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Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain
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Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different
scenarios: ultrashort terahertz excitations or a sudden electric field quench. Performing analytical and numerical
exact diagonalization calculations, we trace the pulse induced spin dynamics and extract quantities that are
relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality,
the von Neumann entropy, and the pairwise and many-body entanglement. If the characteristic frequencies of the
generated states are noncommensurate, then a partial loss of pair concurrence occurs. Increasing the system size,
this effect becomes even more pronounced. Many-particle entanglement and chirality are robust and persist in
the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics
we combined the Weierstrass factorization technique for entire functions and the Lanczos exact diagonalization
method. For a small system we obtained analytical results including the rate function of the Loschmidt echo.
Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench-induced dynamical
transitions have been extensively studied recently. Here we show that related dynamical transitions can be
achieved and controlled by appropriate electric field pulses.
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I. INTRODUCTION

Multiferroic (MF) materials and composites possess simul-
taneously multiple primary ferroic orderings that are possibly
coupled [1–15]. The intense research interest in these materials
is fueled by a multitude of potential applications as well as
by the possibility of employing them as a testing ground
for fundamental questions concerning the interplay between
magnetism, electricity, electronic correlations, and symme-
tries. For example, MF magnetoelectrics allow the control of
the magnetic order by an external electric field (in addition
to a magnetic field) by virtue of the magnetoelectric (ME)
coupling, which renders a new concept for data storage and
read/write schemes, potentially at low-energy consumption.
MFs have a long history [1]. Their utilization was, however,
hampered by the notoriously weak MF coupling. Novel
nanofabrication and characterization techniques, especially for
heterostructures with stronger and controlled MF coupling,
gave a new impetus to the field with numerous findings and
applications (see, e.g., Refs. [16,17] and references therein).
The underlying mechanisms for MF coupling are diverse. Of
special interest here is the (spin-dependent) charge-driven ME
coupling in noncollinear magnetic compounds (see Ref. [18]
and references therein). For example, the perovskite-type
manganites RMnO3 (R = Tb, Dy, Eu1−xYx) show in a certain
temperature range a transversal helical (cycloidal) spin order
and may exhibit a ferroelectric polarization which is deter-
mined by the topology of the spins [19–21]. We will explore
a particular issue, namely, the functionalization of these MF
materials and their special ME coupling to time-dependent
quantum information processing via electric terahertz (THz)
pluses. In this context, we mention previous studies [6,11]
employing a static external electric field that was shown
to enhance the quantum state transfer fidelity [11] and/or the

increase in efficiency of quantum heat engines [6] based on a
spiral multiferroic working substance. The quantum dynamical
response of these materials and a possible coherent control
of the response, e.g., with E-field pulses, have not been
studied to our knowledge and are the topic of this study. In
particular we are interested in the possibility of triggering
dynamical quantum transition via external fields. In the
vicinity of a dynamical quantum phase transition a system with
a Hamiltonian for which the eigenvalues depend analytically
on the parameters may exhibit nonanalytic behavior when
approaching the thermodynamic limit. A relevant experimental
setup is a quantum quench, i.e., a sudden change of the driving
parameter in the Hamiltonian, or an electromagnetic pulse (see
below). Recently, the connection between the singularities in
the nonequilibrium dynamics of a quantum system and the
theory of equilibrium phase transitions was discussed [22]. The
relevant issue is the well-established theorem of Lee and Yang
[23] concerning the connection of the zeros of the equilibrium
partition function when continued to complex-conjugate fields
or to the complex-temperature plane. We refer also to the
pioneering works of Grossmann and Rosenhauer and Fisher
[24]. Experimental observations of the Lee-Yang zeros were
reported in Ref. [25]. In the context of this work we refer to
Refs. [22,26–28], where it has been argued that the dynamical
quantum phase transitions are indicated by changes in the zeros
of the rate function of the return probability of the Loschmidt
echo.

In order to identify true quantum phase transitions and sep-
arate them from resonance-related phenomena the robustness
of the transition with respect to the system’s size should be
checked. Furthermore, also in the equilibrium case, the term
“phase transition” in a finite system refers to precursors of a
real phase transition occurring in the thermodynamic limit.
However, this criterion is not universal as it applies only
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to cases where such a thermodynamic limit really exists.
In some cases achieving the thermodynamic limit is not
possible at all. Typical examples are sodium clusters [29]
and ferrofluid clusters [30]. The same behavior occurs in
other complex finite systems as well, for example, for atomic
nuclei [31]. In these materials the nature of phase transitions
changes with increasing system size. Therefore, achieving the
thermodynamic limit for certain systems which do not have
universal scaling properties is questionable. Phase transitions
in finite systems have been the subject of numerous recent
works (e.g., Refs. [32–37]). Dynamical phase transitions in the
thermodynamic limit can be detected using the transfer-matrix
approach [38]. A combination of the above aspects will be
relevant for the present project, as we are interested in quantum
transitions in a field-driven, chiral MF system. The so-called
quench dynamic, i.e., a sudden change in the Hamiltonian
governing the system, has recently been the focus of research
[22,26–28]. The present work shows that exposing the system
to short THz pulses, which are already feasible, results in
similar collective transition phenomena. The pulses offer in
addition the possibility to coherently control the pathways for
these transitions.

