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Influence of nonlocal damping on the field-driven domain wall motion

H. Y. Yuan,1 Zhe Yuan,1,* Ke Xia,1,2 and X. R. Wang3,4

1The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
2Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China

3Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
4HKUST Shenzhen Research Institute, Shenzhen 518057, China

(Received 27 April 2016; revised manuscript received 26 July 2016; published 12 August 2016)

We derive a general expression of nonlocal damping in noncollinear magnetization due to the nonuniform
spin current pumped by precessional magnetization and incorporate it into a generalized Thiele equation to study
its effects on the dynamics of the transverse and vortex domain walls (DWs) in ferromagnetic nanowires. We
demonstrate that the transverse component of nonlocal damping slows down the field-driven DW propagation
and increases the Walker breakdown field, whereas it is neglected in many previous works in literature. The
experimentally measured DW mobility variation with the damping tuned by doping with heavy rare-earth elements
that had discrepancy from micromagnetic simulation is now well understood with the nonlocal damping. Our
results suggest that the nonlocal damping should be properly included as a prerequisite for quantitative studies
of current-induced torques in noncollinear magnetization.
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I. INTRODUCTION

Gilbert damping [1], which is spatially local and was
introduced to describe the energy dissipation in magnetization
dynamics, is a phenomenological parameter of magnetic ma-
terials although a microscopic theory based on the spin-orbit
interaction and disorder scattering is available [2]. The energy
dissipation plays an important role in both current-driven [3]
and field-driven [4] magnetization dynamics. For example, in
the field-driven domain wall (DW) propagation in a magnetic
wire, the propagation speed is proportional to the energy
dissipation rate [4]. Thus a comprehensive understanding of
dissipation (damping) in magnetic materials is not only funda-
mentally interesting, but also technologically important since
the performance of many spintronic devices such as race-track
memory [5] is directly related to the DW propagation speed.
In the past several decades, the progress in our understanding
of the damping has greatly advanced both theoretically and
experimentally. Theoretically, the Gilbert damping of real
materials can be calculated by using the torque-correlation
model [6–8], Kubo formalism [9–11], and the scattering
approach [12–14] in combination with the first-principles
electronic structures. In experiments, the value of Gilbert
damping can be measured by ferromagnetic resonance (FMR)
[15–19]. For a nonuniform magnetic structure (noncollinear
magnetization) such as a DW in a ferromagnetic wire, FMR
is not applicable and the Gilbert damping is usually extracted
via measuring the field-driven DW velocity [4,20–22]. This
technique is based on the following general features of the
field-driven DW propagation: below a critical field, a DW
propagates like a rigid body and its velocity is proportional to
the external field and inversely proportional to the Gilbert
damping [23]. Surprisingly, the extracted Gilbert damping
coefficient of permalloy (Ni80Fe20) from field-driven DW
motion is three times larger than the value of the same material
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from FMR measurement [19]. The enhanced damping in
magnetic DW has been attributed to the surface roughness of a
ferromagnetic nanowire in combination with texture-enhanced
Gilbert damping arising from spin pumping [19].

Spin pumping was first proposed to understand the Gilbert
damping enhancement in a thin ferromagnetic film in contact
with a nonmagnetic metal [24]. A precessional magnetization
m(t) pumps an electron spin current of polarization jspump ∼
m × ∂m/∂t into the nonmagnetic metal that dissipates via
spin-flip scattering [25,26]. Spin pumping does not have
any observable effect in a homogeneous magnetic structure
because the net inflow/outflow spin current anywhere in the
system is zero due to a precise cancellation of the pumped
spin currents in opposite directions. In noncollinear magne-
tization, the partial cancellation of the spatially dependent
spin pumping gives rise to a nonzero net inflow/outflow
−∇[m(r) × ∂m(r)/∂t]. This results in an extra torque that has
nonlocal damping in nature, different from the local Gilbert
damping due to spin-orbit interaction. The total damping of
a nonuniform magnetic structure such as a spin spiral and a
DW is enhanced through spin pumping [27–31] or spin wave
emission [32]. The enhanced damping in nonuniform magnetic
structure of permalloy has been quantitatively calculated
from the first principles, which depends not only on the
magnetization gradient, but also on the particular dynamical
modes [33]. It is worth noting that the motions of both electrons
and magnons generate spin currents. Thus both of them can
mediate the torques exerted on local magnetization, which
eventually affect DW motion. In this work we focus on the DW
dynamics in ferromagnetic metals and neglect the influence of
magnonic spin current.

The first study of the damping enhancement by non-
collinearity can be traced back to more than 30 years ago.
Bar’yakhtar [34] studied the damping term in a magnetic
texture by examining the energy dissipation and found that the
enhanced damping mediated by the exchange interaction could
be as large as the Gilbert damping in a collinear ferromagnet.
Recently, the inhomogeneous spin pumping in a noncollinear
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ferromagnetic metal is found to be a specific source of the
damping enhancement. The torque due to the pumped spin
current from precessional noncollinear magnetization can be
decomposed into a longitudinal and a transverse component,
which were independently predicted by several groups around
the same time. Foros et al. [29] and Zhang et al. [31] showed
that the longitudinal spin current increases the effective
damping in spin spirals and DWs. Hankiewicz et al. [27,28]
discovered that the transverse spin current influences the
dissipation of spin waves. Many previous works in literature
only include the longitudinal component [19,35–37]. For
the field-driven transverse DW motion, the first-principles
calculation showed that the transverse and longitudinal spin
currents are responsible for the rigid-body motion below a
critical field and the oscillatory motion above the critical field,
respectively [33]. For more complicated magnetic structures
with noncollinear magnetization, e.g., vortex DWs, how this
extra nonlocal damping influences magnetization dynamics
is not entirely clear. For example, it was predicted that
the longitudinal component of the pumped spin current has
no effect on steady-state DW motion [31]. On the other
hand, micromagnetic simulation showed that the longitudinal
component can slow down the field-driven DW propagation as
what was observed in experiments [19]. The inconsistency in
the theories and experiments requires a better understanding
of the effects of the nonlocal damping on the DW motion.

