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Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3
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We study the ordered moment direction in the extended Kitaev-Heisenberg model relevant to honeycomb
lattice magnets with strong spin-orbit coupling. We utilize numerical diagonalization and analyze the exact
cluster ground states using a particular set of spin-coherent states, obtaining thereby quantum corrections to the
magnetic anisotropy beyond conventional perturbative methods. It is found that the quantum fluctuations strongly
modify the moment direction obtained at a classical level and are thus crucial for a precise quantification of the
interactions. The results show that the moment direction is a sensitive probe of the model parameters in real
materials. Focusing on the experimentally relevant zigzag phases of the model, we analyze the currently available
neutron-diffraction and resonant x-ray-diffraction data on Na2IrO3 and RuCl3 and discuss the parameter regimes
plausible in these Kitaev-Heisenberg model systems.
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I. INTRODUCTION

Due to their intermediate spatial extension, d electrons
in transition-metal compounds comprise both the localized
and itinerant features. This duality is manifested in a rich
variety of metal-insulator transitions [1,2]. Even deep in the
Mott-insulating phase, the d electrons partially retain their
kinetic energy, by making virtual hoppings to the neighboring
sites and forming the covalent bonds. The internal structure
of these bonds is dictated by the orbital shape of d electrons
as well as by Pauli principle and Hund’s interactions among
spins. This results in an intimate link between the nature of
chemical bonds (“orbital order”) and magnetism [3], which can
be cast in terms of phenomenological Goodenough-Kanamori
rules.

The Kugel-Khomskii models [4] form a theoretical frame-
work where the “spin physics” and “orbital chemistry” are
treated on equal footing. A special feature of these models is
that the d orbital is spatially anisotropic and hence cannot sat-
isfy all the bonds simultaneously. In high-symmetry crystals,
this results in a picture of fluctuating orbitals [5,6], where
the frustration among different covalent bonds is resolved
by virtue of their quantum superposition, lifting the orbital
degeneracy without a static order.

It might seem that a relativistic spin-orbit coupling, which
lifts the orbital degeneracy already on a single ion level [3,4],
will readily eliminate the orbital frustration problem. This
coupling does indeed greatly reduce the initially large spin-
orbital Hilbert space of d ions, leaving often just a twofold
degenerate Kramers level with an effective (“pseudo”) spin
one-half [7]. It turns out, however, that the pseudospins
still well “remember” the orbital frustration, by inheriting
the bond-directional nature of orbital interactions via the
spin-orbit entanglement [6].

The bond-directional nature of pseudospin interactions
has profound consequences for magnetism (as well as for
the properties of doped systems [8]). The most remarkable
example, pointed out in Ref. [9], is a possible realization of
Kitaev’s honeycomb model [10] in materials with the d5(t2g)
electronic configuration such as Na2IrO3. This theoretical

proposal has sparked a broad interest in honeycomb lattice
pseudospin systems (see the recent review paper [11] and
references therein).

There is a direct experimental evidence [12] that the
Kitaev-type interactions are indeed dominant in Na2IrO3.
Unusual features pointing towards the Kitaev model have been
observed [13] also in spin excitation spectra of RuCl3 (this
compound was suggested [14] to host pseudospin physics,
too). On the other hand, it is also clear that there are terms in
the pseudospin Hamiltonian that take these systems away from
the Kitaev spin-liquid phase window [15]. The identification
of these “undesired” interactions and clarification of their
dependence on material parameters is an important issue that
has been in the focus of many recent studies.

Experimentally, the strength of a dominant Kitaev coupling
|K| can readily be evaluated from an overall bandwidth of
spin excitations; however, the determination of its sign and
quantification of the subdominant terms is not straightforward
and needs a theory support. The aim of this paper is to show
that the direction of the ordered moments, which can be
extracted from the neutron-diffraction and x-ray-diffraction
data, contains valuable information on the model parameters,
including the sign of K . Considering a symmetry dictated
form of the model Hamiltonian, we calculate the pseudospin
direction fully including quantum fluctuations which are
expected to be crucial in frustrated spin models. We will point
out that the pseudospin itself is not directly probed by neutrons;
rather, they detect the direction of the magnetic moment which
is not the same as that of the pseudospin. Similarly, we will
describe how to extract the pseudospin direction from resonant
x-ray-scattering (RXS) data.

The paper is organized as follows. Section II introduces
the model Hamiltonian. Section III briefly discusses the
pseudospin easy axis direction on a classical level. Section IV
introduces the method of deriving the moment direction from
exact diagonalization (ED) data. Section V presents the ED
results on moment direction as a function of model parameters.
Section VI considers a relation between the pseudospins and
magnetic moments probed by neutron-diffraction and RXS
experiments, and discusses implications of the theory for
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Na2IrO3 and RuCl3. Appendix A compares the method of
Sec. IV with the standard approach. Appendix B derives
the equations used in the analysis of RXS data. Finally,
Appendix C discusses how the trigonal field can be extracted
from J = 3/2 magnetic excitation spectra.

II. EXTENDED KITAEV-HEISENBERG MODEL

To describe the interactions among the pseudospins (re-
ferred to as “spins” below), we adopt a model containing
all symmetry allowed nearest-neighbor (NN) terms and the
longer-range Heisenberg interactions:

H =
∑

〈ij〉∈NN

H(γ )
ij +

∑
〈ij〉/∈NN

Jij Si · Sj . (1)

The nearest-neighbor contribution is the extended Kitaev-
Heisenberg model [16–18] that, apart from the Heisenberg
interaction, includes all the bond-anisotropic interactions
compatible with the symmetries of a trigonally distorted
honeycomb lattice. Its z-bond contribution (see Fig. 1 for the
definitions of the bonds and spin axes) takes the following
form:

H(z)
ij = K Sz

i S
z
j + J Si · Sj + �

(
Sx

i S
y

j + S
y

i Sx
j

)
+�′(Sx

i Sz
j + Sz

i S
x
j + S

y

i Sz
j + Sz

i S
y

j

)
. (2)

The Hamiltonian contributions for the other bonds (x and y)
are obtained by a cyclic permutation among Sx,Sy,Sz. The
resulting alternation of the local easy axis directions from
bond to bond, imposed by the Ising-like term K , brings about
a strong frustration which, as discussed above, can be traced
back to the orbital frustration problem in Kugel-Khomskii type
models. An extensive discussion of the above Hamiltonian
and its nontrivial symmetry properties can be found in
Ref. [19].