Special attention is devoted to a specific chiral spin order
formation and its dependence on the external field. The
competition between the spin exchange and the spin-orbital
coupling (Dzyaloshinskii-Moriya interactions) that is naturally
rooted in these compounds is the source of the formation of
the chiral ground state. The emergent electric polarization �P
is akin to the noncollinear spin order as it is proportional to
êi,i+1 × (�Si × �Si+1), and hence, �P disappears in the collinear
case of a fully aligned ferromagnetic ground state. Here êi,i+1

is the unit vector connecting neighboring spins. The vector
spin chirality �κ = 〈�Si × �Si+1〉 is a quantitative characteristic
measure of the chiral state. If the chirality is zero, �κ = 0,
the system turns insensitive to an electric field. Switching a
magnetic order with an optical pulse reduces significantly the
time scale required for quantum information processing. On
the other hand, an optical pulse may lead to a strong structural
change in the MF ground state and, eventually, to a loss of
quantum coherence, which is a vital ingredient for quantum
information processing [11]. The robustness of the ground
state upon the application of an optical pulse is another issue
of concern. For example, in the experiments of Refs. [39,40]
the nonequilibrium increase in magnetic disorder was induced
by a femtosecond laser pulse. After applying a pulse in the
range of 400 fs to 2 ps a transition from the commensurate
phase to a spiral incommensurate phase was observed [40]. By
commensurate-incommensurate transition we refer to not only
the geometry of the noncollinear spin configuration formed
after a quench (pulse) but also the characteristic frequencies
of the states ωn = (En − E0)/� involved in the dynamics
(E0 is the ground state). We are particularly interested in
the latter aspect of the commensurability of the characteristic
frequencies. We note in this context that in a finite quantum
system, quantum revivals are closely related to the commen-
surability between different characteristic frequencies of the
system [41]. If the system after the pulse (quench) turns into an
incommensurate frequency phase a periodic or a quasiperiodic
quantum revival in chirality is not expected.

Chirality and entanglement are interrelated, and chirality
can be considered a witness of quantum entanglement [42].
The model under study fulfills both requirements: the system
can be manipulated by optical pulse and by a sudden quench.
We will inspect the chiral state formed in the system after
the action of pulse excitations or a sudden quench by
studying periodic-in-time quantum revivals in the chirality and
entanglement. Our model is relevant for the one-phase chiral
MF, e.g., LiCu2O2, CoCr2O4, and LiVCuO4 [43]. Depending
on the system size, we were able to perform full analytical
calculations for the time propagation and extract some trends
for the entanglement and chirality evolution and to relate them
to the underlying physics. For larger systems we resort to full
numerical exact diagonalization methods. For more insight
we will inspect equal-time spin-spin and chirality-chirality
correlation functions. In particular our interest concerns
chirality, a quantity which is an order parameter for a one-phase
MF system and is related to the ferroelectric polarization of
the MF systems. Any remarkable change in chirality that
might occur during the dynamical phase transition is of high
experimental relevance.

This paper is organized as follows: Sec. II introduces the
model and basic notation, and Sec. III presents results of
the numerical calculations for several entanglement witnesses
such as concurrence, von Neumann entropy, and one- and
two-tangle. In Sec. IV we study the dynamical quantum
transitions. Using the Weierstrass factorization technique we
will study the zeros of the rate function of the Loschmidt
echo. We also inspect the vector chiral and nematic phases of
the system and the spin-spin correlation functions.

II. THEORETICAL FOUNDATION

We consider a one-dimensional quantum spin chain along
the x axis with a charge-driven multiferroicity. The chain is
subjected to pulses of an electric field E(t) that is linearly
polarized along the y axis. Additionally, an external magnetic
field B is applied along the z axis. This coordinate system
applies to both the spin and charge dynamics. A Hamiltonian
capturing this situation reads

Ĥ = J1

L∑
i=1

�Si · �Si+1 + J2

L∑
i=1

�Si · �Si+2

−B

L∑
i=1

Sz
i + E(t)gME

L∑
i

(�Si × �Si+1)z. (1)

The nearest-neighbor exchange coupling of a spin 1/2 (de-
noted �Si) localized at site i is ferromagnetic J1 < 0, while
next-nearest-neighbor interaction is antiferromagnetic J2 > 0.
We consider periodic boundary conditions such that �SL+i =
�Si . The time-dependent electric field E(t) couples to the elec-
tric polarization as − �E(t) · �P = E(t)gME

∑L
i=1(�Si × �Si+1)z,

where gME is the magnetoelectric coupling strength. The
quantity κi = (�Si × �Si+1)z is the z (longitudinal) component of
the vector chirality (VC). In the absence of frustration (J2 = 0),
i.e., for colinear spin order, κi and �P vanish, and the chain
does not react to �E(t). The ground-state and the dynamical
properties of the parent Hamiltonian systems (gME = 0), the
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so-called frustrated ferromagnetic spin- 1
2 Heisenberg chains,

have been widely discussed in the literature [44,45]. The phase
diagram for a wide range of parameters and net magnetization
has been studied [44] and has been found to exhibit a rich
variety of phases, including vector chiral phase, the nematic
phase, and other multipolar phases. Here we will focus on
the time-dependent dynamics of the system with the spin-
orbital coupling (gME �= 0) in the vicinity of the saturated
magnetization for a fixed ratio of the spin-exchange couplings.

Each term of the Hamiltonian Ĥ [Eq. (1)] commutes with
the total z component of the spin, Sz = ∑

Sz
i . Hence Sz is

a good quantum number, and any eigenstate of the system
can be characterized by the total number of “down” (or “up”)
spins in the studied system. In this paper we adopt the term “n
excitations” in order to denote the number of n down spins.
For instance, n-excitation spin state means Sz = S − n (in
units of �), where S = L/2. In the case of only ferromagnetic
interaction, a zero-excitation spin state corresponds to a fully
aligned (saturated) ferromagnetic ground state of the system.

The effective model Hamiltonian [Eq. (1)] is relevant
for one-dimensional (1D) spin-frustrated MF oxides, e.g.,
LiCu2O2. Typical values of the relevant parameters are −J1 ≈
J2; for example, for LiCu2O2 one finds [9] J1 ≈ −11 ± 3 meV
and J2 ≈ 7 ± 1 meV. For clarity we adopt dimensionless units
and measure energies in units of J2. The time is measured in
units of �

J2
, which is typically in the range of ≈0.5 (ps).

