilibrium coherence
functions γ x = γ x

0 (R,p̂,ε) found from

ivF p̂ · ∇γ x
0 + (

2ε − �x
0 + �̃x

0

)
γ x

0 + �̃x
0

(
γ x

0

)2 + �x
0 = 0.

(15)

In uniform superconductors, ∇γ x
0 (R,p̂,ε) = 0, and the solu-

tion of Eq. (15) for the retarded coherence function is

γ R
u (p̂,ε) = − �R

u

ε̄R + i

√
�R

u �̃R
u − (ε̄R)2

, (16)

with ε̄ = ε − (�R
u − �̃R

u )/2. In the following, the subscript
“u” stands for uniform and subscript “0” will refer to the
equilibrium solution.

In the presence of a small heat current jh �= 0 that is as-
sumed to be time-independent (stationary state), the system is
out of equilibrium. In linear response, we expand the coherence
and distribution functions around their equilibrium values:

γ x(R,p̂,ε) = γ x
0 (R,p̂,ε) + γ x

1 (R,p̂,ε) ,

xK (R,p̂,ε) = �0(ε)
(
1 + γ R

0 γ̃ A
0

)
+�0(ε)

(
γ R

0 γ̃ A
1 + γ R

0 γ̃ A
1

) + xa . (17)

The deviation of the distribution function from equilibrium,
xK − xK

0 , is described by two terms. The first accounts
for a change in the density of states through corrections
to the retarded and advanced functions; it is weighted by
the equilibrium Fermi distribution �0(ε). The second term,
xa(R,p̂,ε), is the anomalous, or dynamical distribution
function. It determines the dynamical part of the Keldysh
Green’s function ĝa = ĝK − ĝK

0 − �0(ĝR
1 − ĝA

1 ),

ĝa = −2πi(
1 + γ R

0 γ̃ R
0

)(
1 + γ A

0 γ̃ A
0

)
×

(
xa + x̃aγ R

0 γ̃ A
0

(
xaγ A

0 − x̃aγ R
0

)
iσy

−iσy

(
xaγ̃ R

0 − x̃a γ̃ A
0

)
x̃a + xaγ̃ R

0 γ A
0

)
.

(18)

In linear response, the heat current depends only on the
equilibrium spectral properties through coherence amplitudes
γ

R,A
0 , and the dynamical part of distribution function, xa:

jh = −2NF vF

∫ +∞

−∞
dε

×
〈
εp̂

xa
(
1 + γ̃ R

0 γ A
0

) + x̃a
(
1 + γ R

0 γ̃ A
0

)
4
(
1 + γ R

0 γ̃ R
0

)(
1 + γ A

0 γ̃ A
0

)
〉

p̂

. (19)

To obtain an equation for xa , we linearize Eq. (14). We
linearize with respect to the global equilibrium at temperature
T , where �0(ε/2T ) in Eq. (17) is position-independent. In
this case the linearized equation reads [29]

ivF p̂ · ∇xa + ivF

�(R,p̂,ε)
xa

= γ R
0 γ̃ A

0 �̃a − (
�aγ̃ A

0 + �̃aγ R
0 + �a

)
, (20)

with an equation for the x̃a function obtained from this one
by employing the definition of ˜ operation. In the above
equations, we introduced the parameter

�(R,p̂,ε) = ivF /
(
γ R

0 �̃R
0 − �R

0 + γ̃ A
0 �A

0 + �A
0

)
, (21)

which is purely real, as follows from the symmetries
of the coherence functions and self-energies and has
dimension of length. In the normal metallic phase,
� = vF /2
 sin2 δ = vF τN = �N matches with the elastic
mean-free path. The dynamical self-energy entering Eq. (20) as
the source term is self-consistently computed from xa and γ x

0 :

σa(R,ε) ≡ σa
imp ≡

(
�a (iσy)�a

−(iσy)�̃a −�̃a

)

= 1



σR

0,imp(R,ε)

〈
ga(R,p̂,ε)

π

〉
p̂

σA
0,imp(R,ε) .

(22)

Note that the linearization scheme in Eq. (17) is very
convenient because the calculation of jh only requires the
knowledge of the anomalous xa , which itself does not depend
on spectral corrections γ x

1 .

064502-4



HEAT TRANSPORT IN NONUNIFORM SUPERCONDUCTORS PHYSICAL REVIEW B 94, 064502 (2016)

B. Boundary conditions

To solve the transport equation Eq. (20) for the distribution
function, one needs to provide suitable boundary conditions
for initial values of xa at the beginning of a trajectory vF p̂, and
for final value of x̃a at the end of this trajectory. For weak links,
as in reference [20], one can assume that the system of interest
is connected to large reservoirs in equilibrium at temperatures
T1,2. Then, for a given quasiparticle trajectory, one can take
equilibrium values of the coherence and dynamical amplitudes
in those reservoirs as initial values.

Such assumption seems inadequate to compute heat trans-
port in bulk samples. Instead, given a stationary conserved
heat flow in the entire sample, we will construct the Riccati
amplitudes at x = ±L in a way that is consistent with Eq. (20),
and would give a fixed thermal current

jh(±L) = jh = jBC
h (23)

in a uniform superconducting state, away from the inhomoge-
neous region.

