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We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-
dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group
technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU(2S + 1) symmetry.
The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For
integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry
(except for S = 1). The corresponding ground state is a random singlet one but the singlets are formed mostly
by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite
dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other
phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the
effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional
power law with a finite dynamical exponent.
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I. INTRODUCTION

Systems with random interactions constitute an important
research field in condensed-matter physics. At the same
time that some disorder is unavoidable in experiments, its
presence can completely change the long-wavelength behavior
of the system, driving it through quantum phase transitions
(for a review see, e.g., Refs. [1–3]). Remarkably, the novel
low-energy behavior of matter that appears in the strong-
disorder limit is typically very distinct from that of the clean
systems. A striking example is the low-energy behavior of
one-dimensional random spin chains. For sufficiently strong
randomness, the ground state of the antiferromagnetic (AF)
Heisenberg spin-S chain becomes a collection of nearly
independent singlets of spin pairs [see Fig. 2(a)]: the so-called
random singlet state [4]. The energy spectrum associated
with these singlets is extremely broad and is responsible for
singular response functions. The magnetic susceptibility χ ,
for instance, diverges as ∼(T ln1/ψ T )−1, with a universal
(disorder-independent) tunneling exponent ψ = 1/2. In ad-
dition, the typical and average spin-spin correlation functions
behave quite differently. While the former one decays as a
stretched exponential ∼e−rψ

, where r is the distance between
the spin in convenient units, the latter decays much more
slowly, as a power law ∼r−4ψ . The fact that typical and average
values differ so much is the hallmark of phases governed
by infinite-randomness fixed points, a concept that could
only be grasped after the development of a strong-disorder
renormalization-group (SDRG) method [5–7]. In this method,
one keeps track of the entire effective distribution of energy
and length scales under the renormalization-group (RG) coarse
graining. In the vicinity of an infinite-randomness fixed point
these distributions tend to become infinitely broad along the
RG flow.

Later it was realized that very similar behavior would also
appear in other random spin chains, namely, at multicritical
points of dimerized spin-S chains [8], in AF SU(N ) spin chains
[9], and in nonabelian anyonic SU(2)k spin chains [10]. The
difference is that ψ now depends on other model details. In the

first model, the tunneling exponent is ψ = 1/N1, where N1 is
the number of dimerized phases meeting at the multicritical
point (the maximum being 2S + 1). In the second model,
ψ = 1/N2, where N2 is the number of different spin rep-
resentations describing the effective spin degrees of freedom
(the maximum being N ). In the third model, ψ = 1/N3, where
N3 = k. In addition, the ground state of these models is distinct
from the usual pairwise random singlet state because the
singlets are now formed by a larger number of spins, such
as spin trios, quartets, and so on [see Fig. 2(b)].

Recently [11], we have shown that random spin-1 chains
with bilinear and biquadratic SU(2)-symmetric interactions
harbor two types of random singlet phases: one in which
the spin singlets are formed by spin pairs and characteristic
tunneling exponent ψ = 1/2 and another in which the spins
are made in the great majority of spin trios. In addition,
ψ = 1/3. More interestingly, these phases exhibit emergent
SU(3) symmetry.

Despite all these developments, we still do not have a simple
criterion to decide whether a given random spin chain model is
in a certain random singlet phase or whether the random singlet
state has an emergent symmetry. In this paper, we investigate
the most general SU(2)-symmetric random spin-S model with
nearest-neighbor time-reversal-symmetric interactions only.
We show that, in the strong-disorder limit, these random
singlet states are realized in this model. In general, there
is a random singlet phase where the singlets are formed by
spin pairs only and the corresponding universal exponent
ψ = 1

2 . Strikingly, this pairwise random singlet exhibits an
emergent SU(2S + 1) symmetry. We show that this phase
is characterized not by one, but rather by 2S stable fixed
points associated with the same pairwise random singlet state.
The difference between them stems only from the structure
of the low-energy excitations, which are all deformations of
the spectrum with exact SU(2S + 1) symmetry. Furthermore,
the presence of additional SU(2)-invariant couplings (with
increasing powers of the scalar products of spin operators)
helps stabilize these phases, providing them with a large basin
of attraction.
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In addition to this pairwise random singlet phase, we show
that integer spin-S chains possess also another random singlet
phase in their phase diagram. This state is formed by spin trios
and other multiples of three, although in much less quantity;
see Fig. 2(b). Besides, it exhibits a universal exponent ψ = 1

3 .
For S = 1, this state exhibits emergent SU(3) symmetry. For
higher integer spins, there is no such symmetry enhancement.

The experimental relevance of systems with a large number
of internal degrees of freedom stems from the possibility
of their realization in condensed-matter systems or, more
promisingly, in cold-atom systems loaded in optical lattices.
Candidates include alkali-metal bosons, such as 23Na and
87Rb, as well as alkali-metal (132Cs) or alkaline-earth fermions
(9Be, 135Ba, 137Ba, 87Sr, or 173Yb). In the Mott insulating
limit, the importance of spin-spin interactions beyond the
Heisenberg term has been discussed for these systems [12–15].
Furthermore, in some cases the systems possess a symmetry
larger than the usual SU(2). For example, in the case of spin- 3

2
fermions, an exact SO(5) symmetry has been discovered which
requires no fine tuning [13,15]. In the case of alkaline-earth
atoms, the total spin is of purely nuclear origin and is decoupled
from the remaining dynamics. It thus provides the internal
degrees of freedom that realize an SU(N ) symmetry [16,17],
as in the cases of 87Sr (N = 10) [18] or 173Yb (N = 6) [19].
An SU(6) Mott insulating state of 173Yb atoms has been
achieved [20], although lowering the temperature below the
spin-exchange scale remains a challenge. Two of us have
already analyzed disordered SU(N )-symmetric chains [9]. The
phases we discuss include these enhanced symmetry points,
as well as others, as we discuss.

The present paper is structured as follows. First, in Sec. II,
we present the model and introduce the irreducible spherical
tensor notation in which our RG treatment is more natural. We
also make a connection with the projector notation which is
often used by the cold-atom community. The decimation steps
of the SDRG procedure are derived in Sec. III. This generalizes
the methods of Ref. [21] from the generic random spin-S
Heisenberg chain to the generic random spin-S time-reversal
and SU(2)-symmetric chain. We then provide a summary of the
results of the RG flow in Sec. IV. In Sec. V, we discuss the RG
fixed-point structure. We determine that a phase exists which
has a random singlet ground state with emergent SU(2S + 1)
symmetry. We also find the other fixed point which happens
only for integer spin-S chains. Finally, we briefly mention
other fixed points with FM tendencies. In Secs. VI and VII, we
apply in detail our framework to the particular cases of spin- 3

2
and spin-2 chains, respectively. A less technical summary of
our main results is given in Sec. VIII. In Sec. IX we give
a final summary and discuss future directions that remain to
be explored. Much of our more technical developments are
described in several appendixes.

II. MODEL

A broad class of disordered time-reversal and SU(2)-
symmetric spin-S Hamiltonians of a linear chain of Nsites sites
(with periodic boundary conditions) can be written as

H =
Nsites∑
i=1

Jmax∑
J=0

α
(J )
i (Si · Si+1)J , (1)

where Si = (Sx
i ,S

y

i ,Sz
i ) are the usual spin-S operators at

site i and α
(J )
i are exchange couplings that are taken to be

independent random variables distributed with the probability
distributions P J (α). The maximum power Jmax for a spin-S
system is 2S, since larger powers of the spin operators can be
written as linear combinations of smaller ones.

For our renormalization-group transformations, it is con-
venient to rewrite the Hamiltonian in Eq. (1) in terms of
irreducible spherical tensors (ISTs) YJ,M (Sj ) instead of powers
of spin operators Sk [22]. The ISTs can be defined via their
commutation relations with the spin operators (page 71 of
Ref. [23])

[S±
i ,YJ,M (Sj )] =

√
J (J + 1) ∓ M(1 ± M)

×YJ,M±1(Si)δi,j , (2)[
Sz

i ,YJ,M (Sj )
] = M YJ,M (Si)δi,j . (3)

Here YJ,M (Si) is an IST of rank J with 2J + 1 components
(M = −J,−J + 1, . . . ,J − 1,J ) and they are functions of the
spin operators Si . From these commutation relations, a recipe
to construct them immediately follows. The idea is to start
with the operator of highest M ,

YJ,M=J (Si) ∝ (S+
i )J , (4)

and make use of the commutation relations (2) to lower the
component index,

YJ,M−1(Si) = [S−
i ,YJ,M (Si)]√

J (J + 1) − M(M − 1)
. (5)

Note that these ISTs resemble the spherical harmonics
YJ,M (r). There is, however, an important difference: If one
wishes to “promote” spherical harmonics to ISTs, symmetriza-
tion is often required. For instance, Y1,0 ∝ z

r
is promoted to

Y1,0 ∝ Sz, but the xz
r2 term of the spherical harmonic Y2,1 is

promoted to 1
2 (SzSx + SxSz). Since the operator in Eq. (4)

is already symmetrized, the recursive application of Eq. (5)
automatically leads to symmetrized IST operators. We also
use the same IST normalization of Ref. [23] (page 23).

There is another interesting aspect we wish to point out. The
spin operators themselves are obviously rewritten as first-rank
ISTs. For example, Sz ∝ Y1,0 and Sx ∝ (Y1,−1 − Y1,1). The
dyadic term SxSx , however, is not, as it mixes ISTs of different
ranks. It has one component ∝[Y1,−1,Y1,1] ∝ Y1,0 and another
component ∝Y 2

1,1 ∝ Y2,2. Evidently, the former component
transforms as a vector while the latter one transforms as a
second-rank tensor. Therefore, each power (Si · Si+1)J appear-
ing in the Hamiltonian (1) transforms as linear combinations
of tensors of ranks J ′ � J . Rewriting (1) in terms of ISTs
allows us to untangle the different ranks. As we shall see, this
is of fundamental importance for the analysis of the SDRG
flow.

We now come to the point of rewriting the Hamiltonian
with this new set of operators. The important step is to build
rotation-invariant two-site terms. We define the operator ÔJ

as the scalar product of IST operators of the same rank (page
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72 of Ref. [23])

ÔJ (Si ,Si+1) ≡
J∑

M=−J

(−1)MYJ,M (Si)YJ,−M (Si+1). (6)

One can explicitly check using Eqs. (2) and (3) that

[S±
i + S±

i+1,ÔJ ] = [
Sz

i + Sz
i+1,ÔJ

] = 0, (7)

which shows that ÔJ is indeed rotation invariant. For example,
the operator Ô2 is [22]

Ô2(Si ,Si+1) = 15

16π
(Si · Si+1) + 15

8π
(Si · Si+1)2 − 5

8π
S2

i S2
i+1.

(8)

In Appendix A, we list all the ÔJ ’s needed in this paper. The
Hamiltonian in Eq. (1) can thus be rewritten as

H =
∑

i

Hi,i+1 =
Nsites∑
i=1

Jmax∑
J=0

K
(J )
i ÔJ (Si ,Si+1). (9)

Obviously, the new coupling constants K
(J )
i are linear combi-

nations of the original α
(J )
i and vice versa (see Appendix A).

Additionally, the distributions P J (α) determine the distribu-
tions of K

(J )
i , PJ (K). In this paper, we always work directly

with PJ (K).
A third important form of the Hamiltonian involves the use

of projection operators onto states of well-defined total angular
momentum S̃ of each pair of sites. The latter can be written
for a pair of spins as (page 38 of Ref. [23])

PS̃(Si ,Si+1) =
∏
σ �=S̃

2Si · Si+1 + 2S(S + 1) − σ (σ + 1)

S̃(S̃ + 1) − σ (σ + 1)

(10)

=
S̃∑

M=−S̃

|S̃M〉〈S̃M|, (11)

where σ = |Si − Si+1|, . . . ,Si + Si+1. It is clear that
PS̃(Si ,Si+1) selects, from all possible states of total angular
momentum of the pair, only the one equal to S̃. The generic
SU(2)-symmetric term for a pair of spins can thus be written
as a linear combination of these projectors and

H =
∑

i

Jmax∑
J=0

ε
(J )
i PJ (Si ,Si+1). (12)

This third form is common when the spin Hamiltonian
describes the low-energy sector of cold-atom systems in optical
lattices at commensurable fillings. In such cases, if only s-wave
scattering is retained, then ε

(J )
i = 0 for odd J , as required

TABLE I. A summary of the notation used in this paper.

