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Structural and magnetic field effects on spin fluctuations in Sr3Ru2O7
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We investigate the evolution of magnetic excitations in Sr3Ru2O7 in the paramagnetic metallic phase using
a three-band tight-binding model. The effect of Mn or Ti dopant ions on the Sr3Ru2O7 band structure has
been included by taking into account the dopant-induced suppression of the oxygen octahedral rotation in
the tight-binding band structure. We find that the low-energy spin fluctuations are dominated by three wave
vectors around �q = ((0,0),(π/2,π/2)) and (π,0), which compete with each other. As the octahedral rotation is
suppressed with increasing doping, the three wave vectors evolve differently. In particular, the undoped compound
has dominant wave vectors at �q = ((0,0),(π/2,π/2)), but doping Sr3Ru2O7 leads to a significant enhancement in
the spin susceptibility at the �q = (π,0) wave vector, bringing the system closer to a magnetic instability. All the
features calculated from our model are in agreement with neutron scattering experiments. We have also studied
the effect of a c-axis Zeeman field on the low-energy spin fluctuations. We find that an increasing magnetic field
suppresses the antiferromagnetic (AFM) fluctuations and leads to stronger competition between the AFM and
ferromagnetic spin fluctuations. The magnetic field dependence observed in our calculations therefore supports
the scenario that the observed nematic phase in the metamagnetic region in Sr3Ru2O7 is intimately related to the
presence of a competing ferromagnetic instability.
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I. INTRODUCTION

The bilayer compound Sr3Ru2O7 (Sr327) is a member
of the Ruddlesden-Popper series [1]. Although it is not
superconducting like single-layer Sr2RuO4 [2], the phase
diagram of Sr3Ru2O7 is quite rich. The undoped compound
is a metamagnetic metal on the verge of ferromagnetism
and shows a region of significant change in resistivity [3–5]
and development of a spin-density wave order in moderate
magnetic fields (B ∼ 8 T magnetic field applied along the
c axis) [6]. Rotating the field direction away from the
c axis affects the metamagnetic transition, and a nematic
state has been observed that is characterized by a strong
anisotropy in resistivity within the ab plane [6,7]. Apart from
the unusual magnetic field behavior, doping Sr3Ru2O7 with
Mn or Ti also leads to a number of interesting properties.
Both Mn and Ti act as substitutional impurities and replace
the Ru ions. Above a critical doping concentration of x ∼
5%, lowering the temperature leads to an insulating state
followed by a long-range antiferromagnetic order [8,9]. The
metal-insulator transition temperature grows with doping,
whereas the long-range antiferromagnetic (AFM) state shows
a domelike behavior in the temperature-doping phase diagram
and exists up to a doping level of x ∼ 20% [8,10,11]. Small
amounts of Ti dopants in Sr327 suppress the metamagnetic
transition, and this suppression has been argued to result from
competing magnetic interactions in Sr327 [12]. Therefore
understanding the low-energy spin fluctuations in Mn- or
Ti-doped Sr327 compounds will be crucial for unraveling the
origin of dopant-induced magnetic order as well as the physics
of metamagnetic transition.
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Undoped Sr327 is nonmagnetic but shows low-energy
spin fluctuations at the �qAFM = (qx,qy) = (π/2,π/2) wave
vector [13]. Note that the �q vector has been expressed here
in the smaller orthorhombic Brillouin zone [see Fig. 1(b)].
Inelastic neutron scattering experiments also observe en-
hanced incommensurate ferromagnetic spin fluctuations at
�qFM ∼ (0.09,0.09,0) [13]. These features in the paramagnetic
undoped compound can be understood from general Fermi-
surface nesting arguments [14]. However, upon doping with
Mn, neutron scattering experiments find a long-range AFM
state [15] with a dominant wave vector at �q ∼ (π,0), and
doping with isovalent Ti4+ ions leads to an AFM state
with the incommensurate wave vector �q ∼ (π + δ,0) [11].
Therefore this strong shift in the ordering vector of low-energy
fluctuations cannot be explained simply by a rigid band shift
induced by Mn doping. It is not well understood if the
significant shift in direction and magnitude of the �q vector with
Mn or Ti doping is due to a change in the nesting properties
of the Fermi surface caused by structural effects of doping or
whether we need to consider the physics of the insulating phase
to understand the formation of long-range antiferromagnetic
order. In the former scenario we can expect that the essential
ingredients of spin-correlation physics leading to a shift in �q
with doping would already be present in the high-temperature
metallic phase.