To write such boundary condition, we start by making a
trivial observation that the linearization procedure that we
followed, can be used to find equilibrium functions at slightly
different temperature T + δT . For example, the distribution
function can be written as

xK
eq (T + δT ) = [1 + γ R

0 (T + δT )γ̃ A
0 (T + δT )]

×�0

(
ε

2(T + δT )

)
,

where we show only the temperature argument explicitly. De-
composition (17) in this case gives the anomalous contribution
as

xa
eq (T + δT ) = [

1 + γ R
0 (T )γ̃ A

0 (T )
]∂�0

∂T
δT , (24)

with ∂�0/∂T = −ε/[2T 2 cosh2(ε/2T )]. This xa
eq distribution

function, on the other hand, also satisfies Eq. (20) with
appropriately determined self-energy through Eq. (22) that can
be brought to the form σa(T ) = (σR

0,imp − σA
0,imp)(∂�0/∂T )δT .

Far from the region of spatially varying order parameter,
the equilibrium functions, γ

R/A

0 (p̂,ε) and xK
0 (p̂,ε) take their

uniform values γ x
0 = γ x

u , that determine the scattering length
�u through Eq. (21), and in equilibrium ∇xa

eq ∝ ∇T = 0.
When a stationary thermal current flows, a local tempera-

ture gradient builds up and δT (R) = T (R) − T is a function
of position, see Fig. 2. As a result, Eq. (24) with local δT (R)
is no longer a solution to Eq. (20). However, one can modify
xa

eq to include the temperature gradient:

xa
u (R,p̂,ε) = [

1 + γ R
u (p̂,ε)γ̃ A

u (p̂,ε)
]∂�0

∂T

× [δT (R) − �u(p̂,ε)p̂ · ∇T ] . (25)

This expression with uniform gradient ∇T = const satisfies
Eq. (20). The ∇T term in Eq. (25) is odd in momentum, and
after angular integration in Eq. (22) it does not contribute
to self-energy σa in even-p̂ superconductor. Consequently,
only the first term, ∝ δT (R), determines the dynamical
self-energy. In entirely uniform superconductor, xa and x̃a

would be trivially related and result in local equilibrium

+L−L

T(x)  local
+dT

−dT

T  global

jh

FIG. 2. Local vs global equilibrium picture. The system is driven
out of equilibrium by a steady uniform heat current jh. The local
equilibrium picture assumes that when heat flows, a local temperature
T (x) can be defined, and its gradient determines the magnitude of jh.
It is typically used in uniform-state problems, and we use it here
to define boundary conditions for distribution functions away from
the nonuniform (shaded) region of the order parameter. Our main
approach, however, is to expand the propagators around some global
equilibrium value of the temperature T : g(x) = geq(T ) + gc(x) where
gc(x) determines current jh.

self-energy σa
u = (σR

0,imp − σA
0,imp)(∂�0/∂T ) δT (R). This is

important since after substitution of this expression together
with Eq. (25) into Eq. (20) the arbitrary δT (R) drops out.
Nonuniform order parameter means different history for xa(p̂)
and x̃a(p̂) along a trajectory and the self-energy σa even
in uniform part does not fully recover the local equilibrium
dependence on δT .

On the other hand, by similar symmetry arguments, the
heat current in the uniform part of the superconductor is
independent of δT and is completely determined by the ∇T

term of xa
u . We use it to set the value of the temperature gradient

from fixed jBC
h . Inserting Eq. (25) into Eq. (19), and using

γ -symmetries Eq. (12), we obtain a uniform-state current

jBC
h = −κu∇T , κu =

∫ +∞

−∞
dε κu(ε) , (26)

where the thermal conductivity has this Boltzmann-like repre-
sentation

κu(ε) = vF ε2

2T 2 cosh2(ε/2T )

〈
p̂2

xN (p̂,ε)v(p̂,ε)τ̄ (p̂,ε)
〉
p̂

. (27)

Here, N (p̂,ε) is the density of states, τ̄ (p̂,ε) = [�(p̂,ε) +
�̃(p̂,ε)]/2vF is a scattering time defined using relaxation
length (21) [in the unitary or Born limits �(p̂,ε) = �̃(p̂,ε) ≡
�(−p̂,−ε)]. The group velocity for quasiparticles (QPs) with
momentum p̂ and energy ε is given by

v(ε,p̂) = vF

1 − ∣∣γ R
u (p̂,ε)

∣∣2

1 + ∣∣γ R
u (p̂,ε)

∣∣2 . (28)

From this, the velocity of QPs in superconductor is always
smaller than vF ; also in the clean limit one recovers the
well-known result v(p̂,ε) = vF

√
ε2 − �2(p̂)/|ε|. Typically,

heat transport in uniform superconductors is analyzed as
interplay between the density of states N (p̂,ε) and effective
elastic mean-free path

�e ≡ τ̄ (p̂,ε)v(p̂,ε) , (29)
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u(−L, p̂x > 0, )
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(p̂x > 0, )

T + dT T − dT
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u(L, p̂x < 0, )

γR
u,−Δ0

(p̂x < 0, )

FIG. 3. Numerical integrations of Eqs. (15) and (20), in the
shaded region, performed from x = ∓L to x = ±L for right/left
going (p̂x ≶ 0) trajectories along p̂. We start the numerical integration
at the white/black circles with the uniform Riccati amplitude given
by Eqs. (30) and (31), see main text. The (half-) temperature bias dT

is the unknown that we numerically determine to satisfy Eq. (23).

where the latter plays a more dominant role. This discussion
is moved to Appendix B, with the main result presented in
Figs. 12 and 11 there.

