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The strained Fe-Co alloy in body-centered tetragonal (bct) structure has raised considerable interest due to its
giant uniaxial magnetocrystalline anisotropy energy. On the basis of the classical Heisenberg Hamiltonian with
ab initio interatomic exchange interactions, we perform a theoretical study of fundamental finite temperature
magnetic properties of Fe1−xCox alloy films as a function of three variables: chemical composition 0.3 � x � 0.8,
bct geometry [a,c(a)] arising from in-plane strain and associated out-of-plane relaxation, and atomic long-range
order (ALRO). The Curie temperatures TC(x,a) obtained from Monte Carlo simulations display a competition
between a pronounced dependence on tetragonality, strong ferromagnetism in the Co-rich alloy, and the beginning
instability of ferromagnetic order in the Fe-rich alloy when c/a → √

2. Atomic ordering enhances TC and arises
mainly due to different distributions of atoms in neighboring coordination shells rather than altering exchange
interactions significantly. We investigate the ordering effect on the shape of the adiabatic spin-wave spectrum for
selected pairs (x,a). Our results indicate that long-wavelength acoustic spin-wave excitations show dependencies
on x, a, and ALRO similar to those of TC. The directional anisotropy of the spin-wave stiffness d(x,a) peaks in
narrow ranges of composition and tetragonality. ALRO exhibits a strong effect on d for near equiconcentration
Fe-Co. We also discuss our findings in the context of employing Fe-Co as perpendicular magnetic recording
medium.

DOI: 10.1103/PhysRevB.94.064410

I. INTRODUCTION

The magnetic properties of the Fe-Co binary alloy have
attracted researchers for a long time. The ferromagnetic
Fe-Co phase in the body-centered cubic (bcc) structure is
well known to maximize the concentration-dependent mean
atomic moment among transition-metal phases (Slater-Pauling
curve) [1]. A few years ago, theory predicted a giant uni-
axial magnetocrystalline anisotropy energy (MAE) in body-
centered tetragonal (bct) Fe1−xCox alloy in narrow ranges of
concentration x and tetragonality c/a, which, in combination
with the high saturation magnetization, renders it a promising
material for thin film perpendicular magnetic recording ap-
plications [2]. While the original prediction of giant MAE
(Ref. [2]) was based on the virtual-crystal approximation
(VCA) to treat the alloy problem, follow-up first-principles
investigations showed that a more realistic treatment of
chemical disorder reduces the maximum calculated uniaxial
MAE in bct Fe1−xCox [3–5].

Experiments for strained Fe-Co alloy films on various fcc
transition metal substrates have qualitatively confirmed large
values of the MAE and verified that the appearance of a
perpendicular easy axis is sensitive to both alloy composition
and tetragonality [6–10]. In coherent epitaxial growth, the
choice of substrates with different lattice parameters allows
varying the degree of tetragonal distortion of the film in a qua-
sicontinuous way [11,12], unless first-order lattice instabilities
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in the out-of-plane direction occur [13], thus enabling control
of film properties.

Besides alloy composition and tetragonal distortion, it
has been realized theoretically that atomic long-range order
(ALRO) can have a significant effect on the MAE in bct
Fe-Co [3,4]. For stoichiometric equiconcentration Fe-Co,
the maximum degree of order yields the largest MAE,
while imperfect long-range order was found to reduce it
strongly [4]. Although a similar correlation between atomic
order and magnetocrystalline anisotropy is well-known for
Fe-Pt alloy [14–16], taking into account ALRO as a degree of
freedom to control the magnetic properties of bct Fe-Co had
not been recognized in the experiments until very recently [10].

Apart from high uniaxial MAE and saturation magneti-
zation, suitable materials for prospective magnetic recording
should also possess a Curie temperature moderately above
room temperature and respond quickly to external stimulus
triggering magnetization reversal, such as magnetic field or
laser light [17–19]. The Curie point is particularly important
in heat-assisted magnetic recording (HAMR), where locally
and temporarily applied heat reduces the coercivity of the
recording medium during magnetization reversal in order to
comply with presently achievable write fields [18,19]. The
switching speed of the magnetization vector, on the other
hand, imposes physical limits on the achievable data rates
and is connected to magnetization reversal and recovery
processes. In field-driven magnetization reversal, in particular
collective spin-wave excitations are created, which scatter in
the magnetic-subsystem and decay into the thermal bath during
magnetization recovery [20–22]. Thus, first-principles studies
of Curie temperature and spin-wave dynamics in conjunction
with understanding the details of the underlying physics
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are important aspects of designing materials for magnetic
recording.

The aim of the present paper is, on the one hand, to
characterize bct Fe-Co alloy films regarding their Curie
temperature and spin-wave properties as a function of alloy
composition and film geometry and, on the other hand, shed
light on the impact of ALRO on both parameters. This
study is mainly motivated by the aforementioned prediction
that atomic order can drastically influence the MAE in this
system, while such information is scarce from experiments. We
show that deviations from the ordered state can significantly
influence the anisotropy of the acoustic spin-wave dispersions
in bct Fe-Co alloy, especially for the equiconcentration FeCo
compound [23]. Our focus is on the adiabatic spin-wave
dynamics with the fast spin-flip degree of freedoms decoupled
from the slow motion of the spins. This approach yields a
coarsened excitation spectrum and does not provide informa-
tion on spin-wave lifetimes and Stoner excitations as well
as their interference in contrast to more general approaches
based on the transverse dynamical susceptibility [23–25] or
time-dependent density-functional theory [26]. However, the
adiabatic approach yields precise spin-wave dispersions and
stiffness constants as well as features of long-range exchange
interactions such as Kohn-anomalies [27,28].

