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Anisotropic magnetization relaxation in ferromagnetic multilayers with variable
interlayer exchange coupling
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The ferromagnetic resonance (FMR) linewidth and its anisotropy in F1/f/F2/AF multilayers, where spacer
f has a low Curie point compared to the strongly ferromagnetic F1 and F2, is investigated. The role of the
interlayer exchange coupling in magnetization relaxation is determined experimentally by varying the thickness
of the spacer. It is shown that stronger interlayer coupling via thinner spacers enhances the microwave energy
exchange between the outer ferromagnetic layers, with the magnetization of F2 exchange dragged by the resonance
precession in F1. A weaker mirror effect is also observed: the magnetization of F1 can be exchange dragged
by the precession in F2, which leads to antidamping and narrower FMR linewidths. A theory is developed to
model the measured data, which allows separating various contributions to the magnetic relaxation in the system.
Key physical parameters, such as the interlayer coupling constant, in-plane anisotropy of the FMR linewidth,
and dispersion of the magnetic anisotropy fields, are quantified. These results should be useful for designing
high-speed magnetic nanodevices based on thermally assisted switching.
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I. INTRODUCTION

Recently, there has been growing research interest in
advanced magnetic multilayers due to their high potential
for applications in magnetic random access memory and
microwave devices [1–3]. Further technological progress re-
quires a better understanding of the processes behind magnetic
relaxation. Special attention should be paid to spin relaxation
found in specific functional nanostructures not observed in
bulk materials.

In bulk ferromagnets, the motion of the magnetization and
its damping are well described by the Landau-Lifshitz-Gilbert
equation [4–6]. The strength of the damping term is scaled by
the Gilbert damping constant G, which is a key parameter
for spin electronics since it determines the magnetization
switching time and the critical current density in spin-torque-
based devices [7–10].

The Gilbert damping parameter characterizes the energy
transfer from the spin subsystem to the lattice [6]. Several
microscopic mechanisms intrinsic to ferromagnetic materials,
such as phonon drag [10] and spin-orbit coupling [11],
have been proposed to account for magnetic relaxation
represented by the Gilbert term. There are, however, two new
mechanisms which have been the topic of recent discussion
regarding magnetization damping in ultrathin films and multi-
layers: two-magnon scattering [12,13] and the spin-pumping
effect [14,15].

Two-magnon scattering is a process in which the magnon of
the zero wave vector (k = 0) scatters into degenerate states of
magnons with wave vectors k �= 0 [12]. This process requires
that the spin-wave dispersion contains degenerate states and
that there are scattering centers in the sample. The geometrical
separation of the scattering centers determines the spatial
extent of the final magnon states. If long-wavelength spin
waves are involved in the relaxation process, defects of the

*Corresponding author: anatolii@kth.se

order of several hundreds of nanometers rather than atomic
defects act as scattering centers. The existence of two-magnon
scattering has been demonstrated in many systems of ferrites
[16–18]. While in bulk materials this mechanism is well
known, it was only recently found to be of importance also for
multilayers [19,20] and ultrathin ferromagnetic films [21–23].

In the presence of an interface between a ferromagnetic
and a nonmagnetic layer, the spin-pumping effect can cause
an increase in the damping constant [14,15]. Excitation of
a ferromagnet by a microwave field normally leads to a
coherent precession of its spins, which can act as a spin battery
injecting through the interlayer interface a pure spin current
into the neighboring nonmagnetic layer. Due to the presence
of impurity scattering in the system, this spin current can
return to the interface, bringing the carried angular momentum
back to the precessing spins of the ferromagnetic layer [24].
Depending on the parameters of the neighboring layers and
interlayer interfaces, a portion of the angular momentum
flow will be absorbed by the ferromagnetic layer via various
spin-flip relaxation processes. Therefore, the backflow through
the nonmagnetic/ferromagnetic interface is always weaker
than the direct flow. This imbalance enhances damping of the
magnetization precession [9,15,25].

The above spin-relaxation effects, being of wide fundamen-
tal and applied interest, can be studied most suitably using
ferromagnetic resonance (FMR). This powerful method for
characterizing magnetic materials relates the measured FMR
linewidth to the spin-relaxation mechanisms outlined above.
For Gilbert-type relaxation, the FMR linewidth (half width at
half maximum) is �hwhm = αω/γ , where α is a dimensionless
damping parameter related to G as α = G/(γM), ω is the
angular frequency of the exciting field, γ is the modulus of the
gyromagnetic ratio, and M is the ferromagnet’s magnetization.
Damping mechanisms extrinsic to the ferromagnet, such
as spin pumping, result in additional contributions to the
measured FMR linewidth and can be deduced by studying
effects on the FMR from varying the physical parameters of
the multilayer.
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We have recently developed magnetic multilayers with
temperature-controlled interlayer-exchange coupling, the
so-called Curie-switch or Curie-valve structures [26–28]. A
Curie switch is a F1/f/F2/AF multilayer where weakly ferro-
magnetic spacer f is sandwiched between soft ferromagnetic
layer F1 and hard ferromagnetic layer F2 exchange pinned by
antiferromagnetic layer AF. Magnetic coupling between F1

and F2 depends on whether temperature T is higher or lower
than the Curie temperature of the spacer [29,30]. As a result,
the switching of the magnetic configuration from parallel to
antiparallel may be achieved by driving the spacer thermally
through its Curie point [3,30].

Magnetic relaxation in a Curie switch has not been fully
explored. This work is a study of the FMR properties of
F1/f/F2/AF multilayers, aimed at understanding the mech-
anisms involved and, specifically, the role the interlayer
exchange coupling plays in spin relaxation in the system.