Description Notation

Coupling constant of the term (Si · Si+1)n

[see Eq. (1)]
α

(n)
i

Irreducible spherical tensor of rank J , component
M , for a spin S

YJ,M (S)

Coupling constant of the term ÔJ (Si ,Si+1)
[see Eq. (9)]

K
(J )
i

Projector onto a multiplet of total angular
momentum S̃ of the pair of spins Si ,Si+1

[see Eq. (10)]

PS̃(Si ,Si+1)

Coupling constant of the term PJ (Si ,Si+1)
[see Eq. (12)]

ε
(J )
i

by the (anti-)symmetry of the wave function of a pair of
(fermionic) bosonic atoms [15,24]. Linear transformations
between ε

(J )
i , K

(J )
i , and α

(J )
i are given in Appendix A.

For convenience, in Table I, we summarize the notation we
use throughout the paper.

III. METHOD: STRONG-DISORDER
RENORMALIZATION GROUP

In this section, we derive the RG decimation procedure
for the Hamiltonian in Eq. (9). The basic idea of the strong-
disorder RG is to progressively eliminate local high-energy
degrees of freedom while at the same time keeping the low-
energy physics unchanged [5–7]. The local energy scales 	i

are the local gaps of the Hamiltonian Hi,i+1 describing the
coupling between spins Si and Si+1. We first find the largest
gap 
 = max {	i}, which sets the RG scale. Let us say that

 = 	2. We keep the ground multiplet of spins S2 and S3

and remove the higher-energy ones. Focusing on the four-spin
Hamiltonian

H4sites = H1,2 + H2,3 + H3,4, (13)

we then treat H1,2 + H3,4 as a perturbation to H2,3. The
procedure is iterated until we reach the low-energy scale
of interest. Essentially, two cases must be distinguished,
according to whether the eliminated multiplet is degenerate or
not. Next, we outline these two possible RG decimation steps.
Some details of the derivation are relegated to Appendix B.

A. First-order perturbation theory

In the case when the lowest-energy multiplet of the two-site
problem is not a singlet, it is generally sufficient to treat the
the effect of H1,2 + H3,4 via first-order perturbation theory.
If the ground multiplet of spins S2 and S3 has total angular
momentum, S̃, we can replace S2 and S3 with a new effective
spin S̃. The renormalized couplings K̃

(J )
1,3 between S̃ and

S1,4 are then obtained by projecting H1,2 + H3,4 onto this
degenerate ground state. It is important to note that the
projected Hamiltonian has the same functional form as the
unperturbed one. See Fig. 1 (“1st order” case) for a graphical
representation of the procedure in this case.

Let us show in more detail how K̃
(J )
1 and K̃

(J )
3 can be found.

Projecting H1,2 onto the multiplet S̃ (similarly for H3,4), we
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1 2 3 4S S S S

1st order 2nd order

FIG. 1. Schematic decimation procedure. The decimated spins
S2 and S3 are either replaced by an effective spin S̃ (“1st order”
case) or removed from the system (“2nd order” case), depending on
whether the local ground state of H2,3 has a degeneracy of 2S̃ + 1
or is a nondegenerate singlet, respectively. The set of renormalized
couplings K̃ = (K (1), . . . ,K (Jmax)) is given by Eqs. (18) and (25),
respectively.

obtain

H̃1,2 = PS̃H1,2PS̃

=
Jmax∑
J=0

K
(J )
1

J∑
M=−J

(−1)M (14)

×YJM (S1)PS̃YJ−M (S2)PS̃ (15)

=
Jmax∑
J=0

K̃
(J )
1

J∑
M=−J

(−1)MYJM (S1)YJ−M (S̃) (16)

=
Jmax∑
J=0

K̃
(J )
1 ÔJ (S1,S̃), (17)

where PS̃ is the projector in Eq. (10). The step from (15) to
(16) involves the application of the Wigner-Eckart theorem:
PS̃YJ−M (S2)PS̃ = f (J )(S2,S3,S̃)YJ−M (S̃), where the constant
f (J ) does not depend on M . The last feature preservers the
SU(2) symmetry. Therefore, the neighboring couplings K

(J )
1

and K
(J )
3 are renormalized to

K̃
(J )
1 = f (J )(S2,S3,S̃)K (J )

1 ,

K̃
(J )
3 = f (J )(S3,S2,S̃)K (J )

3 , (18)

while the set of couplings {K (J )
2 } is removed. This is a

generalization to higher-order ISTs of the RG step derived
by Westerberg et al. in Ref. [21]. In Appendix B, we obtain
closed-form expressions for the functions f (J ) in terms of
Wigner’s 6j symbols.

In the lowest-rank case J = 1, i.e., for the usual Heisenberg
Hamiltonian, the effective couplings are always nonzero (ex-
cept in the obvious nondegenerate case S̃ = 0). Interestingly,
this is not always true in the higher-rank cases. In fact, there
are two cases where the above effective couplings can vanish.

Case (a): If the IST rank J is larger than 2S̃. In this case,
the projection is zero simply because one cannot construct a
large rank J IST out of small angular momentum operators. A
general derivation can be found in Appendix B. For example,
when S2 = S3 = 3/2 (thus, Jmax = 3) and the ground multiplet
has S̃ = 1, the IST YJ=3,M (S̃) vanishes identically. We come

back to this point in Secs. VI and VII when we study the spin- 3
2

and spin-2 chains.
Case (b): If the function f (J ) vanishes for some specific

combinations of S2, S3, and S̃ not predicted by case (a). For
example, when S2 = S3 = 3

2 and J = S̃ = 2, f (J )(S2,S3,S̃) =
0. Note that J < 2S̃, so case (a) does not apply. We can
explicitly show that this case never happens for ISTs with
J = 1. It is a feature that happens only when higher-rank
ISTs are included. Since there is no general rule to predict
when it happens, its consequences have to be analyzed on a
case-by-case basis.

Evidently, these two cases configure a failure of the usual
RG decimation procedure since the renormalized constants
vanish and the chain becomes disconnected from that spin
pair and is effectively broken up. The remedy is to include
corrections in higher orders of perturbation theory. This would
introduce new types of terms in the effective Hamiltonian
(such as three-spin couplings), which makes the problem
much harder to treat. In this paper, we do not implement
this remedy in full generality, although we discuss some of
its features in Appendix F. Nonetheless, as we discuss in
Sec. VI C, the effects of such peculiar decimations in the
RG flow are not important in the great majority of flows. In
general, first-rank couplings K (1) are present and the chains
never become disconnected.

Finally, we emphasize that we assume that two or more mul-
tiplets of well-defined angular momentum are not degenerate
in the ground multiplet. If this were not the case, the projection
from Eqs. (15) to (16) would have to incorporate the projection
onto the additional multiplets. In general, this procedure would
change the functional form of the projected Hamiltonian and a
more elaborate RG procedure would be needed. Nevertheless,
these accidental degeneracies appear only by fine tuning of
the coupling constants K

(J )
2 and can be safely ignored. Such

high-symmetry cases are unstable in the sense that the RG flow
is always away from them. We come back to this point later
when we analyze a few cases of physical importance.

B. Second-order perturbation theory for singlets

When the two-spin problem has a singlet ground state, the
first-order perturbation theory term vanishes and a second-
order perturbation analysis is necessary. In this case, the spin
pair S2 and S3 is frozen into a singlet and decouples from
the chain, while the neighboring spins S1 and S4 become
connected (due to virtual excitations of the singlet) via new
effective couplings not present in the initial Hamiltonian. This
is depicted in Fig. 1 as the “2nd order” case.

Let us define S ≡ S2 = S3, since a necessary condition for
singlet formation is that the spins of the two sites are equal.
The second-order perturbation-theory renormalization of the
Hamiltonian is given by

H̃1,4 = P0(H1,2 + H3,4)P0̄
1

E0 − H2,3
P0̄(H1,2 + H3,4)P0,

(19)

where E0 is the energy of the singlet, P0 is the projector
onto the singlet state, and P0̄ = 1 − P0 is the projector onto
all other multiplets J ′ = 1, . . . ,2S. Neglecting unimportant
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constant terms, we get

H̃1,4 = P0H1,2P0̄
1

E0 − H2,3
P0̄H3,4P0 + H.c. (20)

= 2P0H1,2P0̄
1

E0 − H2,3
P0̄H3,4P0. (21)

Writing H1,2 and H3,4 explicitly, we are left with the challenge
of computing terms like P0YJ−M (S)P0̄. Let us denote by J ′ �=
0 an arbitrary total angular momentum present in the projection
operator P0̄. The Wigner-Eckart theorem (page 74 of Ref. [23])
ensures the only value of J ′ yielding a nonzero matrix
element is J ′ = J , that is, 〈00|YJ−M (S)|J ′M ′〉 ∝ δJ,J ′δM,M ′ .
Therefore, only the total angular momentum equal to the IST
rank gives a nonvanishing contribution to the perturbation
theory. By defining J̃max = min (Jmax,2S) and 	E(0,J ) < 0
to be the energy difference between the ground state and the
excited state of total angular momentum J , we get

H̃1,4 = 2
J̃max∑
J=1

K
(J )
1 K

(J )
3

×
J∑

M=−J

(−1)Mg(S,J )

	E(0,J )
YJM (S1)YJ−M (S4), (22)

where

(−1)Mg(J,S) = 〈00|YJ−M (S)|JM〉〈JM|YJM (S)|00〉. (23)

Note that neither the energy denominator 	E(0,J ) nor the
function g(J,S) depends on M , since the Hamiltonian is SU(2)
symmetric. A closed-form expression for the function g(S,J )
can be found in Appendix B, where the values needed in this
paper are also listed. In conclusion, the effective Hamiltonian
has the form

H̃1,4 =
J̃max∑
J=1

K̃
(J )
14 ÔJ (S1,S4), (24)

where the renormalized couplings are

K̃
(J )
1,4 = 2

g(J,S2)

	E(0,J )
K

(J )
1 K

(J )
3 . (25)

Equations (18) and (25) highlight the most important
feature of the decimation procedure: Under the RG flow,
the renormalized couplings K̃

(J )
i,j depend only on coupling

constants of the same rank J , which is a direct consequence
of the SU(2) symmetry. This is why working with the ISTs
is a natural choice for these systems. This will have profound
consequences for the identification of the stable fixed points,
as will become clear later.

In summary, we have determined the decimation procedure
for our generic SU(2)-symmetric quantum spin-S chain [see
schematics in Fig. 1], which generalizes the one obtained
by Westerberg et al. [21] devised to describe generic spin-S
Heisenberg chains (i.e., with Jmax = 1). We search for the
strongest coupled spin pair in the chain (which defines our

RG cutoff energy scale 
) and decimate it. If the local
ground state is a singlet, the spin pair is removed and the
renormalized coupling constants between the neighbor spins
are given by Eq. (25). Otherwise, the spin pair is replaced
with an effective spin S̃ given by the total angular momentum
of the ground-state multiplet. Moreover, this new effective
spin degree of freedom interacts with the nearest-neighbor
spins via the renormalized couplings given by Eq. (18). Upon
decimation, the coupling constants and the spins change. For
a complete description of the RG flow, one then needs to
keep track of the joint distribution of coupling constants
and spin sizes at the cutoff energy scale 
: Q(K̃,S̃; 
),
where K̃ = (K (1), . . . ,K (Jmax)). The distribution of a particular
variable can be obtained by integrating out the other ones. For
instance, the distribution of the I th coupling is PI (K; 
) =∑

S

∫ ∏
J �=I dK (J )Q(K̃,S̃; 
). In what follows, we analyze the

fixed points of our SDRG flow.

IV. TECHNICAL SUMMARY OF THE RG FLOW AND THE
CORRESPONDING ZERO-TEMPERATURE PHASES

Given the prescriptions of the strong-disorder
renormalization-group method derived in Sec. III, we are now
set to apply the SDRG decimation procedure to our system
Hamiltonian (9) and analyze the general features of the RG
flow. A complete characterization involves (i) finding all the
fixed points, (ii) classifying their stability, and (iii) determining
their basins of attraction in the case of totally attractive fixed
points. The fixed points are characterized by the joint distribu-
tion of spin sizes and the Jmax coupling constantsQ∗(K,S) (we
denote a fixed-point distribution with the superscript ∗). Ac-
complishing these three tasks allows us to determine the phase
diagram of the system and the low-energy physical behavior.
As one can guess, this is not an easy task and simplifications are
needed. Below, we give a summary of the structure of the RG
flow and the simplifications that can be made after one knows
the fixed-point distributions. We focus on the fully stable
fixed points, which determine the stable phases of the system.