For coherent control of the system on a picosecond time
scale, we apply THz electric field pulses with a dc component;
that is, we use an electric field E(t) = E0 + E1(t), where
E0 and E1(t) are, respectively, static and time-dependent
electric fields, both linearly polarized along the y axis. The
Hamiltonian of the driven system can be written as

Ĥ = Ĥ0 + Ĥ1, (2)

where Ĥ0 is the unperturbed Hamiltonian with the static
electric field E0,

Ĥ0 = J1

L∑
i=1

�Si · �Si+1 + J2

L∑
i=1

�Si · �Si+2 − B

L∑
i=1

Sz
i

+E0gME

L∑
i

(�Si × �Si+1)z (3)

and

Ĥ1 = E1(t)gME

L∑
i

(�Si × �Si+1)z. (4)

The system is subjected at t = 0 to a pulse of a rectangular
shape, i.e.,

E1(t) =
{

E0
1

ε
if − ε

2 < t < ε
2 ,

0 otherwise.
(5)

The width of the applied pulse is ε ≈ 0.3, which translates in
SI units to ≈0.15 (ps).

For small ε, it is reminiscent of a δ kick with the strength E0
1 .

Small ε means here that the pulse is shorter than the transition
times between those states of the spectrum that are involved in
the dynamics. Hence, we can assess this condition a posteriori,

i.e., after having diagonalized the Hamiltonian and figured out
the highest pulse-excited levels. It is worth noting that such
pulses can be realized as a sequence of highly asymmetric (in
time) propagating single-cycle THz pulses. The one strong and
short half cycle acts as the “pulse” in Eq. (5), and the second
long and flat half cycle serves as the dc field (see [46] for more
details).

Hereafter we abbreviate d1 = E0
1gME,d0 = E0gME. The

time evolution of the system is given by the Schrödinger
equation

i
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉, (6)

with the initial condition |ψ(t = − ε
2 )〉 = |ψ0〉. Here |ψ0〉 is

the initial state of the system (Ĥ0), i.e., before applying the
pulse. The pulse-triggered coherent state propagates under the
influence of Ĥ0 for t > ε

2 . After rescaling the time T = (t +
ε
2 )/ε (t = − ε

2 , T = 0; t = ε
2 , T = 1) and within the short-

pulse assumption, as explained above, we find the state of the
system right after the pulse to be governed by the Magnus-type
propagation [46],

|ψ(T = 1)〉 = e−iÔ |ψ(T = 0)〉, (7)

where the operator Ô is given by

Ô = d1

L∑
i=1

(�Si × �Si+1)z. (8)

We note that expression (7) includes all nonlinear terms in
the electric-field strength (as long as the short-pulse approx-
imation is viable [46]) and can thus deal with intense-field
dynamics. After the pulse the system evolves in time under the
action of the unperturbed Hamiltonian Ĥ0. Thus, the state at
any arbitrary time t ′ after the pulse can be written as

|ψ(t ′)〉 =
∑

n

e−iEnt
′ |φn〉〈φn|e−iÔ |ψ(0)〉, (9)

where |φn〉 and En are the eigenstates and corresponding
eigenvalues of the Hamiltonian [Eq. (3)]. |ψ(0)〉 is the initial
state in which the system is prepared right before the pulse is
applied (time t = 0). This state, in general, can be chosen to
be any coherent state of the system, not only the ground state.
Obviously, the procedure can be repeated stroboscopically if
a further pulse is applied at some t ′. In this case |ψ(t ′)〉 will
replace |ψ(0)〉 in Eq. (9). The propagation scheme does not
allow for any insight in what happens during the pulse.

Alternatively, we also consider a scenario where we
suddenly quench the electric field. Here we again consider
the Hamiltonian (2), but the protocol of the time evolution is
as follows: for t < 0 the system is given by Ĥ = Ĥ0 + Ĥ1, and
at t = 0 it is suddenly quenched to Ĥ = Ĥ0. Hence, after the
quench, the system evolves in time again under the influence
of the unperturbed Hamiltonian Ĥ0, and the time-evolved state
at any arbitrary time t ′ > 0 is given as

|ψ(t ′)〉 =
∑

n

e−iEnt
′ |φn〉〈φn|ψ0〉, (10)

but here |ψ0〉 denotes the ground state of the full Hamiltonian
Ĥ in Eq. (2).
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III. PULSE INDUCED DYNAMICS OF CHIRALITY
AND ENTANGLEMENT

In this section we analyze the system-size effect on the
chirality, two-tangle, and von Neumann entropy. We will
mainly focus on the results obtained by exact numerical
diagonalization and time evolution, like the Lanczos algorithm
or some other Krylov-subspace-based methods [47]. To intro-
duce the terminology illustrated by analytical expressions we
also consider a system of four spins. We start with the time
evolution of the chirality.

If the system is kept initially in a one-excitation ground
state, the sum of expectation values of the two terms 〈S−

i S+
i+1〉

and 〈S+
i S−

i+1〉 add up to the same constant for any time t ,
irrespective of chain lengths. In the case of higher n-excitation
ground states, however, the chirality shows oscillations with
time. The oscillatory behavior of chirality varies with the
choice of initial state. As shown in Fig. 1, the peak of the
chirality increases with higher n-excitation ground states. Also
the even- (odd-) excitation initial states follow a similar pattern
of oscillations which differs from the odd- (even-) excitation
initial state case.