II. EXPERIMENTAL DETAILS

The experiments were carried out on multilayers
Py(10)/Ni54Cu46(d)/Co90Fe10(5)/Mn80Ir20(12) [hereinafter
F1/Ni54Cu46(d)/F2] with spacer thicknesses d = 3, 4.5, 6, and
9 nm. The numbers in parentheses represent layer thicknesses
in nanometers. The multilayers were deposited at room
temperature on thermally oxidized silicon substrates using
magnetron sputtering in an AJA Orion 8-target system. The
exchange pinning between the ferromagnetic Co90Fe10 and
antiferromagnetic Mn80Ir20 layers was set during deposition
using an in-plane magnetic field Hdep ≈ 0.6 kOe. Additional
fabrication details can be found in Refs. [30,31].

Magnetic properties of the multilayers with a specific spacer
composition (Ni54Cu46) were reported previously [3,30,31]. It
was shown that at room temperature, the coupling between the
F1 and F2 layers strongly depends on the spacer thickness d.
The increase in d from 3 to 9 nm makes the system transition
from a strongly coupled to a fully exchange decoupled regime.

FMR measurements were carried out using an X-band
ELEXSYS E500 spectrometer equipped with an automatic
goniometer. The operating frequency was ν = 9.44 GHz.
The out-of-plane and in-plane angular dependences of the
FMR spectra were studied at room temperature (295 K). The
resonance signals from both F1 and F2 were clearly separated
in field.

The FMR measurements recorded the first derivative of
the microwave absorption by the sample. Each spectrum was
fitted by a field derivative of a Lorentzian function to obtain
the relevant resonance field Hri and linewidth �i = 2�hwhm

i

(i = 1,2 correspond to layers F1, F2).

III. THEORETICAL DESCRIPTION

A. Effect of interlayer coupling

Consider a F1/f/F2/AF multilayer where weakly ferromag-
netic spacer f is sandwiched between soft magnetic F1 and hard
magnetic F2 exchange pinned by AF [3,31]. The thicknesses
of F1, F2, and f are, respectively, L1, L2, and d.

The calculation of the FMR modes will assume that the
action of the applied uniform external field does not affect
the uniform distribution of the magnetization M1 and M2

in F1 and F2, respectively. In our case with thin layers and

strong intralayer exchange interactions, this assumption is
well justified [3,32]. Spacer f with magnetization m provides
a relatively weak coupling between the outer ferromagnetic
layers. The aim of this section is to determine the effect of this
coupling on the FMR linewidth �1.

For a uniform ferromagnetic layer, the energy density
consists of magnetodipole and Zeeman terms. The exchange
bias between F2 and AF can be modeled using an effective
biasing field Hb acting on the magnetization M2 [3,33]. Using
these notations, the expression for the energy density wi of the
ith layer can be written as a sum of the demagnetization term
and the terms describing the interaction of the layers’ magne-
tizations with the effective biasing (Hb), external quasistatic
(H), and alternating (h) magnetic fields:

wi = 2πM2
i cos2 θi − MiHbi cos ϕi sin θi

−MiH cos(ϕi − ϕH ) sin θi − Mih cos θi, (1)

where i = 1,2; Mi is the saturation magnetization of the
ith layer; Hb1 = 0, Hb2 = Hb; H is the external quasistatic
magnetic field applied in the film plane xOy; h is the weak
alternating magnetic field applied perpendicular to the film
plane; ϕH is the angle between H and the Ox axis directed
along Hb; and θi and ϕi are, respectively, the polar and
azimuthal coordinates of the magnetization vector in the ith
layer.

In the case of a thin film, its high out-of-plane de-
magnetization fields prevent the magnetization vector from
strongly deviating from the xOy plane. In this case, θi can
be represented as θi = π/2 + εi , where |εi | � 1. This makes
it possible to simplify further calculations by expanding the
energy density in powers of εi and keeping only terms not
higher than quadratic in εi .

The equations of the magnetization dynamics, which take
into account the weak coupling between F1 and F2, can
be obtained following the procedure described in Ref. [3].
Let us introduce Lagrange function L, averaged over two
ferromagnetic layers, and dissipative function � in the Gilbert
form:

L = T − W − 4π�2m2

2d(L1 + L2)
[(ϕ1 − ϕ2)2 + (ε1 − ε2)2], (2)

T =
2∑

i=1

− liMi

γ
cos θi ϕ̇i ≈

2∑
i=1

liMi

γ
εi ϕ̇i , (3)

W =
2∑

i=1

liwi ≈
2∑

i=1

li

[
2πM2

i ε2
i − HbiMi cos ϕi

(
1 − ε2

i

2

)

−HMi

(
1 − ε2

i

2

)
cos(ϕi − ϕH )

]
, (4)

� =
2∑

i=1

αiMili

2γ

(
θ̇2
i + sin2 θi ϕ̇

2
i

)

≈
2∑

i=1

αiMili

2γ

(
ε̇2
i + ϕ̇2

i

)
. (5)

Here the dot over the angle variables θi , ϕi , and εi means
differentiation in time. T and W are the kinetic and potential
energies of the system, respectively, li = Li/(L1 + L2) is the
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relative thickness of the ith ferromagnetic layer, αi is the
dissipative constant in the Gilbert form, and � is the magnetic
exchange length of the material of the spacer, which is related
to the spacer exchange constant ζ as � = √

ζ/4π [3,34].
The last term in Eq. (2) describes the coupling energy

between F1 and F2. Its derivation and the limits of validity
are detailed in Ref. [3].

The equations for the magnetization dynamics in the
Lagrange form are [4]

d

dt

∂L

∂ε̇i

= ∂L

∂εi

− ∂�
∂ε̇i

,
d

dt

∂L

∂ϕ̇i

= ∂L

∂ϕi

− ∂�
∂ϕ̇i

. (6)

After substitutions of Eqs. (1)–(5) into Eq. (6), we obtain

1

γ

dεi

dt
+ αi

γ

dϕi

dt
+ H sin(ϕi − ϕH )

+ Hbi sin ϕi − ki(−1)i(ϕ1 − ϕ2) = 0, (7)

− 1

γ

dϕi

dt
+ αi

γ

dεi

dt
+ [4πMi + H cos(ϕi − ϕH )

+ Hbi cos ϕi]εi − ki(−1)i(ε1 − ε2) = −h, (8)

where ki = 4π�2m2/dLiMi is the effective coupling constant
with the dimension of magnetic field, characterizing the
exchange from the neighboring layers on the ith layer [3].