We are now ready to write the initial values of coherence and
distribution functions for numerical integration Eqs. (15) and
(20) along quasiclassical trajectories. We start the integration
well away from any domain walls, inside the uniform part
of superconductor, at x = ±L, Fig. 2. The distance between
the initial point on the trajectory and the first domain wall
should be much greater than �(p̂,ε), which might be difficult
to satisfy for all energies and momenta, especially in clean
superconductor.

The equilibrium coherence functions at x = ±L arrive from
infinity with the uniform bulk values, Fig. 3:

γ R
0 (−L,p̂x > 0,ε) = γ R

u,0(�(x = −∞,p̂),p̂,ε) ,
(30)

γ R
0 (+L,p̂x < 0,ε) = γ R

u,0(�(x = +∞,p̂),p̂,ε) .

We will position the center of domain walls symmetrically
around x = 0, ensuring equivalent temperature drops dT on
the left and right, to accelerate numerical integration. The
initial values for the anomalous distribution xa(±L) is given
by Eq. (25) with temperature gradient fixed by the heat current
in uniform region:

∇T = −jBC
h

κu

x̂ ,

xa(−L,p̂x > 0,ε) = (
1 + γ R

u γ̃ A
u

)∂�0

∂T
[dT + � p̂ · ∇T ] ,

xa(L,p̂x < 0,ε) = (
1 + γ R

u γ̃ A
u

)∂�0

∂T
[−dT + � p̂ · ∇T ] .

(31)

The unknown temperature drop dT is determined, for a
given jh, through self-consistent calculation of anomalous
self-energies σa(x,ε) at each ε. Starting with some guess
for σa(x,ε) we solve Eq. (20) for xa(x,p̂,ε) with boundary
conditions (31). From distribution function, we find ga(x,p̂,ε),
Eq. (18), and then obtain new values for σa(x,ε), Eq. (22).
This process is repeated until self-energy has converged. The
linearity of all equations assures that all the parameters are
linear combinations of dT and ∇T terms:

xa(x,p̂,ε) = xa
1 (x,p̂,ε)dT + xa

2 (x,p̂,ε)∇T ,

ga(x,p̂,ε) = ga
1 (x,p̂,ε)dT + ga

2 (x,p̂,ε)∇T , (32)

σa(x,ε) = σa
1 (x,ε)dT + σa

2 (x,ε)∇T ,

and similarly the current, jh(x) = κ1dT + κ2∇T = const =
κu∇T , that is equal to the input current at the boundary. After
self-consistent determination of the coefficients κ1,2 through
the above procedure, we determine the temperature drop

dT = κu − κ2

κ1
∇T .

In the uniform case, one has dT = LjBC
h /κu.

Here we also want to note that the presence of topological
domain walls in the order parameter is reflected in features of
the heat current arbitrarily far from the nonuniform region, and
is indirectly encoded in the choice (31) for xa at the integration
boundaries. For example, in a uniform superconductor, the
spectral current is given by κu(ε)|∇T |, whereas in nonuniform
superconductor we have jh(ε) �= κu(ε)|∇T |, which is obvious
if we are right at the domain wall, and thus everywhere else
due to the conservation of the spectral current, as shown in
Appendix A. To recover the heat current spectrum of the
uniform state far from the nonuniform region, one requires
presence of nonelastic collisions that are not included in the
theory. By contrast, the local equilibrium picture includes the
nonelastic collisions implicitly in the definition of the local
temperature T (x) in Fermi distribution.

IV. HEAT FLOW ACROSS DOMAIN WALLS

We now apply the developed formalism to nonuniform d-
wave superconductor, and investigate heat transport across an
array of NDW domains walls equally spaced with a period
XFFLO along the x̂ axis. Each domain wall has a width of
several coherence lengths that we define as

ξ = �vF

2πkBTc

(Tc is the transition temperature of clean supercnductor).
The uniform heat current flows from left to right jh =
jhx̂, and we consider translationally invariant system along
the ŷ direction, so that all functions depend only on x

coordinate.
For convenience, we now set a unit gradient at the

boundaries ∇T = −x̂ in Eq. (31), giving jh = κu × 1. Due to
the factor |ε ∂T �0| = ε2/[2T 2 cosh2(ε/2T )], the heat current
is mainly determined by quasiparticles with energies in the
window [T ,5T ]. We introduce εT = 2.5 T as a characteristic
quasiparticle energy at a given temperature T .

A. Single domain wall

We first look at the heat transport across a single domain
wall (DW) centered at x = 0 (NDW = 1). The domain wall is
enforced through the boundary condition �0(±L) = ±�u. It
is self-consistently computed together with the local impurity
self-energy σimp(x,ε) via Eqs. (8) and (9).