To quantify the entanglement we use one- and two-tangle
as a measure of nonlocal and local correlations in the system
[48,49]. One-tangle is given by τ1 = 4detρ1, where ρ1 is
the reduced density matrix for a single spin after tracing
out the rest, and two-tangle reads τ2 = ∑N

m=1 C2
nm, where N is

the number of spins and Cnm is the pair concurrence between
spins n and m in the system, defined as

Cnm = max(0,
√

R1 −
√

R2 −
√

R3 −
√

R4). (11)

Rn are the eigenvalues of the matrix R =
ρR

nm(σy

1

⊗
σ

y

2 )(ρR
nm)∗(σy

1

⊗
σ

y

2 ), and ρR
nm is the reduced
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FIG. 1. Chirality κi as a function of the time for two-, three-, four-,
and five-excitation initial states for an L = 30 spin chain with periodic
boundary conditions. The duration of the applied pulse is ε ≈ 0.3,
and its strength is d1 = 0.5. The spin-exchange couplings and the
initial electric-field strength are J1 = −J2 = −1.0 and d0 = 0.05,
respectively. Note that J2 sets the energy units.
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FIG. 2. Time dependence of the averaged two-tangle (top) and
the von Neumann entropy bottom) for L = 18,20,22,30,40 (right
column) and L = 4 (left column) chain sizes. In all cases the system
is in a two-excitation ground state. The duration of the applied pulse is
ε ≈ 0.3, and the strength d1 = 0.5. The spin-exchange couplings and
initial electric-field strength are J1 = −J2 = −1.0 and d0 = 0.05,
respectively.

density matrix of the system obtained from the density matrix
ρ̂ = |ψ(t)〉〈ψ(t)| after retaining spins at n and m positions
and tracing out the rest. For the four-spin system with ground
states |φ2〉 or |φ7〉 (see Appendix A), one-tangle τ1 is unity
and is independent of time; therefore, it is less interesting for
us. The reason why τ1 does not vary with time follows from
the structure of the single-qubit reduced density matrix. The
off-diagonal terms 〈S+

k 〉 and 〈S−
k 〉 vanish for |φ2〉 and |φ7〉

states (no more excitation is permitted for a fixed value of d0

and B). Hence, the determinant of the reduced density matrix
ρ1, which reads 1

4 − 〈Sz
1〉2, is constant.

The two-tangle in the case of the two-excitation ground
state |φ7〉 oscillates with time (see Fig. 2). We note that this
similarity in the behaviors of chirality and local entanglement
(two-tangle) is akin to small systems. For larger systems, the
chirality shows a more elaborate time evolution than L = 4.

This nonequilibrium oscillation in chirality goes along with
an oscillation of the emergent electric polarization and hence
might be detected experimentally either by a time-dependent
electric susceptibility measurement or by detecting the emitted
radiation.

In Fig. 2 we show the time evolution of the averaged two-
tangle for various sizes of the spin chain in the two-excitation
ground state. In all shown cases the oscillatory pattern is
visible. We observe, however, that the two-tangle decreases
significantly with the increasing chain size in contrast to the
case of chirality. For L ≥ 18 the two-tangle almost disappears
during the pulse-free time evolution. Thus, local entanglement
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is less robust and does not survive after significant pulse
induced changes in the system.

Another measure of the entanglement, which quantifies
better the multiparticle entanglement, is the von Neumann
entropy. For a system of L spins the von Neumann entropy of
the bipartition can be defined as

SL/2 = −Tr1,...,L/2[ρ1,...,L/2 log2(ρ1,...,L/2)], (12)

where the reduced density matrix of the first L/2 spins is given
by ρ1,...,L/2 = TrL/2+1,...,L(ρ1,...,L).

Figure 2 shows the time evolution of von Neumann entropy
for various chain sizes, revealing rapid oscillations in the case
of smaller chains, with the amplitude of the oscillations being
close to its maximum value SL/2 = L/2 in the case of the
L = 4 size chain [50,51]. For large chain sizes the oscillation
rate and the amplitude decline. Comparing the two-tangles and
the von Neumann entropy for the four-spin system, we see that
these quantities are complementary to each other. At t = 0, the
two-tangle and the von Neumann entropy are maximal. During
the time evolution (after the kick), however, the von Neumann
entropy attains the maximum value when the two-tangle is
minimal and vice versa for all considered instances. Thus, the
decrement of two-qubit entanglement can be traced back to
the rise of many-party entanglement sharing. For larger chain
sizes when the two-tangles vanish, we expect the entanglement
to exist in multiparticle form. This may be the reason for the
large von Neumann entropy in the case of larger-size chains.

In Fig. 3 we compare chains with L = 4 and L = 20,
analyzing the von Neumann entropy as the pulse strength
d1 varies. We choose the parameters such that the initial
state is the L/2-excitation spin state (Sz = 0). For L = 4 [see
Fig. 3(a)] the initial state is a two-excitation ground state. In
the absence of the pulse, the von Neumann entropy for L = 4,
having a maximum at t = 0, remains constant throughout the
observation. As we apply the pulse, the entropy oscillates in
time, and the amplitude of oscillation grows proportionally
to the pulse strength. The maximal value, however, is always
less than SL/2 = 2. For L = 20 [see Fig. 3(b)], in the absence
of the pulse, the von Neumann entropy, as expected, is again
constant in time. The value, however, is much smaller than
the maximal possible entropy SL/2 = L/2. While increasing
the pulse strength, the entropy increases and saturates to a
high value at a later time. We also clearly observe the pattern
of the linear growth of the entanglement entropy, similar to
the expected behavior for global quenches [52,53]. Hence,
depending on the initial state, after the application of the
pulse, the system undergoes a transition to a superposition of
eigenstates of the Hamiltonian. If the characteristic frequencies
of the superposition state are noncommensurate, a partial loss
of pair concurrence occurs. For larger systems this effect
is more prominent. The multiparticle entanglement shows a
robust behavior and survives if the characteristic frequencies
of the superposition states are incommensurate. This statement
is valid for large systems as well. We are mostly interested in
the behavior of the chirality (see Fig. 1), which serves as an
order parameter for our system. We observe that the chirality
shows an oscillatory behavior but the amplitude of the chirality
slightly decays in the noncommensurate phase.
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FIG. 3. The time dependence of the von Neumann entropy for (a)
L = 4 and (b) L = 20 for different pulse strengths d1. In all cases the
initial state is a state with L/2 excitations (i.e., Sz = 0 sector). The
duration of the applied pulse is ε ≈ 0.3, and the strength d1 = 0.5.
The spin-exchange couplings and initial electric-field strength are
J1 = −J2 = −1.0 and d0 = 0.05, respectively.