When the alternating magnetic field equals zero (h = 0),
εi = 0, and the equilibrium angles ϕ0i can be determined from
the following equations:

H sin(ϕ01 − ϕH ) + k1(ϕ01 − ϕ02) = 0, (9)

H sin(ϕ02 − ϕH ) + Hb sin ϕ02 − k2(ϕ01 − ϕ02) = 0. (10)

From our earlier work [3,31], Hb ∼ 300 Oe, ki ∼ 150 Oe,
and H ≈ Hr1 ≈ 1200 Oe, where Hr1 is the resonance field for
F1. As a result, keeping only terms not higher than quadratic
in Hb/H and ki/H , we can write

ϕ02 ≈ ϕH − Hb

H
sin ϕH , ϕ01 ≈ ϕH . (11)

After writing the angle variables in the form ϕi = ϕ0i + ui ,
where |ui | � 1, the linearized system of equations (7) and (8)
can be rewritten as

⎛
⎜⎝

iHω iα1Hω + H1 0 −k1

iα1Hω + 4πM1 + H1 −iHω −k1 0
0 −k2 iHω iα2Hω + H2

−k2 0 iα2Hω + 4πM2 + H2 −iHω

⎞
⎟⎠ ×

⎛
⎜⎝

ε1

u1

ε2

u2

⎞
⎟⎠ =

⎛
⎜⎝

0
−h

0
−h

⎞
⎟⎠, (12)

where Hω = ω/γ , H1 = H + k1, H2 = H + Hb cos ϕH + k2.
The coefficients in Eq. (12) were obtained

using the expansion
√

H 2 + 2HHb cos ϕH + H 2
b =

H
√

(1 + Hb cos ϕH/H )2 + (Hb/H )2 sin2 ϕH ≈ H +
Hb cos ϕH under the assumption that (Hb/H )2 � 1. For
this reason, here and below, the quantitative validity of the
calculations is restricted to the terms linear in Hb/H .

Let us recall that the main task of this section consists
of determining the angular dependence of the width of the
microwave absorption spectrum in the vicinity of the resonance
for the free layer F1. It is evident that this dependence results
from the influence of the pinned layer F2 on the free layer
through the weakly ferromagnetic spacer. To accomplish the
task, it is sufficient to analyze the behavior of the determinant
of the matrix in Eq. (12) in the vicinity of Hr1, and precise
analytical determination of εi(t) and ui(t) is not required.

The absorption intensity I (H ) is determined from averaging
of the dissipation function over time [4]:

I (H ) = 2� ∼ 1

2

2∑
i=1

αi(ε̇i ε̇i
∗ + u̇i u̇i

∗). (13)

where the asterisk over the angle variables εi and ui means
conjugate.

The values of εi and ui are proportional to 1/D, where
D = D′ + iD′′ is the determinant of the matrix of Eq. (12)
and D′ and D′′ are its real and imaginary parts, respectively.

It is easy to show that 1/D can be represented in the form

1

D
= A

δ′ + iδ′′ , (14)

where

A = H 2
ω − H2(H2 + 4πM2) + iα2Hω(4πM2 + 2H2)[

H 2
ω − H2(H2 + 4πM2)

]2 , (15)

δ′ = H 2
ω − H (4πM1 + H ) − k1(4πM1 + 2H ) + k1k2K0,

(16)

δ′′=Hω{α1[4πM1+2(H + k1)] − α1k1k2K1+α2k1k2K2},
(17)

with

K0 = 4πM1

H

(
1 + H

πM2

)(
1 − M1

M2
+ Hb

Hr1
cos ϕ

)−1

,

(18)

K1 = 1

H

(
1 − M1

M2
+ Hb

Hr1
cos ϕ

)−1

, (19)

K2 = 4πM1

H 2

[
1 + H

πM2
+ H

4πM1

(
1 + M2

1

M2
2

)]

×
(

1 − M1

M2
+ Hb

Hr1
cos ϕ

)−2

. (20)

Here the terms quadratic in αi are neglected.
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It follows from Eq. (13) that I (H ) ∼ AA∗/(δ′2 + δ′′2).
Within a narrow field range in the vicinity of the resonance of
F1, sharp changes in the dissipative processes cause changes in
δ′ and δ′′, while the value of A remains practically unaffected
[see Eq. (15)] and can be considered constant.

Resonance conditions for F1 are obtained when δ′ = 0.
In this case, the absorption intensity approaches its maximal
value:

I (Hr1) = Imax = const/δ′′2. (21)

When magnetic field H deviates from Hr1, the absorption
intensity decreases, and I becomes one half of Imax for H

satisfying the following condition:

|δ′|H=Hr1±�hwhm
1

= |δ′′|H=Hr1 . (22)

After relatively straightforward but cumbersome transfor-
mations based on the condition of Eq. (22), one can obtain the
angular dependence of the half width at half maximum for the
absorption intensity curve:

�hwhm
1

Hω

= α1 − α1
k1k2

H 2
r1

(
1 − Hr1

4πM1

)(
1 − M1

M2

)
(

1 − M1

M2
+ Hb

Hr1
cos ϕ

)2

+α2
k1k2

H 2
r1

1 + Hr1

πM2
− Hr1

4πM1

(
1 − M2

1

M2
2

)

(
1 − M1

M2
+ Hb

Hr1
cos ϕ

)2 . (23)

In fabricating our samples, condition L1M1 ≈ L2M2 was
kept [30,31], which allows reducing the number of indepen-
dent parameters in the problem by setting k1 ≈ k2 ≈ k.