The paper is organized as follows. In Sec. II we detail
on the modeling of structure and chemical disorder in Fe-
Co alloy films, introduce the magnetic model Hamiltonian
used to describe the finite temperature magnetic properties,
give a brief, self-contained description of how the adiabatic
spin-wave dispersions and Curie temperatures were obtained,
and list further computational details. In Sec. III we present
and discuss results on the Curie temperature, spin-wave
dispersion, and the spin-wave stiffness, alternating between
homogeneously disordered alloys and inhomogeneous alloys
with complete or incomplete ALRO. Section IV concludes and
briefly analyzes the present findings in the context of using
Fe-Co for magnetic recording applications.

II. MODELS AND COMPUTATIONAL DETAILS

A. Structure and chemical disorder

The employed structural model to describe strained tetrag-
onal Fe-Co films follows the concept of the epitaxial Bain
path (EBP) [3,29]. The EBP model assumes that interface
effects on the electronic structure of the film are negligible,
nonetheless the substrate-film interaction is strong enough to
let the substrate dictate the in-plane lattice parameter of the
film (epitaxial coherency). The achievable experimental film
thicknesses are large enough to justify the bulk treatment of
Fe-Co films in the context of theoretical modeling [9]. In the
case of substrates with fourfold surface symmetry, e.g., the
(001) facet of bcc and fcc crystals, the EBP assumes coherently
grown Fe-Co films in bct geometry with in-plane film lattice
parameter a (dictated by the substrate) and out-of-plane
lattice parameter c. The absence of forces perpendicular to
the substrate-film interface requires relaxation of c (or c/a)
equivalent to minimizing the total film energy E(a,c) for each
a [13,30]. Notice that the experiments [6–10] realized bct
Fe-Co films by means of epitaxial growth on (001) oriented

FIG. 1. Bct geometries for homogeneously random Fe1−xCox

alloy obtained by relaxing the c/a ratio for each a according to the
EBP model. The black dashed line (labeled “const. V ”) indicates the
hyperbola with constant bct unit cell volume equal to the experimental

volume of bcc Fe at room temperature (23.56 Å
3
). Lines guide the

eye. The inset sketches a tetragonal unit cell with concentration
Fe1−x+yCox−y on sub-lattice “1” and Fe1−x−yCox+y on sublattice “2”
used to model ALRO.

fcc crystals. In the following, we adopt the convention that the
z axis of a Cartesian coordinate system is oriented along the
tetragonal axis with fourfold rotational symmetry and that
the x and y axes span the quadratic basal plane of the bct
lattice.

Homogeneous chemical disorder in Fe1−xCox alloy was
described by means of the coherent-potential approximation
(CPA) as a basic tool of alloy theory [31]. We considered the
concentration in the interval 0.3 � x � 0.8, which approxi-
mately is the composition range where bct Fe-Co was predicted
to exhibit uniaxial perpendicular magnetic anisotropy [2–4].
Chemically inhomogeneous configurations with complete or
incomplete ALRO were modeled by partitioning the bct
structure into two interpenetrating simple tetragonal lattices
as in earlier work [4]. This approach allows for different
concentrations on the sublattices and the resulting alloy state
was also described by the CPA. Introducing the additional con-
centration variable y, the two fractional sublattice occupations
are Fe1−x±yCox∓y , where the upper (lower) signs denote the
composition of sub-lattice “1” (“2”); see the inset of Fig. 1
for a sketch. y is subject to the compatibility condition 0 �
y � min{x,1 − x}. We notice that the case y = 0 corresponds
to homogeneously disordered random alloys and that the
ordered B2-type structure is described for x = y = 0.5. For
x �= 0.5, the upper limit on y describes the maximum B2 order
compatible with the concentration x [4].

All total energy calculations were performed with the exact
muffin-tin orbitals (EMTO) method [32–34] with exchange-
correlation in the parametrization by Perdew, Burke, and
Ernzerhof [35]. The convergence of all numerical parameters
and particularly the Brillouin zone integration mesh (27 ×
27 × 27 division for the total energy) was carefully checked.
Magnetic order in Fe-Co was restricted to ferromagnetic states
in the calculations.
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B. Exchange interactions and Curie temperature

The finite temperature magnetic properties of Fe-Co were
addressed through an established theoretical approach based
on the adiabatic approximation for the slow spin dynamics
in a fast electronic medium [36,37]. As magnetic variables
of the itinerant electron system, we employ the spin-density
integrated within a spherical cell around a lattice site Mμi =
Mμieμi , where μ and i denote the sublattice and the unit cell,
respectively. Mμi is the length of the spin magnetic moment
and eμi its direction (normalized to unity). The underlying
adiabadicity assumption is the neglect of correlations of the
fast conduction-electron motion between any two lattice site
magnetic moments [27,36,37].

The properties of the itinerant electron system are then
mapped on a classical, nonrelativistic Heisenberg model for
an alloy,

H = −
∑
mn

∑
μν

∑
ij

(i �= j if
μ = ν)

χm
[μi]χ

n
[νj ]J

mn
[μi][νj ]eμi · eνj , (1)

where the Jmn
[μi][νj ] are the pair exchange interactions (the length

of the magnetic moments are absorbed in the definition of J ).
The sums run over the alloy constituents m,n = {Fe, Co}, all
sublattices μ,ν and unit cells i,j . The classical vector spin
variables eμi are localized at sites μi with corresponding
position vectors Rμi . In Eq. (1), χm

[μi] represents an occupation
number, which equals 1 if chemical species m occupies site i

on the sublattice μ and is zero otherwise [38].
The ab initio determination of the exchange interactions

were performed in the ferromagnetic state with a standard
method [39] as implemented in the EMTO-CPA method. We
used a very fine k-point mesh (43 × 43 × 43 division) to
ensure converged parameters for the most distant coordination
shells.