With the Kitaev-coupling K alone, the model has a spin-
liquid ground state. Both Na2IrO3 and RuCl3 show spin order
where the zigzag-type ferromagnetic (FM) chains, running
along the a direction, are coupled to each other antiferromag-
netically [see Fig. 1(b)]. This order becomes a ground state of
the Kitaev model with K > 0 [antiferromagnetic (AF) sign],
when a small FM J < 0 Heisenberg coupling is added [20]. If
the Kitaev coupling is negative, K < 0 (FM sign), then zigzag
order emerges due to longer-range AF couplings [21,22] and/or
�,�′ terms [17–19]. Given that the stability of the Kitaev-liquid
phase against perturbations strongly depends on the sign of
K [20], which scenario is realized in a given compound
becomes an important issue.

Leaving aside the “orbital chemistry” aspects that decide
the sign of K as well as the other model parameters, we just
mention that various ab initio estimates (see, e.g., [16,23,24])
generally support the FM K < 0 regime, most likely reflecting
the decisive role of Hund’s coupling effect on K emphasized
earlier [9,15]. However, we take here a phenomenological
approach, considering the model with free parameter values
including both signs of K . The J , �, and �′ values are varied
such that the ground state stays within the zigzag phase. Based
on a recent result [24] that third-NN Heisenberg coupling J3

is more significant than second-NN J2 in both Na2IrO3 and
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FIG. 1. (a) Top view of the honeycomb lattice of the edge-shared
IrO6 octahedra in Na2IrO3. (b) Three types of bonds and zigzag-AF
state where x and y bonds connecting similar dots are FM, while the
z bonds are AF (top), and the orientation of the cubic axes x, y, z with
respect to the octahedra (bottom). (c) The possible directions of the
ordered moment in the above zigzag state. In the AF Kitaev case the
moment is tied to the cubic z axis and deviates from it only slightly
with nonzero �. In the FM Kitaev case with � = 0, it is constrained
to the xy plane classically, and pinned to a cubic x or y axis when
quantum fluctuations are included. Nonzero � < 0 gradually pushes
the moment direction towards the b axis in the honeycomb plane,
while positive � drives it first towards the ac plane [which is reached
at � ≈ 0.05|K|, see Fig. 3(a)], and then rotates the moment within
the ac plane towards the a axis.

RuCl3, we replace Jij in Eq. (1) by J3, reducing thereby the
parameter space.

The magnetic anisotropy in the present model is a nontrivial
problem, since the leading term K is anisotropic by itself, and,
on top of this highly frustrated interaction, the other terms
which eventually drive a magnetic order in real compounds
have a strong impact on magnetic energy profile. As illustrated
in Fig. 1(c) and discussed in detail below, the ordered moment
direction is very sensitive to the model parameters, and it shows
a qualitatively different behavior in case of FM and AF Kitaev
couplings. We note that the “moment direction” in this figure
refers to that of pseudospin; Sec. VI explains how it is related
to the magnetic moments probed by neutron-diffraction and
x-ray-diffraction experiments.
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III. CLASSICAL MOMENT DIRECTION

Let us briefly mention the results of a classical analysis
(for details see Appendix B of Ref. [19]) assuming the zigzag
order with antiferromagnetic z bonds as shown in Fig. 1(b).
On this level, the moment direction is determined solely by
the anisotropy parameters K , �, and �′ and corresponds to the
eigenvector of the matrix

M =
⎛
⎝ 2K −� + 2�′ �

−� + 2�′ 2K �

� � 0

⎞
⎠ (3)

that has the lowest eigenvalue. This minimizes the anisotropic
contribution in the classical energy per site of the zigzag
phase, Eclass = 1

8 (J − K − 3J3) + 1
8 mT Mm, where m is a

unit vector. The dominant Kitaev interaction contributing by
the diagonal terms makes the main choice—it prefers either the
xy plane (FM K < 0) or the z axis (AF K > 0). The smaller
� and �′ terms lead to a finer selection of the ordered moment
direction.

In the case of the zigzag order stabilized by AF K > 0 and
FM J < 0, the ordered moment direction is close to the z axis
being slightly tilted in the ac plane mainly by virtue of � [see
Fig. 1(c)].

The FM K < 0 case, where the zigzag order is stabilized
by � and J3 terms, is more complex. With � = �′ = 0, the
entire xy plane is degenerate on a classical level. Further
selection depends on the sign of � − 2�′, with the positive
and negative sign making the moment to jump into the ac

plane or the b axis in the honeycomb plane, respectively.
In the former case, an increasing � further pushes the
moment closer to the honeycomb plane. As it has been found
earlier [15,25] and discussed below, the Kitaev term generates
an additional magnetic anisotropy due to quantum and/or
thermal fluctuations, pinning the moment direction to the cubic
axes. This will turn the above jumps into a gradual rotation
of the easy axis with changing �, along the path shown in
Fig. 1(c).

IV. EXTRACTION OF THE MOMENT DIRECTION FROM
A CLUSTER GROUND STATE

To determine the ground state of the Hamiltonian (1) and
obtain the moment direction as a function of model parameters
more rigorously than in the previous perturbative methods, we
have performed an exact diagonalization using a hexagon-
shaped 24-site supercell covering the honeycomb lattice. This
cluster is highly symmetric and compatible with all the hidden
symmetries of the model [19] so that no bias induced by the
cluster geometry is expected.

Since the cluster ground state does not spontaneously break
the symmetry and corresponds to a superposition of all possible
degenerate orderings, the identification of the ordered moment
direction is not straightforward. One possibility is to evaluate
the 3 × 3 correlation matrix 〈Sα

− QS
β

Q〉 (α,β = x,y,z) at the
ordering vector Q and to take the direction of the eigenvector
corresponding to its largest eigenvalue. Because of specific
problems of this standard approach in the present context
(see Appendix A for details), we have developed here another
method that brings a more intuitive picture of the exact ground

state by “measuring” the presence of the classical states with
a varying moment direction. As a basic building block, we
utilize the spin- 1

2 coherent state

|θ,φ〉 = Rz(φ)Ry(θ )|↑〉 = e−iφSz

e−iθSy |↑〉 (4)

that is fully polarized along the (θ,φ) direction [26]. Here the
cubic axes are used as a convenient reference frame and θ and
φ are the conventional spherical angles. A spin-coherent state
on the cluster is constructed as a direct product

|�〉 =
N∏

j=1

|θj ,φj 〉 (5)

with the unit vectors mj = (cos φ sin θ, sin φ sin θ, cos θ )j
forming the desired pattern. In this fully polarized classical
state 〈�|Sα

i S
β

j |�〉 = 1
4mα

i m
β

j and the energy 〈�|H|�〉 is thus
equal to the classical energy. We consider only collinear states
of FM, AF, and zigzag type. For example, a FM state with the
moment direction (θ,φ) is explicitly expressed as

|�〉 =
N∏

j=1

(
e−iφ/2 cos θ

2 |↑〉j + e+iφ/2 sin θ
2 |↓〉j

)
. (6)

By varying θ and φ and evaluating the overlap with the exact
cluster ground state |GS〉, we obtain the probability map
P (θ,φ) = |〈�|GS〉|2. The ordered moment direction is then
identified by locating the maxima of P (θ,φ).