To separate the main factors governing the value of �hwhm
1 ,

only terms not higher than quadratic in the small parameter
k/Hr1 were kept in Eq. (23). At the same time, the terms
which are proportional to

(
Hr1

4πMi

)2

� 0.1,

(
Hb

Hr1

)2

� 0.1,

Hb

4πMi

= Hb

Hr1

Hr1

4πMi

� 0.1, (24)

were neglected (the corresponding values were estimated
based on the results of Refs. [3,30,31]).

It is noteworthy that the right-hand side of Eq. (23) does not
contain terms linear in ki : the angular dependence in �hwhm

1
first appears via a product of the coupling constants, k1 and
k2. This kind of �hwhm

1 vs ki dependence reflects complex
cross-excitation processes between the outer ferromagnetic
layers, F1 and F2. Due to the non-negligible coupling between
the layers, the magnetization of F2 is “dragged” into oscilla-
tions by the resonant precession in F1. A simultaneous, but
much weaker, inverse effect occurs: the magnetization of F1

experiences an exchange drag from the precession in F2. It is
this kind of cross excitation that affects the relaxation processes
in F1, and depending on the parameters of both ferromagnetic
layers coupled via the spacer, this either weakens or enhances
the total damping.

Let us consider the situation in the vicinity of the resonance
in F1. Compared to an isolated F1, where all microwave energy
would be stored within the layer, the flow of the energy in the
coupled F1-F2 system divides into two channels: a portion
remains stored in F1, while the remaining precessional energy
leaves outwards and later returns via the above cross-excitation
processes. One should keep in mind that there is an additional
energy gain in the second channel, which originates from
the excitation of F2 by the external magnetic field. The total
energy losses in the system are governed by the processes in
both channels. The energy dissipation in the first channel is
determined by the intrinsic relaxation mechanisms in F1, but
the energy flow through the second channel depends on the
relationship between the processes of energy loss and gain in
F2. If there is no damping in F2 (α2 = 0) or it is relatively
weak (α2 < α1), the energy losses in the second channel will
respectively be zero or small (in comparison with the losses
in F1). Accounting for the additional energy gain due to the
excitation of F2 by the external magnetic field, the total energy
losses in the coupled F1-F2 system will be smaller than the
losses in an isolated F1, and therefore, the total effective
damping parameter of the F1 layer will be smaller than α1.
On the contrary, if the energy dissipation in F2 is relatively
strong (α2 > α1), the energy losses in the second channel will
be enhanced, and the total effective damping parameter will
be greater than α1.

The in-plane anisotropy of �hwhm
1 originates from the angle

dependence of the denominator in the second and third terms
of the right-hand-side part of Eq. (23). A close look at the
denominator reveals that it represents an approximate form
of the difference between the resonance fields of F1 and F2.
This reflects the fact that the efficiency of the cross-excitation
processes in the coupled F1-F2 system depends not only on
the coupling constants k1 and k2 but also on the difference
between Hr1 and Hr2: the smaller the difference is, the more
efficient the processes are. In nanostructures of the spin-valve
type, the effect of the exchange bias field Hb is strong in-
plane unidirectional anisotropy of Hr2, with Hr2 maximally
approaching Hr1 when the external magnetic field is directed
opposite to Hb (ϕ = 180◦) [3]. As a result, the cross-excitation
processes become most efficient at ϕ = 180◦, and the above
(anti)damping contributions to �hwhm

1 from F2 become most
pronounced at this angle.

The above effects are illustrated in Fig. 1. Model calcu-
lations are carried out with the use of Eq. (23). Figure 1(a)
shows the in-plane angle dependencies of the normalized
FMR linewidth �hwhm

1 /Hw for different ratios of α2/α1 for
the case of a moderate interlayer coupling (k = 150 Oe). The
dotted line represents the same dependence for an isolated
F1 layer whose damping parameter is α1. It is seen that the
value of α2 strongly affects the character of �hwhm

1 /Hw vs ϕ

dependencies. For the case of weak energy dissipation in F2

(α2 = 0), the total energy losses in the coupled F1-F2 system
are smaller than the intrinsic losses in F1, so the total effective
damping parameter of F1 is smaller than α1. On the contrary,
if the energy dissipation in F2 is relatively strong (α2 > α1),
the total effective damping parameter is greater than α1. The
increase in α2 results in both an overall increase in �hwhm

1 and
an enhancement of its in-plane anisotropy. In all cases, the
contribution to �hwhm

1 , induced by the interlayer coupling, is
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FIG. 1. In-plane angle dependence of normalized FMR linewidth
�hwhm

1 /Hω for (a) different ratios of α2/α1 and (b) different k. Dotted
lines are for a would-be isolated F1 layer, whose damping parameter
is α1.

minimal at ϕ = 0 and maximal at 180◦. As described above, the
difference between Hr1 and Hr2, and hence the cross-excitation
processes, achieves opposite extrema at these specific values
of the in-plane angle, which is in good agreement with the
experimentally observed behavior (see below).

Figure 1(b) illustrates the evolution of �hwhm
1 /Hw vs ϕ with

changes in the coupling constant k. The increase in k leads
to both an overall increase in �hwhm

1 and an enhancement
of the in-plane anisotropy of �hwhm

1 as a result of stronger
cross-excitation processes in this stronger exchange-coupling
case.

B. Effect of dispersion in local fields

To correctly analyze various contributions to the FMR
linewidth, one should take into account the broadening of the
linewidth due to fluctuations of the magnetic parameters in the
structure, which are always present in the experiment.