Structurally, the Sr3Ru2O7 compound differs from Sr2RuO4

not only by the presence of a bilayer coupling but also by a
significant oxygen octahedral rotation of θ ∼ 7◦ [16]. The
band folding associated with the rotated octahedra leads to a
complex Fermi surface and band structure in Sr3Ru2O7 [17].
The structural parameter controlling the degree of octahedral
rotation is strongly affected by the presence of Mn dopants. It
has been observed in x-ray diffraction experiments that upon
increasing the Mn concentration, the octahedral rotation is
suppressed by a doping of x ∼ 16% [18,19]. Therefore in
order to identify the mechanism governing the magnetic order
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FIG. 1. (a) The Fermi surface for x ∼ 1% in the tetragonal unit
cell. The colors represent the dominant orbital content with dyz (red),
dxz (green), and dxy (blue). The dashed brown lines represent the
dominant (π,0) nesting on the β pocket observed in the doped
compound and the dominant (π/2,π/2) nesting on the γ2 pocket
observed in the undoped compound. (b) The larger tetragonal zone
(k1,k2) (black) and smaller orthorhombic Brillouin zone (kx,ky)
(dashed red lines). (c) The band structure along high-symmetry
directions in the tetragonal unit cell showing the position of the Van
Hove singularity near the X point.

we need to study the effects of changes in octahedral rotation
on the low-energy spin fluctuations.

In this work, we use a three-orbital tight-binding model
with spin-orbit interaction and octahedral rotation applicable
to Sr327 and calculate the dynamical spin susceptibility
χ (�q,ω) in the high-temperature metallic phase. Electron
correlations are introduced using a multiorbital Hubbard-
Hund Hamiltonian, and interacting susceptibility is calculated
within a random-phase approximation (RPA). A similar tight-
binding model has been used to study the nematic order in
undoped Sr327 compounds [20,21]. We simulate the doping
dependence of the octahedral rotation on this system by the
suppression of a single tight-binding hopping parameter that
accounts for the effect of Mn doping on the octahedral rotation.
We find that the imaginary part of spin susceptibility indeed
shifts from �q ∼ (π/2,π/2) in the undoped compound to �q ∼
(π,0) near optimal doping. Additionally, the spin fluctuations
are strongly enhanced in magnitude as octahedral rotation
gets suppressed, indicating a tendency towards a magnetic
order at the �q ∼ (π,0) wave vector observed in experiments.
This provides evidence that the magnetic transition in Mn-
doped Sr3Ru2O7 is primarily governed by the doping induced
changes in the lattice structure. We further calculate the
effect of a c-axis Zeeman field on the spin fluctuations in

the undoped compound which is relevant to high-temperature
paramagnetic phase where the nematic fluctuations can be
neglected. We find that the AFM fluctuations not only become
more incommensurate but also get progressively weaker near
the �q ∼ (π/2,π/2) region. The calculated suppression of spin
susceptibility with magnetic field in the high-temperature
paramagnetic phase indicates that the observation of a spin-
density-wave (SDW) transition in finite magnetic fields cannot
be understood from the bare Hamiltonian and requires the
inclusion of additional effects such as nematic ordering that
has been proposed to exist in the low-temperature phase of
undoped Sr327 [20,21]. However, we do find that the presence
of a c-axis magnetic field in the high-temperature phase leads
to a stronger competition between the AFM and ferromagnetic
(FM) fluctuations in the undoped Sr327 compound, and the
spin fluctuations shift from the (π/2,π/2) position towards
the incommensurate wave vector that has been observed for
the SDW phase in a finite magnetic field.