With the domain wall centered at x = 0, we use symmetry
�(−x) = −�(x) to speed up numerical calculations through
relations:

γ R
0 (x,p̂,ε) = −γ R

0 (−x,−p̂,ε),

γ R
0 (x,p̂,ε) = −γ̃ R

0 (x,−p̂,ε),
(33)
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FIG. 4. (Top) Self-consistent OP profile �(x) for a single DW
(solid line). This solution is used to construct a non-self-consistent
profile with NDW, case of 4 DWs with separation XFFLO ≈ 20ξ is
shown by the dashed line. (Bottom) Local density of states (DoS)
in Born (orange) and unitary (blue) limits for �N = πξ/0.3. At the
domain (solid lines), the peak at zero energy indicates the Andreev
bound states (ABS).

and similar ones for self-energies:

σR(x,p̂,ε) = τzσ
R(−x,p̂,ε)τz,

σR(x,p̂,ε) = [σR(x,p̂,ε)]tr , (34)

σa(x,ε) = −τzσ
a(−x,ε)τz .

Technically we proceed as follows. First, we obtain the
order parameter profile �0(x), shown in Fig. 4(a), using the
Matsubara technique. With the known mean-field profile, we
integrate Eq. (15) for real energies to determine the equilibrium
values of γ R

0 (x,p̂,ε) and impurity σ
R/A

0,imp(x,ε). They are then
used as input parameters in Eq. (20) for the anomalous
amplitude xa . The last step is the self-consistent calculation of
the temperature drop dT together with anomalous self-energy
σa .

We compare the temperature drop dT with the drop dTu =
(jh/κu)L = |∇T |uL that would appear if the superconductor
was uniform. Then dT > dTu corresponds to a suppression
of ability to transport heat across domain walls, while dT −
dTu < 0 represents an enhancement of heat conductivity. The
numerical results for transport across the domain wall are
presented in Fig. 5, where we plot the temperature drop across
a domain wall for a given heat current, relative to the uniform
configuration. We define the parameter dL′ with dimension of
length

dL′ = dT − dTu

jh/κu

,

which can be interpreted as effective “thermal length” of the
domain wall, in units of coherence length ξ .

�
�

U B I

FIG. 5. Effective change in thermal length dL′ (in units of ξ )
across a single domain wall relative to the uniform case, as function of
temperature. Numerical system size is 2L = 16πξ . Different colors
correspond to unitary limit (U, blue), Born (B, orange), and inter-
mediate phase shift δ = π/4 (I, green). Solid lines are for scattering
rate 2
 sin2 δ = 1/τN = 0.6Tc, dashed lines are for a cleaner case
1/τN = 0.2Tc. In the unitary limit, dL′ is nonmonotonous, and at low
temperature T < Wimp, the heat conductance through a domain wall
is larger than in uniform case.

At high temperatures, the behavior of the thermal transport
is the same for all impurities, with a loss of effectiveness in
energy transport. At low temperatures, however, the behavior
is remarkably different in Born and unitary limits. For weak
impurity scattering potential, the domain wall presents a
barrier for heat transport resulting in a larger temperature drop
required to maintain current jh. The strong scatterers have the
opposite effect—the heat current flows through a domain wall
more efficiently than in the uniform case. The origin of such
peculiar behavior is in the interplay between two effects of
the Andreev bound states at the domain wall: the change of
spectrum and the hybridization of the bound states with the
impurity band states.

The spectral effect is a result of Andreev bound states
“stealing” spectral weight from continuum quasiparticles
states above the energy gap. In bulk, the only available quasi-
particles with ε > |�(p̂)| participate in the energy transport.
As these quasiparticles enter the domain wall region with
fewer available states, they experience Andreev reflection that
leads to suppression of the heat conductivity. This effect can
be quantified by looking at a clean superconductor. In this
case, the equation for the distribution function (20) has no
impurity-generated right-hand-side, and the relaxation length
(mean-free path) 1/�� = 2 Im[γ R�̃]/vF is determined purely
by the density-of-states effects. Details of this analysis are
presented in Appendix C. Effects of the spectral weight
reduction and Andreev reflection processes appear in the heat
current kernel K(ε,p̂) = jh(p̂,ε)/(ε ∂T �0), shown in Fig. 6,
at energies ε ∼ � and play the most important role at higher
temperatures.

At very low temperatures T � Tc, the interaction of low-
energy bound states with impurities comes out to the front
stage, while we find that �� is only slightly modified by impuri-
ties. The impurity scattering effects appear in Eq. (20) through
anomalous self-energy and local scattering length 1/�imp =
2 Im[γ R

0 �̃R
imp − �R]/vF . This length is positive and finite,

depends on directions very weakly and can be approximated by
�imp(x,ε) ≈ 〈�imp(x,p̂,ε)〉

p̂
. The impurity scattering creates a
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FIG. 6. Energy dependence of the heat current kernel at T =
0.3Tc for transport across a domain wall (solid lines) and the uniform
superconductor (dashed lines) for �N = πξ/0.3. In Born or clean limit
(orange lines), the ability to transport heat at low energy is suppressed
by the presence of a domain: at low energy KDW(ε) < Ku(ε). By
contrast, in unitary limit (blue lines), the coupling between impurity
band and Andreev bound states enhances energy transport: at low
energy KDW(ε) > Ku(ε).

band of mid-gap states, which hybridize with Andreev bound
states. Such hybridization depends strongly on the strength of
the impurities and may lead to a significant “renormalization”
of scattering features in the vicinity of the domain wall, as
shown in Fig. 7. In the unitary limit, Andreev states’ interaction
with impurity band leads to suppression of scattering and long
lifetime of close-to-zero-energy quasiparticles. This results in
an effective “wormhole” across the domain wall region for
these quasiparticles, and an enhancement of heat conductivity
at low temperature, see Fig. 6. In the Born scattering limit, on
the other hand, the impurity band is weak, and its presence
cannot compensate Andreev reflections. In this case, for
all temperatures, the heat transport is suppressed across the
domain wall.