There is an intrinsic width of the peaks in P (θ,φ) due
to the nonzero overlap of the spin-coherent states, namely,
|〈�|� ′〉|2 = cos2N ( 1

2	), where 	 is the angle between the
directions (θ,φ) and (θ ′,φ′). This gives an approximate half
width at half maximum of

√
2/N (in terms of the angular dis-

tance from the maximum), evaluating to about 17◦ for N = 24.
Despite this sizable intrinsic width, the ordered moment
direction can be detected with a high accuracy (limited only
by the accuracy of the ground-state vector), as we see below.

V. MOMENT DIRECTION—EXACT DIAGONALIZATION
RESULTS

A. Testing the method: Nearly Heisenberg limit

Before discussing in detail the ordered moment direction in
the zigzag phases, relevant for actual compounds Na2IrO3 and
RuCl3, let us demonstrate the above method by considering
the Kitaev-Heisenberg model close to the Heisenberg limit,
|J | � |K|, with both signs of J . In such a situation, the FM or
AF order is established by the dominant isotropic interaction,
while the anisotropic Kitaev interaction merely selects the easy
axis direction via an order-from-disorder mechanism [27].

We start with the FM case J < 0. Figure 2(a) is the
corresponding probability map obtained by the method of
Sec. IV for K/J = 0.2. The probability is clearly peaked at
the directions of the cubic axes attaining there the maximum
value Pmax slightly less than 1

6 . This is due to the cluster ground
state being a superposition of six possible classical states and
a small contribution of quantum fluctuations. The width of the
peaks matches well the intrinsic width estimated in Sec. IV.

That the K term favors cubic axes for the ordered moment
follows also from simple analytical calculations. By treating
the quantum fluctuations within second-order perturbation
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FIG. 2. (a) Map of the probability of the spin-coherent state given
by Eq. (6) in the FM ground state of the KH model near the Heisenberg
limit. The radial coordinate gives the angle α to the honeycomb plane;
the polar angle ϕ matches that defined in Fig. 1(b). (b) Probability
map for the AF ground state obtained using small K and dominant
J > 0. Only the variation �P on top of P0 = 2.923% is shown.
(c) Probability map for the zigzag phase of the KH model with K > 0,
J < 0 reveals a strong pinning to the z axis. The coherent state
corresponding to the zigzag pattern in Fig. 1(b) was used. Directions
lying in the xy plane are indicated by the dashed line. (d) Soft xy

plane for FM K < 0 zigzag stabilized by J3. Cubic axes x and y are
selected but the moment strongly fluctuates in the plane. (e,f) The
same as in panel (d) but extended by a sizable � term forcing the
moment into the ac plane (left) or the b axis (right).

expansion (see Ref. [28] for details), we obtain the magnetic
anisotropy energy

δE
(2)
FM ≈ K2

64|J |
(
1 − m4

x − m4
y − m4

z

)
, (7)

depending on the moment direction given by a unit vector m =
(mx,my,mz). This quantum correction on top of the isotropic
classical energy is minimized for m pointing along the cubic
axes x,y, and z that become the easy axes, consistent with the
ED result.

The case of the AF J > 0 is rather different due to the
presence of large quantum fluctuations already in the Heisen-
berg limit. This is manifested in an almost flat probability
profile with P of about 3% [see Fig. 2(b)]. Nevertheless, the

probability maxima again precisely locate the x,y, and z

directions for the ordered moments, consistent with the “order-
from-disorder” calculations [15,25,28–30] in the models con-
taining compass- or Kitaev-type bond-directional anisotropy.

B. Moment direction in the zigzag phases

Having verified the method, we now move to the zigzag
phases observed in Na2IrO3 and RuCl3. We first inspect the
case of �,�′ = 0 when the anisotropy is due to the Kitaev
term alone. Shown in Fig. 2(c) is the probability map for AF
K > 0 and FM J < 0, where the z axis is selected already on
the classical level as discussed in Sec. III [31]. The probability
is indeed strongly peaked at the direction of the z axis. The
small Pmax of about 3% is again a signature of large quantum
fluctuations in the ground state. Note that this number contains
an overall reduction factor of 1

6 due to the six possible zigzag
states being superposed in the cluster ground state.

The probability map Fig. 2(d) for the FM K < 0 zigzag
case reveals the moment being constrained to the vicinity
of the xy plane, as expected from classical considerations.
Within this plane, the order-from-disorder mechanism selects
the cubic axes x and y where the probability reaches its
maxima. Concluding the survey of the probability maps, we
show P calculated including a large enough � that leads to the
selection of a direction within the ac plane [� > 0, Fig. 2(e)]
or the b axis [� < 0, Fig. 2(f)].

The above three examples for the FM K zigzag indicate
a rather complex behavior of the moments in this case, as
already suggested in Fig. 1(c). In the following, we therefore
focus on the full � dependence presented in Fig. 3(a) in the
form of the angles α(�) (the angle to the honeycomb plane)
and ϕ(�) (polar angle of the projection into the honeycomb
plane). Instead of the jump in α(�) obtained on a classical
level, we find a finite window |�| � 0.05|K| of an order-
from-disorder stabilized phase, where the moment direction
gradually moves from the cubic axis (� = 0) to either the b

axis (� < 0) or the ac plane (� > 0). Once the critical value
of � is reached, the moment either stays along the b axis or
is pushed down within the ac plane closer to the honeycomb
plane. Figure 3(b) illustrates the evolution of α(�) for different
values of J3 stabilizing the zigzag order. For small J3, the
dominant directional Kitaev term makes the moment more
pinned to the cubic axes, which is manifested by a significantly
reduced slope of α(�) near � = 0 compared to the large-J3

case. On the other hand, the critical values of � are only slightly
affected by J3.