In this paper we derive a general form of the nonlocal
damping from physically transparent spin pumping formal-
ism, where the longitudinal and transverse components are
naturally included on an equal footing. The nonlocal damping
is incorporated into a generalized Thiele equation (GTE) that
describes the steady-state motion of a nonuniform magnetic
structure. The solutions of the GTE explicitly show the role
played by the nonlocal damping in DW motion, where the
longitudinal and transverse components are equally important
in general. For the steady motion of a DW driven by an external
field, the longitudinal component vanishes while the transverse
one slows down the DW velocity and increases the Walker
breakdown field. The solution of the GTE also allows us to
extract the material parameter that characterizes the strength
of the nonlocal damping using the experimentally measured
DW velocity as a function of the external field. The exper-
imentally observed dependence of the DW mobility on the
damping parameter, which were systematically lower than the
values from micromagnetic simulations, can be understood by
including the nonlocal damping. As a prerequisite, quantitative
extraction of current-induced torques in noncollinear magne-
tization dynamics relies on an accurate description of nonlocal
damping in analytical models and micromagnetic simulations.

This paper is organized as follows. In Sec. II we derive
the nonlocal damping and incorporate it into the GTE. The
GTE for both transverse and vortex DWs in a magnetic
nanowire is then solved in Sec. III under a static external
magnetic field along the wire. The solution is also used to
determine the strength of the nonlocal damping from available
experimental data. The conclusions are summarized in Sec. IV.
In the Appendix we provide a detailed derivation of the spin
pumping and the resulting damping torque of noncollinear
magnetization in a ferromagnetic nanowire.

II. GENERAL FORMALISM

A. Nonlocal damping torque

We consider a nonuniform magnetic structure in a metallic
nanowire as schematically shown in Fig. 1. The x, y, and z axes
are along the length, width, and thickness directions, respec-
tively. A spin current polarized along ∼m(r,t) × ∂tm(r,t) is
pumped out towards all directions [25] as magnetization m(r,t)
changes with time. While the detailed derivation is given in
the Appendix, the resulting spin current in a noncollinear
magnetization reads

jsi (r,t) = − �

4π
�↑↓∂i[m(r,t) × ∂tm(r,t)]

= − �

4π
�↑↓∂im(r,t) × ∂tm(r,t)

− �

4π
�↑↓m(r,t) × ∂i∂tm(r,t)

≡ js‖i (r,t) + js⊥i (r,t). (1)

Here i = x,y,z denotes the propagation direction of the spin
current. �↑↓ is the (intralayer) spin-mixing conductivity that
has the dimension of the inverse of length. Its definition via
the physically transparent spin pumping phenomenon is dis-
cussed in the Appendix. The longitudinal spin current (LSC)
js‖i = − �

4π
�↑↓∂im × ∂tm is always aligned with the local

magnetization m since both ∂im and ∂tm are perpendicular
to m. js⊥i = − �

4π
�↑↓m × ∂i∂tm is the transverse spin current

(TSC), which is perpendicular to the local magnetization m.
In early works [29,31] with the adiabatic approximation,

in which the polarization of the spin current is assumed to
align with local magnetization, the transverse spin current is
artificially neglected. This approximation is also used in some
later works [19,35–37] without a proper justification. Taking
permalloy as an example, the first-principles calculations
showed that the spin diffusion length and the transverse spin
coherent length are 5.5 [13] and 13.1 nm [33], respectively, at
low temperature. These lengths are not much smaller than
the width of DWs [38,39], as required for the adiabatic
approximation. Thus there are no reasons that the TSC in real

FIG. 1. (a) Top view of a head-to-head transverse DW in a
magnetic nanowire. The thick arrows denote the local directions of
magnetization m. The x, y, and z axes are along the length, width,
and thickness directions of the nanowire, respectively. (b) Top view
of a vortex DW in a nanowire. The circle in the center denotes the
vortex core.
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materials can be neglected. Indeed, we will see that the TSC
substantially influences the magnetization dynamics in the
nonuniform magnetic structures, especially for the steady-state
DW motion below the critical field.

The dissipative torque generated by the precessional motion
of noncollinear magnetization is given by the divergence of the
spin current in Eq. (1),

τ damping = γ

Ms

∂i

(
js‖i + js⊥i

) = τLSC + τTSC, (2)

where γ = gμB/� is the gyromagnetic ratio in terms of Landé
g factor and Bohr magneton μB and Ms is the saturation
magnetization. Einstein summation is assumed in this paper
unless it is stated otherwise. The total torque can also be
decomposed into the longitudinal and transverse components,
τLSC and τTSC. Specifically, we have

τTSC = −gμB�↑↓
4πMs

∂i(m × ∂i∂tm)

= gμB�↑↓
4πMs

[
(m · ∂i∂tm)m × ∂im − m × ∂2

i ∂tm
]

(3)

and

τLSC = −gμB�↑↓
4πMs

∂i(∂im × ∂tm)

= gμB�↑↓
4πMs

m × (A · ∂tm), (4)

where A is dyadic tensor

A = (m × ∂im)(m × ∂im). (5)

Equation (4) reproduces the tensor form obtained in Ref. [31].
Alternatively, the second term of τTSC could also be obtained
through an expansion of the Gilbert damping term to the
second-order spatial derivative of magnetization [28]. In a very
weak texture like a spin wave, where the precessing magneti-
zation deviates slightly from the equilibrium direction with a
cone angle θ , the energy dissipation due to the first term of τ TSC

is proportional to sin4 θ while the second term is proportional
to sin2 θ [33]. This is the reason why the first term in Eq. (3) can
be neglected in spin wave dynamics [27,28]. It should not be
neglected in strong magnetization textures like a transverse
DW [33]. It is interesting to note that the same form of
nonlocal damping as in Eqs. (3) and (4) can be obtained using
the phenomenological Landau-Lifshitz-Bar’yakhtar equation
[34,40]. Bar’yakhtar derived the nonlocal damping from the
conservation of magnetization in the exchange approximation
with its magnitude proportional to the spin stiffness of the
ferromagnetic material. Equations (3) and (4) that are derived
from the spin pumping in ferromagnetic metals arise from a
conceptually different physical mechanism and the magnitude
is proportional to the spin mixing conductivity.