B. Multiple domain walls

To model the periodic structures of FFLO states, we
investigate transport across a set of domain walls. Since the
main effects come from the density of states and scattering, we
omit the self-consistent calculation of the order parameter and
simply “build” a lattice of NDW equally spaced domains with
an arbitrary period XFFLO, taking the single domain profile

FIG. 7. Inverse local impurity scattering length �N/�imp(x,p̂,ε)
≈ �N/�imp(ε,x) (weakly dependent on momentum directions), as a
function of energy, for �N = πξ/0.3. In Born limit (orange), the
mean-free path is large in the bulk (dashed lines) and becomes small
at the domain wall (solid lines). For unitary scattering (blue), on the
right, this behavior is reversed: the zero-energy peak in the DOS
results in suppression of scattering rate at the domain wall and longer
mean-free path.

FIG. 8. Effective thermal length dL′ (normalized by ξ ) across
NDW domain walls, for low temperature T/Tc = 0.05 (large symbols,
solid lines) and intermediate temperature T/Tc = 0.5 (small symbols,
dashed lines). The scattering rate 1/τN = 0.3Tc is used for various
impurity strengths: Born (B), unitary (U), and intermediate δ = π/4
(I). This is an “independent domain walls” regime where the heat
conductivity contributions from each domain add up, as is clear from
linear dependency c1NDW + c2 shown by lines. At low temperature,
the unitary and intermediate strength disorder has a negative slope
consistent with the single-domain result in Fig. 5, coming from
low-energy states’ transport. At intermediate temperature we have
a suppression of heat flow due to independent Andreev reflection
processes, with positive slope and linear increase in the thermal length
dL′ with NDW. In the Born limit at low temperature, the dependence
is more complicated due to the large extent of bound states and a
more intricate impurity band energy dependence for T ∼ Wimp.

as a unit cell, as shown in Fig. 4 for NDW = 4. We place the
domains symmetrically around x = 0 and use this symmetry
to reduce computation time.

There are several effects that influence the transport across
multiple domain walls. First one is the trivial (incoherent)
accumulation of effects from all domains that are independent
in this case. This happens when the mean-free path, Eq. (29),
is shorter than the spacing XFFLO between domain walls, and
the spatial extent of the bound states also exceeds this length,

XABS[p̂] ≈ vF /
√

�2(p̂) + W 2
imp � XFFLO, where Wimp is the

impurity bandwidth. Independent domain walls lead to a
linear dependence of the heat conductivity on the number
of domain walls NDW, based on the temperature regime and
single-domain result as in Fig. 5. Such behavior is expected
for reasonably dirty superconductors. Full numerical results
for domain wall spacing XFFLO ≈ 18 ξ are shown in Fig. 8
and in the independent-domain regime are fitted with straight
lines.

When the superconductor is in the clean limit, and the
domain walls are tightly spaced with XFFLO < XABS, the
bound states belonging to neighboring domains can overlap,
hybridize, and build up a conduction band (hybrid transport).
This is expected in FFLO phase when the order parameter is
small and harmoniclike, with periods ∼5 − 10ξ rather than
a combination of fully formed domain walls, or when the
transport is dominated by the nodal quasiparticles since ABS
states can extend far beyond the DW region, especially in the
Born limit with a tiny Wimp.

If the spacing between the domain walls is somewhat
longer, then the hybridization of bound states from different
domains depends on their quasiclassical trajectory. In the
antinodal direction, the ABS spatial extent is smaller than
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FIG. 9. Effect on thermal conductance of Andreev reflections
from a set of NDW domain walls (clean limit). Heat transport through
more than ten consecutive domains is dominated by extended bound
states along nodal directions on the Fermi surface. Phase space of
those states and their contribution to the heat transport grow with
temperature. The fitting line through numerical points is explained in
the text.

XFFLO and ABS are spatially separated. Each domain is
the center of an Andreev reflection process. Consecutive
reflections add up and yield a power law reduction of the trans-
mission of antinodal quasiparticles. By contrast, in the nodal
direction, the ABS extent is large. ABS at consecutive domains
overlap and the transmission is rather insensitive to the number
of domains. Together, they result in NDW dependence seen in
Fig. 9. The heat conductance can be roughly fitted by a sum
of nodal and antinodal contributions: gn + gant

NDW , where the
conductance contribution from nodal quasiparticles gn. grows
with temperature, and the transmission coefficient t is only
weakly temperature-independent.

C. Zeeman field

In this section we present the effects of a Zeeman field on
heat transport across the nonuniform state, since the FFLO
state is a result of competition between magnetization and
condensation energies. Again, the main effect, we assume, is
coming from the modification of the density of quasiparticle
states that are shifted in energy by ±μH for up/down spins.
We neglect the order parameter suppression due to magnetic
field, which is relatively small at low temperature [25]. Then
the spin-up and spin-down QPs are independent, and their
contributions to thermal transport add up.