The Curie temperature of the Heisenberg model Eq. (1)
was obtained from classical Monte Carlo (MC) simulations
with the Metropolis algorithm as implemented in the UppAsd
code [40] by localizing the crossing point of the fourth-order
Binder cumulant of the magnetization for different sizes of
the simulation cell [41]. Fe and Co atoms were distributed on
randomly selected lattice sites subject to the total alloy con-
centration and sublattice occupations (the atomic distribution
specifies χm

[μi], thereby determining the corresponding set of
pair interactions for a site μi). Periodic boundary conditions
were employed, and the largest cell considered contained
54 000 lattice sites. All pair interactions within a shell of
diameter ≈5a around a site μi were considered in the MC
simulations. The spin system was equilibrated by 10 000 MC
steps and measurements were performed during 50 000 steps.

For the calculation of the adiabatic spin-wave dispersions
detailed in Sec. II C, we employed effective pair interactions
J[μi][νj ] defined by

J[μi][νj ] =
∑
mn

cm
μcn

νJ
mn
[μi][νj ], (2)

where, for brevity, the variable c represents the concentra-
tions on the different sublattices for homogeneously random,
partially, or fully ordered alloys. Equation (2) is the VCA
average for the randomness in the exchange interactions and

restores the wave vector of spin-waves as a good quantum
number. Its applicability to Fe-Co was motivated by similar
exchange interactions between Fe and Co [38,39]. Using the
VCA average, the Heisenberg Hamiltonian Eq. (1) may be
written as

Heff = − 1

N

∑
μν

∑
ij

(i �= j if
μ = ν)

J[μi][νj ]eμi · eνj , (3)

with N denoting the number of unit cells. Notice that J[μi][νj ]

and Jmn
[μi][νj ] are identical for ordered FeCo compound.

In Sec. III C we compare adiabatic spin-wave dispersion
curves obtained with the VCA average Eq. (2) to dispersion
relations obtained from the dynamical structure factor Sk(q,ω)
for selected cases. The latter treatment is based on spin
dynamics simulations for the alloy Hamiltonian Eq. (1)
performed with the UppAsd code [40] and allows addressing
the effect of site disorder on spin-wave properties.

C. Adiabatic spin-wave dispersion

To Fourier transform the effective exchange interactions
Eq. (2) on the underlying lattice, we employ the following
index notation for position vectors and real-space exchange
interactions as in earlier work [37],

Rμi = τμ = Rμ, [μ + 0] = μ

Rνj = R + τ ν = R[ν+R]

J[μi][νj ] → Jμ[ν+R],

where R = (Rx,Ry,Rz) and τ ν = (τνx,τνy,τνz) denote a lattice
period and a basis vector of the unit cell, respectively. The
lengths of the sublattice magnetic moments, Mμi = Mμ and
Mνj = Mν , are the concentration weighted averages of the Fe
and Co magnetic moments.

The dispersion curves for adiabatic linear spin waves are
obtained by solving the eigenvalue problem for the eigenvalue
εqn (q wave vector, n band index) and associated eigenvector
vμqn [37],

vμqnεqn = 2gμB

∑
ν

(MμMν)−
1
2 vνqnJ̃

μν
q , (4)

where J̃
μν
q is short hand for

J̃ μν
q ≡ Jμν

q − δμν

∑
λ

J
λμ

0 . (5)

The electron spin g-factor g is assumed to be 2 in the following.
The Fourier transformed exchange interactions J

μν
q are defined

by (Jμν

0 ≡ J
μν

q=0)

Jμν
q = δμνJμμ −

∑
R

Jμ[ν+R]e
iq(τμ−τ ν−R). (6)

Here, Jμμ is formally introduced since the lattice sum includes
R = 0 (Jμμ = 0). All pair interactions within a shell of
diameter ≈8a entered the Fourier transform.
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III. RESULTS AND DISCUSSION

A. Structure of strained Fe-Co films

Structural optimization of the bct axial ratio c/a was
performed for lattice parameters a in the interval 2.55 Å � a �
2.80 Å. The present results for chemically homogeneous alloys
shown in Fig. 1 are similar to those of our previous study [3]
using the VCA and are only briefly discussed here. Figure 1
indicates that the tetragonality of the corresponding relaxed
structures varies within

√
2 > c/a > 1, i.e., in between the fcc

and bcc boundaries. For all considered concentrations, the de-
pendence of the relaxed c/a ratio on a follows approximately
the one assuming a constant unit cell volume. We found that
there is only a small compositional effect on the relaxed c/a

ratio but for a = 2.55 Å and thus expect that volume effects
(varying composition, a fixed) on the magnetic properties of
bct Fe1−xCox are negligible but for a = 2.55 Å. We notice
that the insensitivity of the c/a ratio on the Co content was
experimentally validated for coherently grown bct Fe1−xCox

(0.4 � x � 0.6) films on Rh(001) [7,8].
Investigations for partially and fully ordered alloys were

performed for Fe0.5Co0.5 and Fe0.4Co0.6 in the range 2.60 Å �
a � 2.75 Å, i.e., the region with the highest predicted and
measured uniaxial magnetic anisotropy [2–10]. In the present
study, the sublattice concentration variable y was varied in
the entire range, i.e., from y = 0 to y = 0.5 and to y = 0.4
for Co concentrations x = 0.5 and x = 0.6, respectively. The
employed geometries for partially and fully ordered alloys are
the ones for the homogeneous disordered alloy, because our
calculations revealed that structural optimization of the c/a

ratio as a function of the sublattice concentration y leads to a
less than 1 % absolute change in the c/a ratio with respect to
the homogeneously disordered alloy.

B. Curie temperature

The computed Curie temperature of Fe1−xCox films shows
a strong dependence on tetragonality on the iron rich side that
gradually weakens as more Co is alloyed to Fe; see the contour
map TC(x,a) in Fig. 2(a). The iron rich corner (Fe0.7Co0.3 alloy)
with tetragonality c/a ≈ 1.4 exhibits the lowest Curie point
on this map. An analysis of the exchange interactions revealed
that antiferromagnetic interactions (J < 0) between Fe atoms
in neighbor shells with coordinates (in units of the bct lattice
parameters) (101), ( 1

2
3
2

1
2 ), and (201) appear, which is likely a

precursor to the instability of ferromagnetic order in fcc iron.
In contrast to the iron rich side, TC is only moderately structure
dependent on the Co rich side, e.g., TC of Fe0.2Co0.8 varies by
only 250 K in the entire considered a interval. We attribute this
finding to the strong ferromagnetic behavior of Fe0.2Co0.8, i.e.,
a result of the virtually fully occupied d-majority spin band.
Notice that ferromagnetic order is stable in fcc and bcc Co [42].
Strikingly, the Curie temperature of bct Fe-Co for 2.68 Å �
a � 2.75 Å (1.14 � c/a � 1.08) is largely independent on the
composition.