B. Generalized Thiele equation

To describe the dynamics of noncollinear magnetization, we
add the two torques τLSC and τTSC into the Landau-Lifshitz-
Gilbert (LLG) equation, i.e.,

∂tm = −γ m × Heff + αm × ∂tm + τLSC + τTSC. (6)

Here Heff is the effective field that includes the external applied
field, the exchange field, anisotropy and demagnetization
fields. α is the local Gilbert damping coefficient. In this work,
we only focus on the effect of nonlocal damping and do
not include the spin-transfer torques induced by an electrical
current. For simplicity, we rewrite the LLG equation in a more
compact form as [41]

∂tm = −m × (γ Heff − α∂tm) − η∇2(m × ∂tm), (7)

where we have defined η ≡ gμB�↑↓/(4πMs) representing
the strength of nonlocal damping. Following the Thiele
analysis [42] for the field-driven rigid DW motion and by
m× [Eq. (7)] ·∂im, we have

(m × ∂tm) · ∂im = γ Heff · ∂im − α(∂tm) · (∂im)

− η(∂im × m) · ∇2(m × ∂tm). (8)

For the rigid DW motion, the magnetization is only the
function of r − vt [42,43], i.e.,

θ (r,t) = θ (r − vt), ϕ(r,t) = ϕ(r − vt), (9)

where θ and ϕ are, respectively, the polar and azimuthal
angles of m = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) in spherical co-
ordinates and v is velocity of the magnetic structure. Then the
spatial and time derivatives of magnetization can be written
as

∂im = ∂iθ θ̂ + sin θ∂iϕϕ̂,

∂tm = ∂tθ θ̂ + sin θ∂tϕϕ̂

= (−v · ∇θ )θ̂ + sin θ (−v · ∇ϕ)ϕ̂. (10)

Substituting Eq. (10) into Eq. (8), we obtain

sin θ [(v · ∇ϕ)∂iθ − (v · ∇θ )∂iϕ]

= γ ∂i(m · Hext) + αv · (∇θ∂iθ + sin2 θ∇ϕ∂iϕ)

− η[(−∂iθϕ̂ + sin θ∂iϕθ̂ ) · ∇2(sin θ∇ϕθ̂ − ∇θϕ̂)] · v.

(11)

Here Hext is the external magnetic field. Multiplying Ms to both
sides of Eq. (11) and integrating over the whole nanowire, the
generalized Thiele equation becomes

F + G × v + αD · v + ηD′ · v = 0, (12)

where the vectors F and G and the tensors D and D′ are,
respectively,

F = Ms

∫
∇(−m · Hext)d

3r,

G = −Ms

γ

∫
(sin θ∇θ × ∇ϕ)d3r,

(13)

D = −Ms

γ

∫
(∇θ∇θ + sin2 θ∇ϕ∇ϕ)d3r,

D′ = Ms

γ

∫
(sin θ∇ϕθ̂ − ∇θϕ̂) · ∇2(sin θ∇ϕθ̂ − ∇θϕ̂)d3r.

The nonlocal damping appears in the new dissipation term
ηD′ · v in Eq. (12). The original Thiele equation [42] is
reproduced for η = 0.

064415-3



H. Y. YUAN, ZHE YUAN, KE XIA, AND X. R. WANG PHYSICAL REVIEW B 94, 064415 (2016)

III. FIELD-DRIVEN DW MOTIONS

To explicitly see the effects of nonlocal damping on the DW
motion, we apply the GTE (12) to the propagation of transverse
and vortex DWs. The analytical results for transverse DWs are
compared with micromagnetic simulations of the LLG Eq. (6).
We will also use the available experimental data in literature
to extract the nonlocal damping coefficient η.

A. Transverse DWs

A transverse DW is energetically preferred in relatively
narrow and thin nanowires [38,39]. We consider a head-to-
head Néel DW in a ferromagnetic nanowire of thickness T and
width W , as illustrated in Fig. 1(a). The magnetization m(r −
vt) is only a function of x − vxt and m(−∞) = −m(+∞) =
x̂. An external field Hext = H x̂ is applied that drives the DW to
propagate along +x direction. Under these conditions, Eq. (13)
gives

F = −T WMsH x̂
∫

dx ∂xmx(x) = 2T WMsH x̂,

G = 0,

D = −T WMs

γ
x̂x̂

∫
dx [(∂xθ )2 + sin2 θ (∂xϕ)2]

= −T WMs

γ
x̂x̂

∫
dx [∂xm(x)]2,

D′ = T WMs

γ
x̂x̂

∫
dx d ′

xx[θ (x),ϕ(x)], (14)

where d ′
xx is defined as

d ′
xx = (sin θ∂xϕθ̂ − ∂xθϕ̂) · ∂2

x (sin θ∂xϕθ̂ − ∂xθϕ̂). (15)

Substituting Eq. (14) into the GTE (12), we find the DW
steady-state velocity

vx = 2γH∫
dx[α(∂xm)2 − ηd ′

xx]
. (16)

For a Néel DW centered at x0 and with a width λ, the polar
and azimuthal angles of the magnetization are given by the
Walker profile [23],

θ (x) = π

2
,

(17)

ϕ(x) = π − arccos

[
tanh

(
x − x0

λ

)]
.