The dependence on spin enters Eqs. (19), (20), and
boundary conditions (25) and (31) through energy shift in
coherence functions γ

R/A
0 (ε ± μH ). The quasiparticle distri-

bution function prefactor ε∂T �0(ε,T ) is not changed. We can
use it to write the heat current as some spin-dependent kernel
times the distribution function:

jh =
∑
s=±1

∫
dε Ks(ε) ε∂T �0(ε,T ) . (35)

We then can re-use the zero-field results to compute the thermal
current including the Zeeman splitting. In the Zeeman field, the
spin-dependent kernel is simply the spin-independent kernel
shifted energy: Ks(ε) = K(ε − sμH ). We then can transfer
the dependence on spins into the distribution function, without

0.1 0.2 0.3 0.4 0.5
T�Tc

�10

�5

0

5

dL'

h�0 h�0.5 h�1

FIG. 10. Effect of the Zeeman field splitting h = μH/Tc on
thermal transport across a single domain wall. Unitary limit with
scattering rate 1/τN = 0.3 Tc. The bound states, shifted by h = 0.5
contribute to a reduction of the thermal length, dL′, in a wide range
of temperatures. When the Zeeman shift is very large h = 1, the
contributions from bound and continuum states mix up leading to a
very nonmonotonic temperature dependence.

recalculating the kernel:

jH
h = 1

2

∑
±

∫
dε j 0

h (ε)

[
(ε ± μH )∂T �0(ε ± μH,T )

ε∂T �0(ε,T )

]
,

(36)

where j 0
h (ε) is the spectral heat current in the absence of

Zeeman field. As a reminder, Fig. 6 highlights the effect of
impurity on the kernel of heat current in absence of Zeeman
field.

The effect of the Zeeman splitting of the states on thermal
conductivity across a single domain wall is shown in Fig. 10
for strong impurities. The bound states contribute most to the
low-energy heat current and lead to an increase in conductivity
at low temperatures, T � �εBS/2.5. From the h = 0 curve,
the half-width of the bound states can be estimated as
�εBS ∼ 0.4Tc. When the Zeeman field shifts the bound states
by h = μH/Tc = 0.5, they dominate the heat transport in a
wide range of temperatures leading to negative dT − dTu.
For even higher fields h = 1, close to the critical field, the
contributions of bound states with one spin projection mix
with the continuum contribution with the other spin projection,
leading to a nonmonotonic temperature dependence of the heat
conductivity.

V. CONCLUSIONS

In this paper, we have developed a theoretical framework to
investigate thermal transport in nonuniform superconductors.
Our approach is based on a fully self-consistent nonequilib-
rium quasiclassical Eilenberger-Keldysh technique that takes
into account, on the same footing, the combined effects of
impurity scattering, spatial variations of the order parameter
and density of states, and the presence of Andreev bound states
in strongly inhomogeneous environments.

We applied this theory to compute the thermal current
across the periodic modulations of the order parameter, and
domain walls, in a superconductor with d-wave pairing. Here
we outline the key effects that govern transport in such systems
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compared with the uniform superconductors. First, Andreev
bound states “trap” quasiparticles and cause a depletion of the
continuum (ε > �) states near the domain wall, leading to
Andreev reflection processes with particle-hole conversions.
This results in a reduction of heat transport across the
domain wall, and this mechanism is dominant at intermediate
temperatures and in clean superconductors. Another effect
becomes relevant at low temperatures when disorder is present.
Then the bound states at the domain wall interact with the
low-energy impurity band. The coupling of the impurity band
to localized Andreev states strongly depends on the type of
impurity scattering. In the Born limit, this coupling increases
the scattering rate, while in the unitary limit the scattering
of low-energy quasiparticles is suppressed. These states have
longer mean-free path in the domain wall region resulting
in an effective “wormhole” through the domain wall. At low
temperature, below the width of the impurity band, transport
is dominated by these states and with unitary impurities, the
heat conductivity across the domain wall is higher than the
conductivity in the uniform state. This results in a very distinct
nonmonotonic feature of heat conductivity as a function
of temperature, as one crosses from high- into low-energy
regime. In a Zeeman field, the difference between thermal
transport in uniform and nonuniform phases is softened, but
due to the opposite shifts of the up/down spin states, one can
observe additional features in the T dependence of the heat
conductivity, and a nonmonotonic T dependence appears even
in the Born limit. A grid of multiple domain walls generally
amplifies the transport properties of a single domain, but in
the clean limit one has to consider multiple-wall Andreev
backscattering processes.