The above crossover behavior near � = 0 may be eas-
ily understood and even semiquantitatively reproduced by
considering a competition of the classical energy and the
order-from-disorder potential as follows. Keeping the moment
m = (cos φ, sin φ,0) within the xy plane preferred by K < 0,
we can evaluate the classical energy per site:

Eclass = 1
8 (K − 3J3 + J ) − 1

8 (� − 2�′) sin 2φ. (8)

In this contribution, the anisotropy is due to the � and �′
terms only. Eclass is complemented by an order-from-disorder
potential Efluct(φ) that should contain four equivalent minima
at φ = 0, 1

2π,π, 3
2π corresponding to the cubic axes (supported

by the K term). Such a potential can be represented by the
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FIG. 3. (a) �-dependent angles α, ϕ specifying the moment
direction reveal three regimes for FM K zigzag supported by small
J3. The values K = −1 and J = J3 = 0.2 were used. At � = 0,
the angles give the direction towards an oxygen ion. A crossover in
the interval |�| � 0.05 corresponds to the path shown in Fig. 1(c).
(b) Left panel shows the angle α for K = −1, J = 0.2 and several
J3 values manifesting a stronger pinning to the cubic axis at smaller
J3. The same data are presented as α(ϕ) in the right panel together
with α(ϕ) corresponding to the xy plane (dashed). The black dot
indicates the cubic axis direction. (c) The angle α for larger values
of � > 0 compared to the classical result of Ref. [19] (dotted). The
blue solid curve is a continuation of that of panel (a), red and green
curves are calculated using different J3 values used in panel (b), and
the blue dashed curve denotes a larger J value. (d) The angle α

for the parameters K = −1, J = J3 = 0.2, and several �′ values.
(e) �-dependent α in the AF K = +1 case with J = −0.2 and
several J3 values compared to the classical result of Ref. [19] (dotted).
The endpoints of the curves are determined by a sharp drop of the
probability of the classical zigzag state indicating a phase boundary.

following form:

Efluct = V sin2 2φ, (9)

approximating Efluct(φ) by its lowest harmonic. This function
is characterized by a single unknown parameter—the barrier
height V , determined mainly by the dominant K . Assuming
�′ = 0, the minimization of the total energy Eclass + Efluct

gives φ(�) = 1
2 arcsin �

16V
and the critical value �crit = 16V .

This enables us to extract effective V from our numerical data.
By taking �crit ≈ 0.05|K| observed in Figs. 3(a) and 3(b)
we get V ≈ 0.003|K|. Furthermore, converting φ in the xy

plane to the angle α to the honeycomb plane, we obtain

“phenomenological” α(�) = arcsin
√

1
3 (1 + �

16V
) that roughly

approximates the numerical α(�) data. The agreement between
these two α(�) profiles improves with increasing J3, when the
order-from-disorder potential becomes more harmonic and the
deviation of the moment direction from the xy plane for � > 0
reduces [see Fig. 3(b)]. In fact, Eqs. (8) and (9), together with
the value of V ≈ 0.003|K| extracted from the ED data, may
be used for a semiquantitative determination of the easy axis
direction within the xy plane.

For curiosity, we have evaluated the potential barrier V

also analytically, by two slightly different methods. First, as
in Sec. V A, we estimated quantum corrections for the zigzag
phase along the lines of Ref. [28]. This reproduced the above
form (9) of the anisotropy potential, and provided a consistent
estimate of V ≈ 0.005|K|. An alternative evaluation of the
anisotropy potential within the linear spin-wave framework
resulted in zero-point energy of the same form as Eq. (9)
again, but with an overestimated value of V ≈ 0.014|K|.

In Na2IrO3 the moment direction was found [12] in the ac

plane suggesting that � > �crit for this material. We thus focus
on this particular case and investigate how the precise value of
α is affected by the model parameters in more detail. Already
on a classical level, finite � > 0 rotates the moment within
the ac plane from α ≈ 54.7◦ (corresponding to the xy plane)
toward the honeycomb plane (α = 0). Such an effect is well
visible also in Figs. 3(a) and 3(b). Presented in Fig. 3(c) are
a few representative α(�) curves for larger values of � up to
|K| that serve as a test of the classical prediction

tan 2α = 4
√

2
1 + r

7r − 2
with r = − �

K + �′ (10)

derived in Ref. [19]. As we find, the quantum fluctuations
included in the exact ground state push the ordered moments
much closer to the honeycomb plane. The difference is
substantial and needs to be considered when trying to quantify
the model parameters based on the experimental data.

So far, we have considered �′ = 0 only, while a small
negative �′ is expected to be generated by a trigonal compres-
sion [18,19,32]. Based on Eq. (8), �′ is expected to effectively
shift the value of � in the first approximation. Indeed, as shown
in Fig. 3(d), the rough three-phase picture as in Fig. 3(a) is
preserved and the negative �′ shifts the α(�) curve in the
negative direction. This enables α to reach higher values, even
above the xy-plane angle 54.7◦.

Finally, in Fig. 3(e) we briefly analyze the AF K situation
with the moment near the z axis. In contrast to the FM K case,
small � has a relatively little effect here, because the z axis
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is classically selected by the dominant K > 0 itself. Quantum
fluctuations are found to generate an even stronger pinning to
the z axis, compared to the classical solution of Ref. [19]. Only
a very large � coupling is able to take the spin away from the
z axis.

VI. COMPARISON TO EXPERIMENT

A. Extracting pseudospin direction from resonant x-ray and
neutron-scattering data

Having quantified the pseudospin easy axis direction as
a function of the Hamiltonian parameters, we consider now
how this “pseudomoment” direction is related to that of
real magnetic moments measured by neutron-scattering and
x-ray scattering experiments. To this end, we first define the
pseudospin one-half wave functions including crystal field of
trigonal symmetry. The latter splits the t2g manifold into an
orbital singlet a1g = 1√

3
(xy + yz + zx) and the e′

g doublet

{ 1√
6
(yz + zx − 2xy) ; 1√

2
(zx − yz)}. Denoting this splitting

by � and using the hole representation, we have

H = � 1
3 [2n(a1g) − n(e′

g)]. (11)

Within a point-charge model, positive (negative) � would
correspond to a compression (elongation) of octahedra along
the trigonal c axis. The actual value of � in real material is
decided by various factors, but this issue is not relevant in the
present context.