As regards the Co effect on TC of bcc Fe (experimental
value 1043 K [1]) and the Fe effect on the TC of fcc Co
(experimental value 1388 K [1]), we found that our results are
consistent with accessible experimental data and a previous
theoretical analysis [1,43]. Accordingly, Co raises the Curie
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(a) random Fe1−xCox

(b) partially/fully ordered Fe0.5±yCo0.5∓y

(c) partially ordered Fe0.4±yCo0.6∓y

FIG. 2. Curie temperature of (a) homogeneously random
Fe1−xCox alloy as a function of Co concentration x and lattice
parameter a, and of partially or fully ordered (b) Fe0.5±yCo0.5∓y and (c)
Fe0.4±yCo0.6∓y as a function of the sublattice concentration variable y

and lattice parameter a. Notice the different range of the color scales.

point of bcc Fe to a peak of ∼1600 K for x ∼ 30 % [43]. On the
other hand, Fe was found to decrease TC of fcc Co by ∼ − 9 K
per at. % Fe reaching ∼1160 K for fcc Fe0.25Co0.75 [1]. The
latter value is close to our computed value (Fig. 2, lower limit
on a), while we also find that TC of Fe0.7Co0.3 approximates
1600 K as c/a → 1 (Fig. 2, upper limit on a).

Turning to partially and fully ordered alloys, we found that
the compositional and structural trends of TC for Fe0.5Co0.5

and Fe0.4Co0.6 are similar; see the contour maps TC(y,a)
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shown in Figs. 2(b) and 2(c). An increase of the degree of
ALRO tends to raise the Curie point. This effect is most
pronounced for systems exhibiting the largest lattice parameter
a (corresponding to the smallest tetragonality). Consequently,
the already strong dependence of TC(y,a) on tetragonality
for the homogeneously random alloys becomes even more
pronounced toward the more ordered configurations.

In an attempt to shed light on the higher Curie temperature
in the more ordered state, we consider two extreme scenarios
in the following. The first scenario assumes that ALRO mainly
enhances the magnitude of exchange interactions in Fe-Co as
a whole, thereby raising TC. This is immediately plausible
from the mean-field picture for a monoatomic system where
T mf

C ∝ −J0 (for more than one sublattice, the mean-field
estimate is proportional to the largest eigenvalue of a matrix
spanned by −J

μν

0 [44]). The other extreme assumes that atomic
order itself drives the variation of the Curie temperature due
to different atomic distributions in coordination shells (order
has a negligible effect on the Jij in this scenario). In order to
elucidate the latter case, we performed additional calculations
of TC for maximally ordered Fe-Co alloy using the exchange
interactions obtained in the random state. These values for
TC are listed in Table I together with those for random alloys
and alloys possessing the maximum degree of long-range order
compatible with the concentration x. Accordingly, maximizing
the ALRO while fixing the exchange interactions yields Curie
temperatures slightly beyond those for the partially or fully
ordered alloys. In other words, the increase of TC due to
increasing the ALRO towards B2 is mainly due to atomic
order itself. The ordering effect on the magnitude of exchange
interactions (as a whole) is weaker and actually results in a
decrease of TC if measured with respect to values obtained for
ordered alloys using the exchange interactions obtained in the
random state; see Table I.

It is worth addressing the important role of the tetragonality
on TC further. To this end, we analyzed the effective exchange
interactions of the nearest-neighbor (NN) shells for all consid-
ered alloy configurations. We found that the present system
is characterized by strong NN ferromagnetic interactions
(J > 0) in the first coordination sphere (coordinates ( 1

2
1
2

1
2 ),

eight NNs), weaker and damped interactions of either sign for
larger interatomic distances (examples for exchange interac-
tions are shown in Sec. III D; for a more detailed discussion of
the exchange interactions in itinerant ferromagnets, their long-

TABLE I. ALRO effect on the Curie temperature: listed are TC

for random alloy (third column), partially or fully ordered Fe-Co
alloy with maximum degree of long-range order (forth column), and
partially or fully ordered Fe-Co alloy using the exchange interactions
(generic symbol J ) obtained in the random state (last column).

Random J Max. ordered J Random J

y = 0 max y max y

x a (Å) TC (K)

0.5 2.65 1207 1309 1345
2.75 1457 1606 1625

0.6 2.65 1254 1316 1327
2.75 1453 1550 1557

ranged and oscillatory character (Ruderman-Kittel-Kasuya-
Yoshida behavior), as a function of interatomic separation,
we refer the reader to, e.g., Turek et al. [45]). Interestingly,
we found that the c/a dependence of the first NN interaction
J1NN is consistent with the one of TC, i.e., J1NN decreases
monotonically as a function of decreasing a (increasing c/a

ratio) in Fe1−xCox for all considered x, and in partially or fully
ordered Fe0.5±yCo0.5∓y and Fe0.4±yCo0.6∓y for all considered y

(not shown). Because of these correlations and the dominance
of J1NN, judged in due consideration of the number of
equivalent neighbors, we reason that J1NN plays the most
decisive role for the dependence of TC on tetragonal distortion.
A similar correlation between J1NN and TC was reported in
earlier work for bct B2 ordered FeCo compound [46].