II. MODEL

Tight-binding Hamiltonian. The electronic structure of
Sr3Ru2O7 has been modeled using a three-orbital tight-binding
model consisting of the t2g orbitals (dxz,dyz,dxy) which are
most relevant for their low-energy properties [20,22]. The
tight-binding model has been argued to reproduce the essential
features of the electronic structure of the Sr327 compound and
has been used to analyze the physics of the nematic state near
the metamagnetic transition [20] and model the quasiparticle
interference patterns [22]. The Hamiltonian is given by

H = H0 + HINT. (1)

The tight-binding Hamiltonian H0 for the Sr327 compound can
be written as a 12 × 12 matrix. This includes the enlarged unit
cell due to the effect of oxygen octahedral rotation that leads
to two sublattices which can be expressed in momentum space
by the characteristic wave vector �Q = (π,π ) in the tetragonal
basis. The unit cell is further enlarged along the c axis due
to the splitting of electronic bands by a bilayer interaction.
As discussed in Ref. [22], the Hamiltonian can be decoupled
into two independent parts after Fourier transforming along
the layer index. Therefore, writing the bilayer Hamiltonian as
H0 = h0(kz = 0) + h0(kz = π ), each component is given by

h0(kz) =
∑

�k
	

†
�k,s,kz

(
ĥ0s(�k,kz) ĝ†(�k,kz)

ĝ(�k,kz) ĥ0s(�k + �Q,kz)

)
	�k,s,kz

,

(2)

where

	�k,s,kz
= (

d
yz

�k,s,kz

,dxz
�k,s,kz

,d
xy

�k,−s,kz

,d
yz

�k′,s,kz

,dxz
�k′,s,kz

,d
xy

�k′,−s,kz

)
, (3)

with �k′ = �k + �Q, and dα
�k,s,kz

annihilates an electron with orbital

α, spin s, in-plane momenta �k, and momentum along the z

direction kz. The matrix components are given by

ĥ0s(�k,kz) = Âs(�k) + B̂1 cos(kz), (4)

ĝ(�k,kz) = Ĝ(�k) − 2B̂2 cos(kz). (5)
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The 3 × 3 matrix kernels are the intralayer hopping con-
tribution without octahedral rotation Âs(�k), staggered in-
plane hopping Ĝ(�k), interlayer hopping without rotation B̂1,
and staggered interlayer hopping B̂2. These hopping matrix
elements have been derived in Ref. [22] and are given by

Âs(�k) =

⎛
⎜⎝

ε
yz

�k εoff
�k + isλ 0

εoff
�k − isλ εxz

�k 0

0 0 ε
xy

�k

⎞
⎟⎠, (6)

Ĝ(�k) =

⎛
⎜⎝

0 trotγ�k 0

−trotγ�k 0 0

0 0 0

⎞
⎟⎠, (7)

B̂1 =

⎛
⎜⎝

−t⊥ 0 0

0 −t⊥ 0

0 0 0

⎞
⎟⎠, (8)

B̂2 =

⎛
⎜⎝

0 t⊥INT 0

−t⊥INT 0 0

0 0 0

⎞
⎟⎠. (9)

In the above equations, the single-particle energies are given
by

εxz
�k = −2t1 cos(k1) − 2t2 cos(k2), (10)

ε
yz

�k = −2t2 cos(k1) − 2t1 cos(k2), (11)

ε
xy

�k = −2t3[cos(k1) + cos(k2)] − 4t4 cos(k1) cos(k2)

− 2t5[cos(2k1) + cos(2k2)], (12)

εoff
�k = −4t6 sin(k1) sin(k2). (13)

The above tight-binding Hamiltonian is given in the tetragonal
basis (k1,k2) and can be converted to the basis of the smaller
octahedral Brillouin zone (kx,ky) with the transformation kx =
k1 + k2, ky = k2 − k1. The hopping matrix elements are in
units of t ∼ 300 meV, with t1 = t3 = 0.5, t2 = 0.05, t4 = 0.1,
t5 = −0.03, and t6 = 0.05. The spin-orbit coupling coefficient
is given by λ = 0.1. The spin-orbit coupling λ is assumed to
primarily couple the dxz/yz orbitals and ignores the coupling
to the dxy orbital. A similar spin-orbit coupling term has been
argued to explain the low-energy fluctuations in Sr2RuO4 [23].