The field-driven DW velocity of Eq. (16) can be explicitly
calculated,

vx = γHλ

α + η/(3λ2)
. (18)

The effective damping of the Walker DW with the nonlo-
cal damping is αeff = α + η/(3λ2) in agreement with the
calculated in-plane damping of transverse DWs using the
first-principles scattering theory [33]. The DW propagation
is slowed down by the nonlocal damping for a given field.
Equation (18) has the same form as derived by Bar’yakhtar
[34] and by Wang et al. [40] despite the different physical

origins of the parameter η. In Ref. [34], the order of αλ2/η

was roughly estimated to be unity that could not be neglected.
The so-called Walker breakdown field HW [23], above

which the solution for a rigid DW motion does not exist, is
HW = αKz/(μ0Ms) [4,23] in a one-dimensional model and in
the absence of the nonlocal damping, where Kz is the total
magnetic anisotropy energy along the hard axis including both
the magnetocrystalline and shape anisotropy. In the presence
of the nonlocal damping, the effective Gilbert damping of a
Walker DW becomes α + η/(3λ2) and the Walker breakdown
field becomes larger,

HW = Kz(3α + η/λ2)

3μ0Ms

. (19)

The increased Walker breakdown field, Eq. (19), is also
obtained by Wang et al. [40]. The corresponding velocity at
the breakdown field can be calculated from Eqs. (18) and (19),

vW
x = γKzλ

μ0Ms

, (20)

which is not affected by the nonlocal damping.
The LLG equation (6) is numerically solved for a transverse

DW in a nanowire of 4 nm thick and 16 nm wide under
an external field. The system is discretized into uniform
meshes of size 4 nm. The permalloy parameters are used
with the saturation magnetization Ms = 8 × 105 A/m, the ex-
change stiffness A = 1.3 × 10−11 J/m, the in-plane crystalline
anisotropy (along x) Kc = 500 J/m3, and Gilbert damping
α = 0.01. The shape anisotropy is implicitly taken into account
via including the dipole-dipole interaction in the simulation.
Using the above material parameters, we obtain the static DW
width λ ≈ 12.6 nm. When an external field is applied, the
width decreases [23] and approaches 9 nm near the breakdown
field HW.

Figure 2(a) shows the field dependence of DW propagation
velocity vx along the +x direction. At a low external field, vx

is proportional to H , following Eq. (18) (straight lines). For
the external field larger than 20 Oe, the numerical velocity is
slightly lower than the analytical value. This is because the
Walker solution becomes unstable as the field is close to the
breakdown field and spin wave emission in this regime would
further slow down the DW propagation [32,44].

The critical field HW that is obtained from numerical
simulations is plotted in Fig. 2(b) as a function of η. The linear
relation in Eq. (19) is reproduced and a linear least squares
fitting yields the intercept HW(η = 0) = 25.9 ± 0.3 Oe and the
slope HW/η = 10.8 ± 0.3 Oe/nm2. Using Eq. (19), the values
of both the intercept and slope consistently lead to the effective
anisotropy energy Kz = (2.1 ± 0.1) × 105 J/m3. Then we are
able to calculate the analytical value of the DW velocity at the
breakdown field using Eq. (20), vW

x = 414 m/s, as shown by
the red horizontal dashed-dotted line in Fig. 2(b). The values of
vW

x obtained from the numerical simulation plotted in Fig. 2(b)
are in very good agreement with the analytical value.

B. Vortex DWs

A vortex DW is energetically more stable in relatively wide
and thick nanowires [38,39]. Here a vortex DW is modeled
by an inner vortex core with out-of-plane magnetization and
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FIG. 2. (a) The velocity of a transverse DW as a function of
the external field from numerical simulations without the nonlocal
damping (black open circles for η = 0) and with η = 1.0 nm2 (red
solid circles). The black dashed and red solid lines illustrate Eq. (18)
with η = 0 and η = 1.0 nm2, respectively. (b) The Walker breakdown
field HW (left axis) and the velocity of DW motion vW

x at the
Walker breakdown field (right axis) as a function of the nonlocal
damping strength η. The black dashed line is a linear least squares
fitting to the black solid squares, which gives the total anisotropy
Kz = (2.1 ± 0.1) × 105 J/m3. The red dashed-dotted line is the
calculated velocity at the breakdown field using Eq. (20) with the
fitted Kz.

an outer curling structure [45]. The spatial dependence of the
polar and azimuthal angles can be analytically described as
[46,47]

θ (x,y) =

⎧⎪⎨
⎪⎩

2 arctan

(
r

rc

)
, r � rc,

π

2
, r > rc,

ϕ(x,y) = arg[(x − x0) + i(y − y0)] + π

2
, (21)

where (x0,y0) is the center of the vortex core and r =√
(x − x0)2 + (y − y0)2. rc is the radius of vortex core that

is comparable to the exchange length (∼ 5 nm for permalloy).
The motion of a vortex DW under an external field Hext =

H x̂ can be described by applying the GTE (12). Because rc

is much smaller than the outer curling structure (several tens
to hundreds of nanometers) of a vortex DW, the dominant
contribution to D and D′ comes from the spins in the curling

structure,

D = −Ms

γ

∫
(sin2 θ∇ϕ∇ϕ)d3r

= −T Ms

γ

∫ (
∂m
∂x

)2

dxdy(x̂x̂ + ŷŷ)

= −πT Ms

γ
ln

W

2rc

(x̂x̂ + ŷŷ). (22)

Here we have used W/2 as the outer radius of the vortex DW.
The tensor D′ is difficult to derive analytically due to the high
order spatial derivatives of θ and ϕ but it is well converged
numerically,

D′ = −3.3T Ms

γ r2
c

(x̂x̂ + ŷŷ). (23)

Similarly, it is a reasonable approximation to neglect the
contribution of the vortex core to the force F. So we have

F = −T MsH

∫
∇(sin θ cos ϕ)d2r

≈ T MsH

∫ 2π

0

∫ R

rc

(
sin2 φ

r
,
− cos φ sin φ

r

)
rdrdφ

= πWT MsH

2
x̂. (24)

Following He et al. [47], we add a restoring force that is linear
in the transverse displacement δy of the vortex core from the
nanowire center Fre = −ŷκδy, where the coefficient κ depends
on the magnetic anisotropy and the equilibrium width of the
vortex DW [47].