C. Spin-wave dispersion

The spin-wave energies εqn are functions of the Fourier
transformed Jμ[ν+R], i.e., the complexity of the real space
exchange interactions reflects in complex features of εqn.
Specifying the eigenvalue problem Eq. (4) for the present
case of two sublattices (μ,ν = {1,2}), nontrivial solutions are
obtained for eigenenergies

ε2
q± − 4μB

(
J̃ 11

q

M1
+ J̃ 22

q

M2

)
εq±

+ (4μB)2

(
J̃ 11

q J̃ 22
q − J̃ 12

q J̃ 21
q

M1M2

)
= 0. (7)

In the case of random alloys, the two sublattices are identical
and the eigenvalue problem may be reduced to the primitive
unit cell containing one site, hence to one spin-wave branch.
Here we work, however, with the conventional unit cell (two
sites) in order to ease the comparison to partially or fully
ordered alloys (with two “true” sublattices).

In Figs. 3(a) and 3(b), we present a detailed analysis of the
computed spin-wave spectra for two distinct bct geometries
and varying Co concentration, x = {0.3,0.5,0.8}. All spectra
deviate from a simple cosine shape along the 	 − Z, 	 − X,
and 	 − M high symmetry directions, indicating important
interactions with several coordination shells. In one case,
a = 2.65 Å (c/a ≈ 1.20–1.21) shown in Fig. 3(b), increasing
Co concentration mainly broadens the bandwidth of the spin-
wave spectrum and raises the zone boundary eigenenergies.
The associated increase in slope of the εq curve near 	

is not isotropic in q space and the eigenenergy at the M

point rises more strongly than at Z. While for a = 2.55 Å
(c/a ≈ 1.36–1.41) shown in Fig. 3(a) the impact of Co on
the spin-wave bandwidth is even more pronounced, also
a qualitative shift of the dispersion curves occurs when
the eigenenergy of the optical branch at 	 softens below
the maximum spin-wave energy not coinciding with any
high-symmetry point. This transition occurs upon reducing
x at approximately equiconcentration is connected with the
appearance of antiferromagnetic exchange interactions with
the neighbor shells with coordinates (101) and ( 1

2
3
2

1
2 ). Notice

that c/a ≈ 1.41 for a = 2.55 Å in Fe0.7Co0.3 (cf. Fig. 1) and
that this composition possesses a very low Curie temperature
(cf. Sec. III B).
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FIG. 3. Spin-wave dispersion relations between high-symmetry points in the Brillouin zone for random Fe1−xCox for (a) a = 2.55 Å and
(b) a = 2.65 Å and selected Co concentrations, and for partially or fully ordered (c) Fe0.5±yCo0.5∓y at a = 2.65 Å and (d) Fe0.4±yCo0.6∓y at
a = 2.75 Å. The points mark spin-wave dispersion relations obtained from the dynamical structure factor Sk(q,ω) by means of atomistic
spin-dynamics simulations (details see text). The corresponding error bars are a measure of spin-wave damping (FWHM of the spectral
function).

The Co effect on the spin-wave properties of bct Fe1−xCox

may be understood by uncovering the convergence of εq at
high-symmetry points as a function of the number of coordi-
nation shells included in the lattice summation in Eq. (6). From
the data for Fe1−xCox , x = {0.3,0.5,0.8}, and at a = 2.65 Å
shown in Table II, several important conclusions can be drawn.
As previously discussed, J1NN is the largest and consequently
determines the order of magnitude of the spin-wave bandwidth.
The chemical trend of the converged εq at high-symmetry
points as a function of increasing Co concentration is not
reflected in the magnitude of J1NN, which decreases with
Co addition (indicated by the smaller bandwidth taken into
account only the first coordination shell). Extending the lattice
summation to the first six coordination shells already describes
the observed chemical trend reasonably well, although most
eigenenergies of zone-boundary modes and at 	 approach the
converged values at longer range.

The dependence of the spin-wave dispersion relations
on ALRO in the Fe-Co alloy is detailed in Fig. 3(c)
for Fe0.5±yCo0.5∓y (at a = 2.65 Å) and in Fig. 3(d) for
Fe0.4±yCo0.6∓y (at a = 2.75 Å, c/a ≈ 1.07–1.08). The pri-
mary consequence of forming two distinct magnetic sublattices
is a lifted degeneracy at the zone boundary and the opening
of a gap that separates the acoustic from the optical spin-wave
branch. In both cases, the band gaps are the largest for the upper
limit on y but may not form symmetrically with respect to the

y = 0 energies. In particular for Fe0.4±yCo0.6∓y , the bands are
quite dispersion-less along the zone boundary. A secondary
result of the increasing degree of long-range order, i.e., toward

TABLE II. Eigenenergies εq (in units of meV) at high-symmetry
points of the Brillouin zone taken into account exchange interactions
for the first and first six coordination shells and considering the max-
imum number of computed exchange interactions for bct Fe1−xCox

with a = 2.65 Å. The first six shell coordinates (for 1 � c/a <
√

2)
in units of the bct lattice parameters with the number of equivalent
sites in square brackets are: ( 1

2
1
2

1
2 )[8], (100) [4], (001) [2], (110) [4],

(101) [8], and ( 1
2

3
2

1
2 ) [16].

x 0.3 0.5 0.8

shells One Six Max One Six Max One Six Max

q-point

Z (00 1
2 ) 333 334 302 321 372 320 304 427 348

A ( 1
2

1
2

1
2 ) 333 369 357 321 415 389 304 508 489

R (0 1
2

1
2 ) 333 387 380 321 435 420 304 502 494

	 (000)a 666 616 670 642 669 704 608 744 746

X ( 1
2 00) 333 350 336 321 400 362 304 475 406

M ( 1
2

1
2 0) 333 320 303 321 384 370 304 509 500

aOptical branch.
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a configuration with on average chemically distinct nearest
neighbors, is an increase of the spin-wave bandwidth at 	.