The staggered in-plane hopping contains the hopping term
trot, and γ�k = cos(k1) + cos(k2). This term primarily describes
the effect of intraplane hopping induced by staggered rotation
of octahedral oxygen and includes the leading effect on the
hopping between nearest-neighbor Ru sites in Sr327 [22]. The
suppression of octahedral rotation with Mn doping can be
simulated by a reduction in trot that characterizes the strength
of octahedral rotation in real space and governs the extent
of hybridization due to band folding in reciprocal space. We
therefore use the octahedral rotation hopping matrix element
trot as a free parameter to study the doping dependence of low-
energy spin fluctuations on the Sr327 compound. Although we
also include a weak bilayer splitting of the bands by including
finite t⊥ = 0.005 and t⊥INT = 0.005 hopping terms, they have
been kept fixed as a function of doping. This is reasonable

since the bilayer terms do not have a significant effect on the
doping dependence of the low-energy spin fluctuations.

Zeeman field. We study the effect of an external magnetic
field oriented along the out-of-plane c-axis direction. The
magnetic field couples to both spin and orbital degrees of
freedom and modifies the electronic structure. For an arbitrary
magnetic field direction it is given by

HB = −μB
�Bi ·

∑
i

( �Li + 2�Si); (14)

this leads to the following form for a field along the c-axis
direction:

HZeeman = −iμBBz

∑
s,�k

(
d

yz†
�k,s

dxz
�k,s

− d
xz†
�k,s

d
yz

�k,s

)

− gμBBz

2

∑
�k,α

(
d

α†
�k↑dα

�k↑ − d
α†
�k↓dα

�k↓
)
. (15)

Here the energy scale for the Zeeman term B is expressed in
units of hopping t . The first (second) sum corresponds to the
orbital (spin) contribution to the Zeeman term.

Hubbard-Hund Hamiltonian. The electron correlations are
included in our model using an on-site Hubbard-Hund Hamil-
tonian. Following the discussion in Ref. [24], the interaction
Hamiltonian is approximated to have a spherical symmetry
and in real space can be written as

HINT =
∑

iμνθψs1s2

U
μνs1
θψs2

d
†
iμs1

diνs1d
†
iθs2

diψs2 , (16)

where i is the site index, (μ,ν,θ,ψ) represent the d- orbital
indices, and s1,s2 are the spin indices. The components of the
interaction matrix are given in Ref. [24] and also reproduced
in the Appendix.

Spin susceptibility. For a multiorbital system the bare
dynamical susceptibility is a tensor. In the presence of a
spin-orbit coupling we need to calculate the tensor separately
for the transverse and longitudinal directions. For the spin-up
channel it can be expressed as

χ
↑↑
l1l2l3l4

(�q,iωn) = 1

N

∑
�kαβ

W
αβ

l4l1l2l3
(�k,�q)

nF

(
ε

β

�k+�q
) − nF

(
εα

�k
)

iωn + (
εα

�k − ξ
β

�k+�q
) ,

(17)

W
αβ

l4l1l2l3
(�k,�q) = ψα

l4↑(�k)ψα∗
l1↑(�k)ψβ

l2↑(�k + �q)ψβ∗
l3↑(�k + �q). (18)

In the above (l1,l2,l3,l4) and (α,β) are orbital and band indices,
respectively, ωn are the Matsubara frequencies, ψα

lσ (�k) and
εα

�k are the components of the eigenvectors and eigenvalues
obtained by diagonalizing the tight-binding Hamiltonian,
and �q is the characteristic wave vector at which the spin
susceptibility is calculated. Note that in the calculations
performed in this work the vector �q is expressed in the smaller
orthorhombic Brillouin zone [see Fig. 1(b)]. The function
nF (εβ

�k ) represents the Fermi function calculated at band energy

ε
β

�k . In the absence of a Zeeman field the calculation of other
components of the bare susceptibility can be simplified using
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the following symmetries:

χ
↓↓
l1l2l3l4

(�q,iωn) = χ
↑↑
l4l3l2l1

(�q,iωn), (19)

χ
↑↓
l1l2l3l4

(�q,iωn) = χ
↑↑
l4l2l3l1

(�q,iωn). (20)

We further include electron correlations in the susceptibility
calculation using a RPA-based approach. We follow the
formalism derived in Ref. [24] and provide the susceptibility
expressions in the Appendix.