One way of thinking about the problem is the following.
Consider the set of vectors {ωi}, where ωi = (Si,Ki ,Si+1) and
Ki = (K (1)

i , . . . ,K
(Jmax)
i ) is the vector of coupling constants.

The set {ωi} defines the Hamiltonian (9). In the RG framework,
it defines an initial condition of the RG flow. In the RJmax+2

space, this initial condition is just a set of vectors sharing the
same origin. Under the RG flow, these vectors change their
lengths and directions until they converge to a fixed-point
distribution, which can be viewed as another set of vectors
{ω∗

i }. We have carried out this detailed analysis and found
the possible fixed-point distributions of this system. As shown
latter, the fully stable fixed-point distributions can be classified
in two major groups: one that has essentially AF correlations
(but without AF long-range order) and another characterized
by strong FM tendencies. We now discuss their generic
features.

The group of AF stable fixed points is characterized by a
single spin size, Q∗(Ki ,Si) = R∗(Ki)δS,Si

. Furthermore, the
distribution of coupling constants is such that its support lies
strictly along a single coordinate axis I in the Jmax-dimensional
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space of vectors Ki , K
(J )
i = K

(I )
i δJ,I . In other words,

R∗(Ki) = δ
[
K

(1)
i

] · · · δ[K (I−1)
i

]
P∗[K (I )

i

]
× δ

[
K

(I+1)
i

] · · · δ[K (Jmax)
i

]
. (26)

There are two possibilities for the distribution function P∗(x).
In one case, K

(I )
i is strictly positive and

P∗(x) = θ (x)
ψ−1 − 1


 ln 


(



x

)1− ψ−1−1
ln 


, (27)

with ψ = 1/2 being a universal tunneling exponent. The
distribution in Eq. (27) represents an infinite-randomness fixed
point, since its relative width (the ratio of its standard deviation
to its average value) grows without bounds as 
 → 0. This
form is familiar from the well-studied case of disordered AF
Heisenberg chains [4–6]. The relation between energy 
 and
length L scales is activated, i.e., ln 
 ∼ −Lψ . This has impli-
cations to many low-energy thermodynamic observables such
as magnetic susceptibility χ ∼ T −1| ln T |−1/ψ and specific
heat C ∼ | ln T |−1/ψ . Moreover, they are associated with an
emergent SU(2S + 1) symmetry. Note that the form of the
distribution in this case varies as the cutoff 
 is reduced. It can
be regarded as describing a fixed point, however, if one rescales
the variables appropriately by the cutoff [4]: If ζ = ln (
/x)
and 
 = ln (
0/
) (where 
0 is the initial value of the cutoff),
then the ζ distribution has the form P̃∗(ζ ) = q∗(ζ/
)/
,
where q∗(x) = e−x is indeed fixed. Since the fixed point is
uniquely specified by a semiaxis direction in Ki space, it can
represented by a point on the surface of the unit d-dimensional
hypersphere, where d = Jmax − 1.

In the case of the other AF fixed point, the coupling
constants along the axis direction are either positive or negative
with equal probability. This can only happen for chains with
integer S > 1/2. The fixed-point distribution is still given by
Eq. (27) (with x → |x|) but with the important difference in the
tunneling exponent: ψ = 1/3. The other physical properties
have the same form as above but with ψ = 1/3. The value
I = JS �= 1 depends on the spin size S. For the case of
spin S = 1, JS = 2 and this fixed-point is associated with
an emergent SU(3) symmetry [11]. For other spin sizes, the
symmetry is only the bare SU(2) symmetry. Strictly speaking,
this AF fixed point cannot be represented as a single point on
the surface of the unit d-dimensional hypersphere, since the
coupling constants can have either sign.

Finally, there are two stable fixed points with strong FM
instabilities. The first one is the usual Heisenberg FM fixed
point for which K

(1)
i < 0 and K

(J>1)
i = 0 for all sites i. This

model has been studied before [25–29] and we do not consider
it in this paper. The other fixed point is characterized by finite
effective disorder and only Heisenberg coupling constants with
both FM and AF signs are present, namely, K

(1)
i �= 0 (with

both signs) and K
(J>1)
i = 0 for all sites i. This fixed point was

thoroughly studied in Ref. [21] and is related to the so-called
large spin phase. For weak disorder, the system is governed by
a universal finite-disorder fixed point. For stronger disorder,
the system flows to a line of finite-disorder fixed points. In
any case, the distributions of FM and AF couplings are power
laws P∗(x) ∼ |x|z−1−1, with a nonuniversal exponent z which

depends on the disorder strength but does not depend on the
cutoff 
. The spin size distribution is expected to be a half
normal whose width increases as the energy scale 
 is lowered.

V. FIXED POINTS AND THEIR STABILITY

We now analyze in more detail the general features of the
RG flow, find all the AF fixed points, and classify their stability.
Our first result is obtained straightforwardly. If initially
K

(I )
i �= 0 and K

(J �=I )
i = 0 (with 1 � I � Jmax = 2S + 1), then

all the K
(J �=I )
i remain zero throughout the entire RG flow since

the couplings of ISTs of a given rank never generate couplings
of ISTs of other ranks [see Eqs. (18) and (25)]. Describing the
stability and the corresponding fixed-point distribution of spin
sizes and coupling constants is a task we accomplish in what
follows.

A. Pairwise random singlet states

For simplicity, let us start our discussion focusing on the
simplest case: Initially, K

(I )
i �= 0, K

(J �=I )
i = 0, and the ground

state of the local Hamiltonian H2,3 (see Fig. 1) is always a
singlet. If this is the case, every decimation step involves
second-order perturbation theory, as given by Eq. (25). The
RG flow is well understood and is just like the one of the
random AF spin- 1

2 chain [4]. The spin size S remains fixed
and the fixed-point coupling constant distribution P∗(K (I )) is
given by Eq. (27) with ψ = 1/2. This is an infinite-randomness
fixed point since the relative width of the distribution increases
without bonds at low energy scales, namely, σKI

/〈KI 〉 → ∞
as 
 → 0. This provides a posteriori justification of the
perturbative RG treatment yielding asymptotically exact re-
sults. Its thermodynamics and the correlation functions can
be computed straightforwardly. For a review, see Ref. [2].
Moreover, the corresponding ground state is a collection of
nearly independent singlets, each of which is formed by only
two spins [see Fig. 2(a)]; hence the title of this section. We
stress that, in principle, it is possible to form singlet states
with two or more spins as depicted in Fig. 2(b). These will be
relevant later.

Naturally, we must inquire about the conditions under
which such a random singlet state is obtained, i.e., what are
the values of spin size S and IST coupling rank I which
ensure that the local ground state is always a two-spin singlet.

(a)

(b)

FIG. 2. A schematic depiction of two possible random singlet
states. (a) A pairwise random singlet state in which each spin forms
a singlet state with another spin indicated by the connecting line.
(b) A triplewise random singlet state in which spin trios (connected
by the lines) form a singlet state. Occasionally, a group of six (or
other multiple of 3) spins can also from a singlet state. Most of the
(pairs or trios of) singlets are formed by nearby spins, but there are
also singlets formed by spins that are arbitrarily far apart from each
other.
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Although we could not obtain a rigorous analytical proof, our
extensive numerical verification (see Appendix E) indicates
that such singlet state is the ground state of Hi,i+1 [see
Eq. (9)] whenever K

(J �=I )
i = 0 and (−1)IK (I )

i < 0 for any spin
value Si = Si+1 = S. Moreover, the sign of the renormalized
K̃

(I )
i is a constant of the flow (see Appendix B), which is a

necessary condition to ensure that all decimations will be of
singlet-formation type (“second-order” case in Fig. 1).

Finally, we are now able to completely describe our first
set of fixed points. It has the following features: (i) all spins
have the same size Si = S; (ii) all the coupling constants are
zero except for the ones corresponding to ISTs of rank I , and
all of the latter have the same sign, equal to (−1)I+1; (iii) the
fixed-point distribution of nonzero couplings is P∗(x) as given
by Eq. (27) with ψ = 1/2 and 0 < x = (−1)I+1K (I ) < 
.
There is a caveat, though. The cutoff energy scale 
 is defined
as the maximum value of the local gaps. As the local gap is
proportional to K

(I )
i , the corresponding numerical prefactor

can be absorbed in the definition of x.
Having found this set of Jmax fixed points of infinite-

randomness type, the natural questions that arise are whether
they are stable or not and what is the size of their basins of
attraction. We now discuss their stability properties. The other
question will be dealt with in Secs. VI and VII.

For each fixed point of rank I , there are Jmax − 1 inde-
pendent perpendicular directions. Let us call δ

(J )
i the relative

deviation from the I th axis in the J direction with J �= I at site

i, namely, δ(J )
i = K

(J )
i −K

(J )∗
i

K
(I )
i

, where K
(J )∗
i = 0 is the fixed-point

value. To leading order in δ(J ), the recursion relations (25)
become

δ̃
(J )
1,4 ∝ δ

(J )
1 δ

(J )
3 , (28)

where the numerical prefactor (whose magnitude is of order
unity) is irrelevant for our purposes. Following the steps of
Ref. [4], it is easy to show that the mean value of ln |δ̃(J )

i |
goes as ∼ − c
φ , where c is a nonuniversal constant and
φ = 1+√

5
2 is the golden mean, which implies a vanishing

typical value δ̃
(J )
typ ∼ exp (−c
φ). Thus, weak deviations in any

of the perpendicular directions are strongly irrelevant and all
the Jmax fixed points mentioned above are stable.

We now search for other fixed points. Let us keep focusing
on fixed points for which the only possible decimations are of
the two-spin singlet-formation variety. It is useful to rewrite
the transformation rule (25) in terms of ratios of coupling
constants, “angular variables” in the unit hypersphere in
K space. For concreteness, let us consider the case where

K
(1)
i is nonzero and define s

(J )
i = K

(J )
i

K
(1)
i

,(2 � J � Jmax). The

generalization to the other cases is straightforward. The
recursion relations (25) can be rewritten as

K̃
(1)
1,4 = �(1)(S,s2)

K
(1)
1 K

(1)
3

K
(1)
2

. (29)

s̃
(J )
1,4 = �(J )(S,s2)s(J )

1 s
(J )
3 (J = 2, . . . ,Jmax), (30)

where S = S2 = S3 is the spin size, �(J )(S,s2) =
2 g(J,S)

	E(0,J )K
(1)
2 , si = {s(2)

i , . . . ,s
(Jmax)
i } denotes the set of Jmax − 1

angular variables, and �(J )(S,s2) = �(J )(S,s2)/�(1)(S,s2).
Note that the local energy scale at site 2 is essentially given
by K

(1)
2 . Thus, the functions �(1)(S,s2) and �(J )(S,s2) are

just geometric functions which are independent of K
(1)
2 . This

separation between the energy variable K (1) and the set s2 is
what allows us to find the conditions under which s̃ is kept
constant under the RG flow.

At a fixed-point (FP), the set si becomes site independent.
Denoting its fixed-point value by s∗, then

s(J )∗ = �(J )(S,s∗)s(J )∗s(J )∗. (31)

Thus, if s(J )∗ �= 0, we must have �(J )(S,s∗)s(J )∗ = 1. Solving
the Jmax − 1 coupled Eqs. (31) gives us all the FPs corre-
sponding to the usual random two-spin singlet states. Since
the geometric prefactor �(J )(S,s∗) depends nontrivially on S

and s∗, we have to solve Eqs. (31) on a case-by-case basis.
This is done for S = 3/2 in Sec. VI and S = 2 in Appendix C.
Here we assume that such fixed points are known and provide
general stability criteria for them.