These results show that thermal transport can be a useful
probe to detect and study nonuniform states, such as the Fulde-
Ferrell-Larkin-Ovchinnikov phase, which so far has been only
identified using NMR technique [27]. The approach that we
developed will pave the way for future theoretical studies of
heat transport near surfaces of superconductors with nontrivial
surface states, in vortex lattices including vortex core states, or
for complete analysis of FFLO-type order parameter periodic
structures.
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APPENDIX A: UNIFORMITY OF CURRENTS

In the absence of inelastic scattering processes, the self-
consistent solution of the Elenberger transport equation (5)
together with the impurity self-energies (9) guarantees uniform
heat flow, and nonaccumulation of heat, ∇ · jh = −∂tQ = 0,
even in the presence of a spatially varying order parameter.
The heat current is given by Eq. (3), which we repeat here:

jh(R) = 2NF vF

∫ +∞

−∞

dε

4πi

∫
dp̂ [ε p̂]

1

4
Tr{gK (R,p̂,ε)} .

(A1)

With only energy-conserving impurity collisions, all ε are
independent, and we can consider the divergence of the heat

current kernel for single energy, ∇ · jh(R,ε) ∝ 〈p̂ · Tr∇gK〉p̂.
Using the equation for the Keldysh component of Eq. (5),

ivF p̂∇gK = gK (ετz − σA) − (ετz − σR)gK

+ σKgA − gRσK, (A2)

we can split off the mean-field self-energy �(R,p̂), common
for both retarded and advanced functions and zero for the
Keldysh component, from the impurity self-energy. This
allows us to write

〈p̂ Tr∇ · gK〉p̂ ∝ −〈Tr{[ετz − �,gK ]}〉p̂ + Tr
{
σR

imp〈gK〉p̂
−〈gK〉p̂σA

imp + σK
imp〈gA〉p̂ − 〈gR〉p̂σK

imp

}
= −0 + 0, (A3)

where the first term is zero due to the traceless property
of a commutator and the second zero follows from the
self-consistent relations between impurity self-energies and
the Fermi-surface averaged propagators, Eq. (9).

Note that the order parameter self-consistency was not used
in the above argument. It is, however, needed to conserve the
charge/particle number. The formula for the particle current,
written in terms of 4-trace, acquires an extra τz matrix (and
absence of ε factor):

j e(R) = 2NF vF

∫ +∞

−∞

dε

4πi

∫
dp̂ p̂

1

4
Tr{τzg

K (R,p̂,ε)} .

(A4)

Following the same line of arguments as for the heat current
above, we notice that the impurity self-energy part vanishes
due to same self-consistency as before but the commutator
term with the mean-field order parameter is∫

dε〈Tr {τz[ετz − �, gK ]}〉p̂ = 2
∫

dε〈Tr {�τzg
K}〉p̂,

(A5)

which vanishes if one uses the self-consistency on �(R,p̂),
Eq. (8), ensuring nonaccumulation of charge.

APPENDIX B: RELATIVE IMPORTANCE OF DENSITY OF
STATES AND MEAN-FREE PATH.

To relate our results and treatment to previous work,
in this appendix, we present results for a uniform d-wave
superconductor. The heat transport in a typical Boltzmann
picture depends on a product of the density of states N (p̂,ε)
and effective elastic mean-free path,

�e ≡ τ̄ (p̂,ε)v(p̂,ε) . (B1)

The low-energy spectrum of a d-wave superconductor is
strongly modified by the scattering of quasiparticles on
impurities due to the anisotropy of the order parameter
structure. Scattering on impurities results in the formation of
midgap states [30]. These impurity-bound states are extended
in space and form a conduction “impurity” band with energy
width Wimp [2,31]. This bandwidth is tiny in the Born limit,
WB

imp ≈ 4�0 exp(−π�0



), but can be large in the unitary limit
where WU

imp ≈ √
π�0
/2.
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FIG. 11. Uniform thermal conductivity as a function of tem-
perature. At low temperature, T � 0.3Tc (ε � 0.6Tc), the thermal
conductivity in Born limit (green) is higher than that in the Unitary
limit (blue), indicating that it is dominated by the large mean-free
path of quasiparticles. Solid and dashed lines correspond to mean-free
paths �N = πξ/0.3 and �N = πξ/0.2, respectively.

The mean-free path reflects the effectiveness of the scat-
tering of quasiparticles by impurities. It depends on the
concentration 
 and strength δ of impurities, as well as on the
available phase space for scattering, given by the properties of
the order parameter �. At low energy ε < WB

imp < �, in the
Born limit, impurity scattering is ineffective, vF /2 Im[�R

imp] >

�N = vF τN = vF /(2
 sin2 δ), and it allows quasiparticles to
travel long distance between scatterings producing large heat
transport. By contrast, in the unitary limit, scattering is
enhanced vF /(2 Im[�R

imp]) < �N , i.e., low-energy QPs bind
to impurities forming a wide impurity band.

Numerically, we find that thermal transport properties are
mainly influenced by the behavior of scattering length �e(p̂,ε)
rather than that of density of states. In Fig. 11, we plot the
temperature dependence of κu(T ), which we analyze using
data from Fig. 12. At low-to-intermediate temperature 0.05 <

T/Tc < 0.3, corresponding to energies Wimp � ε < 0.6Tc the
DoS in Born limit is small NB(ε) < NU (ε), while �B

e � �U
e ,

producing κB
u (T ) > κU

u (T ). At higher energy and temperature
0.4 < T/Tc, ε > 0.8Tc, the result is reversed κB

u (T ) < κU
u (T ),

again in agreement with the increase of �U
e > �B

e while having
about the same values for the DoS in this energy interval. In
the very low-temperature limit, T � Wimp, DoS and scattering
effects exactly cancel each other, producing the universal limit
for heat conductivity, where it does not depend on the disorder
properties [2,32,33].