III. RESULTS

The Fermi surface of the 1% Mn-doped Sr327 compound
obtained from our tight-binding model is shown in Fig. 1(a).
This model reproduces well the observed Fermi surface sheets
seen in angle-resolved photoemission spectroscopy (ARPES)
experiments [20]. The small γ2 pockets shown in Fig. 1(a) near
the X-point [(±π,0) and (0, ± π )] regions of the tetragonal
Brillouin zone have a dominant dxy character on the curved
sides and a dxz/yz character on the flatter sides. The γ2

pocket in Fig. 1(a) has a crossing point with the γ1 Fermi
pocket. In general ARPES finds a hybridization between the
γ1 and γ2 pockets due to an additional spin-orbit contribution
LxSx + LySy which has been neglected in our study. This is
justified because the additional spin-orbit contribution does not
have a qualitative effect on our spin-susceptibility calculations
since nesting primarily depends on the flatter regions of the
Fermi surface and hence is not affected by the crossing points
between different bands. Further note that the model does not
include the inner � centered hole pocket which likely results
from the eg orbitals.

The most notable structural effect of Mn doping is the
suppression of octahedral rotation [18]. The effect of Mn
doping in Sr3(Ru1−xMnx)2O7 is considered by the variation
of the hopping parameter trot that represents the influence of
octahedral rotation on the tight-binding Hamiltonian; trot ∼
0.4 (trot ∼ 0.2) leads to an electron doping of n ∼ 4.01e−/Ru
(4.15e−/Ru) with x ∝ n for an Mn-dopant ion. This range of
doping x correctly corresponds to the region where the long-
range antiferromagnetic order is observed at low temperatures.
We discuss later the effect of an isovalent dopant such as Ti on
the spin fluctuations in the higher-temperature metallic phase.

The calculated dynamical susceptibility in the longitudinal
channel χ

′′
RPA(�q,ω) is presented in Fig. 2. In Fig. 2(a) we

show χ ′′
RPA(�q,ω) for trot = 0.4 and an Mn doping of x ∼ 1%.

The dominant low-energy spin fluctuations are peaked at
the �q = (π/2,π/2) wave vector, in agreement with neutron
scattering experiments [13]. As can be seen from Fig. 2(c), the
spin fluctuations in the undoped compound have a large con-
tribution at �q = (π/2,π/2) from the intraorbital susceptibility
corresponding to the dxy orbitals. The dominant dxy orbital
susceptibility contribution is due to a large density of states
near the Fermi energy residing on the dxy-orbital-dominated
γ2 Fermi pocket near the X points of the Brillouin zone.
This pocket is progressively shifted away from the Fermi
surface as trot decreases with Mn doping. Note that for the
x ∼ 1% compound in Fig. 2, there is a significant subdominant
contribution to the susceptibility at �q = (π,0) which can also
be seen in the static spin susceptibility χ ′(�q,0) shown in

FIG. 2. Plots showing the imaginary part of RPA spin suscep-
tibility χ ′′

RPA(�q,ω) for (a) x = 1% and (b) x = 6% Mn doping.
The corresponding orbital-resolved spin-fluctuation components
χzz

aaaa(�q,0.01), where a = (dyz,dxz,dxy) orbitals are shown for (c)
x = 1% and (d) x = 6% doping. They have been calculated for
U = 0.8 and J = 0.25U and kBT = 0.007.