In terms of the effective angular momentum l = 1 of the t2g

shell, the a1g state corresponds to the lc = 0 state, while the e′
g

doublet hosts the lc = ±1 states, using the quantization axis c

suggested by the trigonal crystal field. Explicitly,

|0〉 = 1√
3

(|yz〉 + |zx〉 + |xy〉), (12)

|±1〉 = ± 1√
3

(e±2πi/3|yz〉 + e∓2πi/3|zx〉 + |xy〉). (13)

Via these lc states, pseudospin- 1
2 wave functions are defined

as

∣∣+ 1
2

〉 = + sin ϑ |0,↑〉 − cos ϑ |+1,↓〉, (14)∣∣− 1
2

〉 = − sin ϑ |0,↓〉 + cos ϑ |−1,↑〉, (15)

where ↑ and ↓ refer to the projections of the hole spin on the
trigonal c axis. The spin-orbit “mixing” angle 0 � ϑ � π/2
is given by tan 2ϑ = 2

√
2/(1 + δ), where δ = 2�/λ.

Using the wave functions (14) and (15), we may express the
spin s and orbital l moments of a hole via the pseudospin S. In
a cubic limit, i.e., � = 0, one has s = − 1

3 S, l = 4
3 S, and total

magnetic moment M = (2s − l) = −2S (note a negative g

factor g = −2). These relations imply that the pseudospin easy
axis direction is identical to that of spin, orbital, and magnetic
moments when the trigonal field is zero. However, this is
no longer valid at finite �. For instance, strong compression
(ϑ = 0) would completely suppress the ab-plane components
of magnetic moments, so the pseudospin and magnetic
moment will not be parallel anymore (unless pseudospin is
ordered along the c axis).

The x rays and neutrons couple initially to the spin and
orbital moments, and the scattering operator has to be projected
onto the pseudospin basis. We first consider an effective RXS
operator. For pseudospin one-half in a trigonal field, it has to
have a form R̂ ∝ ifab(PaSa + PbSb) + ifcPcSc, where P =
ε × ε′ and ε (ε′) is the polarization of the incoming (outgoing)
photon. This can be written as R̂ ∝ i P · N , introducing a
vector N = (faSa,fbSb,fcSc) with fa = fb ≡ fab. The RXS
data determine a direction of this auxiliary vector N; in
Na2IrO3, it was found to make an angle αN ≈ 44.3◦ to the ab

plane [12]. However, this is not yet the pseudospin direction,
since fab �= fc and hence αS �= αN , unless the trigonal field
is exactly zero (unlikely in real materials). To access the
pseudospin angle αS and quantify the model parameters, one
has to know the “RXS factors” fab and fc.

We have derived the f factors (see Appendix B for details).
For the L3 edge, they read as

fab = 1

2
+ 5

6
√

2
s2ϑ − 1

6
c2ϑ , (16)

fc = 1 + 2

3
c2ϑ − 1

3
√

2
s2ϑ . (17)

Here, s2ϑ = 2
√

2/r , c2ϑ = (1 + δ)/r , and r =
√

8 + (1 + δ)2.
Figure 4(a) shows the f factors as a function of trigonal field
parameter δ. In the cubic limit, one has fab = fc and hence N
is parallel to S, as expected.

For completeness, we show also the f factors for the L2

edge:

fab = 2fc = − 3
2 + 1

2 c2ϑ +
√

2 s2ϑ , (18)

which vanish at the δ = 0 limit, as a consequence of the spin-
orbit entangled nature of pseudospins [33].

In neutron-diffraction experiments, the magnetic moment
M = (gaSa,gbSb,gcSc) is probed. For the pseudospins as de-
fined above, the g factors are (neglecting covalency effects [7])

gab = −(1 +
√

2 s2ϑ − c2ϑ ), (19)

gc = −(1 + 3 c2ϑ ). (20)

The g-factor anisotropy can quantify the strength of the trigo-
nal field, as illustrated in Fig. 4(b). Again, magnetic moment
direction is in general different from that of pseudospin, and
to access the latter one needs to know the g factors.

These considerations imply that the orientations of the
(x-ray) N vector and magnetic moment M differ from each
other, and also from that of pseudospin S which enters the
model Hamiltonian. As we show in Fig. 4(c), their relative
angles come in the order αM > αN > αS for positive �, and
in reversed order αS > αN > αM for negative �. Ideally,
having measured both N and M directions in the same
compound, one could extract the crystal-field parameter δ

using the above equations, and uniquely fix the pseudospin
easy axis angle αS . In principle, the g-factor anisotropy
provides the same information on δ, but obtaining g factors in
magnetically concentrated systems is a somewhat nontrivial
task. Alternatively, one could extract the value and sign of �

directly from the splitting and anisotropy of the high-energy
J = 3/2 quartet in single crystals (see Appendix C for details).
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FIG. 4. (a) Factors f entering the relation between the pseudospin
S and L3 RXS vector N presented as functions of the trigonal field.
(b) g factors as functions of the trigonal field. Intervals of δ consis-
tent with the g factors suggested by the experimental data on RuCl3

[34,35] and Na2IrO3 [36,37] are indicated by shading. (c) Directions
of the S, N , and M vectors for sample values of the trigonal field
parameter δ and a fixed pseudospin angle αS = 38◦. The case with
the negative δ = −1 could be relevant for RuCl3, while positive
δ = +0.75 with the reverse order of the vectors M, N , and S for
Na2IrO3. (d),(e) Angles αS , αN , and αM of the vectors S, N , and M
to the honeycomb plane as functions of δ keeping fixed αN = 44.3◦

(d) or αM = 35◦ (e). The shaded δ intervals are the same as in
panel (b).

B. Implications for Na2IrO3 and RuCl3

Armed with the above relations between different moments,
and using the results of Sec. V B, let us now analyze the
available experimental data on Na2IrO3 and RuCl3.

Starting with the case of Na2IrO3, we utilize the value
αN ≈ 44.3◦ determined recently by RXS [12]. Keeping this

experimental constraint, in Fig. 4(d) we plot the remaining
angles αM and αS as functions of the relative strength of the
trigonal crystal field δ. In Ref. [19], the value �/λ ≈ 3/8 was
deduced based on the splitting �BC ≈ 0.1 eV of the J = 3/2
quartet [37]. As seen in Fig. 4(b), the corresponding δ ≈ 0.75
is also roughly consistent with the anisotropy of the g factors,
gc/gab ≈ 1.4, obtained by fitting the temperature-dependent
magnetic susceptibilities χc > χab [36]. The data in Fig. 4(d)
then suggest that the magnetic moment takes an angle
of about αM ≈ 50◦ to the honeycomb plane, while the
pseudospin angle αS is roughly 38–40◦. Such a deviation
of the pseudospin from the xy plane (α ≈ 54.7◦) implies a
sizable � value. Based on Fig. 3(c) we may naively expect
the �/|K| ratio in the range 0.3–0.5. We emphasize, however,
that this conclusion relies on the above estimate of the trigonal
field, that should be verified by measuring the “magnetic”
angle αM directly by neutron scattering.