APPENDIX C: HEAT CONDUCTIVITY OF A CLEAN
CONSTRICTION

In this appendix, we evaluate heat transport properties of a
spin-singlet superconducting constriction without impurities
and discuss the role of Andreev reflection processes. The
constriction can be thought of as a narrow bridge connecting
two large reservoirs that are assumed to be in equilibrium at
temperature T ± dT (dT � T ,Tc). We define the conductance
of the clean constriction as G = Ih/(2dT ). The global phases
of the superconducting order parameter in the reservoirs
�(p̂) exp(iϕL,R) is set to ϕL,R = 0,π . The constriction is
assumed to be long and narrow, so we neglect the edge
effects. In linear response, the energy transport is governed by
Eqs. (15) and (20), with σimp = 0. At boundaries, γ (±L,p̂x ≶
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FIG. 12. Spectral and transport properties of a uniform d-wave
superconductor. Angle-resolved DoS, N (p̂,ε)/NF (top row), mean-
free path �e(p̂,ε)/�N (middle row), and impurity scattering length
�imp(ε)/�N (bottom row) are plotted in Born and unitary limits, for the
normal state mean-free path �N ≈ 10 ξ , where �imp = vF /2Im[�imp].
Different curves represent different momentum directions spanning
the d-wave clover from a node to antinode (solid blue to red dashed
lines), as shown in inset. In unitary limit, the low-energy impurity
band in DoS is large, and the mean-free path is reduced by enhanced
impurity scattering. By contrast, in the Born limit, the impurity band
is exponentially small and the mean-free path of nodal quasiparticles
is longer.

0,ε) is given by Eq. (30) and we take

xa
R/L = xa(±L,p̂x ≶ 0,ε) = ∂T �0 (∓dT )

(
1 + γ R

u γ̃ A
u

)
,

(C1)

which conveniently describes junctions between reservoirs that
have negligible heat currents inside. This is different from
the boundary condition (31) that was aimed at describing a
continuous flow of heat.

The order parameter �(x) and γ0(x,p̂,ε) are self-
consistently determined throughout the constriction. From
equilibrium γ0(x,p̂,ε), using Eq. (15), one can find analytic
solution for the distribution function along the constriction:

xa(x,p̂x > 0,ε) = t(x,p̂,ε) xa
L,

(C2)
xa(x,p̂x < 0,ε) = t(x,p̂,ε) xa

R,

where

t(x,p̂,ε) = 1 − ∣∣γ R
0 (x,p̂,ε)

∣∣2

1 − ∣∣γ R
u (p̂,ε)

∣∣2 , (C3)

plays the role of a transmission coefficient (|t | < 1). In
a uniform superconductor, energy is perfectly transmitted
|t(ε,p̂)| = 1. However, with a domain wall, one has |t | � 1,
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FIG. 13. Thermal transport properties of a clean superconductor
across a single domain wall (solid lines) compared against a uniform
superconductor (dashed lines). (a) Local DoS for the momenta
directions shown in (d) at the domain wall N (p̂,ε,x) with part of
the spectral weight (shaded area) moved from continuum states into
zero-energy bound states, which form a very sharp peak not resolved
on this scale. (b) The Andreev reflection length scale ��(ε,p̂,x).
In a uniform superconductor, it is infinite for above-gap energies
1/��(|ε| > |�(p̂)|) = 0, while at the domain wall it is finite for all
energies and even changes sign. (c) Kernel of the heat current K(p̂,ε)
for four momentum directions and integrated over the Fermi surface.
With the domain wall the kernel K(ε,p̂) < 1 is suppressed due to
Andreev reflection.

i.e., energy is not fully transmitted. This is interpreted as
a partial Andreev reflection of incident quasiparticles from
the spatially varying profile of the order parameter. Inserting
Eq. (C2) into the heat current expression (19), we can express
the conductance as

G =
∫

dε ε 〈|p̂x | K(ε,p̂)〉p̂ ∂�0

∂T
, (C4)

where the kernel K(ε,p̂) is

K(ε,p̂) = NF vF

(
1 − ∣∣γ R

0 (ε,p̂,x)
∣∣2

)
(
1 − ∣∣γ̃ R

0 (ε,p̂,x)
∣∣2)∣∣1 + γ R

0 (ε,p̂,x)γ̃ R
0 (ε,p̂,x)

∣∣2 .

(C5)

Again, because the energy flow is uniform, K(ε,p̂) does not
depend on position x, even though γ R

0 does.
In Fig. 13 we plot the heat current kernel together with the

density of states and the Andreev reflection length 1/�� =
2 Im[γ R�̃]/vF appearing in Eq. (20). For uniform order
parameter (dashed lines) K(ε,p̂) = 1 for ε > |�(p̂)|, and is
zero for energies below the gap where there are no quasiparticle
states. ��(ε,p̂) is finite for subgap states ε < �(p̂), and infinite
otherwise.

At the center of a domain wall, ��(ε > �(p̂),p̂,x) is finite
(and can even be negative!) for the above-gap states, their spec-
tral weight is moved into the ABS, and the amplitude of K(ε,p̂)
is reduced, as shown by the solid lines in Fig. 13. In the clean
limit, the conductance is reduced in the presence of a single
domain wall, similar to a pinhole of perfect transparency [20].
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