In general, FMR in a finite-size ferromagnet is governed by
the effective magnetization Meff, which includes contributions
from the spontaneous magnetization M influenced by the local
shape, strain, and crystalline anisotropies [35]. As shown in
Ref. [3], the resonance in F1 and F2 is governed by the in-plane
contributions from the uniaxial, unidirectional, and shape
anisotropies, relevant for each of the ferromagnetic layers.
The weak uniaxial anisotropy is likely due to the applied field
during the multilayer deposition. The unidirectional anisotropy
is due to the biasing field Hb acting on M2 and, via the
interlayer coupling, on M1 [3].

Let us consider the effect of such dispersion in the
effective magnetization on the FMR linewidth. Restricting our
consideration to the above anisotropy contributions, we can
write

Hr = f (M,Hua,Hud), (25)

where Hr is the magnitude of the resonance field and
Hua and Hud are the uniaxial and unidirectional anisotropy
fields, respectively. In this case, the inhomogeneous linewidth
broadening due to fluctuations in the magnitudes and directions
of M, Hua, and Hud can be written as

�inhom = �M + �Hua + �Hud , (26)

where

�M = �M + �θ + �ϕ

=
∣∣∣∣∂Hr

∂M

∣∣∣∣δM +
∣∣∣∣∂Hr

∂θ

∣∣∣∣δθ +
∣∣∣∣∂Hr

∂ϕ

∣∣∣∣δϕ, (27)

�Hua = �Hua + �θua + �ϕua

=
∣∣∣∣ ∂Hr

∂Hua

∣∣∣∣δHua +
∣∣∣∣ ∂Hr

∂θua

∣∣∣∣δθua +
∣∣∣∣ ∂Hr

∂ϕua

∣∣∣∣δϕua, (28)

�Hud = �Hud + �θud + �ϕud

=
∣∣∣∣ ∂Hr

∂Hud

∣∣∣∣δHud +
∣∣∣∣ ∂Hr

∂θud

∣∣∣∣δθud +
∣∣∣∣ ∂Hr

∂ϕud

∣∣∣∣δϕud. (29)

Here �M, �Hua , and �Hud are the contributions to the FMR
linewidth caused by the dispersion in M, Hua, and Hud,
respectively, which in Eqs. (27)–(29) are expressed through
the corresponding distributions in magnitudes (δM , δHua, and
δHud) as well as polar (δθ , δθua, δθud) and azimuthal (δϕ, δϕua,
δϕud) angles characterizing these vectors.

Based on the analysis of the partial derivatives of Hr, which
are contained in Eqs. (27)–(29), it is possible to separate
each contribution to �inhom by analyzing the out-of-plane
and in-plane behaviors of the FMR linewidth [13,23,36]. For
example, when out-of-plane measurements are carried out, the
azimuthal angle is constant, which means that all contributions
containing derivatives in azimuthal angles are constant. For
in-plane measurements, on the other hand, all contributions
containing derivatives in polar angles are constant. One should
also take into account that there are points where some of the
partial derivatives found in Eqs. (27)–(29) vanish, making it
possible to separate the remaining contributions.

To analyze the various contributions to �inhom, we have
simulated the out-of-plane and in-plane angle behaviors of
the resonance field for a thin ferromagnetic layer, which
simultaneously displays in-plane uniaxial and unidirectional
anisotropies (the easy axes coincide), and numerically calcu-
lated all partial derivatives in Eqs. (27)–(29). Parameters M,
Hua, and Hud were chosen to be close in value to those observed
for Py as F1 and the spacer thickness d = 3 nm [3]. The results
of the calculations are shown in Fig. 2.

It is clear from Fig. 2 that the behavior in the out-of-plane
geometry is very sensitive to the scatter in θ and M and
practically insensitive to the anisotropy parameters. On the
other hand, the in-plane behavior provides information on the
scatter in both magnitude and orientation of the anisotropy
fields (for both uniaxial and unidirectional contributions) and
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FIG. 2. (a) Simulated out-of-plane angle dependence of the
resonance field Hr for a thin ferromagnetic layer with M =
520 emu/cm3, Hua = 5 Oe, and Hud = 0 or 180 Oe. (b) Calculated
contributions to out-of-plane �inhom due to fluctuations in magnitude
(line 1) and direction (line 2) of spontaneous magnetization and
magnitude of in-plane uniaxial (line 3) and unidirectional (line 4)
anisotropy fields. Calculations in (a) and (b) were carried out for the
xOz plane, where the Ox axis coincides with Hb (ϕ = 0 for negative
θ and ±180◦ for positive θ ). (c) Calculated contributions to in-plane
�inhom due to fluctuations in magnitude (line 1) and direction (line
2) of spontaneous magnetization and magnitude of in-plane uniaxial
(line 3) and unidirectional (line 4) anisotropy fields. The distributions
in M, Hua, and Hud were chosen to be δM = 5%, δθ = δϕ = 1◦,
δHua = 15%, δHud = 5%.

is almost insensitive to the scatter in θ and M . It is worth noting
that for the out-of-plane geometry �inhom|θ=0 = �inhom|θ=±90◦

in all cases, except for the case where there is a substantial
scatter in M .

We point out a peculiar result, important for further
analysis of the experimental data, namely, that �Hud|θ=−90◦ =
�Hud|θ=+90◦ , while the resonance field at θ = −90◦ differs
from that at θ = +90◦, as a result of the in-plane unidirectional
anisotropy.

C. Two-magnon scattering

The nature of the dispersion relation of spin waves in
ultrathin ferromagnets with in-plane magnetization is such
that there can be spin-wave modes of finite wave vector
degenerate in frequency with the FMR-exited mode [12,13]. In
the ideal case of a nondissipative material, all spin-wave modes
are independent, decoupled normal modes of the system, so
the FMR mode does not interact with the finite-wave-vector
modes of the same frequency. However, if defects of random
spatial character are present, they can scatter the zero-wave-
vector FMR spin wave into a manifold of degenerate modes
[12,13,19–23]. This can be viewed as a dephasing contribution
to the linewidth in the language of spin-resonance physics.