Compared to Na2IrO3, RuCl3 shows an opposite
magnetic anisotropy behavior with χc � χab [34]. The
magnetic structure has been recently investigated by neutron
scattering [38], with the result αM ≈ 35◦ and ϕ being equal
to either 0 or 180◦. Similarly to Fig. 4(d), in Fig. 4(e) we
keep the measured angle, now αM , fixed at its experimental
value, and plot αS and αN for varying δ = 2�/λ. This
parameter could be obtained from the anisotropy of J = 3/2
transitions in single crystals (see Appendix C). We are not
aware of such a direct measurement in RuCl3, so the trigonal
field is best assessed by considering the anisotropy of the g

factors. References [34,35] reported in-plane and out-of-plane
magnetization curves measured for high fields up to 60 T.
Even though the saturation was not reached, the data indicate
the value gc/gab ≈ 0.4–0.5. A similar ratio was also found by
Yadav et al. [39] using quantum chemistry methods and by
fitting the high-field data of Ref. [35]. The corresponding δ

puts the pseudospin angle αS at relatively high values of about
αS � 50◦ [see Fig. 4(e)]. Adopting this estimate, we will try
to identify a consistent parameter window.

Unfortunately, the present neutron experiment [38] could
not directly resolve the orientation of the moments with respect
to the a axis, i.e., whether ϕ = 0 or 180◦. The absence of this
most conclusive evidence for the sign of the Kitaev interaction
requires us to consider both possibilities.

We assume first FM K < 0 as obtained in two recent ab ini-
tio calculations of the exchange interactions in RuCl3 [24,39].
Figure 3(c) gives a hint that the estimated αS � 50◦ can be
reached for small � only. As seen in Fig. 3(d), by including
small negative �′ that shifts the crossover towards negative
�, the pseudospin direction may rotate even far above the
xy plane. Interestingly, the corresponding parameter regime
J ∼ −� ∼ −�′ ∼ 0.2|K| matches well the prediction by
quantum chemistry calculations [39].

Now we analyze the AF K > 0 case, proposed for RuCl3 in
Refs. [13,38,40]. In this case, the zigzag order is obtained on
the level of the two-parameter Kitaev-Heisenberg model [20]
alone, and this simplicity makes the AF K scenario particularly
attractive. In the zigzag phase of the two-parameter model, the
pseudospins point along the cubic z axis leading to αS ≈ 35◦.
This can be reconciled with the experimental value αM ≈ 35◦
only in a nearly cubic situation with a small trigonal distortion.
Considering, however, the large anisotropy of the g factors
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discussed above and the resulting αS � 50◦, it seems that
the AF Kitaev interaction needs to be supplemented by other
anisotropic interactions lifting the pseudospin considerably
up. This scenario is addressed in Fig. 3(e). We have found
that �′ does not influence αS much so that we focus on the �

dependence. Since the AF K zigzag phase becomes fragile if
the other anisotropy terms are included, the model has to be
additionally extended by J3. Based on the data of Fig. 3(e),
we may conclude that large negative � comparable to K is
needed to obtain αS � 50◦. It should be carefully checked if
such a substantially extended model is still consistent with
other experimental data, in particular with the spin excitation
spectrum with only small gaps [13].

We would like to stress again that our analysis of RuCl3 for
both K < 0 and K > 0 heavily relied on the relative trigonal
field strength �/λ inferred solely from the magnetization
anisotropy in high magnetic fields. It is thus highly desirable
to measure the complementary angle αN by RXS and quantify
�/λ more precisely, as suggested in the previous subsection.
As discussed in Appendix C, measuring the anisotropy of
J = 3/2 states by inelastic neutron scattering in single crystals
would be also very helpful.

To summarize this section, in Na2IrO3, the measured
moment direction [12] with ϕ = 0◦ well fixes the FM sign
of the Kitaev interaction, and our analysis of its angle from the
ab plane suggests that � ∼ 0.3 − 0.5|K| coupling is present.
Concerning RuCl3, the current ambiguity in the angle ϕ (0
or 180◦) leaves open the issue of the sign of K . There is
also an uncertainty in the trigonal field value �; based so
far on the g-factor anisotropy, we found that FM K < 0 with
relatively small � and �′ values would be consistent with
the data, while the AF K > 0 situation requires large � < 0
couplings comparable to K .

VII. CONCLUSIONS

We have investigated the ordered moment direction in the
zigzag phases of the extended Kitaev-Heisenberg model for
honeycomb lattice magnets. Our method analyzes the exact
cluster ground states using a particular set of spin coherent
states and as such fully accounts for the quantum fluctuations.
The interplay among the various anisotropic interactions leads
to a complex behavior of the ordered moment direction as a
function of the model parameters. We have found substantial
corrections to the results of a classical analysis that are
important when quantifying the exchange interactions based
on the experimental data.

We have pointed out that, away from the ideal cubic
situation, the notion of the “ordered moment direction” has
to be precisely specified. Assuming a trigonal field relevant to
the layered honeycomb systems, we have derived relations
among the directions of (i) the pseudospins entering the
model Hamiltonian, (ii) the magnetic moments measured by
neutron diffraction, and (iii) the moment direction as probed
by resonant magnetic x-ray scattering. These relations and a
combination of neutron and x-ray data should enable a reliable
quantification of the trigonal field as well as the pseudospin
direction in future experiments.

Using the above results, we have analyzed the currently
available experimental data on Na2IrO3 and RuCl3 and
identified plausible parameter regimes in these compounds.
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APPENDIX A: COMPARISON OF NUMERICAL METHODS

As mentioned in the main text, the standard method to
obtain the ordered moment direction using the ED ground state
is to evaluate the spin-spin correlation matrix 〈Sα

− QS
β

Q〉 (α,β =
x,y,z) at the ordering vector Q and to find its eigenvector
corresponding to the largest eigenvalue. However, there are
two main problems associated with this simple method, both
emerging since the cluster ground state is a linear superposition
of degenerate orderings where the individual orderings have
equal weights.