For the gyrovector G, the spins outside the vortex core do
not contribute because of θ = π/2. The integral over the vortex
core can be analytically evaluated as [47]

G = −2πT Ms

γ
ẑ. (25)

Substituting the expressions of F,G,D, and D′ into GTE
(12), the coupled equations become

γHW

2
+ 2vy −

(
α ln

W

2rc

+ 3.3η

πr2
c

)
vx = 0,

(26)

− γ κδy

πT Ms

− 2vx −
(

α ln
W

2rc

+ 3.3η

πr2
c

)
vy = 0.

Under an external field, the vortex core moves both along
the field direction (longitudinal) and transverse to the field (y
direction) due to the gyro force. Then the vortex structure is
deformed with the core displacement δy (from the nanowire
center). At steady-state motion, the gyro effect is balanced by
the restoring force Fre, i.e., vy = 0. Then the vortex core only
moves in the longitudinal direction and the velocity can be
obtained,

vx = γH W
2

α ln W
2rc

+ 3.3η

πr2
c

≡ γHλeff

αeff
, (27)
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where the effective width is defined as

λeff ≡ W

2 ln[W/(2rc)]
, (28)

and the effective damping is

αeff ≡ α + 3.3η

πr2
c ln[W/(2rc)]

. (29)

According to Eq. (29), the nonlocal damping enhances the
effective damping of a vortex DW. The enhancement depends
on the strength of nonlocal damping (η), the size of vortex core
(rc), and the width of nanowire (W ).

Similar to the case of transverse DWs, the Walker
breakdown field increases in the presence of the nonlocal
damping. For steady-state motion with vy = 0, the transverse
displacement of the vortex core is given by

δy = −2πT MsHλeff

αeffκ
. (30)

Equation (30) indicates that the transverse displacement
increases with the external magnetic field. When the vortex
core reaches the edge of the nanowire δy = −W/2, one has
the Walker breakdown field

HW = αeffκW

4πT Msλeff
. (31)

With the nonlocal damping, the breakdown field increases and
is proportional to the effective damping αeff . The longitudinal
velocity at the breakdown field is independent of the nonlocal
damping as in the case of transverse DWs.

Determining the value of η from field-driven DW motion
and Eq. (27) is not straightforward due to the inhomogeneity
of samples. The disorder and surface roughness increase
effectively the Gilbert damping by adding a factor αR . Both
αR and the nonlocal damping slow down the field-driven DW
propagation [48,49]. Weindler et al. measured the Gilbert
damping of collinear permalloy α = 0.008 and determined
αR = 0.003 by comparing the experimental and simulated
depinning magnetic fields. By using the measured effective
damping for the field-driven DW motion αeff = 0.023, the
nonlocal damping parameter in the system of Ref. [19] is
η = 1.3 nm2 that is denoted by the blue solid triangle in Fig. 3.
We can also estimate η by using the experimental data from
Refs. [5,50]. The result is plotted in Fig. 3 as a function
of the Gilbert damping α + αR . The inset of Fig. 3 is the
experimental data (orange open squares) of the DW mobility
for different α obtained by Moore et al. [22]. They tuned the
value of α by doping permalloy with a rare-earth element
holmium. Micromagnetic simulation in the absence of the
nonlocal damping results in a significantly larger mobility
(magenta empty triangles) than the measured values [22].
We use Eq. (27) to fit the experimental data and perfectly
reproduce the measured mobility as a function of α. Since
we assume αR = 0 in the fitting, the only fitted parameter
η = 5.1 ± 1.6 nm2 corresponds to the upper bound of the
nonlocal damping strength.

The values of η can also be extracted from the wave vector
dependence of the spin wave damping measured via FMR
[52–54]. The coexisting mechanisms such as the eddy current
and the radiative damping result in complexities in determining
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FIG. 3. Calculated η as a function of Gilbert damping parameter
including the contributions from spin-orbit interaction α and rough-
ness αR , for the experimental DW velocities driven by an external field
taken from Ref. [50] (black dashed line), Ref. [5] (red solid line), and
Ref. [19] (blue dashed-dotted line). In Ref. [19], α + αR = 0.011
is determined by fitting experimental data to the simulations with
various DW pinning strengths, and the corresponding nonlocal
damping strength η = 1.3 nm2 is obtained [51] (blue solid triangle).
Inset: Gilbert damping dependence of DW mobility of Ho-doped
permalloy nanowires. The orange open squares are the experimental
data and the magenta open triangles are the simulation without η

[22]. The green solid line shows a least squares fitting using Eq. (27),
which yields the upper bound of the nonlocal damping strength
5.1 ± 1.6 nm2.

η. Nembach et al. [53] found that η = 1.4 nm2 in permalloy
nanodisks. Li and Bailey [52] measured permalloy, cobalt, and
CoFeB alloy and obtained the value η = 0.11 ± 0.02 nm2 for
permalloy. Later Schoen et al. [54] discussed the contribution
of radiative damping and determined that η of permalloy
from the experimental measurement is less than 0.045 nm2.
All these experiments were performed at room temperature
while first-principles calculation at low temperature found
η = 0.016 nm2 in permalloy but it could be significantly
enhanced by two orders of magnitude, up to 5.9 nm2, because
of the finite propagating length of transverse spin currents [33].