The two-magnon mechanism is allowed when the mag-
netization lies in the film plane or slightly deviates from it
and forbidden when the magnetization is perpendicular to the
film plane [13,37,38]. Thus, the inequality �|θ=0 < �|θ=±90◦

indicates that two-magnon scattering is potentially relevant for
the extrinsic magnetization damping in our case [19].

As a rule, �|θ=0 = �|θ=±90◦ implies that two-magnon
scattering plays a negligible role in magnetization relax-
ation. However, there are specific cases when this damping
mechanism displays strong in-plane anisotropy [19,23,39–41].
Since the two-magnon scattering matrix includes elements
proportional to the components of the Fourier transform
of the spatial distribution of magnetic inhomogeneities, the
in-plane anisotropy is expected to be pronounced for the case
of oriented extended inhomogeneities, such as rectangular
networks of line defects [19,23], one- and two-dimensional
rectangular arrays of defects [42], parallel steps [39] or
grooves [40], rippled nanostructures [43], etc. One cannot
exclude the formation of oriented networks of defects or other
inhomogeneous entities in nanostructures deposited under
relatively high external magnetic field, such as ours.

D. Spin pumping

In the case where the spin diffusion length Ls of the spacer
is smaller than its thickness, the spin current injected by F1

into the spacer is strongly reduced. For a Curie switch this
means that (i) the variation of the spacer thickness should not
affect the relaxation of M1 through the mechanism of spin
pumping and (ii) the presence of the pinned layer F2 should
not contribute to the anisotropic damping in F1 through the
same mechanism.

In nonmagnetic metals, Ls is of the order of tens or hundreds
of nanometers and in some cases may reach a few micrometers
[44]. The addition of impurities or rising temperature reduce
Ls. In magnetically ordered materials, especially in alloys,
Ls is strongly reduced compared to nonmagnetic metals. For
example, at 4.2 K, the spin diffusion length is about 21 nm
for Ni, ∼8.5 nm for Fe, and ∼5.5 nm for Ni84Fe16 [44,45]. At
room temperature, Ls for Ni84Fe16 is almost 2 times shorter,
about 3 nm [44].

For Cu-Ni alloys, rough estimates of Ls can be made based
on the data of Ref. [44]. With the increase in Ni content from
6.9% to 22.7%, the spin diffusion length decreases from ∼23 to
∼7.5 nm at 4.2 K. It is expected that Ls will be further reduced
with the increase in Ni concentration. It is also expected that the
temperature rise to 295 K will additionally reduce Ls by 1.5–2
times, likely making it smaller than 3 nm (the minimal spacer
thickness in this study) for Ni54Cu46 at room temperature. For
this reason, the contribution of the spin-pumping mechanism
to the anisotropic damping in F1 will be neglected for the
samples in this study.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Figures 3(a)–3(c) show the measured resonance field
for F1 versus the out-of-plane angle for multilayers
F1/Ni54Cu46(d)/F2 with d = 9, 4.5, and 3 nm. The
measurements were carried out in the xOz plane, where the
Ox axis coincides with Hb (ϕ = 0◦ for negative θ and ±180◦
for positive θ ) and the Oz axis is the normal to the film plane.

For the sample with d = 9 nm, the behavior of Hr1(θ ) is
typical of a single permalloy film. The data are quantitatively
well described using the Smit-Beljers-Suhl formalism (solid
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FIG. 3. Out-of-plane angular dependences of (a)–(c) F1 reso-
nance fields and (d)–(f) linewidths for F1/Ni54Cu46(d)/F2 multilayers
with different spacer thicknesses. Solid red lines in all panels show
simulated angular dependence for d = 9 nm, as described in the text.
Insets in (c) present enlarged views of Hr1(θ ) near θ = ±90◦.

lines in Fig. 3 are the simulated angular behavior with
Meff

1 = 540 emu/cm3) [46,47]. A decrease in d does not lead
to noticeable changes in Hr1(θ ) but makes the emergence of
unidirectional anisotropy evident: Hr1(+90◦) becomes greater
than Hr1(−90◦), and the difference between Hr1(+90◦) and
Hr1(−90◦) grows as d decreases [see insets in Fig. 3(c)].
We have previously shown that the unidirectional anisotropy
originates from the biasing field Hb acting on M2, which in
turn transmits through the spacer and affects the FMR behavior
of M1 [3].

The out-of-plane angular dependences of the FMR
linewidth for the same multilayers are shown in Figs. 3(d)–
3(f). Since the scatter in the magnetic parameters of the
decoupled ferromagnetic layer gives different contributions
to the linewidth versus angle dependence [see Fig. 2(b)],
a detailed analysis of the measured �1(θ ) curves makes it
possible to separate the various local dispersion contributions,
as well as the homogeneous contribution.

For the sample with d = 9 nm, the angular variation in the
FMR linewidth �1(θ ) is well described by a homogeneous
term within the Smit-Beljers-Suhl formalism [46,47]. This
means that the scatter in both the magnitude and orientation
of the magnetization in F1 is negligibly small. The equality
�1(0◦) = �1(±90◦) serves as an additional confirmation of
the fact that δMPy is negligible [see line 1 in Fig. 2(b)]. The
same equality also implies that two-magnon scattering plays a
negligible role, at least in the xOz plane, which includes only
two in-plane directions (ϕ = 0◦ and ±180◦). This, however,
does not exclude that two-magnon scattering can contribute
to �1 at other in-plane angles (see Sec. III C and discussion
below for a more detailed analysis of this mechanism).

For stronger interlayer exchange coupling, the shape of the
�1(θ ) curves shows strong distortions. First, the enhancement
of the interlayer interaction leads to an increase in �1 within

a relatively narrow range of angles near θ = 0◦. Second,
the �1(θ ) dependence transforms from being symmetric to
asymmetric: �1(+|θ |) becomes greater than �1(−|θ |).