IV. PULSE AND QUENCH INDUCED DYNAMICAL
TRANSITION

The connection between the canonical partition function
Z = Tre−βH and the return probability of a system to the
initial state while going through a nontrivial time evolution
was discussed in Ref. [22]. This return probability is also
known as the Loschmidt echo. Nonanalyticity in time signifies
a dynamical phase transition [22]. Here we consider the case
of a sudden quench of the electric field. The system is initially
prepared at t = 0 in the ground state of Ĥ = Ĥ0 + Ĥ1, and
then it is suddenly quenched to Ĥ → Ĥ0 (Ĥ1 is also absent
for t > 0). The quantity of interest is the Loschmidt echo G(t),
given as

G(t) = 〈ψ0|e−iĤ0t |ψ0〉, (13)
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where |ψ0〉 is the ground state of Hamiltonian (2). The quantity
G(t) stands for the probability of returning to the ground state
before the quench.

We recall that the thermodynamic phase transitions in finite
systems are indicated by changes in the zeros of the partition
function Z in the complex inverse temperature β(= 1/kBT )
plane (approaching the real β axis in the thermodynamic limit).
The zeros of the Loschmidt echo G(t) lie on the real time
axis. Recent papers (see Refs. [26–28,54]) use the protocol
by Heyl et al. [22] to investigate dynamical phase transitions
in various models. The quantity which is analogous to the
thermodynamic free-energy density is the rate function of the
return probability, given by

l(t) = − lim
L→∞

1

L
ln |G(t)|2. (14)

The singular points of l(t) can be obtained by finding the ze-
ros of G(t). In the thermodynamic limit, just as the free-energy
density manifests singularity rooted in the phase transition,
the rate function l(t) reflects the singularity associated with
the dynamical phase transition. Heyl et al. used this idea to
study quenches in a transverse field Ising spin model, which
exhibits quantum phase transition between ferromagnetic and
paramagnetic ground states. Here we are interested in the chiral
MF spin chain close to magnetic saturation. For the considered
parameter regime J2 = −J1 = 1, the studied system might
exist in the ferromagnetic, nematic, or chiral (VC) phase [11].

As shown above, for L = 4 (which is analytically solvable),
one can observe effects qualitatively similar to a dynamical
phase transition, namely, singularity in the rate function l(t).
We note that for small systems the singularity in the rate
function is not a rigorous criterion of phase transition. Only if
the singularity survives in larger systems, it is a signature of
the phase transition.

We confirmed this result by exact numerical calculations for
a system of L = 22 spins. The expression for the Loschmidt
echo can be decomposed in the following form:

G(t) =
∑
n,m

Q0nHnmQm0, (15)

where Qn0 = 〈φn|ψ0〉, Hnm = 〈φn| exp(−iĤ0t)|φm〉, and |φn〉
is the nth eigenstate of the Hamiltonian Ĥ0. The zeros of
the Weierstrass factorization are related to a dynamical phase
transition [22]. According to the Weierstrass theorem for
entire functions, an entire function f (z) with the zeros zj ,
j = 1,2,3, . . . , can be written as

f (z) = eg(z)
∏
j

(
1 − z

zj

)
. (16)

Here g(z) is another entire function of z. In the above equation
we see that the singular (nonanalytic) part of the function
ln |f (z)| is exclusively determined by zeros zj . Considering
z = it and f (z) as G(t) [given by Eq. (15)], the rate function
becomes

l(t) = − 2

L

[
|g(t)| +

∑
j

ln

∣∣∣∣1 − t

tj

∣∣∣∣
]
. (17)

In the case of the four-spin chain with two excitations, the
ground state is |φ7〉, and the return probability is given by

G(t) = ae−iE6t + be−iE7t . (18)

The eigenstate |φ7〉 and full details of the notations a =
[αγ ′(4 + 2ηλ′)]2, b = [γ γ ′(4 + 2λλ′)]2 are given in Ap-
pendix A. The parameters λ′ and γ ′ are obtained by substituting
d0 with d1 + d0 in Eq. (A2). G(t) = 0 at

tk = 1

E7 − E6

[
i ln

(
a

b

)
− π (2k + 1)

]
, (19)

where k = 0, ± 1, ± 2, . . . . Real and imaginary parts of θk =
itk can be written separately as

Re(θk) = 2√
(J1 − 4J2)2 + 8d2

0

ln

(∣∣∣∣α(2 + ηλ′)
γ (2 + λλ′)

∣∣∣∣
)

(20)

and

Im(θk) = π (2k + 1)√
(J1 − 4J2)2 + 8d2

0

. (21)

The obtained analytical results, which are plotted in Fig. 4,
indicate an onset of a dynamical transition. However, small
(L = 4) spin systems do not possess a well-developed phase-
transition behavior but precursors that hint at a dynamical
transition. The signature of quantum phase transition can be
observed in the case of pulse induced dynamics as well. Using
|φ7〉 as an initial ground state [compare with Eq. (18) for the
quench scenario] and (B4) and (B5) (see Appendix B), we plot
the rate function and the Fisher zeros in Fig. 5. As we can see,
the nonanalytic, i.e., the singular or cusplike behavior of the
rate function, is correlated with the minimum of the Schmidt
gap, and the Fisher zeros cross the real axis. The Schmidt gap,
defined as the difference between the two largest eigenvalues
of the reduced density matrix of the bipartite chain, is one of
the witnesses of the dynamical phase transition [28].