Defining δ(J ) = s(J ) − s(J )∗ and expanding Eq. (30) up to
quadratic order in δ, we obtain

δ̃
(J )
1,4 = s(J )∗�(J )∗(δ(J )

1 + δ
(J )
3

) + s(J )∗
Jmax∑
K=2

γ (K)∗δ(K)
2

+�(J )∗δ(J )
1 δ

(J )
3 , (32)

where �(J )∗ = �(J )(S,s∗) and γ (K)∗ = ∂�(J )

∂s
(K)
2

|
s2=s∗

. Using

�(J )∗s(J )∗ = 1 for s(J )∗ �= 0 and keeping only the leading-order
terms, we rewrite Eq. (32) as

δ̃
(J )
1,4 =

{
δ

(J )
1 + δ

(J )
3 + s(J )∗ ∑Jmax

K=2 γ (K)∗δ(K)
2 , if s(J )∗ �= 0,

�(J )δ
(J )
1 δ

(J )
3 , otherwise.

(33)

Therefore, for s(J )∗ �= 0, the iterations of δ(J ) corre-
spond to a random walk and this quantity grows without
bounds. More precisely, the typical value |δ̃(J )

typ | ∼ δ0

αasym +

σ0,δ

αsym , with αasym = 1

2 [1 +
√

5 + 4s(J )∗γ (J )∗] and αsym =
1
4 [1 +

√
5 + 4(s(J )∗γ (J )∗)

2
], where δ0 and σ0,δ are the mean

and the width of the bare distribution of δ(J ). [4] This means
that perturbations in both the positive and the negative J th
directions are relevant. On the other hand, if s(J )∗ = 0, then
(33) becomes identical to (28) and the typical value of
|δ(J )| ∼ exp (−c
φ), meaning the perturbations in both the
negative and positive J th direction are irrelevant.

We are now able to state a clear criterion for the stability of
the two-spin-singlet fixed points reported here. Let such a fixed
point be located at s∗, which defines a point on the surface our
unit hypersphere in RJmax . Recall we are assuming K

(1)
i �= 0

and thus s∗ = 0 means the fixed point is on the first Cartesian
axis in K space. Then, the fixed point s∗ is stable with respect to
any SU(2)-symmetric local perturbation in the ±J th directions
provided s(J )∗ = 0; otherwise, it is unstable in that direction.
This is depicted schematically in Fig. 3, where we try to mimic
a hyperoctant formed by the directions of the stable AF fixed
points reported here. The stable fixed points are drawn as
black circles. Fixed points which lie on coordinate hyperplanes
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K(1)

K(2)

K(3)

K(4)

K(       )maxJmax−(−1)J

− −

...

...

FIG. 3. Schematic drawing of the hyperoctant formed by all the
fully stable AF fixed points of pairwise singlet nature [black circles
on the (−1)J+1K (J ) semiaxes]. Semistable AF fixed points exist on
the hyperplanes formed by two (red triangles) or more (not shown)
coordinate axis directions. There is also a totally unstable fixed point
(green square) somewhere in the middle of the hyperoctant. This
totally unstable fixed point is exactly SU(2S + 1) symmetric, while
the other ones have emergent SU(2S + 1) symmetry.

(such as the K (1) × −K (2) one) have both stable (out of the
hyperplane) and unstable (in hyperplane) directions. These
are drawn as red triangles. We call them planar fixed points.
Finally, a totally unstable fixed point (drawn as a green square)
lies somewhere inside the hyperoctant.

Our first result is already very significant: The large number
of completely stable AF fixed points along each coordinate
axis in K space define a hyperoctant on the surface of the unit
hypersphere in RJmax in which only pairwise singlet-formation
decimations takes place (the second-order route in Fig. 1).
Therefore, all of these fixed points (including the unstable
ones inside the hyperoctant), despite being different, are
characterized by a unique pairwise random singlet state [see
Fig. 2(a)]. As shown in detail for the cases of S = 3/2 and
S = 2 in Secs. VI and VII, respectively, they all exhibit an
emergent SU(N ) symmetry with N = 2S + 1, as reported
before for the particular case of spin-1 systems [11]. Indeed
(see Appendix D), the completely unstable fixed point in the
middle of this hyperoctant is exactly SU(N ) symmetric, i.e.,
at that particular point, the SU(2)-symmetric Hamiltonian (1)
can be recast as a random AF Heisenberg SU(N ) chain where
the “spin” operators at odd (even) sites are generators of the
fundamental (antifundamental) representation of the SU(N )
group.

Recently [11], we have shown that SU(2)-symmetric
random spin-1 chains realize distinct random singlet phases
with emergent SU(3) symmetry, which we called “mesonic”
and “baryonic.” Our first result shows that the pairwise random
singlet state of the usual spin-S random Heisenberg chain
displays emergent SU(2S + 1) symmetry. This ground state is
the same in all other fixed points inside the AF hyperoctant
of Fig. 3. Therefore, we can conclude that the totally unstable
fixed point in the middle of this hyperoctant, which is exactly
SU(2S + 1) symmetric, governs the low-energy physics of this
entire hyperoctant. In this sense, the hyperoctant is the region
in parameter space where deformations of the SU(2S + 1)
symmetric FP does not destroy the SU(2S + 1) symmetry of
the ground state of the local Hamiltonian Hi,i+1. Furthermore,

we can view all the pairwise random singlet states as a
generalization to higher spins of the “mesonic” random singlet
state found in the spin-1 case [11], in which the singlets are
formed by a “particle”-“antiparticle” pair, corresponding to
the fundamental and the antifundamental representations of
SU(2S + 1).

B. Triplewise random singlet states

We know that K
(I )
i �= 0 and K

(J �=I )
i = 0 is a fixed point of

the RG flow but, so far, we have only explored the semiaxes
with (−1)IK (I )

i < 0, which define the AF hyperoctant of
Fig. 3. What are the corresponding fixed points when we have
the opposite signs (−1)IK (I )

i > 0 or when the signs are mixed?
In general, since there will be no obvious singlet formation,
the spin sizes will tend to increase and the flow becomes much
more involved, a point we deal with later on. Here, however,
we focus on a peculiar fixed point in which the spin size
does not grow either, but instead remains fixed throughout the
chain. How can this be possible? It is possible if the following
requirement is fulfilled: Whenever there is a decimation of
“1st-order” type (see Fig. 1), then the new renormalized spin
size S̃ must equal S. Hence, under the two conditions that (i)
S̃ = S and (ii) that all the couplings are of the same rank,
i.e., K

(I )
i �= 0 and K

(J �=I )
i = 0, a different AF fixed point is

realized.
We now inquire whether there are rank values I that satisfy

the first requirement that S̃ = S. Evidently, S is necessarily
integer, as it must appear as the sum of two equal spins S. We
have explicitly verified up to S = 9 that there is always one and
only one rank value IS that fulfills this requirement, namely,
I1 = 2 and IS = 3 for S = 2, . . . ,8. For S > 9, there is no IS

with S̃ = S as a ground state. Therefore, the fixed point here
reported appears only for integer spins S � 8.

Let us now discuss the corresponding fixed-point distri-
bution. Suppose that only first-order decimations occur. This
necessarily requires that (−1)IS K

(IS )
i > 0 for all i along the RG

flow. For all of the rank values IS we have found, however, that
the signs of the renormalized couplings K̃

(IS )
i are reversed after

“first-order”-type renormalizations. Therefore, we conclude
that this new fixed point has coupling constants K

(IS )
i with

mixed signs. The fractions of positive and negative values can
be obtained straightforwardly. Since a first-order decimation
always reverses the sign of the renormalized coupling constant,
it favors equal fractions of positive and negative signs. As
these fractions are preserved by second-order decimations [see
Eq. (25)], we then conclude that there is an equal fraction
of first-order and second-order decimation steps at this fixed
point. As shown in Ref. [9], this leads to an infinite-randomness
fixed-point distribution P∗(|K (IS )|) given by Eq. (27) but with
a different universal tunneling exponent ψ = 1

3 . Furthermore,
due to the first-order decimation steps, the singlets are not
formed by spin pairs, but rather acquire a more complex
structure which depends on the distribution of couplings
constant signs. If in the bare Hamiltonian all the couplings
are such that (−1)IS K

(IS )
i > 0, then all the singlets formed

have a number of spins that is a multiple of three as depicted
in Fig. 2(b). If, on the other hand, the signs of the bare
couplings are random, then the singlets can be formed by
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any number of spins. In any case, the probability of finding a
singlet formed by m spins decays ∼m−x , with x ≈ 3.8, as we
verified numerically.

For the case of the spin-1 chain, it was shown that the
corresponding triplewise random singlet state possesses an
emergent SU(3) symmetry [11]. The difference with respect to
the spin-1 pairwise random singlet state, which also possesses
SU(3) symmetry, is the representation of the spin operators.
While in the latter case the spin operators on odd (even)
sites are the generators of the fundamental (anti-fundamental)
representation of the SU(3) group, in the former case they are
all generators of the fundamental representation. In the general
case of spin-S chains, however, this triplewise random singlet
state does not possess an obvious enlarged symmetry.

Finally, we report that this peculiar AF fixed point is
also stable against small SU(2) perturbations along the other
transverse directions. This can be shown by an analysis similar
to that done for the previous case of pairwise random singlet
states. The analysis, however, is more involved due to the
presence of first-order decimation steps as well. In addition,
we have verified it numerically for the cases of S = 1 (see
Ref. [11]) and S = 2 (see Sec. VII).

C. Large spin phase

In Sec. V A we have considered fixed points in which all
the coupling constants have the same sign. In Sec. V B, we
have considered the case in which both signs are present in
the fixed-point Hamiltonian. For the latter case, however, a
particular rank value IS is required. In both cases, the spin size
S remained constant. We now consider another particular case,
namely, the case of the Heisenberg chain, i.e., K

(1)
i �= 0 and

K
(I>1)
i = 0.
The first case we discuss is the Heisenberg chain with both

AF and FM couplings. This is a very important special case
because, as we will see, it has a large basin of attraction.
This fixed point was thoroughly studied in Ref. [21] and
we now summarize some of what is known. The fixed-point
distribution of local gaps 	i obeys the scaling

Q∗
1(	,S) = xQAF

(
	



, S

α

) + (1 − x)QFM
(

	



, S

α

)

1+2α

, (34)

where α and x are constants. The latter is the fraction of
AF couplings K

(1)
i > 0. In addition, it was shown that Q∗

1 is
not of infinite-randomness type as in Eq. (27) but rather of a
finite-disorder variety. As a consequence, the relation between
energy and length scales is not activated but a more usual
power law 
 ∼ L−z, where z = −1/(2α) > 0, is the critical
dynamical exponent. The relation between α and z comes from
the fact that the average spin size grows as 〈S〉 ∼ √

L, which
can be viewed as a consequence of the decimations leading
to a random walk in spin space. Because the effective spin
increases without bonds, the corresponding phase is called a
large spin phase. Although the thermodynamics is relatively
well understood (the magnetic susceptibility is Curie-like χ ∼
T −1 and the specific heat vanishes as C ∼ T 1/z| ln T |), the
ground-state spin-spin correlations are not so [30].

The fact that α < 0 implies that the width of the spin size
distribution grows without bounds along the RG flow and,
therefore, the fraction of second-order decimations vanishes,

since it requires an AF coupling shared by spins of the same
size. Without the multiplicative structure of the second-order
decimation (notice that the length scales always renormalize
additively), the scaling is no longer activated and the effective
disorder does not grow indefinitely. Hence, it is a finite-
disorder fixed point.

Finally, it was also found that there is a universal finite-
disorder fixed point (with α ≈ −0.22 and x ≈ 0.63) that
attracts all systems whose bare disorder is below a critical
value. Systems whose the bare disorder is greater than
this critical value are attracted by a line of finite-disorder
fixed points where the corresponding critical exponents are
nonuniversal.

D. Higher symmetry fixed points

So far, we have described (i) the fixed points of the AF
hyperoctant (see Sec. V A) which involve coupling constants
with uniform signs (−1)J K

(J )
i < 0 and the stable fixed points

lie on the hyperoctant coordinate semiaxes while all the
remaining ones are unstable fixed points; (ii) the stable AF
fixed point in which the coupling constant sign is random and
along the axis with rank IS (see Sec. V B); (iii) the stable
fixed point where the couplings belong to the first rank J = 1
and also have random signs, which was extensively studied
before [21] (see Sec. V C). We now list some other fixed
points that have higher symmetry than SU(2) and discuss their
implications on the RG flow.