The zone-boundary band gap, 
εq = εq+ − εq−, where
J̃ 12

q = J̃ 21
q = 0, may simply be obtained via


εq

4μB
= ∣∣j 2

q − j 1
q

∣∣, jμ
q ≡ J̃

μμ
q

Mμ

. (8)

The analysis of j 2
q − j 1

q for Fe0.5±yCo0.5∓y shows that this
difference is positive definite at all high-symmetry points of
the Brillouin zone and increases monotonically as a function
of y; see Fig. 4. The relation between band gap and y

is approximately linear but at the Z point. The positive
definiteness of j 2

q − j 1
q implies that the Fourier transformed

effective exchange interactions of the Co-rich sub-lattice (J̃ 22
q )

exceed the magnitude of the Fourier transformed Fe-rich
intrasublattice interactions (J̃ 11

q ), although J̃ 11
q is normalized

by a larger moment on the iron-rich sites than J̃ 22
q is on the

cobalt-rich sub-lattice, i.e., M1 > M2.
The overall energetic lowering of the acoustic spin-wave

branch in the more ordered alloy configurations (shift of the
acoustic spin-wave density of states to lower energies) makes
acoustical spin-wave modes more easily excitable as long as
spin-wave interactions can be neglected. The ALRO effect on
long wavelength acoustic spin-waves is considered in detail in
Sec. III D.

Finally, we investigate selected spin-wave dispersion re-
lations by means of atomistic spin-dynamics simulations
without resorting to the VCA average for the randomness
in the exchange interactions [Eq. (2)]. The atomistic spin-
dynamics approach to the adiabatic spin-wave spectrum has
been elaborately described in the literature [47–50] and is
only briefly outlined here. The starting point is the temporal
evolution of the spin moments ei in Eq. (1) at finite tem-
peratures, which is governed by Langevin dynamics through
coupled stochastic differential equations (Landau-Lifschitz-
Gilbert equations). The fundamental quantity of interest for the
adiabatic spin-wave spectrum is the dynamical structure factor
Sk(q,ω) (ω = 2πv), which is the Fourier transformed space-
and time-displaced spin-spin correlation function [48,49].
The spin-wave dispersion relations may be determined from

the peak position of the structure factor along a q-vector
path [38,47,49]. Here, we used UppAsd to calculate Sk(q,ω)
and focus only on alloy disorder-induced spin-wave damping.
To this end, we fixed the simulation temperature T = 1 K and
Gilbert damping constant α = 0.001 in order to minimize other
broadening effects, similar to earlier work for Fe-Co [38]. As a
measure of the alloy-disorder effect we employed the full width
at half maximum (FWHM) of the spectral function Sk(q,ω).

The results of the atomistic spin-dynamics simulations are
also shown in Figs. 3(a)–3(d). In comparison to the adiabatic
spin-wave curves derived from Eq. (7) (acoustic branch), the
main conclusions are that (i) the adiabatic spin-wave spectrum
of ordered FeCo is well captured [Fig. 3(c)], (ii) the agreement
for long wavelengths, where peak broadening due to alloy
disorder is small, is generally very good, (iii) spin-waves with
shorter wavelength are more sensitive to local site disorder
indicated by broader peaks, and (iv) a softening of spin-waves
at high-symmetry points occurs. The latter two points indicate
that the VCA average for the randomness in the exchange
interactions is less reliable far from the 	-point, where the
spin-wave spectra of Fe-Co become more diffuse and life-time
effects more significant.

D. Spin-wave stiffness and anisotropy

The spin-wave stiffness—the prefactor in the quadratic
spin-wave dispersion relation on the acoustical branch in
the long-wavelength limit—could be obtained from a fit to
the spin-wave dispersion curves εqn. Due to the long-range
oscillatory nature of the exchange interactions in the present
alloy, J

μν
q converges, however, badly even for high R cutoff.

To resolve the issue in obtaining reliable spin-wave stiffnesses,
we applied a regularization procedure, originally proposed for
Bravais lattices [51], to the spin-wave stiffness tensor Dαβ

derived in the Appendix. We replace Eq. (A7) by a formally
identical expression

Dαβ = lim
η→0

Dαβ
η , (9)

Dαβ
η = 2μB

M1 + M2

∑
μν

∑
R

Jμ[ν+R](τμα − τνα − Rα)

× (τμβ − τνβ − Rβ)e−η|R|/a, (10)

which yields numerically convergent spin-wave stiffnesses.
We recently evaluated the numerical accuracy of this procedure

to 2 meV Å
2

for bcc random Fe0.9Co0.1 alloy related to the
choice of the damping parameter η [52] and found the same
accuracy for the presently considered bct systems. In praxis,
exchange pairs within a sphere of radius ≈8a were used for
the computation of Dαβ

η , where η was varied within [0.8 : 1.1]
and extrapolated to η = 0 using a second-order polynomial.

For the present tetragonal systems, Dαβ has two distinct
principal values, Dxx = Dyy and Dzz. We concentrate on the
scalar,

D = (DxxDyyDzz)1/3, (11)

which is the relevant prefactor in the temperature dependence
of the spontaneous magnetization at low temperatures due
to spin-wave excitations (Bloch’s law) [53], and define the
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FIG. 5. Spin-wave stiffness (top row) and spin-wave stiffness anisotropy (bottom row) of homogeneously random Fe1−xCox alloy as a
function of Co concentration x and lattice parameter a (left column), and of partially or fully ordered Fe0.5±yCo0.5∓y (center column) and
Fe0.4±yCo0.6∓y (right column) as a function of the sublattice concentration variable y and lattice parameter a. Notice the different range of the
color scales.

spin-wave stiffness anisotropy d from the principal values as

d ≡ Dzz

Dxx
. (12)

An anisotropy larger (smaller) than one means that long-
wavelength acoustical spin waves with in-plane wave vectors
are more (less) easily excited than spin waves with q parallel
to the z axis. Notice that d = 1 if c/a = 1 (bcc) or c/a = √

2
(fcc) by symmetry properties of the symmetrical second-rank
tensor Dαβ for cubic lattices.