It is worth noting that the first effect cannot be caused by the
increase of dispersion in the F1 magnetization as that would
substantially increase the linewidth not only for θ near zero but
also for other θ values [in particular, for θ = ±90◦; see line 1 in
Fig. 2(b)], which is not observed in our experiments. Increased
linewidth values within a relatively narrow angle range near
θ = 0◦ were observed in Py/Cu and Py/CuAu multilayers at
certain values of the spacer thickness (dCu = 3 nm or dCuAu =
1.4 nm) [48], but no particular explanation was suggested for
this effect.

Regarding the second effect, namely, the �1(θ ) dependence
becoming asymmetric, two remarks are in order. (i) This effect
is unlikely to result from the scatter in the unidirectional
anisotropy fields since, in spite of the asymmetric character
of Hr1(θ ), the Hud dispersion contributes symmetrically to
the linewidth vs θ dependence [see line 4 in Fig. 2(b)]. (ii)
Asymmetry is expected as a result of the enhanced interlayer
coupling [see Eq. (23) and Fig. 1]. As detailed in Sec. III A,
complementary and more detailed information on this effect
can be obtained from the in-plane FMR measurements.

Figure 4(a) shows the in-plane angle dependence of the F1

resonance field for multilayers F1/Ni54Cu46(d)/F2 with d = 9,
6, 4.5, and 3 nm. The Hr1(ϕ) dependence for the sample with
the thickest spacer (d = 9 nm) provides evidence of a weak
in-plane uniaxial anisotropy (Hua ≈ 5 Oe). This contribution
is a consequence of the application of external magnetic field
during the film deposition, as follows from our tests on Py
films grown with and without biasing field. The uniaxial
contribution to the anisotropy of the Py layer is found in all of
the samples with pinned bottom magnetic layers (deposited in
field). As d decreases, an additional unidirectional contribution
becomes evident and dominates for d thinner than 4.5 nm. This
contribution is enhanced for stronger interlayer coupling (see
above and also Ref. [3]).

The measured Hr1(ϕ) were quantitatively analyzed using
the formalism developed in Sec. III A and Ref. [3]. Solid lines
in Fig. 4(a) are the calculated angular dependence, for which
the parameters were either taken from previous work (�, Meff

1 ,
Meff

2 ) [3,31] or obtained from fitting the above Hr1(ϕ) data
with theoretical m,Hb, and Hua. All these key parameters are
presented in Table I. It is important to note that the obtained m

and Hb are in good agreement with the results reported earlier
[3].

Figure 4(a) shows that stronger interlayer coupling induces
unidirectional anisotropy in F1 as well as lowers the resonance
field Hr1 overall. This behavior can be readily understood
within the approach developed in Sec. III A. Following
Eq. (14), the resonance conditions for F1 are fulfilled when δ′
equals zero. The analysis of the expression for δ′ [see Eq. (16)]
shows that, to the first order, Hr1 is a linear function of k. Since
in our case the coupling constant is inversely proportional
to the spacer thickness, Hr1 should be a linear function of
1/d. Figure 4(f) presents the experimentally obtained Hr1

vs 1/d dependence, with the data points falling quite well
on a straight line. This fact, along with the good agreement
between the experimental and simulated Hr1(ϕ), in addition
to the experiment-fitting results reported in Ref. [3], points to
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FIG. 4. In-plane angle dependence of (a) the F1 resonance field
and (b)–(e) linewidth for F1/Ni54Cu46(d)/F2 multilayers with differ-
ent spacer thicknesses d . Solid lines show the simulated behavior for
each sample, obtained as described in the text. (f) Resonance field
Hr1 measured at ϕ = 0◦ versus 1/d . (g) Anisotropic contribution
to the FMR linewidth due to the interlayer coupling. The superscript
“coupl” means that only this term from the simulated curves of (b)–(e)
is taken into account [described by Eq. (23)].

the validity of the theory developed herein for the description
of the effect of the interlayer exchange coupling in a Curie
switch.

Further, the parameters obtained from the analysis of Hr1(ϕ)
allowed us to employ the developed theoretical approach to
characterize the angular dependences of the FMR linewidth,
�1(ϕ) [Figs. 4(b)–4(e)]. Let us first concentrate on �1(ϕ)
for the sample with d = 9 nm [Fig. 4(b)]. For this case of
weak interlayer coupling, the homogeneous contribution to the
linewidth does not display any noticeable angular dependence,

as shown in Fig. 1. Thus, the clearly visible variation with a
90◦ periodicity, seen in fact in all samples, is likely to due
to local inhomogeneities, namely, from scatter in Hua values
[line 3 in Fig. 2(c)]. The solid line in Fig. 4(b) is the simulated
�1(ϕ) dependence, taking into account only two contributions:
2�hwhm

1 from Eq. (23) and �Hua . The good agreement between
the experimental and simulated �1(ϕ) data shows that this
effect is due mainly to a scatter in the values of the uniaxial
anisotropy field (δHua � 0.2Hua) in the soft ferromagnetic
layer.

As d decreases, the shape of �1(ϕ) undergoes a significant
transformation, resulting, in particular, in a much larger
difference between �1(±180◦) and �1(0◦) (reaching 23 Oe
for d = 3 nm). Such changes cannot be ascribed to any
dispersion-type contribution or two-magnon scattering. The
use of Eq. (23), on the other hand, makes it possible to describe
well this behavior in �1(ϕ) by taking into account the effect
of the interlayer coupling.

In addition to the above-mentioned contributions to the
linewidth, scatter in the magnitude of the unidirectional
anisotropy �Hud (δHud < 0.05k) was taken into account in the
calculations [line 4 in Fig. 2(c)]. This contribution is clearly
visible in the data for the sample with d = 3 nm as a plateau
in the range of angles −45◦ � ϕ � 45◦.