In the derivation of the GTE (12), we have included
both the transverse and longitudinal torques [Eqs. (3) and
(4)] resulting from spin pumping. For the steady-state DW
motion described by Eq. (10), the longitudinal component
τLSC = −η∂i(∂im × ∂tm) vanishes because ∂im is aligned
with ∂tm. In our numerical simulation for transverse DWs,
it is confirmed that τLSC alone did not change the DW velocity
below breakdown field, consistent with conclusion in Ref. [31]
where the expression of τLSC was derived.

In contrast, Weindler et al. [19] considered only τLSC in
their micromagnetic simulations with η = 0.07 nm2 and found
the texture-enhanced damping in the steady-state DW motion.
In micromagnetic simulations, there might be higher order
effects that eventually affect the DW mobility. On the other
hand, τTSC can have remarkable influence on the field-driven
DW velocity, as predicted by Eq. (27). This is the partial reason
why we extracted a different η = 1.3nm2 by using the same
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experimental data in Sec. III B. It suggests that τTSC must be
properly included to extract a reliable value of η.

IV. CONCLUSIONS

We have derived the nonlocal damping torque originated
from the pumped spin current by noncollinear magnetiza-
tion motion. This nonlocal damping torque consists of a
longitudinal and a transverse component that both depend
on the magnetization gradient and can inevitably affect the
noncollinear magnetization dynamics. We derive a generalized
Thiele equation (12) for the field-driven steady-state DW
motion under the influence of the nonlocal damping. For both
transverse and vortex DWs in ferromagnetic nanowires, the
transverse component of the nonlocal damping slows down
the DW propagation and increases the Walker breakdown field.
The analytical results are further confirmed by numerical sim-
ulations for transverse DWs. In addition, our results compare
well with experimentally observed damping dependence of
vortex DW mobility under an external magnetic field, while
the LLG equation without the nonlocal damping significantly
overestimates the DW velocity.

In noncollinear magnetization, an electrical current
exerts adiabatic and nonadiabatic spin-transfer torques (STTs)
[55–60]. The adiabatic STT that arises from spin conservation
can drive DW motion above an intrinsic pinning current
density, which has been well studied in literature [57,58].
The nonadiabatic STT that is usually characterized by a
dimensionless parameter β plays a very important role in
current-driven DW motion [59,60] because the steady velocity
is proportional to β and inversely proportional to the damping
α. Previous works in literature extracted β value from
experimentally measured DW velocity by assuming a constant
α in a DW. Thus the influence of the nonlocal damping revealed
in this paper may explain a large range of the extracted β

values for permalloy [61–64]. The torques originating from
Rashba and Dzyaloshinskii-Moriya interactions (but induced
by current) in noncollinear magnetization is usually measured
by comparing the experimental observed DW velocity with
that from micromagnetic simulations. Thus, the nonlocal
damping, which can have a more complicated form than
Eqs. (3) and (4) with complex interactions [65], has to be
appropriately included in the simulations.
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APPENDIX: SPIN PUMPING AND THE DAMPING
TORQUE IN A NONCOLLINEAR FERROMAGNETIC

NANOWIRE

In this Appendix we derive spin pumping Eq. (1) and
the resulting damping torque Eq. (2) exerted on the local

jpump
s (x) jpump

s (x + Δx)jpump
s (x − Δx)

jout
sjin

s

  
x − Δx

2   
x + Δx

2

FIG. 4. Sketch of spin pumping in a ferromagnetic nanowire with
noncollinear magnetization. A segment of magnetization pumps a
spin current jspump(x) = �

4π
g↑↓m(x) × ∂tm(x). The net spin current

flowing into (out of) the segment at x is given by the backward
(forward) derivative of the pumped spin current. The torque exerted
on the segment of magnetization at x is then defined as the net
spin current that is absorbed by the segment of magnetization, as
formulated by Eq. (A8).

magnetization in a metallic nanowire with noncollinear mag-
netization. Without loss of generality, we consider a one-
dimensional case with the magnetization m(x,t), in which
a small segment of magnetization centered at position x can
be approximated by a local collinear magnetization m(x). As
m(x) varies in time, it can pump out a spin current

jspump(x) = �

4π
g↑↓m(x) × ∂tm(x), (A1)

where g↑↓ is the material parameter to characterize the
magnitude of spin pumping and has the same dimension as the
conventional spin-mixing conductance [25]. This pumped spin
current flows both forward and backward, as schematically
shown by the blue arrows in Fig. 4. Since the magnetization
in the nanowire is not uniform, the spin current pumped
forward by the segment at position x is different from that
pumped backward by the next segment at position x + �x.
The incomplete cancellation of these two pumped spin currents
gives rise to a net spin currents across the cross section at
x + �x/2, which reads

js
(

x + �x

2

)
= jspump(x) − jspump(x + �x)

= �

4π
g↑↓[m(x) × ∂tm(x)

−m(x + �x) × ∂tm(x + �x)]

= − �

4π
g↑↓�x ∂x[m(x) × ∂tm(x)]x+ �x

2
.

(A2)

If we choose +x as the positive direction, js(x + �x/2)
corresponds to the outflow of the spin current for the segment
of magnetization at x, which will later be referred to as jsout. jsout
can be rewritten as a superposition of a longitudinal component
js‖out that is aligned with m(x) and a transverse one js⊥out that is
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perpendicular to m(x),

js‖out = − �

4π
g↑↓�x[∂xm(x) × ∂tm(x)]x+ �x

2
, (A3)

js⊥out = − �

4π
g↑↓�x[m(x) × ∂x∂tm(x)]x+ �x

2
. (A4)

In the same manner, we are able to find the the net spin current
across the cross section at x − �x/2 corresponding to the
inflow,

jsin ≡ js
(

x − �x

2

)
= jspump(x − �x) − jspump(x)

= − �

4π
g↑↓�x ∂x[m(x) × ∂tm(x)]x− �x

2
. (A5)