It is always possible to fine-tune the IST couplings in
order to realize a higher SU(2S + 1) symmetry in the bare
Hamiltonian (9). In Appendix D we show how to construct
these Hamiltonians. In this case, we can rewrite the SU(2)-
symmetric Hamiltonian as a Heisenberg chain of SU(2S + 1)
spins which are nothing but irreducible representations of the
SU(2S + 1) group. One of these higher-symmetric fixed points
is the unstable one in the middle of the AF hyperoctant. Here
the higher-symmetric spins on even (odd) sites are generators
of the fundamental (antifundamental) representation of the
SU(2S + 1) group. As we have discussed in Sec. V A, our
SDRG method is well suited for treating this case.

Another case is the one in which all the higher-symmetric
spins are generators of the fundamental irreducible represen-
tation of the SU(2S + 1) group. Here our SDRG method
only works for the S = 1 case [11]. The reason is very
simple. Consider, for instance, the S = 2 case. The Clebsch-
Gordan series of the product of two fundamental irreducible
representations of the SU(N ) group, with N = 2S + 1 = 5, is
5 ⊗ 5 = 10 ⊕ 15. Applying our SDRG method in the AF case,
we then have to keep the tenfold degenerate manifold. How can
such a degenerate manifold be recast as an SU(2) spin of our
Hamiltonian (9)? We need to match the local dimensions 2S̃ +
1 = 10. However, the Clebsch-Gordan series of the product of
two S = 2 SU(2) spins is 5 ⊗ 5 = 1 ⊕ 3 ⊕ 5 ⊕ 7 ⊕ 9. The
only way to obtain the tenfold degenerate manifold of the
SU(5) case is by fine tuning to degeneracy either the S̃ = 0 and
S̃ = 4 multiplets or the S̃ = 1 and S̃ = 3 multiplets. In either
case, we cannot use the SDRG idea of replacing both spins S2

and S3 with a single effective spin S̃ as depicted in Fig. 1. In
this case, one needs to replace S2 and S3 with two other spins.
Furthermore, one will need to introduce new operators in order
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to keep the structure of the low-energy spectrum. The SDRG
method then becomes considerably more involved and we do
not deal with these complications in the present study. Instead,
we point out that a generalization of the SDRG method to
SU(N ) symmetry is capable of handling this special case, as
was done in Ref. [9].

Are there other higher-symmetric fixed points? Certainly
there are, as, for instance, exemplified by the FM counterpart
of the two cases mentioned above. However, we do not
concern ourselves with them because of their instability
against SU(2)-symmetric perturbations. Thus, they have little
consequence for the determination of the phases of our model
Hamiltonian (1). Naturally, they may govern the low-energy
physics at phase transitions but the study of these is beyond
the scope of the present paper. For the cases of AF SU(N )-
symmetric fixed points, nonetheless, the low-energy behavior
is known [9].

E. Unknown fixed points: Breakdown of perturbation theory?

As already pointed out, there are fixed points whenever
the coupling vectors Ki point in one of the rank directions.
For the rank direction J = 1, our method recovers the one of
Ref. [21] and we can completely characterize two possible
fixed points: the AF infinite-randomness fixed point (see
Sec. V A) for K

(1)
i > 0 and Si = S throughout the chain and

the finite-disorder fixed point (see Sec. V C) in which the sign
of K

(1)
i as well as the spin sizes Si are random variables.

For the special rank direction J = IS , our method can also
describe the corresponding fixed points as long as Si = S in
the bare Hamiltonian (see Sec. V B). Finally, for the cases in
which Si = S and (−1)J K

(J )
i < 0, we also can describe the

corresponding fixed point (see Sec. V A). Are there other fixed
points?

We have studied the RG flow in all cases via a numerical
implementation of the SDRG method (see Sec. III). In order
to do so, we start with a chain of ∼106 spins with random K

(J )
i

couplings, such that the ratios K
(J )
i

K
(1)
i

are the same at all sites. In

other words, our initial Hamiltonian has uniform initial angles
and only radial disorder in K space. During the numerical
flow, we follow the distributions of K

(J )
i and spin sizes,

which allows us to fully characterize the RG flow numerically.
We have found that there are a few cases in which the
flow is “pathological” because all the renormalized couplings
between sites vanish, as discussed in Sec. III A. Note that,
since the rank 1 renormalized coupling K̃

(1)
i never vanishes,

a necessary condition for this “pathological” flow to occur is
K̃

(1)
i = 0 for all sites. It turns out that when this latter condition

is met, then one or both of the routes for the appearance of
vanishing coupling constants between sites is unavoidably
generated along the RG flow. Once such a “special” bond
is decimated, the corresponding renormalization leads to a
broken chain. In those cases (see Appendix F), we have
performed degenerate second-order perturbation theory and
new operators are introduced. Nonetheless, we have found
that upon further decimations, other zeros appear, requiring
a treatment that goes to higher orders in perturbation theory.
We have not pursued this further. Instead, we believe that
other zeros will appear and this is an intrinsic aspect of the

problem. Within our theoretical framework, we are unable to
decide whether these zeros are the manifestation of the true
low-energy physics of the problem or whether it is a simple
artifact of the method, indicating its breakdown and pointing
to fundamentally new physics in these cases. We then leave as
an open question the true low-energy behavior of these fixed
points.

Nevertheless, in general, there will always be couplings of
J = 1 rank (the Heisenberg term) in the bare Hamiltonian. In
this case, we argue that the flow is, in general, towards the
FM or AF fixed points with only J = 1 couplings. Indeed,
in this case, only couplings of rank J = 1 will survive and
the flow is naturally towards the large-spin-phase fixed point.
Furthermore, even if we were to carry out the perturbation
theory to higher orders, the corresponding renormalized
couplings would be typically much weaker than the J = 1
renormalized couplings (which are finite in first order of
perturbation theory). Therefore, these couplings will become
subleading and the flow is towards the large-spin-phase fixed
point.

In Secs. VI and VII, we explore in more detail the RG flow
for the cases of the spin S = 3/2 and S = 2 chains.

VI. SPIN- 3
2 CHAIN

In this section we apply the SDRG method derived in
Sec. III to study the strong-disorder limit of the SU(2)-
symmetric random spin- 3

2 chain. For concreteness, we study
the Hamiltonian (9) in which Si = 3

2 for all i and the coupling
vectors

Ki = (
K

(1)
i ,K

(2)
i ,K

(3)
i

)
= Ki(sin θi cos φi, sin θi sin φi, cos θi) (35)

are distributed in the following way. The magnitude of the
couplings Ki is distributed according to

P0(K) = 1


0D

(

0

K

)1− 1
D

, (36)

with 0 < Ki < 
0. Here 
0 is a microscopic high-energy
cutoff and D parametrizes the bare disorder strength. First,
we consider the angles θi = θ and φi = φ to be uniform
throughout the chain. Note that in this case the unit hypersphere
is the two-sphere in R3. We thus determine the phase diagram
on the surface of the two-sphere. At the end of this section, we
analyze the case of random initial angles.

A. The antiferromagnetic octant

Particularizing the results of Sec. V A to the case Si =
3/2 we know that there must be Jmax = 2S = 3 stable AF
fixed points along the three coordinate semiaxes defined by
K

(1)
i > 0, K

(2)
i < 0, and K

(3)
i > 0. Furthermore, these semi-

axes define an octant on the surface of the two-sphere where
only second-order decimations occur since the ground state
of the local Hamiltonian (9) is always a singlet (see Fig. 1).
In this case, the renormalized coupling constants are given by
Eqs. (25), which we rewrite as

K̃ (J ) = K
(J )
1 K

(J )
3

v(J ) · K2
, (37)
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FIG. 4. Schematic phase diagram of the disordered spin- 3
2 chain

on and around the AF octant K (1) × −K (2) × K (3). The thick dots on
the surface of the sphere represent initial conditions of the numerical
RG flow. The dots are colored according to their fate in the flow
and, therefore, map out the distinct basins of attraction. The beige
dots flow to the K (1) > 0 (Heisenberg) fixed point (beige circle), the
brown ones to the K (2) < 0 fixed point (brown circle), while the white
ones have only K (3) > 0 couplings at the fixed-point Hamiltonian
(white circle on the north pole). The pink fixed point in the middle of
the octant is totally unstable and has an exact SU(4) symmetry. The
other semistable fixed points are represented as black circles. The
ground state of the local Hamiltonians [H23 in Eq. (13)] is indicated
by the background color; see Table II for the color scheme (the FM
S̃ = 3 orange region is not visible from this viewing angle). The red
and green regions (not marked by any dot for clarity) correspond to
the LSP fixed point. On the red line, the system has an exact SO(5)
symmetry.

with the vectors v(1) = 1
5 (2,−30,147), v(2) = − 1

10 (4,−40,49),
and v(3) = 1

35 (16,−40,126). We explicitly verified these re-
sults by numerically implementing the SDRG decimations.

In Fig. 4 we plot the resulting flow diagram on and
around the AF octant. We have chosen many initial conditions,
parameterized by the initial angles θ, φ (represented as thick
dots) and disorder strength D. We confirm the flow to be
independent on D (as long as D is sufficiently large). For
small D, one has to be careful. A consistent approach would
be to treat the perturbations to the local Hamiltonian (13) to
higher orders of perturbation theory than the second [31]. This
approach becomes much more involved and we do not do it
the present study. Nonetheless, it is worth mentioning that,
even at the Heisenberg point this issue is still controversial. In

this case, the recursion relation (37) reduces to K̃ (1) = 5K
(1)
1 K

(1)
3

2K
(1)
2

.

The numerical prefactor 5
2 > 1, which means the renormalized

coupling can be bigger than the decimated ones if the bare
disorder is weak. Therefore, the decimation procedure is
internally inconsistent. As a result, it has been argued that the
weak-disorder regime corresponds to a random singlet state
with spin- 1

2 rather than spin- 3
2 excitations [32]. Another view

is that weak disorder is irrelevant [33,34]. In all of these studies,
however, there is general agreement that at strong disorder the
ground state is a spin- 3

2 random singlet state as reported here.

The dots on the surface of the sphere are colored according
to the corresponding fixed point to which they flow (beige,
brown, and white circles on the axes). As expected, all initial
conditions inside the AF octant flow to one of the stable fixed
points on the axes of the octant. Note that they attract even
other initial conditions outside (but close to) the AF octant.
The corresponding pairwise RSP has, therefore, a large basin
of attraction. In addition, we display the semistable planar fixed
points (black circles) as well as the totally unstable SU(4)-
symmetric fixed point (pink circle) inside the octant. Their
locations are determined analytically, as shown below, and
agree with our numerical data.

In order to find the location of the fixed points, we need
to solve Eq. (31) for the S = 3/2 case. Defining the vector

si = (s(2)
i ,s

(3)
i ), where s

(2,3)
i = K

(2,3)
i

K
(1)
i

, then from Eq. (37) we

have

s̃(2) = −2s
(2)
1 s

(2)
3

(
2 − 30s

(2)
2 + 147s

(3)
2

4 − 40s
(2)
2 + 49s

(3)
2

)
, (38)

s̃(3) = 7

2
s

(3)
1 s

(3)
3

(
2 − 30s

(2)
2 + 147s

(3)
2

8 − 20s
(2)
2 + 63s

(3)
2

)
. (39)

Since the fixed points are such that si = s̃i = s∗, we find
the following physical solutions besides the three sta-
ble ones already obtained K

(J )
i = KiδJ,K , with J = 1,2,3:

(i) the semistable AF fixed point on the K (3) = 0 plane
s∗

4 = − 1
30 (9 + √

141)(1,0) ≈ (−0.70,0), which corresponds
to (θ∗

4 ,φ∗
4 ) ≈ (π

2 ,−35◦); (ii) the semistable AF fixed point
on the K (2) = 0 plane s∗

5 = (0, 4
21 ) ≈ (0,0.19), or (θ∗

5 ,φ∗
5 ) ≈

(79◦,0); (iii) the semistable AF fixed point on the K (1) = 0
plane at which |s∗

6| is infinite but s(3)∗
6 /s

(2)∗
6 = 2

49 (1 − √
141) ≈

−0.44 is finite [this is equivalent to (θ∗
6 ,φ∗

6 ) ≈ (66◦,−π
2 )];

and (iv) the totally unstable SU(4)-symmetric fixed point s∗
7 =

(− 1
3 , 4

21 ), which corresponds to (θ∗
7 ,φ∗

7 ) ≈ (80◦,−18◦). Notice

that all these solutions obey the restriction (−1)J K
(J )∗
i � 0.