(i) If there are several equivalent easy axis directions
associated with the selected ordering vector Q, they will be
characterized by the same eigenvalue. This leads to a degener-
ate eigenspace and prevents us from resolving such directions.
The most severe cases are those with a dominant Heisenberg
interaction presented in Figs. 2(a) and 2(b). Here we have three
degenerate easy axes x, y, and z which makes the correlation
matrix proportional to a unit matrix and thus isotropic. In the
FM K < 0 zigzag situation shown in Fig. 2(d) and the entire
middle phase in Fig. 3(a), two degenerate moment directions
for a particular zigzag pattern (selected by Q) are possible and
the correlation matrix therefore just uncovers the softness of
the xy plane. Only after these two directions merge for a large
enough |�|, the moment direction can be identified.

(ii) The zigzag pattern to be probed is selected by choosing
the ordering vector Q. In contrast to an infinite lattice, at a
finite cluster this separation of the three zigzag directions is
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FIG. 5. Comparison of the angle α of the pseudospin direction
to the ab plane obtained using various methods. The parameters
K = −1 and J = J3 = 0.2 were used. The blue curve is identical to
the one shown in Figs. 3(a)–3(d).
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not perfect. The range of spin correlations is limited by the
size of the cluster and the corresponding momentum space
peaks become broad. The correlation matrix at given Q is thus
“polluted” by small contributions of the two other zigzags
in the ground state, that are associated with the remaining
ordering vectors.

Our method introduced in Sec. IV does not suffer from
the above problems and is able to handle all the situations
encountered. This is due to the full resolution of the various
degenerate orderings present in the cluster ground state by
using a prescribed ordering pattern and by a construction of a
full directional map.

If applicable, the standard method gives results very similar
to our method. We demonstrate this in Fig. 5 that compares
the two methods for the parameters K = −1, J = J3 = 0.2
and varying � used in Fig. 3. The slight deviations observed
for � > 0 can be interpreted as a manifestation of the second
problem discussed above.

APPENDIX B: DERIVATION OF THE L-EDGE
RXS OPERATOR

Resonant x-ray scattering is conceptually similar to the
Raman light scattering, in a sense that both processes involve
the intermediate states created and subsequently eliminated
by incoming and outgoing photons. However, the nature
of the intermediate states in these two cases is radically
different: while the Raman light scattering involves intersite
d-d transitions, the x rays create the high-energy on-site
p-d transitions. As a result, the Raman light scattering
probes intersite (two-magnon) spin flips, while the presence
of a strong spin-orbit coupled 2p-core hole in the RXS
intermediate states makes single-ion spin flips a dominant
magnetic scattering channel (see the recent review [41] and
references therein for details).

A complex time dynamics of the intermediate states makes
the x-ray-scattering process hard to analyze microscopically.
However, as far as one is concerned with the low-energy
excitations in Mott insulators, the problem of the intermediate
states can be disentangled and cast in the form of frequency-
independent phenomenological constants [42–44]. This results
is an effective RXS operator formulated in terms of low-energy
(orbital, spin, etc.) degrees of freedom alone. The form of this
operator is dictated by symmetry. In essence, this approach is
similar to that of Fleury and Loudon [45] widely used in the
theories of Raman light scattering in quantum magnets.

While the RXS operator used in the main text follows from
an underlying trigonal symmetry, the ratio between fab and
fc constants requires specific calculations. This can be easily
done, with some routine modifications of the previous work
for the case of tetragonal symmetry [46,47], as outlined below.

In cubic axes x,y, and z (see Fig. 1), a dipolar 2p to 5d

transition operator reads as

D = εxTx + εyTy + εzTz, (B1)

where εx,y,z are the polarization factors, and Tx = d
†
zxpz +

d
†
xypy , Ty = d

†
xypx + d

†
yzpz, Tz = d

†
yzpy + d

†
zxpx . Here and

below, it is implied that d and p operators carry also the spin
quantum numbers (↑, ↓) over which summation is taken.

In the quantization axes a,b, and c, suggested by the
trigonal crystal field, this operator takes the following form:

D = 1√
6

(εaTa + εbTb + εcTc), (B2)

where

Ta = (d†
0 + 2d

†
−1)p1 + (d†

1 − d
†
−1)p0 + (2d

†
1 − d

†
0)p−1,

iTb = (−d
†
0 + 2d

†
−1)p1 + (d†

1 + d
†
−1)p0 − (2d

†
1 + d

†
0)p−1,

Tc =
√

2 (2d
†
0p0 − d

†
1p1 − d

†
−1p−1). (B3)

Here, the indices 0 and ±1 stand for the lc orbital quantum
numbers of d and p electrons.

Within the above Fleury-Loudon-like approach to the x-
ray-scattering problem, the effective RXS operator is given by
D†(ε′)D(ε), and its part responsible for the magnetic scattering
reads as R̂ ∝ i(ε × ε′) · (T † × T ).

Next, the core-hole operators p in Eq. (B3) are expressed
in terms of spin-orbit split j = 1/2 and 3/2 eigenstates of the
2p level, resulting in two sets of T operators active in L2 and
L3 edges, correspondingly. After “integrating out” these 2p 1

2

and 2p 3
2

operators, the product (T † × T ) becomes a simple
quadratic form of d operators. Finally, projecting this form
onto a pseudospin doublet [given by Eqs. (14) and (15) of the
main text], we arrive at the RXS operator R̂ ∝ ifab(PaSa +
PbSb) + ifcPcSc, with the f factors shown in the main text.
Via the pseudospin wave functions, the RXS f factors are
sensitive to a trigonal field strength.

APPENDIX C: DETERMINATION OF THE TRIGONAL
FIELD FROM J= 3/2 MAGNETIC EXCITATION SPECTRA

Under spin-orbit coupling λ and trigonal crystal field �, t2g-
hole states split into three levels A, B, and C [see Fig. 6(a)]. The
A level hosts a Kramers pseudospin one-half (corresponding
to J = 1/2 in the cubic limit), with the wave functions

|A+〉 = + sin ϑ |0,↑〉 − cos ϑ |+1,↓〉, (C1)

|A−〉 = − sin ϑ |0,↓〉 + cos ϑ |−1,↑〉, (C2)

as were given by Eqs. (14) and (15) of the main text. The upper
Kramers doublets B and C are derived from the spin-orbit
J = 3/2 quartet. The former correspond to pure Jc = ±3/2
states of J = 3/2 moment:

|B+〉 = |+1,↑〉, (C3)

|B−〉 = |−1,↓〉, (C4)

while the C level wave functions are given by

|C+〉 = cos ϑ |0,↑〉 + sin ϑ |+1,↓〉, (C5)

|C−〉 = cos ϑ |0,↓〉 + sin ϑ |−1,↑〉, (C6)

corresponding to Jc = ±1/2 states of the J = 3/2 quar-
tet in the cubic limit, and containing some admixture of
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the original J = 1/2 doublet at finite �. The energies of
these states are EA,C/λ = 1