Let us inspect the dynamical phase transition by calculating
the time evolution of the rate function l(t) for larger systems.
Figure 6 shows results for a chain with L = 22 spins and an
initial state taken to be the ground state in the two-excitation
sector (two spins flipped in a magnetically saturated state).
For the parameter set {d1 = 0.44, d0 = 0.057}, we see cusps
at times t∗ ≈ 9.41,28.36,47.20, . . . , where the rate function
l(t) develops cusps, indicating singularities. These points may
refer to a transition between different types of chiral order,
signifying a dynamical phase transition. Yet another pair
{d1, d0} can also be found for which the similar transitions take
place. For example, in Fig. 7 we show results for an L = 18
size chain with d1 = 2.34 and d0 = 0.098. Another quantity
that might be employed for the detection of the dynamical
phase transitions is the so-called Schmidt gap, which is related
to the entanglement spectrum [28]. In 1D, the ground-state
entanglement entropy shows logarithmic behavior with the
system size [53]. At the quantum-critical point S ∼ c log2 l

and diverges logarithmically with the block size �. Here c is
the central charge of the corresponding conformal field theory
describing the quantum phase transition [53]. Close to the
quantum-critical point S ∼ c log2 ξ , and ξ is the correlation
length. After the quench, however, the system, in general,
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FIG. 4. Quench protocol applied to a four-spin system in a two-
excitation ground state. (a) Zeros θk = itk for different k and J1 =
−J2 = −1.0, B = 0.25, d0 = 0.05. Green squares, blue circles, black
diamonds, and red points correspond to d1 = 2.5, d1 = 3.5, d1 =
5.49, and d1 = 100.0, respectively. (b) Rate function and Schmidt
gap for the parameters corresponding to black diamonds in (a). The
Schmidt gap acquires the maximum at times t when the rate function
becomes zero. (c) Rate function and Schmidt gap for the parameters
corresponding to red points in (a).
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FIG. 5. Pulse applied to the four-spin system in a two-excitation
ground state. (a) Zeros θk = itk for different k and J1 = −J2 = −1.0,
B = 0.25, d0 = 0.001. Green squares, red points, and black diamonds
correspond to d1 = 0.3, d1 = 0.5554, and d1 = 0.8 respectively. In
the case of d1 = 0.5554 (red points) Re(θk) ≈ 0. (b) Rate function
and Schmidt gap for d1 = 0.5554.

will be in the excited state, not the ground one. Entanglement
entropy in the excited state shows a qualitatively different
behavior. Namely, after the global quench the entanglement
entropy grows typically linearly in time [52,53,55]. Away
from the critical point the system can be characterized by the
entanglement spectrum [56–59], i.e., the eigenvalues of the
reduced density matrix of one of the two partitions (Schmidt
eigenvalues) while tracing out the degrees of freedom of the
other part. The entanglement spectrum is an accepted tool to
characterize the many-body system. However, the information
about the quantum critical points in a many-body system can be
easily extracted by merely knowing the gap between the two
largest eigenvalues, the so-called Schmidt gap, and without
knowledge of the full entanglement spectrum. The zeros of
the Schmidt gap provide information on the quantum critical
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FIG. 6. Time evolution of the rate function l(t) and Schmidt gap
�(t) for a periodic chain of size L = 22. The peaks of the rate function
at time t∗ ≈ 9.41, 28.36, 47.20, . . . correspond to the dynamical
phase transitions. The inset shows a zoom into the cusp region at one
of the nonanalytic points. The parameters are J1 = −J2 = −1.0. The
electric fields d1 and d0 here are d1 = 0.44, d0 = 0.057.

point [28,57]. We studied the time evolution of the Schmidt gap
� = λ1 − λ2 (λ1 and λ2 are the two largest eigenvalues of the
reduced density matrix) for all cases in this section. Figures 6
and 7 (as well as Figs. 4 and 5) also show the Schmidt gap
in addition to the rate function l(t). For the parameters d1

and d0, for which there is a dynamical phase transition, and
nonanalyticity at the points t∗ in the rate function, we see a
nice pattern in the Schmidt gap too. In Fig. 6 we can extract
the role of the Schmidt gap at the critical points. We see that
at the onset of the dynamical phase transition, the Schmidt
gap vanishes and remains zero in the time interval in which
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FIG. 7. The rate function and the Schmidt gap for a periodic chain
with size L = 18 and J1 = −J2 = −1.0. The pattern of the Schmidt
gap and the rate function are complementary to each other. For L = 18
the electric fields d1 and d0 are chosen as d1 = 2.34, d0 = 0.098,
respectively.
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FIG. 8. The diagram of the quench-parameter pairs (d0 + d1) →
d0 for the L = 22 site system in the two-excitation sector. The param-
eter region (yellow area), for which the Schmidt gap acquires zeros
in time, defines pairs of quench parameters for which the dynamical
phase transition occurs. We also show the quench-parameter pairs
for which the rate function l(t) has singularities (red asterisks and
circles). The asterisks correspond to the quench between the different
phases, while the circles represent quench within the same phase.
Further system parameters are J1 = −J2 = −1.0.

the system undergoes a dynamical phase transition. We can
estimate the critical point by just looking at the pattern of
the Schmidt gap. For example, in Fig. 6, the Schmidt gap is
zero for 5.56 < t < 13.42, and the critical point t∗ = 9.41 is
close to the middle t = 9.49 of the interval. At times when the
rate function touches the minimum, the Schmidt gap reaches
its maximum. For L = 4 the Schmidt gap only closes at the
dynamical-transition points [singularities of l(t)] for quench
[see Fig. 4(c)] as well as the pulse [see Fig. 5(b)] scenarios.

Analyzing the behavior of the Schmidt gap �(t), as well
as singularities of the rate function l(t) after the quench (d0 +
d1 → d0), we construct a diagram of the quench-parameter
pairs, shown in Fig. 8. The region of the quench parameters,
for which the Schmidt gap acquires zeros during the time
evolution of the system, identifies the quench-parameter sets
for which the dynamical phase transition occurs. This region
in the parameter space is quite large and includes dynamical
transitions detected by singularities in the rate function.