The detailed analysis of the spin-wave stiffness for random
Fe1−xCox films shows a strong dependence on both Co
concentration and tetragonality; see the contour map D(x,a)
in Fig. 5(a). The iron-rich Fe0.7Co0.3 alloy with tetragonality
c/a ≈ 1.4 exhibits the softest spin-wave stiffness, while the
maximum spin-wave stiffness occurs in the cobalt-rich and low
c/a corner in this map. We omit presenting the compositional
and structural trends of the two components Dxx(x,a) and
Dzz(x,a) here and instead focus on and discuss their mutual
ratio. d(x,a) as shown in Fig. 5(d) reveals that d > 1 for most
Co concentrations and lattice parameters a, i.e., acoustical spin
waves with in-plane wave vectors are for most configurations
(x,a) more easily excitable than waves with out-of-plane
vector component. The anisotropy approaches, as expected,
the symmetry dictated value of 1 in the limit of the smallest
and largest a (i.e., on approaching the fcc and bcc boundaries,
cf. Fig. 1), while the transition from d > 1 to d < 1 close
to the Fe0.2Co0.8 alloy with a = 2.55 Å is not induced by
lattice symmetry. The Fe-rich side of the map d(x,a) exhibits a
prominent peak of height d ≈ 2 centered at a ≈ 2.63 Å, which
gradually disappears with more Co content in the matrix. This
drop of d with x is also reflected in the curvature of εq for
a = 2.65 Å as shown in Fig. 3(b): εq changes significantly

along 	-X in contrast to the nearly rigid curvature along 	-Z.
Notice that the peak maximum is approximately located at
c/a = (

√
2 + 1)/2 possibly pointing to a geometric origin,

i.e., the tetragonal lattice distortion deviates the most from
cubic symmetry in the range 1 � c/a �

√
2.

We found that the compositional and structural trends of
D(y,a) and d(y,a) are rather similar for the two investigated
partially or fully ordered alloys, see the two contour maps
D(y,a) shown in Figs. 5(b) and 5(c). Accordingly, an increase
of the degree of ALRO increases the spin-wave stiffness,
thus the excitation of long-wavelength acoustic spin waves
in random configurations is easier than in the more ordered
configurations. This effect is most pronounced for systems
exhibiting the largest lattice parameter a and is reminiscent
of the trend of the Curie point. For all degrees of atomic
order, D exhibits a strong dependence on tetragonality. The
spin-wave stiffness anisotropy d(y,a) [Figs. 5(e) and 5(f)]
is larger than one, peaks close to the lattice parameter
a = 2.65 Å for all y, and increases strongly toward the
maximum degree of ALRO except for the largest investigated
a values. We notice that D and d computed from recently
reported values on Dxx and Dzz for B2 ordered bct FeCo
compound [23] are in close agreement with the present values,
although experimental lattice parameters were assumed in the
calculations of Ref. [23].

Both the pronounced peak in the concentration dependence
of d(x,a) and the strong atomic ordering effect on d(y,a) in
the present alloy system may be understood on the basis of the
underlying pair exchange interactions. With intent to uncover
the dominating physical mechanism in the range of the NNs
only, we narrow the analysis of the exchange interactions to
the first six shells. These are shown in Figs. 6(a) and 6(b) for
bct random Fe1−xCox alloy, x = {0.3,0.5,0.8}, and two lattice
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FIG. 6. Effective exchange interactions for the first six coordination shells (sorted in order of interatomic distance) of random bct Fe1−xCox ,
x = {0.3,0.5,0.8}, for (a) a = 2.65 Å and (b) a = 2.75 Å. Exchange interactions for ordered FeCo (x = y = 0.5) are shown in (c) for a = 2.65 Å
and in (d) for a = 2.75 Å. Open and filled symbols denote intra- and intersublattice interactions, respectively. Note that for the ordered alloy
[panels (c) and (d)], sublattice “1” and “2” are pure Fe and Co, respectively.

parameters, a = {2.65 Å,2.75 Å}. We recall that d(x,a =
2.65 Å) shows the stronger x-dependence [Fig. 5(d)]. If we
assume in the following that the summation over R in Eq. (A7)
is performed coordination shell by coordination shell, then the
contribution of the first NN shell to d is equal to (c/a)2 for
1 � c/a <

√
2,1 thus does not depend on x. The particular

concentration dependencies of J2NN and J3NN (third NNs
interaction) introduce a difference to d: J2NN stiffens (softens)
for a = 2.65 Å (for a = 2.75 Å) with increasing x, while
J3NN softens in both cases [Figs. 6(a) and 6(b)]. Since J2NN

updates only Dxx and J3NN only Dzz, both shells lead a
strong dependence and a weak dependence of d(x,a) on x

for a = 2.65 Å and a = 2.75 Å, respectively. The influence of
composition on the fourth to sixth NN shells are comparable
in both cases.

The ordering effect on d(y,a) can then be understood
by comparing the exchange interactions in the ordered state,
Figs. 6(c) and 6(d), to the ones in the random state, Figs. 6(a)
and 6(b). This might be done by looking at the arithmetic
average since the intrasublattice interactions on the Fe and Co
sublattices, in particular, for the shells (100) and (001) in the
case a = 2.65 Å and for (100) in the case a = 2.75 Å differ
significantly from each other. Beyond the first NN shell and

1Notice that d = 1 for c/a = √
2 because there are 12 sites in the

first coordination shell.

for a = 2.75 Å, we found that the arithmetic averages of the
intrasublattice interactions (shells 2–5) and the intersublattice
interaction with the sixth NN shell in ordered states are
quite similar to their counterparts in the random state. Hence,
the shell-wise updates of d do not differ substantially. For
a = 2.65 Å, the average (100) and (001) interactions in
the ordered state are, however, notably smaller and larger,
respectively, than in the random state and mainly responsible
for the increase of d with concentration.