Besides these seven solutions, there are additional ones [for
instance, ( 2

3 , 4
21 )] which are, however, nonphysical since the

singlet is not the ground state of the local Hamiltonian.
As anticipated in Sec. V A, we note that the unstable AF

SU(4)-symmetric point can be adiabatically connected to all
the other AF stable fixed points. In other words, the ground
state throughout the AF regionis a collection of singlets that
are the same as at the SU(4)-symmetric point. These singlets
are, therefore, SU(4) singlets, and the ground state is SU(4)
invariant. This is one of our main findings: The ground-state
singlets inherit the symmetry of the SU(4) fixed points. The
same is true of the lowest excitations, essentially free spins,
which can be seen as transforming according to either the
fundamental or the antifundamental representations of SU(4).
The low-energy sector has, therefore, an emergent SU(4)
symmetry, analogous to the mesonic SU(3) RSP found before
in spin-1 systems [11].

As for the other regions of the phase space, we find
generically that the flow is towards a LSP, with only K

(1)
i �= 0,

except in the region where S̃ = 3 (not visible in Fig. 4), where
the phase is ferromagnetic.
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B. SO(5) line and SU(4) points

As shown in Ref. [15], the Hamiltonian of isotropic spin- 3
2

chains has an enlarged SO(5) symmetry in a certain region of
parameter space. Even more interesting, this region happens
to be the one accessible to cold-atom experiments. In such
experiments, for spin- 3

2 particles at quarter filling and in the
limit of strong interactions, selection rules for the scattering of
two atoms at low energies impose that only channels of even
total angular momentum are allowed. In this case, putting
ε

(1)
i = ε

(3)
i = 0 in the Hamiltonian of Eq. (12) we get

HSO(5) =
Nsites∑
i=1

ε
(0)
i P0(Si ,Si+1) + ε

(2)
i P2(Si ,Si+1), (40)

which was shown to possess an exact SO(5) symmetry [15].
The IST coupling constants then are, neglecting a constant
contribution (see Appendix A),

K
(1)
i = − π

15

(
ε

(0)
i + ε

(2)
i

)
, (41)

K
(2)
i = π

45

(
ε

(0)
i − 3ε

(2)
i

)
, (42)

K
(3)
i = − 4π

315

(
ε

(0)
i + ε

(2)
i

)
. (43)

The vector si = (K (2)
i ,K

(3)
i )/K (1)

i = (εi,
4

21 ), where εi =
[ε(2)

i − ε
(0)
i /3]/[ε(2)

i + ε
(0)
i ], with −∞ < εi < ∞ a free param-

eter. Thus, the parameter space in which the SO(5) symmetry
is realized is a line on the surface of our two-sphere. This is
shown as the red line in Fig. 4. Interestingly, this line contains
three of the AF fixed points found: s∗

2 = (−∞,x), with x

being any finite number (this corresponds to the totally stable
fixed point K

(2)
i < 0 and K

(1)
i = K

(3)
i = 0), s∗

5 (the semistable
fixed point on the K

(2)
i = 0 plane), and s∗

7 [the totally unstable
SU(4)-symmetric fixed point].

As shown in Appendix D (see also [15,35]), the Hamilto-
nian

H
SU(4)
4−4̄ =

∑
i

Ki

(
Ô1 − 1

3
Ô2 + 4

21
Ô3

)
, (44)

with generic Ki , which corresponds to si = (− 1
3 , 4

21 ), is SU(4)
symmetric. This is indeed the totally unstable fixed point
s∗

7 in the AF case (Ki > 0). The notation 4 − 4̄ indicates
that the Hamiltonian (44) corresponds to a Heisenberg SU(4)
spin chain with “spin” operators on odd (even) sites which
are the generators of the fundamental (antifundamental)
representation of the SU(4) group. In addition, there is another
AF SU(4)-symmetric Hamiltonian given by

H
SU(4)
4−4 =

∑
i

Ki

(
Ô1 + 1

3
Ô2 + 4

21
Ô3

)
. (45)

The difference with respect to the Hamiltonian (44) is that
all the “spin” operators are generators of the fundamental
representation of the SU(4) group regardless of the lattice
site. Although our SDRG scheme is not suitable for treating
this case (since the multiplets S̃ = 0 and S̃ = 2 become
degenerate in the ground state of the local Hamiltonian), we
know this must be a fixed point of the RG, since it has to
preserve the symmetry. We then denote this fixed point by

s∗
8 = ( 1

3 , 4
21 ), which corresponds to (θ∗

8 ,φ∗
8 ) ≈ (80◦,18◦); see

the pink circle in Fig. 4. Indeed, in Ref. [9] it was shown
that the low-energy physics of this SU(4) 4 − 4 Hamiltonian
is governed by an infinite-randomness fixed point, with the
local energy scales being distributed according to Eq. (27)
with a universal tunneling exponent ψ = 1

4 . In addition, the
corresponding ground state is a random singlet state whose
singlets are formed by groups of spins which are multiples of
4: a fourfold random singlet state analogous to the triplewise
random singlet state depicted in Fig. 2(b).

Therefore, the SO(5) line contains both AF SU(4)-
symmetric fixed points s∗

7 and s∗
8. In addition, the fixed points

s∗
2,5 are also exactly SO(5) symmetric. Nonetheless, recall that

they have an emergent SU(4) symmetry.
We have also verified that the SO(5) line is a constant

of the flow. Let us explain this a little further. Starting from
any point (θ,φ) on the surface of the two-sphere in Fig. 4,
the angles change along the RG flow in such a way that one
cannot represent the renormalized Hamiltonian by a single
point (θ̃ ,φ̃), but rather by a distribution of angles. Generically,
this distribution has support on two-dimensional manifolds on
the two-sphere. If one starts at any point on the SO(5) line,
however, all the renormalized angles (θ̃i ,φ̃i) will remain in the
SO(5) line (a one-dimensional manifold) along the RG flow.
This means that our SDRG scheme preserves the symmetry,
as it should.

It is interesting to see that the unstable fixed points on
this line are the points with a larger SU(4) symmetry. Between
them there is the semistable fixed point s∗

5. As we see below, the
SU(4)-symmetric 4 − 4 fixed point s∗

8 governs the transition
between the AF phase and the large spin phase. The topology
of the flow requires that there be another fixed point towards
the southwest of the totally stable fixed point s∗

2. Very likely,
this fixed point delimits the transition between the FM and the
AF phases. Like in the spin-1 case [11], this fixed point is a
FM SU(4)-symmetric fixed point.

It is visually instructive to follow the SDRG flow of the
angular variables si . It is useful to normalize them so the
flow is confined to the surface of a unit sphere, as in Fig. 4.
Several trajectories of the average values of si are shown in
Fig. 5. This gives some intuition about the way these variables
approach the fixed points. We point out, however, that the
flow of the distribution of si is not captured by this figure.

K(3)

K(1)K(2) s1*s2* s4*

s5*s7*

s8*s6*
s3*

SO(5) line

−

FIG. 5. Schematic flow diagram of the average angular variables
in the AF octant of random spin- 3

2 chains (based on the phase diagram
of Fig. 4). See text for details about the fixed points s∗

i .
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In particular, their widths start at zero, become nonzero at
intermediate stages of the flow, and tend to zero again as the
fixed points are approached.

C. RG flow on the other semi-axes

As mentioned in Sec. III A, the first-order perturbation-
theory steps yield a vanishing renormalized coupling constant
in some special cases, even if the ground-state multiplet is
degenerate. Curiously, this happens for the spin- 3

2 chain on the
semiaxes K (2) > 0 and K (3) < 0, i.e., on all other semiaxes
except the ones of the AF octant and the purely FM Heisenberg
axis K (1) < 0. We show how to partially handle these cases,
by finding the first nonzero contributions.

Before addressing the J > 1 cases, let us start by reviewing
the first rank case. If K

(1)
2 < 0, the ground state is a spin S̃ = 3

and the RG rule is the one given in Sec. V C. The mixing of
random K

(1)
i signs leads to a LSP [21], whereas exclusively

negative couplings lead to a FM phase.
Now we focus on higher-rank tensors. On the semiaxis

K (2) < 0, first-order perturbation theory generically gives (see
Fig. 1 for a guide)

K̃
(2)
1 = 3x̃2+x̃(2x2−6x3 − 3)+3(x2−x3 − 1)(x2−x3)

2x̃(4x̃−3)
K

(2)
1 ,

(46)

where xi = Si(Si + 1) and x̃ = S̃(S̃ + 1). The K̃
(2)
3 renormal-

ization follows analogously, by exchanging x2 � x3. Starting
with a chain in which all spins are of size Si = 3

2 , then already
in the first decimation step x2 = x3 = 15

4 . As the ground state
of the local Hamiltonian is S̃ = 2, then first-order perturbation
theory yields K̃

(2)
1,3 = 0. In Appendix F, we have shown how

to calculate second-order perturbative corrections. The steps
are analogous to those shown in the second-order calculations
when the ground state is a singlet, except that the projector
onto the ground state P0 has to be replaced with PS̃ . The net
result, when three-body nonfrustrating terms are neglected, is
the appearance of a nonzero coupling between spin S1 and the
effective spin S̃,

	H
(2)
1,2 =

(
K

(2)
1

)2

K
(2)
2

(
9

16
Ô1 − 3

56
Ô3

)
, (47)

where Ôi = Ôi(S1 = 3
2 ,S̃ = 2). By symmetry, we obtain the

coupling connecting the spin S̃ to site 4 by replacing 1 ↔ 4.
The RG rules are schematically shown in Fig. 10 of Ap-
pendix F. This prescription is enough to fix the first RG decima-
tions, but the zeros proliferate again in later decimations. Up to
the point at which the flow is not dominated by theses zeros, we
do not find indications of a large spin phase. The phase appears
to be antiferromagnetic, even though its full characterization
would require going to higher orders in perturbation theory.

Starting with a negative K
(3)
2 gives us a spin S̃ = 1 as the

ground-state manifold. However, a spin-1 Hamiltonian does
not support third-rank ISTs (as a rule, remember that spin
operators with 2S < J do no form rank J ISTs). Note that this
corresponds to case (a) discussed in Sec. III A, whereas on
the K (2) < 0 axis it was related to case (b) of that section. In
Appendix F, we show in detail how to compute second-order

corrections for this case as well. The effective Hamiltonian
that connects a spin S1 = 3

2 with a spin S̃ = 1, neglecting
three-body nonfrustrating interactions, is

	H1,2 =
(
K

(3)
1

)2∣∣K (3)
2

∣∣
(

63

20
Ô1 + 189

100
Ô2

)
. (48)

Here Ôi = Ôi(S1 = 3
2 ,S̃ = 1) and the analogous term for site

4 follows by symmetry. Again, this prescription is enough to
fix only the first decimation steps. As before, there are no clear
indications of a large spin phase being generated.

Clearly, further investigation is needed to characterize this
phase. Either the inclusion of the three-body interactions
remedy the vanishing renormalized interactions or the prolif-
eration of these zeros is indeed part of the physics, indicating
a breakdown of the perturbative treatment and that a new
approach is necessary. We leave as an open question the
elucidation of this problem. Here we argue, however, that
these problems have little effect on the generic RG flow. In
general, the K

(1)
i couplings are nonzero and never yield any

vanishing renormalizations. Therefore, they are dominant over
the other higher-rank interactions and the generic RG flow will
be towards the K

(1)
i �= 0 fixed points.

D. RG flow on planes

Having analyzed the behavior on the different semiaxes,
we now explore planes on which two of the tensor couplings
are nonzero. The two-spin ground-state structure is shown in
Fig. 6. In Table II, we list the colors we are going to use to
identify the ground multiplets in the study of both spin- 3

2 and
spin-2 chains.

The RG flow in the singlet (blue) region is towards the fully
stable fixed points on the semiaxes discussed in Sec. VI A. We
now address the flow in the other nonblue regions of the plane,
where the ground state is not a singlet. We always assume
the initial angles are uniform and the disorder is in the radial
direction. Let us assume additionally that we do not start right
on the axes, since these cases have been discussed previously.