4 [∓
√

8 + (1 + δ)2 − 1] + 1
12δ and

EB/λ = 1
2 − 1

6δ.
Transitions from the ground-state A level to B and C states

are magnetically active; their spectral weights in the dynamical
spin structure factor are determined by matrix elements of

the magnetic moment M = 2s − l:

∓〈B±|Ma|A±〉 = 1

i
〈B±|Mb|A±〉 = cos ϑ + 1√

2
sin ϑ,

(C7)
±〈C∓|Ma|A±〉 = 1

i
〈C∓|Mb|A±〉 = 1

2
(s2ϑ +

√
2c2ϑ ) . (C8)

Out-of-plane moment Mc matrix elements between A and B

vanish (independent of the spin-orbit mixing angle ϑ), while

〈C±|Mc|A±〉 = 3
2 s2ϑ . (C9)

In the magnetic excitation spectra, a transition A → B gives a
peak at the energy

EB − EA = λ

4
[
√

8 + (1 + δ)2 + 3 − δ], (C10)

with the following intensities for different components of the
dynamical spin structure factor:

IB =
{

1
4 (3 + c2ϑ + 2

√
2s2ϑ ) (ab plane)

0 (c axis)
. (C11)

The second transition A → C is peaked at the energy

EC − EA = λ

2

√
8 + (1 + δ)2 (C12)

and has the intensity

IC =
{

1
4 (s2ϑ + √

2c2ϑ )2 (ab plane)

9
4 s2

2ϑ (c axis)
. (C13)

The B and C peaks are separated by �BC/λ =
1
4 [

√
8 + (1 + δ)2 − 3 + δ]; at small trigonal splitting � � λ,

this can be approximated as �BC ≈ 2
3�. At positive (negative)

�, the B peak position is lower (higher) than that of the C peak
[see Fig. 6(a)].

Figure 6(b) shows that the intensities of both transitions
are highly anisotropic with respect to ab-plane and c-axis
polarizations, with the opposite behavior of B and C contri-
butions. The out-of-plane response is due to the C transition
exclusively, while the B peak dominates the ab-plane intensity.
This should enable one to distinguish them and determine
thereby both the sign and value of trigonal field parameter δ

from single-crystal spin-polarized neutron-scattering data.
On the other hand, the powder averaged intensities of B

and C peaks are nearly the same for realistic values of δ [see
Fig. 6(c)]. Even at |δ| = 1, the two peaks may overlap to
give a single broad line, leaving an ambiguity in the sign of
parameter δ.

[1] N. F. Mott, Metal-Insulator Transitions (Taylor and Francis,
London, 1974).

[2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

[3] J. B. Goodenough, Magnetism and the Chemical Bond (Inter-
science, New York, 1963).

[4] K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).

[5] G. Khaliullin and S. Maekawa, Phys. Rev. Lett. 85, 3950
(2000).

[6] G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005).
[7] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance

of Transition Ions (Clarendon, Oxford, 1970).
[8] G. Khaliullin, W. Koshibae, and S. Maekawa, Phys. Rev. Lett.

93, 176401 (2004).

064435-10

http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1070/PU1982v025n04ABEH004537
http://dx.doi.org/10.1070/PU1982v025n04ABEH004537
http://dx.doi.org/10.1070/PU1982v025n04ABEH004537
http://dx.doi.org/10.1070/PU1982v025n04ABEH004537
http://dx.doi.org/10.1103/PhysRevLett.85.3950
http://dx.doi.org/10.1103/PhysRevLett.85.3950
http://dx.doi.org/10.1103/PhysRevLett.85.3950
http://dx.doi.org/10.1103/PhysRevLett.85.3950
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1143/PTPS.160.155
http://dx.doi.org/10.1103/PhysRevLett.93.176401
http://dx.doi.org/10.1103/PhysRevLett.93.176401
http://dx.doi.org/10.1103/PhysRevLett.93.176401
http://dx.doi.org/10.1103/PhysRevLett.93.176401


MAGNETIC ANISOTROPY IN THE KITAEV MODEL . . . PHYSICAL REVIEW B 94, 064435 (2016)

[9] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[10] A. Kitaev, Ann. Phys. 321, 2 (2006).
[11] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Annu. Rev. Condens.

Matter Phys. 7, 195 (2016).
[12] S. H. Chun, J.-W. Kim, Jungho Kim, H. Zheng, C. C. Stoumpos,

C. D. Malliakas, J. F. Mitchell, K. Mehlawat, Y. Singh, Y. Choi,
T. Gog, A. Al-Zein, M. Moretti Sala, M. Krisch, J. Chaloupka,
G. Jackeli, G. Khaliullin, and B. J. Kim, Nat. Phys. 11, 462
(2015).

[13] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li,
M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle,
S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant,
D. G. Mandrus, and S. E. Nagler, Nat. Mater. 15, 733 (2016).

[14] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar,
Y. F. Hu, K. S. Burch, H.-Y. Kee, and Y.-J. Kim, Phys. Rev. B
90, 041112(R) (2014).

[15] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
105, 027204 (2010).

[16] V. M. Katukuri, S. Nishimoto, V. Yushankhai, A. Stoyanova, H.
Kandpal, S. Choi, R. Coldea, I. Rousochatzakis, L. Hozoi, and
J. van den Brink, New J. Phys. 16, 013056 (2014).

[17] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett. 112,
077204 (2014).

[18] J. G. Rau and H.-Y. Kee, arXiv:1408.4811.
[19] J. Chaloupka and G. Khaliullin, Phys. Rev. B 92, 024413 (2015).
[20] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.

110, 097204 (2013).
[21] I. Kimchi and Y.-Z. You, Phys. Rev. B 84, 180407(R) (2011).
[22] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.

Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart,
K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J. Taylor,
Phys. Rev. Lett. 108, 127204 (2012).

[23] Y. Yamaji, Y. Nomura, M. Kurita, R. Arita, and M. Imada,
Phys. Rev. Lett. 113, 107201 (2014).

[24] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentı́, Phys. Rev. B
93, 214431 (2016).
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