Fig. 3(a). However, being weaker than the susceptibility at
�q = (π/2,π/2), it is relatively suppressed for a larger Coulomb
interaction closer to the Stoner instability. In addition to
the AFM fluctuations we also find strong but subdominant
ferromagnetic spin fluctuations at low energies which disperse
at higher energies. Interestingly, the relative strength of the
AFM and FM fluctuations depends on the strength of the
Coulomb interactions. We find that at low energies the FM
fluctuations dominate in the imaginary part of the bare
susceptibility but are weaker than AFM fluctuations for larger
electron correlations.

In Fig. 2(b) we show the calculated χ ′′(�q,ω) for a weaker
octahedral rotation trot = 0.36 which corresponds to a doping
of x ∼ 6%. The suppression of octahedral rotation not only
shifts the spin fluctuations from �q = (π/2,π/2) towards �q =
(π,0) but also enhances them significantly. This is evident
from the doping dependence of χ ′(�q,0) plotted in Fig. 3(a),
which shows that as the octahedral rotation gets reduced,
there is a crossover from �q = (π/2,π/2) to �q = (π,0) in the
susceptibility at trot ∼ 0.355 or x ∼ 5%. As can be seen from
Fig. 2(d), the peak at �q = (π,0) in doped Sr327 is primarily
due to the dxz/yz intraorbital nesting channel on the β band,

FIG. 3. (a) The Real part of spin susceptibility at �q = (π,0) and
(π/2,π/2) as a function of increasing trot (or decrease in doping x).
(b) The imaginary part for longitudinal and transverse susceptibilities
at x = 1% doping and �q = (π/2,π/2) as a function of energy.
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FIG. 4. Imaginary part of spin susceptibility χ ′′
RPA(�q,ω) for trot =

0.36 and isovalent dopant showing development of incommensurate
spin fluctuations.

unlike the undoped compound where the dominant fluctuations
correspond to the dxy-type γ2 bands. Note that if the electron
doping is kept fixed at n = 4.01e−/Ru, as would be the case
if the dopant ions act as isovalent Ti4+ ions, then as shown
in Fig. 4, at trot = 0.36 we find that the spin fluctuations are
still enhanced but are shifted from the �q = (π/2,0) point. This
result is relevant to observations of the incommensurate wave
vector seen in neutron experiments on Ti-doped Sr327 [11].

The enhancement in the susceptibility would bring the
system close to a Stoner instability as the octahedral rotation
gets progressively reduced with doping. Note that under this
scenario local magnetic order can be expected to form near
Mn dopants before the overall system crosses the Stoner
instability. Such behavior has been observed in resonant
elastic x-ray scattering experiment [9]. We therefore argue
that the �q = (π,0) magnetic state observed in Mn-doped Sr327
compounds is caused by a doping-induced structural distortion
that leads to a change in nesting properties at the Fermi surface.
These dominant spin fluctuations are already present in the
high-temperature metallic phase.

In Fig. 3(b) we show the energy dependence of the
dynamical susceptibility for the undoped system along the
longitudinal and transverse directions. This anisotropy in the
spin channel is caused by spin-orbit coupling and leads to an
enhancement in the longitudinal bare susceptibility by a factor
of 2, which has been argued to be the result of a larger number
of scattering channels along the longitudinal direction [23].
The energy dependence shows a peak at ω ∼ 1.5 meV similar
to the observation of a low-energy peak in inelastic neutron
scattering experiments [13]. Such a peak at low energies in
itinerant models usually indicates the proximity of the system
to a Stoner instability and would not exist if the system is far
from a magnetic instability.

The real part of the magnetic susceptibility χ ′(�q,0) is shown
in Fig. 5(a) [Fig. 5(b)] for x ∼ 1% (x ∼ 6%). Note that for
the lower doping, in addition to the �q = (π/2,π/2) peak
in the susceptibility, there is significant weight around the
(π,0) regions and along the (π/2,π/2) − (π/2,0) line. These
pseudo-one-dimensional nesting regions are dominated by the
intraorbital nesting on the γ1 band with dominant dxy character
(see Fig. 1). For x ∼ 6%, in Fig. 5(b) the static susceptibility
is much stronger and dominated by the (π,0) nesting in the in-
traorbital channel of the dxz/yz-dominated β band. Note that it
is also evident from Fig. 5 that the real part of the susceptibility

FIG. 5. The real part of susceptibility χ
′
RPA(�q,0) for U = 0.8,

J = 0.25U . The q vector is represented in units of 2πt . The plots
correspond to (a) x ∼ 1% and (b) x ∼ 6%.