Figures 4(b)–4(d) illustrate the good agreement between the
measured and modeled �1(ϕ) for all of the studied samples. In
particular, the features in the measured data reflecting the effect
of the interlayer coupling on �1(ϕ) are correctly described by
the developed theory [compare, e.g., Figs. 4(g) and 1(b)]. The
fitting of the experimental data using Eq. (23) allows us to
extract the value of the coupling constant k (given in Table
I). The decrease in the spacer thickness from 9 to 4.5 nm
strengthens k from 1 to 180 Oe, which in turn enhances
the in-plane anisotropy in �1: the difference between the �1

values along and opposite Hb grows from essentially 0 to 6 Oe
(∼6% of �1). An even more pronounced effect is observed
in the sample with d = 3 nm (k ≈ 690 Oe, �∗

1 ≈ 23 Oe), but
we should note that the precision in determining the relevant
multilayer properties in this strong-coupling case is not high
[see the remark prior to Eq. (24)].

The use of Eq. (23) makes it possible to estimate the
damping parameters of F1 and F2, α1 and α2, respectively.
For the case of d = 6 nm, the obtained α1 and α2 values are
∼0.02 and ∼0.05, which are close to those reported in the
literature for single Py and CoFe films (α1 ∼ 0.006/0.02 and
α2 ∼ 0.05) [15,25,48]. The increase of the interlayer coupling
affects the values of α1 and α2 but leaves the ratio α2/α1 almost
unchanged.

TABLE I. Physical parameters obtained from fitting the experimental data on Curie-switch multilayers: � is the exchange length of the
spacer, Meff

1 and Meff
2 are effective magnetization of F1 and F2, m is effective magnetization of the spacer, Hua is the uniaxial anisotropy field

of the F1 layer, Hb is the biasing field acting on M2, k is the interlayer coupling constant, and �∗
1 = �1(±180◦) − �1(0◦) is the difference in

�1 values measured along and opposite to Hb.

d (nm) � (nm) Meff
1 (emu/cm3) Meff

2 (emu/cm3) m (emu/cm3) Hua (Oe) Hb (Oe) k (Oe) �∗
1 (Oe)

3 11 520 1590 84 5 140 690 23
4.5 11 520 1590 53 5 240 180 6
6 11 520 1590 43 5 270 90 2
9 540 5 1 ∼0.2
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A closer look at �1(ϕ) in Figs. 4(b)–4(d) reveals that
there are peaks at ϕ = ±90◦ deviating from the predicted
behavior (deviating significantly for d = 6 nm). Although a
suitably detailed discussion of this finer structure goes beyond
the scope of this paper, we would like to offer a suggestion
as to the possible mechanism involved. Namely, anisotropic
two-magnon scattering discussed in Sec. III C. The source of
this type of two-magnon scattering may be related to networks
of inhomogeneities with some spatial orientation, formed as a
result of the film deposition under the relatively strong external
magnetic field needed to induce the exchange pinning by the
antiferromagnet. It was shown in Refs. [39,40] that for films
with parallel steps or grooves, the two-magnon scattering
mechanism makes the FMR linewidth strongly increase in
the directions perpendicular to the step edges (grooves).
It was also demonstrated in Ref. [49] for the films with
periodic stripelike compositional defects that besides intrinsic
isotropic Gilbert damping an additional extrinsic anisotropic
two-magnon scattering channel with twofold symmetry in the
film plane appears. The latter is activated by crystalline defects
in the films and is of the same order of magnitude as the
fourfold contribution (due to magnetocrystalline anisotropy)
and the Gilbert contribution.

Another mechanism that should be kept in mind in this
regard is the acoustical and optical collective spin-resonance
modes nominally expected in bilayers with intermediate-
strength coupling (vanishing for zero and strong coupling)
[50]. Such out-of-phase and in-phase mutual oscillations of the
two ferromagnetic layers may cause additional dissipation for
intermediate k values, a detailed treatment of which requires a
separate study.

V. CONCLUSIONS

The FMR linewidth and its anisotropy were studied
experimentally and analyzed theoretically for F1/f/F2/AF
multilayers, where spacer f has a low Curie point compared to
the strongly ferromagnetic F1 and F2.

The role of the interlayer exchange coupling in the spin-
relaxation processes is investigated by varying the thickness
of the spacer. It is shown that stronger interlayer coupling

for thinner spacers enhances the microwave energy exchange
between the outer ferromagnetic layers, with the magnetization
of F2 exchange dragged by the resonant precession in F1. A
simultaneous but weaker inverse effect occurs: the magnetiza-
tion of F1 can be exchange dragged by the precession in F2,
which leads to antidamping and narrower FMR linewidths.

Strong interlayer coupling leads to strongly anisotropic
magnetization damping, which reaches its maximum for the
direction antiparallel to the exchange bias in the system.

An analytical expression [Eq. (23)] was obtained for the
angular dependence of the resonance linewidth of the free
layer, taking into account the interlayer exchange and the
anisotropic contribution from the pinned layer. The presence of
a product of the two effective coupling constants (k1k2) means
that magnetic excitations in the system are interconnected via
the interlayer exchange, which allows for collective excitation
modes. Of note is that this key expression is universal for
describing the resonance linewidth in multilayer structures
with interlayer exchange (of various microscopic natures).

By theoretically fitting the measured FMR data, the differ-
ent contributions to the magnetic relaxation in the system were
separated and discussed. Key physical parameters, such as the
interlayer coupling constant and the in-plane anisotropy of the
FMR linewidth, were quantified.

It was shown that in addition to the FMR relaxation effects
related to the interlayer coupling, dispersion of the magnetic
anisotropy fields in all of the layers can contribute to the FMR
linewidth of F1. Quantitative data for the dispersion parameters
of the multilayer were obtained.

These results should be useful for designing high-speed
nanodevices based on spin-thermionic control.
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