Let us start by analyzing the K (1) × K (2) and K (1) × K (3)

planes. In the orange region, the flow is towards the FM phase,
with only K

(1)
i < 0 remaining. Starting in both the red (S̃ = 1)

and the green (S̃ = 2) regions, effective spins that are not
equal to the original spin- 3

2 are generated. Notice that, in both

regions, only the K
(1)
i �= 0 couplings remain since the other

ones are automatically renormalized to zero, for the very same
reasons discussed in the previous section. After some initial

TABLE II. Color scheme we are going to use for the identification
of ground multiplets of the local Hamiltonian in the analysis of the
spin- 3

2 and spin-2 chains. The same applies to Figs. 4, 6, 8, and 9.

Two-spin ground state Color

S̃ = 0 Blue
S̃ = 1 Red
S̃ = 2 Green
S̃ = 3 Orange
S̃ = 4 Purple
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K 1

K 2

K 1

K 3

K 2

K 3

K 1

K 2

K 1

K 3

K 2

K 3(a) (b) (c)

FIG. 6. Diagrams representing the two-spin ground multiplet for two spins 3/2 and the AF RG fixed points of the disordered spin- 3
2 chain.

Panels (a), (b), and (c) represent the K (3) = 0, K (2) = 0, and K (1) = 0 planes, respectively. The total angular momentum of the ground multiplets
can be S̃ = 0, 1, 2, or 3, which are identified by the color scheme of Table II. The small circles represent the AF angular fixed points. The
stable AF ones lie on the semiaxes with K (1) > 0, K (2) < 0, and K (3) > 0. The unstable fixed points can also be found analytically (see the
main text for details).

steps, we end up with a “soup” of spin- 3
2 and spins S̃ (equal to

2 or 1, depending on the case) coupled by K
(1)
i couplings. By

numerically following the flow, we find out that after an initial
transient, the spins start to grow and the flow is towards a LSP.

We now focus on the K (2) × K (3) plane. In the green region
of the first quadrant, the K

(2)
i couplings are renormalized to

zero (due to the zeros discussed in the previous section),
effective spins S̃ = 2 are generated, and the corresponding
renormalized couplings K

(3)
i are negative. The presence of

both spins 2 and 3
2 gives rise to the RG rules shown in Table III

(which can be found with the formulas derived in Sec. III and
Appendix B). Interestingly, these rules are closed under the RG
transformations. We find numerically that, at low energies,
only rules of type 4 survive, and the phase is again a RSP
on the K (3) > 0 semiaxes, with exponent ψ = 1

2 . Notice that,
unlike the RSP found previously (in the blue region), this one
depends strongly on the generated spins S̃ �= 0 and the possible
combinations of S̃ and S = 3

2 on later RG steps. In the red
region of the third quadrant, the RG flow is very similar to the
one just discussed, with the changes K (2) � −K (3) and S̃ = 1.
Again, the low-energy physics is found to be described by a
RSP with exponent ψ = 1

2 , now on the K (2) < 0 semiaxis. In
the fourth quadrant of this plane, the first RG decimations make
one of the couplings, either K

(2)
i or K

(3)
i , vanish, depending on

the region where the bond is located (red or green). At later RG
steps, however, the remaining nonzero couplings also vanish.
Therefore, we do not have the full low-energy description in
this quadrant, as in the situation discussed in Sec. VI C. Note
that a small perturbation in the perpendicular K (1) direction
already fixes this problem and drives the system towards a LSP.

VII. SPIN-2 CHAIN

We now study the disordered spin-2 chain. The parameter
space is spanned by Jmax = 4 axes K

(J )
i , with J = 1,2,3,4.

The RG steps can be found in Appendix C. We will be brief
on features that are analogous to the spin- 3

2 case and focus on
the features which are different.

Let us start by focusing on the flow on the axes. As discussed
before, the AF stable fixed points lie along the semiaxes
K (1) > 0, K (2) < 0, K (3) > 0, and K (4) < 0. Each one of these
cases leads to a pairwise RSP (see Sec. V A). This conclusion
holds throughout the AF hyperoctant in the unit three-sphere,
defined by the above four semiaxes. Like in the spin- 3

2 case,
the negative K (1) semiaxis gives rise to a FM phase and to
a LSP when K

(1)
i is both negative and positive. On the other

semiaxes, with the exception of the negative K (3) axis to be
discussed later, our RG scheme suffers from the presence of
zero renormalized couplings in the first order of perturbation
theory (see Sec. III A), in close analogy to the spin- 3

2 case
(see Sec. VI C).

The K (3) axis is special because it can also support a
triplewise RSP as discussed in Sec. V B. Whenever K (3) < 0,
the corresponding first-order decimation (see Fig. 1) yields
an effective spin S̃ = 2. Thus, the spin S = 2 is a constant
along the RG flow. In addition, the effective couplings K̃

(3)
1,3

change signs meaning this new effective spin can be later
second-order decimated with third spin into a singlet state. At
the fixed point, the distribution of coupling constants is of the
infinite-randomness type given by Eq. (27), with ψ = 1

3 . This
universal fixed point attracts all initial conditions in which the
K

(3)
i are either all negative or have mixed signs. Only in the

TABLE III. RG rules for the flow that starts in the green region (S̃ = 2) of the K (2) × K (3) plane [see Fig. 6(c)].

Rule S2 S3 Couplings S̃ RG rules

1 3
2

3
2 K

(2)
2 > 0, K

(3)
2 > 0 2 K̃

(3)
{1,3} = − 1

4 K
(3)
{1,3} and K̃

(2)
{1,3} = 0

2 2 3
2 K

(3)
2 < 0, K

(2)
2 = 0 3

2 K̃
(3)
1 = − 8

5 K
(3)
1 and K̃

(3)
3 = 1

5 K
(3)
3

3 2 2 K
(3)
2 > 0, K

(2)
2 = 0 0 Second order; K̃

(3)
1,3 = 4

9

K
(3)
1 K

(3)
3

K
(3)
2

4 3
2

3
2 K

(3)
2 > 0, K

(2)
2 = 0 0 Second order; K̃

(3)
1,3 = 5

18

K
(3)
1 K

(3)
3

K
(3)
2
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FIG. 7. Energy-length relation for couplings on the K (3) axes,
starting with all spins equal to S = 2. For negative initial values,
the numerical value of the tunneling exponent is ψ ≈ 0.38, while for
positive initial values ψ = 0.54, compatible with the predicted values
of ψ = 1

3 and ψ = 1
2 , respectively. We have decimated chains of size

Nsites = 8×106.

case of positive signs K
(3)
i > 0 for any i does the system flow

towards the pairwise random singlet case. This is illustrated in
Fig. 7, where the length scale L (defined as the mean distance
between effective spin clusters) is plotted along the RG flow
parameterized by the cutoff energy scale 
. From this plot, the
tunneling exponent ψ can be extracted by fitting the activated
dynamical scaling law ln 
 ∼ −Lψ .

As discussed in Sec. V B, this triplewise random singlet
phase is characteristic of integer spin-S chains. In the case of
S = 1, it was showed that the ground state exhibits an emergent
SU(3) symmetry [11]. This is not the case, however, for the
spin-2 chain. This can be explicitly verified by diagonalizing
a system of three spins with K

(3)
i < 0 and then computing the

correlation function of the 24 SU(5) generators �
(a)
i , i = 1,2,3

and a = 1, . . . ,24, in the correspond singlet state. Choosing
the normalization such that such that Tr(�(a)�(b)) = 2δa,b, we
find that

∣∣〈�(a)
1 �

(a)
2

〉∣∣ = 1

35
×

⎧⎪⎨
⎪⎩

7, a = 1,2,3,

3, a = 4, . . . ,8,

8, a = 10, . . . ,15,

4, a = 16, . . . ,24.

(49)

The number of equal values follows exactly the degeneracies
of the SU(2) multiplets. This implies that there is no symmetry
enhancement: There is no symmetry higher than the obvious
SU(2). This should be contrasted with the situation in the AF
hyperoctant. In that region, the expectation value of all the
SU(5) generators in the pairwise singlets is the same as at the
SU(5) point, ∣∣〈�(a)

1 �
(a)
2

〉∣∣ = 2
5 , a = 1, . . . ,24. (50)

This should also be contrasted with the spin-1 case. An
analogous computation [for the SU(3) group] of Eq. (49) shows
that all expectation values are the same [11]. For the random
spin-2 chain, by contrast, in the triplewise RSP where the

TABLE IV. Planar fixed points of the disordered spin-2 chain.

Plane Planar fixed point

K (1) × K (2) K (2) = − 4
735 (39 + 4

√
141)K (1), K (1) > 0

K (1) × K (3) K (3) = 1
21 K (1), K (1) > 0

K (1) × K (4) K (4) = − 2
19845 (59 + √

18181)K (1), K (1) > 0

K (2) × K (3) K (3) = 1
56 (1 − √

141)K (2), K (2) < 0

K (4) × K (2) K (4) = 1
9 K (2), K (2) < 0

K (4) × K (3) K (4) = − 1175−√
2328145

1080 K (2), K (4) < 0

singlets are mostly formed by spin trios, the symmetry remains
SU(2) as in the bare Hamiltonian.

We now move to the analysis of the phases when ISTs
of two different ranks are present in the initial Hamiltonian.
In analogy with the spin- 3

2 case (see Sec. VI D), besides the
stable fixed points on the semiaxes, some unstable planar fixed
points exist in the AF hyperoctant, as discussed in Sec. V A.
Both types of fixed points are shown in Fig. 9 and their
precise locations are given in Table IV of Appendix C. The
RG flow can be analyzed similarly to the spin 3

2 chain, with the
additional presence of the ψ = 1

3 triplewise RSP. We outline
some of the general results. Starting in the blue region leads
to a ψ = 1

2 pairwise RSP, whereas starting in the green region
leads to the ψ = 1

3 triplewise RSP. The purple region is purely
FM, as indicated by the two-spin problem having S̃ = 4 as
the local ground state. The red region, where S̃ = 1, has to
be analyzed in a case-by-case manner, leading, for instance,
to a LSP, if K

(1)
i couplings are nonzero, as in the K (1) × K (3)

plane [see Fig. 8(b)], or to the breakdown of our RG scheme,
as in the case of the K (3) × K (4) plane [Fig. 8(f)]. In the latter,
the RG fails because 2S̃ < 3 and, therefore, both couplings
are renormalized to zero at all RG steps. The orange region
behaves similarly, leading also to vanishing coupling constants
[as in Fig. 8(d)] or to a LSP [as in Fig. 8(a)].

Finally, we focus on the three-dimensional region spanned
by the K (1), K (2), and K (3) axes with K (4) = 0, which is a
three-dimensional hyperplane in R4. Other hyperplanes with
K

(4)
i �= 0 yield qualitatively similar phase diagrams. We also

remind the reader that, according to the analysis of Sec. V A,
small K

(4)
i perturbations are irrelevant. Our results for the full

RG flow, in analogy to the previous spin- 3
2 case, are shown

on a unit two-sphere in the K (1) × K (2) × K (3) space in
Fig. 9. The fully stable AF fixed points on the semiaxes are
shown as beige, brown, and white circles. They define the AF
hyperoctant (actually, the K (4) = 0 section of the hyperoctant).
The semistable fixed points on the 2-planes [see panels (a), (b),
and (d) of Fig. 9] are shown as black circles. The topology of
the flow between these fixed points requires the existence of
a third fixed point in the AF octant. It is shown as a pink circle
that is fully unstable on the surface of the unit two-sphere.
Note, however, that, unlike in the previous spin- 3

2 case, this
is not the totally unstable FP with enlarged SU(5) symmetry.
The latter has K

(4)
i �= 0, the precise location of which [see

Appendix D for details about the SU(N )-symmetric points] is
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FIG. 8. Diagrams representing the two-spin ground multiplet for two spins-2 and the AF RG fixed points of the disordered spin-2 chain
in the various two-dimensional planes in K space. The total angular momentum of the ground multiplets vary from S̃ = 0 to S̃ = 4 and it is
identified by the color scheme of Table II. The small circles represent the AF angular fixed points. The stable AF ones lie on the semiaxes with
K (1) > 0, K (2) < 0, K (3) > 0, and K (3) < 0. The unstable fixed points can also be found analytically (see the Appendix C).

given by

H
SU(5)
5−5̄

=
∑

i

Ki

(
Ô1 − 4

21
Ô2 + 1

21
Ô3 − 4

189
Ô4

)
. (51)

The basins of attraction of the stable AF fixed points are
found by a numerical analysis of the RG flow, following
the same protocol as in the spin- 3

2 chain. The results are
summarized by the color-coded thick dots in the blue region
of Fig. 9, where the colors used are the same as in the spin- 3

2
chain in Fig. 4. Furthermore, the green dots map out the basin
of attraction of the ψ = 1

3 fixed point along the K (3) axis,
which correspond to the triplewise RSP already discussed.