In order to gain more insight into the time evolution of the
system, in Fig. 9 we show the equal-time spin-spin 〈Sz

i S
z
i+j 〉t

and chirality 〈κiκi+j 〉t = 〈(�Si × �Si+1)z(�Si+j × �Si+j+1)z〉t cor-
relation functions for the three closest and the three farthest
sites. The data shown correspond to the above-considered
case of the L = 22 spin chain close to magnetic saturation
(two-excitation sector). In the chirality correlator, one clearly
identifies the emergence of two distinct behaviors. We also
show the entire profile of the chirality correlator at selected
sets of time points in an inset of the corresponding plot
that completely underlines this scenario. While long-range
chirality correlation functions are suppressed for the time
points t∗ at which the rate function l(t) has singularities,
the short-range chirality correlations build up at the same
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FIG. 9. The time evolution of the equal-time spin-spin 〈Sz
i S

z
i+j 〉t

(top) and the chirality 〈κiκi+j 〉t = 〈(�Si × �Si+1)z(�Si+j × �Si+j+1)z〉t

(bottom) correlation functions for the case shown in Fig. 6. Insets
show the correlation functions vs distance j (profiles of the cuts) at
the singularities t∗ (indicated by dashed lines) and at local minima
(indicated by dash-dotted lines) of the rate function l(t).

time points. The long-range chirality order is recovered at
time points where the rate function is zero. The data shown
in Fig. 9 also reveal the appearance of two distinct long-range
behaviors. The true recovery of the initial phase only happens
at each second zero of the rate function. The alteration between
short- and long-range ordered phases is supported by the
behavior of the same correlator functions in the ground state
of the system at different electric-field strengths. In Fig. 10
we show the spin-spin and chirality correlators as a function
of the electric coupling strength d0 for the three closest and the
three furthermost sites, as well as the entire correlator profiles
for the selected electric coupling strength points (see the insets
in Fig. 10). The ground-state correlation functions clearly
reveal the level-crossing phase transition in the system at d0 ≈
0.076 upon increasing d0. This transition corresponds to the
static phase transition from the nematic, two-magnon bound
state to the long-range VC state [11,44]. While for d0 < 0.076
both the spin-spin and the chirality correlation functions are
short ranged, the system develops a long-range chirality order
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FIG. 10. The spin-spin 〈Sz
i S

z
i+j 〉 (top) and the chirality 〈κiκi+j 〉 =

〈(�Si × �Si+1)z(�Si+j × �Si+j+1)z〉 (bottom) correlation functions vs d0

for the L = 22 spin system in a two-excitation ground state, J1 =
−1.0. Insets show the correlation functions vs distance j (profiles of
the cuts) at d0 = 0.0, 0.076, 0.5, 1.0 indicated by dashed lines in the
main plot. One can also identify the level-crossing transition exhibited
in the finite jump in the correlation functions at the transition point
d0 ≈ 0.076.

after the transition to the VC phase for d0 > 0.076. Therefore,
we conclude that a system prepared initially in the long-range
chirality ordered phase (e.g., for d1 + d0 = 0.497) undergoes,
after the quench (to d0 = 0.057), a dynamical phase transition
to the nematic phase. The corresponding phase is characterized
by the absence of a long-range chiral order [compare Fig. 9(b)
with Fig. 10(b)]. Note that a similar dynamical phase transition
can also occur when the system is quenched within the same
static phase [60], namely, in the long-range VC phase, as
shown in Fig. 8 (e.g., the red circles). The level-crossing
transition persists in all systems with L > 4 spins in the case
of the two-excitation ground state.

The ferroelectric polarization of the MF system cou-
ples to a spatially uniform electrical field as − �E(t) · �P =
E(t)gME

∑L
i=1(�Si × �Si+1)z [see Eq. (1)] which vanishes in the

absence of a long-range chiral order. The alteration between
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the short- and long-range chirality orders at the verge of the
dynamical phase transition might be detected experimentally
by monitoring the polarization dynamics of the MF system
(via the associated emission spectra).

V. CONCLUSIONS

We studied a multiferroic spin chain subjected to short
electric-field pulses in addition to static electric and magnetic
fields. The electric-field pulse switches the system, initially
in the ground state, to the incommensurate chiral phase
(superposition of the excited states with incommensurate
spectral properties ωi = (Ei − E0)/�, ωi/ωj �= integer). The
time evolution of chirality signifies the emergence of a spin
configuration in the new phase. Preparing the initial state of
the system in the n-excitation spin state, by manipulating
electric and magnetic fields, we analytically studied a model
of four spins and calculated the chirality, the one-tangle, the
two-tangle, and the von Neumann entropy. We found that all
the measured quantities are constants for the one-excitation
ground state and evolve in time in the (n > 1)-excitation
ground state. Employing exact diagonalization methods for
systems with L > 4 spins, we found that the two-tangle
vanishes as the system size increases. The decay of the
two-tangle is related to the noncommensurate characteristic
frequencies of the superposition state. For larger systems this
effect is more prominent. The chirality oscillates with time,
but its peak value is not vanishing compared to the case of the
two-tangle, which vanishes for systems with L > 4 spins. The
linear growth of the von Neumann entropy is also observed for
systems with L > 4 spins after the pulse is applied, confirming
the fact that the system is in a superposition of excited states.
The computed data show that the many-particle entanglement
and the chirality are robust and persist in the incommensurate
phase even for larger systems. We also employed a quench
protocol in order to calculate the Loschmidt echo and the rate
function to inspect the dynamical phase transitions between the
chiral and nematic phases. Quenching the system suddenly,
we calculate the return probability to the prequench ground
state. Signatures of dynamical phase transitions are identified
and observed. The critical points are those where the rate
function (which is analogous to the thermodynamic free-
energy density) is nonanalytic. The zeros of the Loschmidt
echo resemble the zeros of the partition function. The Schmidt
gap is also sensitive to these quantum critical points where
the system approaches the nematic phase from the long-range
VC phase. We clearly observed alteration between short-
and long-range chirality phases that occurs at the onset of
dynamical phase transitions.
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APPENDIX A: EIGENFUNCTIONS AND EIGENVALUES