Its longitudinal and transverse components can be respectively
written as

js‖in = − �

4π
g↑↓�x[∂xm(x) × ∂tm(x)]x− �x

2
, (A6)

js⊥in = − �

4π
g↑↓�x[m(x) × ∂x∂tm(x)]x− �x

2
. (A7)

The difference between inflow and outflow spin currents is
absorbed by the local magnetization resulting in a damping
torque

τ damping = −γA
(
jsin − jsout

)
MsA�x

= γ

Ms

∂xjs(x), (A8)

where A is the cross sectional area of the nanowire and the
prefactor γ /(MsA�x) is to convert the torque in the unit of

s−1. The torque in Eq. (A8) due to absorption of pumped
spin current is only determined by the local magnetization
gradient, implying that the length scale of magnetization
variation, e.g., a DW width or a spin wavelength, is much
larger than the propagating length of the pumped spin current
in the ferromagnetic nanowire. This condition is in general
satisfied in disordered ferromagnetic materials, but it is found
in permalloy at low temperature that the spin coherent length
is up to 13.1 nm, where the nonlocal absorption of the pumped
spin current even changes the scaling of the effective damping
with the DW width [33].

While Eqs. (A2) and (A5) are two particular examples, the
net spin current in a noncollinear magnetization resulting from
spin pumping can be generally expressed as

js(x,t) = − �

4π
g↑↓�x ∂x[m(x,t) × ∂tm(x,t)]

= − �

4π
�↑↓ ∂x[m(x,t) × ∂tm(x,t)]. (A9)

Here we define the spin-mixing conductivity �↑↓ ≡ g↑↓�x

that is a proper parameter characterizing the (intralayer)
spin pumping in a noncollinear ferromagnetic material. The
conventional spin pumping at a ferromagnet-normal metal
interface [25] can be recovered from Eq. (A9) by taking the
effective thickness of the interface �x. Notice that g↑↓ has the
dimension of the inverse of area and �↑↓ has the dimension
of the inverse of length. In the limit of weak spin polarization
and no electron-electron interaction, �↑↓ can be derived using
electron gas model and expressed in terms of the conductivity
σ of the ferromagnetic metal, i.e., �↑↓ = π�σ/e2 [28].
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Á. Niño, A. Locatelli, A. Potenza, H. Marchetto, S. Cavill, and
S. S. Dhesi, Phys. Rev. B 82, 094445 (2010).

[23] N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406
(1974).

[24] S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40,
580 (2001).

[25] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.
Lett. 88, 117601 (2002); Phys. Rev. B 66, 224403 (2002).

064415-8

http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1007/BF01587621
http://dx.doi.org/10.1007/BF01587621
http://dx.doi.org/10.1007/BF01587621
http://dx.doi.org/10.1007/BF01587621
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1103/PhysRevLett.99.027204
http://dx.doi.org/10.1103/PhysRevLett.99.027204
http://dx.doi.org/10.1103/PhysRevLett.99.027204
http://dx.doi.org/10.1103/PhysRevLett.99.027204
http://dx.doi.org/10.1103/PhysRevB.76.134416
http://dx.doi.org/10.1103/PhysRevB.76.134416
http://dx.doi.org/10.1103/PhysRevB.76.134416
http://dx.doi.org/10.1103/PhysRevB.76.134416
http://dx.doi.org/10.1143/JPSJ.81.084701
http://dx.doi.org/10.1143/JPSJ.81.084701
http://dx.doi.org/10.1143/JPSJ.81.084701
http://dx.doi.org/10.1143/JPSJ.81.084701
http://dx.doi.org/10.1103/PhysRevB.79.064403
http://dx.doi.org/10.1103/PhysRevB.79.064403
http://dx.doi.org/10.1103/PhysRevB.79.064403
http://dx.doi.org/10.1103/PhysRevB.79.064403
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevB.87.014430
http://dx.doi.org/10.1103/PhysRevB.87.014430
http://dx.doi.org/10.1103/PhysRevB.87.014430
http://dx.doi.org/10.1103/PhysRevB.87.014430
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.105.236601
http://dx.doi.org/10.1103/PhysRevLett.105.236601
http://dx.doi.org/10.1103/PhysRevLett.105.236601
http://dx.doi.org/10.1103/PhysRevLett.105.236601
http://dx.doi.org/10.1103/PhysRevB.84.014412
http://dx.doi.org/10.1103/PhysRevB.84.014412
http://dx.doi.org/10.1103/PhysRevB.84.014412
http://dx.doi.org/10.1103/PhysRevB.84.014412
http://dx.doi.org/10.1103/PhysRev.73.155
http://dx.doi.org/10.1103/PhysRev.73.155
http://dx.doi.org/10.1103/PhysRev.73.155
http://dx.doi.org/10.1103/PhysRev.73.155
http://dx.doi.org/10.1109/TMAG.2009.2018862
http://dx.doi.org/10.1109/TMAG.2009.2018862
http://dx.doi.org/10.1109/TMAG.2009.2018862
http://dx.doi.org/10.1109/TMAG.2009.2018862
http://dx.doi.org/10.1103/PhysRevLett.102.177601
http://dx.doi.org/10.1103/PhysRevLett.102.177601
http://dx.doi.org/10.1103/PhysRevLett.102.177601
http://dx.doi.org/10.1103/PhysRevLett.102.177601
http://dx.doi.org/10.1063/1.3615961
http://dx.doi.org/10.1063/1.3615961
http://dx.doi.org/10.1063/1.3615961
http://dx.doi.org/10.1063/1.3615961
http://dx.doi.org/10.1103/PhysRevLett.113.237204
http://dx.doi.org/10.1103/PhysRevLett.113.237204
http://dx.doi.org/10.1103/PhysRevLett.113.237204
http://dx.doi.org/10.1103/PhysRevLett.113.237204
http://dx.doi.org/10.1126/science.284.5413.468
http://dx.doi.org/10.1126/science.284.5413.468
http://dx.doi.org/10.1126/science.284.5413.468
http://dx.doi.org/10.1126/science.284.5413.468
http://dx.doi.org/10.1038/nmat803
http://dx.doi.org/10.1038/nmat803
http://dx.doi.org/10.1038/nmat803
http://dx.doi.org/10.1038/nmat803
http://dx.doi.org/10.1103/PhysRevB.82.094445
http://dx.doi.org/10.1103/PhysRevB.82.094445
http://dx.doi.org/10.1103/PhysRevB.82.094445
http://dx.doi.org/10.1103/PhysRevB.82.094445
http://dx.doi.org/10.1063/1.1663252
http://dx.doi.org/10.1063/1.1663252
http://dx.doi.org/10.1063/1.1663252
http://dx.doi.org/10.1063/1.1663252
http://dx.doi.org/10.1143/JJAP.40.580
http://dx.doi.org/10.1143/JJAP.40.580
http://dx.doi.org/10.1143/JJAP.40.580
http://dx.doi.org/10.1143/JJAP.40.580
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevB.66.224403
http://dx.doi.org/10.1103/PhysRevB.66.224403
http://dx.doi.org/10.1103/PhysRevB.66.224403
http://dx.doi.org/10.1103/PhysRevB.66.224403