χ ′(�q,ω) does not have any significant weight around the small
�q regions and is dominated by �q corresponding to the AFM
state. This is unlike the imaginary part of the bare susceptibility
χ ′′(�q,ω) that is dominated by the FM fluctuations close to
�q = 0. Since the imaginary part of RPA susceptibility is of the
form χ ′′(�q,ω)/{[1 − Uχ ′(�q,ω)]2 + [Uχ ′′(�q,ω)]2}, for smaller
(larger) electron correlations the FM (AFM) fluctuations will
dominate. This explains why low-energy FM spin fluctuations
are smaller in the dynamical susceptibility shown in Fig. 2 for
larger electron correlations.

We now turn to the external Zeeman field along the
c-axis direction to study its effect on the longitudinal spin
fluctuations in the undoped compound. We aim to study here
the high-temperature region where the bare band structure
properties dominate the energy scale and nematic fluctuations
that are known to be important at low temperatures do not
play an important role. Note that for a c-axis magnetic
field the Hamiltonian term primarily leads to a shift of the
chemical potential for the spin-up and spin-down components.
Therefore the effect of the magnetic field on spin susceptibility
would be to change the nesting properties of the Fermi surface.
In Fig. 6(a), we show variation of the imaginary part of the
spin susceptibility with changes in external magnetic field for
x ∼ 1% at ω = 0.005. From Fig. 6(a) two effects are apparent.
First, we can see from Fig. 6 that an external magnetic field
suppresses the spin fluctuations at the AFM wave vector,
and for a magnetic field of around B ∼ 0.01 (in units of
hopping t) the AFM and FM fluctuations become comparable
in magnitude. Therefore for larger magnetic fields, the material

FIG. 6. Dynamical spin fluctuations in the presence of a Zeeman
field in Sr327 for x = 1% doping and ω = 0.005. (a) Three-
dimensional plot showing the suppression of AFM fluctuation at
�q = (π/2,π/2). (b) Two-dimensional plot showing the development
of incommensurability in the AFM spin fluctuations for larger
magnetic fields.
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FIG. 7. Dynamical spin fluctuations in the presence of a Zeeman
field in Sr327 for x = 6% doping and ω = 0.005.

properties would be influenced by the stronger competition
between the AFM and FM fluctuations. Second, larger external
magnetic fields cause the AFM fluctuations to shift from the
�q = (π/2,π/2) direction. The stronger competition between
AFM and FM orders in finite magnetic fields and development
of incommensurate spin fluctuations have been observed in
neutron scattering experiments [6,25].

These features are, however, not observed in the doped
Sr327 compound (see Fig. 7). For a doping of x ∼ 6%, the
spin fluctuations are not significantly affected by a c-axis
Zeeman field; the fluctuations do not become incommensurate
like in the undoped compound, and unlike in the undoped
compound, the ferromagnetic fluctuations do not compete
with the AFM fluctuations at finite magnetic field. As stated
earlier, since the spin susceptibility gets suppressed within
our model with increasing magnetic fields, it will not lead to
a similar SDW instability observed in finite magnetic fields.
Therefore additional effects such as nematic fluctuations are
likely to play an important role in the development of the SDW
instability. It is also useful to note that the change in nesting
at the AFM wave vector with small changes in chemical
potential brought on by the change in magnetic field leads
to a significant effect on the spin susceptibility. An important
reason for this effect is the presence of a large density of
states due to the presence of a Van Hove singularity on the
γ2 Fermi pockets. Even small changes in chemical potential
would therefore lead to a significant change in the density of
states at the Fermi energy and therefore a more pronounced
dependence of spin susceptibility on magnetic field. In the
doped compound the reduced octahedral rotation shifts the
Van Hove singularity away from the Fermi energy. This can
explain the much weaker dependence of the spin susceptibility
on magnetic field strength in doped Sr327, as shown in Fig. 7.