IV. CONCLUSIONS

Ab initio alloy theory as formulated in the coherent-
potential approximation and implemented in the EMTO code
was employed to describe geometry and interatomic magnetic
exchange interactions of homogeneously disordered, partially
and fully ordered Fe1−xCox alloy films (0.3 � x � 0.8). The
body-centered tetragonal structure of the strained films was
modeled in the framework of the epitaxial Bain path, which
established a relation between the relaxed out-of-plane lattice
parameter as a function of in-plane strain. The degree of atomic
long-range order was found to have a negligible influence on
the relaxed out-of-plane lattice parameter. A nonrelativistic
Heisenberg model parameterized with the computed exchange
interactions was used to estimate the Curie temperature of
the alloy in conjunction with Monte Carlo simulations. The
dependence of the Curie temperature for homogeneously
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random configurations on alloy composition and in-plane
lattice parameter results from a pronounced dependence on
tetragonality, strong ferromagnetism in the Co-rich alloy, and
the beginning instability of ferromagnetic order in Fe0.7Co0.3

when c/a → √
2 (face-centered cubic structure). Increasing

atomic long-range order was found to raise the Curie point
and originates mainly from the order itself, i.e., different
distributions of atoms in neighboring coordination shells rather
than an intrinsic alteration of exchange interactions.

The spin-wave dynamics was addressed within the adiabatic
theory where the randomness in the exchange integrals was
treated in the virtual-crystal approximation. The discussed
spin-wave spectra deviate from a simple cosine shape and their
bandwidths increase with the amount of Co and the degree of
atomic long-range order. The maximum spin-wave energies
are roughly five to six times higher than the Curie temperature
and are thus expected to be occupied sparsely at TC. In order
to test the reliability of the virtual-crystal approximation to the
randomness in the exchange integrals for Fe-Co, we computed
selected spin-wave spectra (acoustic branch) by means of
atomistic spin-dynamics simulations for the alloy Hamiltonian
Eq. (1) and subsequent analysis of the dynamical structure fac-
tor. The results indicate that the virtual-crystal approximation
is less reliable far from the 	 point, where local site disorder
broadens and softens the spin-wave spectra. The agreement be-
tween both approaches is, however, close for long wavelengths.

Our results indicate that long-wavelength spin-wave
excitations as characterized by the spin-wave stiffness
show overall similar dependencies on x and a as TC. The
correlation is particularly strong as regards the effect of
atomic long-range order on D. The directional anisotropy of
the spin-wave stiffness for the random Fe-Co alloy indicates
that acoustical spin waves with in-plane wave vector are
for most configurations (x,a) more easily excitable than
waves with out-of-plane vector component. The spin-wave
anisotropy was found to exhibit a prominent peak in narrow
ranges of concentration and tetragonality, and a strong
long-range order effect on the anisotropy was observed for
near equiconcentration Fe-Co alloy and particular geometries.
Sources to both findings could be traced back to exchange
interactions at the near and intermediate ranges.

What is more, atomic long-range order was predicted as
a means to tune both the Curie temperature and the spin-
wave dynamics. Experimentally, a variation of atomic long-
range order in Fe-Co can be achieved by varying the annealing
temperature and the annealing time in quenched samples [54].
The maximum computed ordering effects on TC and D are
about 10% and approximately 20% in the case of d. Small
perturbations of the maximum order yield small variations
of TC and D. In contrast, the previously reported atomic long-
range order effect on the magnetocrystalline anisotropy energy
of Fe-Co [3,4] is much more significant and already small
deviations from maximum order can have a detrimental effect
on the anisotropy energy.

With regard to utilizing Fe1−xCox alloys for perpendicular
magnetic recording applications, our results indicate that both
the alloy composition and the substrate lattice parameter in
coherent epitaxial growth of Fe-Co films are similarly effective
factors in tailoring Curie temperature and spin-wave dynamics
as is atomic long-range order. It seems that controlling the

atomic long-range order is the most important factor for
achieving high values of the magnetocrystalline anisotropy
energy since the appearance of a perpendicular easy axis is
confined to relatively narrow ranges of alloy composition and
tetragonality.

Future studies could elucidate the ordering effect on the fun-
damental magnetic properties of alloys, which are composed
of species with dissimilar pair exchange interactions.
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APPENDIX: SPIN-WAVE STIFFNESS TENSOR

Expanding the exponential in Eq. (6) in the limit q → 0
[q = q q̂, |q̂| = 1, q̂ = (q̂x,q̂y,q̂z)] yields

eiqr ≈ 1 + iq q̂ r − 1
2q2(q̂ r)2 + O[(qr)3]. (A1)

Using this expansion in combination with symmetries of lattice
and exchange interactions, J̃

μν
q [Eq. (5)] can then be cast into

J̃ μν
q ≈ J

μν

0 − δμν

∑
λ

J
λμ

0 + Ĵ
μν

q̂ q2, (A2)

where we defined Ĵ
μν

q̂ as

Ĵ
μν

q̂ ≡ 1

2

∑
R

Jμ[ν+R][q̂(τμ − τ ν − R)]2. (A3)

With J̃
μν
q from Eq. (A2), the two solutions of Eq. (7) are of

the form

εq± = 2μB

(
−A + Bq2 ±

√
A2 + Cq2 + Dq4

)
, (A4)

of which εq− correspond to the acoustic mode. A final Taylor
expansion of the square-root term in the previous expression
in terms of q2 up to first order yields

εq− = 4μB

M1 + M2

∑
μν

Ĵ
μν

q̂ q2 (A5)

valid for the acoustic mode and q → 0.
The components of the spin-wave stiffness tensor Dαβ are

derived from

Dαβ = 1

2q2

∂2εq−
∂q̂α∂q̂β

α,β = {x,y,z}, (A6)

= 2μB

M1 + M2

∑
μν

∑
R

Jμ[ν+R](τμα − τνα − Rα)

× (τμβ − τνβ − Rβ), (A7)

which is the desired result.
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[44] E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, Phys. Rev. B 70,
024427 (2004).
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