INFLUENCE OF NONLOCAL DAMPING ON THE FIELD- . . . PHYSICAL REVIEW B 94, 064415 (2016)

[26] Y. Liu, Z. Yuan, R. J. H. Wesselink, A. A. Starikov, and P. J.
Kelly, Phys. Rev. Lett. 113, 207202 (2014).

[27] E. M. Hankiewicz, G. Vignale, and Y. Tserkovnyak, Phys. Rev.
B 78, 020404(R) (2008).

[28] Y. Tserkovnyak, E. M. Hankiewicz, and G. Vignale, Phys. Rev.
B 79, 094415 (2009).

[29] J. Foros, A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys.
Rev. B 78, 140402(R) (2008).

[30] Y. Tserkovnyak and C. H. Wong, Phys. Rev. B 79, 014402
(2009).

[31] S. Zhang and Steven S.-L. Zhang, Phys. Rev. Lett. 102, 086601
(2009).

[32] X. S. Wang, P. Yan, Y. H. Shen, G. E. W. Bauer, and X. R. Wang,
Phys. Rev. Lett. 109, 167209 (2012).

[33] Z. Yuan, K. M. D. Hals, Y. Liu, A. A. Starikov, A. Brataas, and
P. J. Kelly, Phys. Rev. Lett. 113, 266603 (2014).

[34] V. G. Bar’yakhtar, Zh. Eksp. Teor. Fiz. 87, 1501 (1984) [Sov.
Phys. JETP 60, 863 (1984)].

[35] S. Kim, J.-H. Moon, W. Kim, and K.-J. Lee, Current Appl. Phys.
11, 61 (2011).

[36] J.-H. Moon and K.-J. Lee, J. Appl. Phys. 111, 07D120 (2012).
[37] K.-W. Kim, J.-H. Moon, K.-J. Lee, and H.-W. Lee, Phys. Rev.

Lett. 108, 217202 (2012).
[38] R. D. McMichael and M. J. Donahue, IEEE. Trans. Magn. 33,

4167 (1997).
[39] Y. Nakatani, A. Thiaville, and J. Miltat, J. Magn. Magn. Mater.

290-291, 750 (2005).
[40] W. Wang, M. Dvornik, M.-A. Bisotti, D. Chernyshenko, M. Beg,

M. Albert, A. Vansteenkiste, B. V. Waeyenberge, A. N. Kuchko,
V. V. Kruglyak, and H. Fangohr, Phys. Rev. B 92, 054430 (2015).

[41] Note that the magnetization magnitude is always fixed in
dynamics described by the LLG equation. The spatial and
temporal derivatives only act on the transverse components of
magnetization, as explicitly guaranteed by Eq. (10).

[42] A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).

[43] J. C. Slonczewski, J. Magn. Magn. Mater. 12, 108 (1979).
[44] B. Hu and X. R. Wang, Phys. Rev. Lett. 111, 027205 (2013).
[45] H. Y. Yuan and X. R. Wang, AIP Adv. 5, 117104 (2015).
[46] D. L. Huber, Phys. Rev. B 26, 3758 (1982).
[47] J. He, Z. Li, and S. Zhang, Phys. Rev. B 73, 184408 (2006).
[48] H. Y. Yuan and X. R. Wang, Europhys. J. B 88, 214 (2015).
[49] H. Y. Yuan and X. R. Wang, Phys. Rev. B 92, 054419 (2015).
[50] G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L. Erskine,

Nat. Mater. 4, 741 (2005).
[51] The widths of nanowires are taken from the corresponding

experiment and rc = 5 nm is fixed in this work for permalloy.
[52] Y. Li and W. E. Bailey, Phys. Rev. Lett. 116, 117602 (2016).
[53] H. T. Nembach, J. M. Shaw, C. T. Boone, and T. J. Silva, Phys.

Rev. Lett. 110, 117201 (2013).
[54] M. A. W. Schoen, J. M. Shaw, H. T. Nembach, M. Weiler, and

T. J. Silva, Phys. Rev. B 92, 184417 (2015).
[55] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[56] L. Berger, Phys. Rev. B 54, 9353 (1996).
[57] G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004).
[58] Z. Li and S. Zhang, Phys. Rev. B 70, 024417 (2004).
[59] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).
[60] A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys.

Lett. 69, 990 (2005).
[61] M. Hayashi, L. Thomas, C. Rettner, R. Moriya, and S. S. P.

Parkin, Appl. Phys. Lett. 92, 162503 (2008).
[62] S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach, and

C. H. Marrows, Phys. Rev. Lett. 102, 127203 (2009).
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