In summary we find that with reduced octahedral rotation
and increasing electron doping the spin-fluctuation wave vec-
tor in Sr327 shifts from (π/2,π/2) to (π,0) and simultaneously
gets enhanced. The enhancement of the spin fluctuations is
strong enough to lead to a �q = (π,0) magnetic state as the sys-
tem approaches the Stoner instability with increasing doping.
In the presence of a Zeeman field, we find that the magnetic
field suppresses the dominant (π/2,π/2) spin fluctuations in
the undoped compound and leads to a stronger competition
between the AFM and FM fluctuations for larger fields.
Further the magnetic field also causes the spin fluctuations

to become more incommensurate. These observations for the
doped Sr327 and in the presence of a Zeeman field are in
agreement with neutron scattering experiments.
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APPENDIX

The on-site interaction Hamiltonian can be generally
expressed as

HINT =
∑

iμνθψs1s2

U
μνs1
θψs2

d
†
iμs1

diνs1d
†
iθs2

diψs2 . (A1)

Here U
μνs1
θψs2

is defined using the following symmetries:

U
μν↑
θψ↑ = U

μν↓
θψ↓ = Ū

μν
θψ , (A2)

U
μν↑
θψ↓ = U

μν↓
θψ↑ = V̄

μν
θψ . (A3)

The Ū ,V̄ tensors are obtained as

Ū
l3l4
l1l2

=
{

V −JH

4 ,l1 = l2 �= l3 = l4,
JH −V

4 ,l1 = l4 �= l3 = l2.
(A4)

V̄
l3l4
l1l2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U
2 ,l1 = l2 = l3 = l4,
V
2 ,l1 = l2 �= l3 = l4,
JH

2 ,l1 = l3 �= l2 = l4,
JH

2 ,l1 = l4 �= l3 = l2.

(A5)

The interaction matrix is taken in a spherical approximation
which leads to the relation U = V + 2JH . The longitudinal
and transverse susceptibilities can be derived following the
discussion in Ref. [24]. The expressions for the susceptibilities
are

χ̂ zz
RPA(�q,iωn) = χ̂1 + χ̂4 − χ̂2 − χ̂3,

χ̂±
RPA(�q,iωn) = χ̂5. (A6)

The Dyson equations that define χ̂1→6 have been provided in
Ref. [24]. After some algebra the final form of the longitudinal
spin susceptibility within RPA is a 36 × 36 matrix given by

χ̂ zz
RPA(�q,iωn)

= [
1̂ + M̂−1

22 M̂21
][

1̂ − (
M̂−1

11 M̂12
)(

M̂−1
22 M̂21

)]−1

× M̂−1
11 χ̂↑↑(�q,iωn) + [

1̂ + M̂−1
11 M̂12

]
+ [

1̂ − (
M̂−1

22 M̂21
)(

M̂−1
11 M̂12

)]−1
M̂−1

22 χ̂↓↓(�q,iωn), (A7)

M̂ =
(

1̂ + 4χ̂↑↑(�q,iωn)Û 2χ̂↑↑(�q,iωn)V̂

2χ̂↓↓(�q,iωn)V̂ 1̂ + 4χ̂↓↓(�q,iωn)Û

)
, (A8)

and the transverse susceptibility within RPA is given by

χ̂±
RPA(�q,iωn) = [1̂ + χ↑↓(�q,iωn)(4Û − 2V̂ )]−1χ↑↓(�q,iωn).

(A9)
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In the above equations the basis for characteristic wave
vector �q depends on the choice of basis for the tight-
binding Hamiltonian. In this study we have worked in the
octahedral basis corresponding to the smaller Brillouin zone
in Fig. 1(b). One simple check for the above equations
would be to look at the limit of the Hubbard model where

the electron correlations only contribute to a dominant in-
traorbital Coulomb term (l1 = l2 = l3 = l4). This significantly
simplifies the above equations and leads to exactly the same
expressions for longitudinal and transverse susceptibilities
derived by Eremin et al. [23] to study the single layer
Sr2RuO4.
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