Eigenfunctions and eigenvalues of the Hamiltonian Ĥ0

[Eq. (3)] with d0 = E0gME in the case of four spins
read

|φ1〉 = | ↑↑↑↑〉,

|φ2〉= i

2
| ↓↑↑↑〉+−1

2
| ↑↓↑↑〉+−i

2
| ↑↑↓↑〉+1

2
| ↑↑↑↓〉,

|φ3〉= −i

2
| ↓↑↑↑〉+−1

2
| ↑↓↑↑〉+ i

2
| ↑↑↓↑〉+1

2
| ↑↑↑↓〉,

|φ4〉= 1

2
| ↓↑↑↑〉+−1

2
| ↑↓↑↑〉+1

2
| ↑↑↓↑〉+−1

2
| ↑↑↑↓〉,

|φ5〉 = 1

2
| ↓↑↑↑〉 + 1

2
| ↑↓↑↑〉 + 1

2
| ↑↑↓↑〉 + 1

2
| ↑↑↑↓〉,

|φ6〉 = α(| ↓↓↑↑〉 − iη| ↓↑↓↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑〉
+ iη| ↑↓↑↓〉 + | ↑↑↓↓〉),

|φ7〉 = γ (| ↓↓↑↑〉 − iλ| ↓↑↓↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑〉
+ iλ| ↑↓↑↓〉 + | ↑↑↓↓〉),

|φ8〉 = 1√
6

(| ↓↓↑↑〉 + | ↓↑↓↑〉 + | ↓↑↑↓〉 + | ↑↓↓↑〉
(A1)

+ | ↑↓↑↓〉 + | ↑↑↓↓〉),

|φ9〉 = 1√
12

(| ↓↓↑↑〉 − 2| ↓↑↓↑〉 + | ↓↑↑↓〉 + | ↑↓↓↑〉

− 2| ↑↓↑↓〉 + | ↑↑↓↓〉),

|φ10〉 = −1√
2
| ↓↓↑↑〉 + 1√

2
| ↑↑↓↓〉,

|φ11〉 = −1√
2
| ↓↑↑↓〉 + 1√

2
| ↑↓↓↑〉,

|φ12〉 = i

2
| ↓↓↓↑〉+−1

2
| ↓↓↑↓〉+−i

2
| ↓↑↓↓〉+1

2
| ↑↓↓↓〉,

|φ13〉 = −i

2
| ↓↓↓↑〉+−1

2
| ↓↓↑↓〉+ i

2
| ↓↑↓↓〉+1

2
| ↑↓↓↓〉,

|φ14〉 = 1

2
| ↓↓↓↑〉+1

2
| ↓↓↑↓〉+1

2
| ↓↑↓↓〉+1

2
| ↑↓↓↓〉,

|φ15〉 = 1

2
| ↓↓↓↑〉+−1

2
| ↓↓↑↓〉+1

2
| ↓↑↓↓〉+−1

2
| ↑↓↓↓〉,

|φ16〉 = | ↓↓↓↓〉,

E1 = J1 + J2 − 2B,

E2 = −J2 − B − d0, E3 = −J2 − B + d0,

E4 = −J1 + J2 − B, E5 = J1 + J2 − B,

E6 = − 1
2

[
J1 − 2J2 −

√
(J1 − 4J2)2 + 8d2

0

]
,
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E7 = − 1
2

[
J1 − 2J2 +

√
(J1 − 4J2)2 + 8d2

0

]
,

E8 = J1 + J2, E9 = −2J1 + J2,

E10 = −J2, E11 = −J2,

E12 = −J2 + B + d0, E13 = −J2 + B − d0,

E14 = J1 + J2 + B, E15 = −J1 + J2 + B,

E16 = J1 + J2 + 2B,

where we introduced the following notations:

α = 1√
4 + 2η2

, γ = 1√
4 + 2λ2

,

η =
(J1 − 4J2) −

√
(J1 − 4J2)2 + 8d2

0

2 d0
,

(A2)

λ =
(J1 − 4J2) +

√
(J1 − 4J2)2 + 8d2

0

2 d0
,

λη = −2.

APPENDIX B: MATRIX ELEMENTS Gn

The matrix elements G6 and G7 that are used to obtain
the Loschmidt echo [G(t) = |G6|2e−iE6t + |G7|2e−iE7t ] in the

case of pulse induced dynamics are given as follows:

G6 = 〈φ6|e−iÔ |φ7〉 (B1)

= 4αγ [1 − 4X1 + 4X3 − 2iλ(X2 − X4)]

+ 2αγ η[λ(1 − 4X1 + 4X3) − 4i(X2 − X4)]

= −8iαγ (X2 − X4)(η + λ),

G7 = 〈φ7|e−iÔ |φ7〉 (B2)

= 4γ 2[1 − 4X1 + 4X3 − 2iλ(X2 − X4)]

+ 2γ 2λ[λ(1 − 4X1 + 4X3) − 4i(X2 − X4)]

= 2γ 2(1 − 4X1 + 4X3)(2 − λ2) − 8iγ 2λ(X2 − X4),

where

X1 = 1
8 [− cos(

√
2d1) + cosh(

√
2d1)],

X2 = 1
8 [−

√
2 sin(

√
2d1) + sinh(

√
2d1)],

X3 = 1
8 [cos(

√
2d1) + cosh(

√
2d1) − 2],

X4 = 1
8 [

√
2 sin(

√
2d1) + sinh(

√
2d1)]. (B3)

Substituting (B3) in (B1) and (B2) yields

G6 = 4iαγ (λ + η)√
2

sin(
√

2d1), (B4)

G7 = cos(
√

2d1) + 8iγ 2λ√
2

sin(
√

2d1). (B5)
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