To conclude, we see that the phase diagram of the spin-2
chain differs qualitatively from the spin- 3

2 case only due to
the presence of the triplewise RSP with ψ = 1

3 . We expect
the same trend to hold for disordered chains with higher spin
values, with triplewise RSP appearing only in the cases of
integer spins.

VIII. SUMMARY OF RESULTS

In this section, we summarize our main findings, focusing
mostly on the different phases we have found as well as the
conditions for their realization in the initial model but leaving
out some of the technical details.

Our focus is on the SU(2)-symmetric, strongly disordered
spin-S chains. We have obtained general results for all values
of S and have illustrated in full detail the cases of S = 3

2
and 2. Generic SU(2) symmetry (with only nearest-neighbor
interactions, as we assume here) is usually identified by terms

which only involve powers of the scalar product of spin
operators on adjacent sites; the largest power being Jmax =
2S. There are Jmax coupling constants per bond α

(J )
i (with

J = 1,2, . . . ,Jmax) between sites i and i + 1. This form of the
Hamiltonian, however, is not the most suitable for an SDRG
treatment. Instead, the flow becomes simpler if we rewrite
the Hamiltonian in terms of scalars built by contractions of
irreducible spherical tensors of spin operators of a given rank.
We called them ÔJ (Si ,Si+1), where J is the rank of the
tensors being contracted and again J = 1,2, . . . ,Jmax. Each
contraction has a coefficient K

(J )
i . The sets α

(J )
i and K

(J )
i are

linearly related, as shown, for example, in Eqs. (A9)–(A12)
and (A13)–(A16).

If we think of the coupling constants as a vector Ki =
(K (1)

i , . . . ,K
(Jmax)
i ), the SDRG transformations are then a set

of rules that change the directions and magnitudes of these
vectors, as well as the spin magnitude on each site. In general,
these three quantities are coupled in the earlier stages of
the SDRG flow. Our results show, however, that the vector
directions decouple from their magnitudes in the final stages
of the flow (near the stable fixed points). This is the main
reason why it is more convenient to rewrite the Hamiltonian
in terms of the irreducible spherical tensors, namely, under the
SDRG transformations, tensors of a given rank do not generate
tensors of a different rank. This is a direct consequence of the
SU(2) symmetry. We now summarize the SDRG flow.

Stable fixed points define stable extended phases. An impor-
tant set of stable fixed points are the semiaxes (−1)J K (J ) < 0
(see Sec. V A and Fig. 3). The hyperoctant delimited by
(−1)J K (J ) < 0 spans most (but not all) of its basin of attraction
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FIG. 9. Schematic phase/flow diagram of the disordered spin-2
chain on the unit two-sphere of the hyperspace with K (4) = 0 and axes
K (1) × K (2) × K (3). The regions on the sphere are colored according
to the spin S̃ of the ground multiplet of the two-spin Hamiltonian; see
Table II for the color scheme (the region with S̃ = 4 is not visible from
this viewing angle). The thick dots on the sphere’s surface represent
initial conditions of the numerical RG flow, keeping always K

(4)
i = 0.

A generic flow starting at a point in the blue region ends up at one
of the stable fixed points on the semiaxes K (1) > 0, K (2) < 0, and
K (3) > 0 (dots have the same color as their final stable fixed points,
which are represented by large circles on the semiaxes). Also in
the blue region, semistable planar fixed points belonging to 2-planes
(where only two K (J ) are nonzero) are represented in black. A single
planar fixed point (belonging to the hyperplane K (4) = 0) that is fully
unstable on this two-sphere is shown in pink. RG flows starting in the
green region end up on a fixed point on the K (3) axis with random
signs, corresponding to the triplewise RSP with exponent ψ = 1

3 .
The red and orange regions (not marked by any dot for clarity) are
attracted to LSP fixed points.

(see the blue regions of Figs. 4 and 9). If the system is such
that all the vector directions are inside this basin of attraction
and the spin sizes are uniform (equal to S), then the RG
flow is such that the spin sizes remain fixed and the vector
directions flow towards one of the semiaxes (−1)J K (J ) < 0.
The main feature of these 2S fixed points is that they define the
same conventional pairwise random singlet state, which is a
generalization of random singlet state of the spin- 1

2 Heisenberg
chain [see Fig. 2(a)]. The distribution of vector magnitudes
tends towards a universal form with an asymptotically infinite
relative width: a so-called infinite-randomness fixed point [see
Eq. (27) with ψ = 1/2]. The excitations correspond to the
breaking of the singlet pairs in a hierarchy such that the relation
between the energy E of a bond and its size ξ is given by
E ∼ exp (−ξψ ). Other physical properties follow from this
structure. The magnetic susceptibility and specific heat behave
as χ−1 ∼ T | ln T |1/ψ and C ∼ | ln T |1+1/ψ , respectively. The
average spin-spin correlation function decays as a power
law 〈Si · Si+r〉 ∼ r−4ψ . An important aspect of this set of
fixed points is the emergence of an SU(2S + 1) symmetry:
Correlation functions and susceptibilities of combinations
of spin operators (dipolar, quadrupolar, and other higher-
multipole moments), which transform as generators of the
SU(2S + 1) group, are all equal in the limit of strong disorder.

Finally, there must be unstable fixed points inside this basin
of attraction. In particular, there is a completely unstable fixed
point in a particular direction in Ki space lying within the
hyperoctant with exact SU(2S + 1) symmetry (see Fig. 5). At
all fixed points within this basin of attraction, the ground state
and the low-temperature thermodynamics are the same.

The second set of fixed points we have found happens for
integer spins up to S = 9. As in the previous case, the spin
size S remains constant along the RG flow. The vectors Ki ,
however, do not point towards a single direction. Instead, they
point towards the positive and negative directions of the axis
J = IS , with equal probability (where I1 = 2 and IS = 3 for
2 � S � 9; see Sec. V B). The corresponding phase is also a
random-singlet phase. The singlets in this phase are formed by
a number of spins which is a multiplet of 3, with trios being the
most abundant [see Fig. 2(b)]. As in the previous set of fixed
points, it is also of the infinite-randomness type, sharing the
same features (correlation functions and thermodynamics) but
with an exponent ψ = 1/3. Its basin of attraction is illustrated
by the green region in Fig. 9. Finally, there is no emergent
symmetry at this fixed point larger than the original SU(2),
with the exception of the spin-1 case, for which there is an
emergent SU(3) symmetry [11].

A third important fixed point is found on the K
(1)
i axis

(the Heisenberg axis). As in the previous case, the vectors
point (with approximately equal probability) towards both the
positive (antiferromagnetic) and the negative (ferromagnetic)
K (1) direction (see Sec. V C). Unlike the previous fixed points,
the spin magnitude is not constant throughout the chain and the
distribution of the vector magnitudes is of finite-randomness
type [see Eq. (34)]. This implies a conventional scaling of
energy and length scales ω ∼ ξ−z, where z is the dynamical
critical exponent. The coarse-grained degrees of freedom are
spins of all sizes and the corresponding phase is named a
large spin phase [21]. The magnetic susceptibility is universal
and Curie-like χ ∼ T −1, while the specific heat behaves as
C ∼ T z. For weakly disordered systems, z is universal and
≈2.2. For strongly disordered systems, z is nonuniversal and
depends on the disorder strength of the initial vector magnitude
distribution.

The basins of attraction of these three classes of fixed points
above exhaust the parameter space except for the regions
with FM long-range order and other regions of measure zero.
Therefore, in the strong disorder limit, the phase diagram
displays four phases whenever S � 9 and integer: the pairwise
and triplewise random singlet phases, the FM phase, and the
large spin phase (see Fig. 9 for the S = 2 case, and Fig. 1
of Ref. [11] for the S = 1 case). For the remaining cases
(half-integer spins or S > 9), the phase diagram shows the
same phases with the exception of the triplewise random
singlet phase (see Fig. 4).

IX. OUTLOOK

In this section, we comment on some open questions and
give some perspective for future directions of research.

Let us start with a technical open issue. Our method is able
to produce an RG flow in the whole parameter space of the
Hamiltonian (9), except for a zero-measure set as discussed
in Sec. VI C. This peculiar set of parameters is a subset of
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the K
(1)
i = 0 hyperplane (see details in Sec. VI C) in which

first-order perturbation theory fails to produce nonvanishing
corrections in the SDRG decimation procedure. Although the
RG flow is well behaved outside this hyperplane, it would be
desirable to know the real fate of the flow in this hyperplane.
At the moment, it is unclear whether including higher-order
perturbative terms in the decimation procedure will suffice to
produce a consistent RG flow or whether there is new physics
in this set of parameters.

Our approach is based on a strong-disorder RG method
which becomes asymptotically exact near infinite-randomness
fixed points. We have found two sets of such fixed points
(corresponding to the pairwise and triplewise RSP) and a set
of finite-disorder fixed points (corresponding to the large spin
phase). Naturally, our approach cannot give exact results in
the large spin phase. Unfortunately, there are no studies on the
precision of the SDRG method at finite-disorder fixed points
except for one study in which the accuracy of the SDRG
method is shown to be within 1% (for the values of some
critical exponents) when the dynamical critical exponent is
greater than modest values ≈1.5 [36]. We have not performed
an analysis of the dynamical critical exponent dependence on
the initial conditions and leave this task for the future. It is
known to be different from the one reported in Ref. [21] when
other terms beyond the usual nearest-neighbor Heisenberg
interactions are present [37]. In addition, as pointed out in
Ref. [11], there are regions in which three phases meet. A
complete analysis of the corresponding unstable critical points
is also left as an open question. Finally, we remind the reader
that our method can neither capture the phases of the clean
system nor predict if they are stable against weak disorder.
For the latter one, other methods are necessary (see discussion
in Ref. [11] for the S = 1 case). Thus, there is the possibility
of a much richer phase diagram in the intermediate disorder
regime.

One particular outcome of our results concerns the so-called
permutation-symmetric multicritical points [8]. In spin-S ran-
dom chains, it was shown that whenever N1 = 2S + 1 different
dimerized phases meet at a single multicritical point, this
point is of infinite-randomness type with tunneling exponent
ψ = 1/N1. At that point, it was left as an open question what is
the (fine-tuned) condition necessary for these phases to meet at
a single point. As we have shown here, there are no phases with
arbitrarily small tunneling exponent. Such feature happens
only at special unstable fixed points which possess explicit
SU(N ) symmetry (with N = N1) and which we have shown
how to precisely define. Therefore, we have now discovered

the exact location of the permutation-symmetric multicritical
points in SU(2)-symmetric spin-S random chains: They occur
at the SU(2S + 1)-symmetric point.

As mentioned in the Introduction, the main motivation
for this work is the search for phases displaying emergent
enlarged symmetries and the understanding of the correspond-
ing physical mechanism. Indeed, we have found an emergent
SU(2S + 1) symmetry in the entire pairwise RSP. In addition,
this phase is pairwise, and thus, ψ = 1/2 (a “mesonic” phase).
As shown in Ref. [11], the triplewise RSP of the spin-1 chain
also possesses an emergent SU(3) symmetry, with ψ = 1/3
(a “baryonic” phase). Unfortunately, we have not found a
generalization of the baryonic RSP for higher spins. This
would be interesting because it would imply in the existence
of entire phases with ψ = (2S + 1)−1. We have found instead
some triplewise RSPs for integer spins S with 2 � S � 9,
which, however, do not possess any enhanced symmetry.
In some sense, this supports the conventional wisdom that
emergent enhanced symmetries are indeed more the exception
than the rule. Additionally, a line with SO(5) symmetry
was found in the spin- 3

2 random chains which contains the
corresponding SU(4) baryonic and mesonic points. Since it
is confined to a lower-dimensional manifold of the full phase
space, it suggests that an emergent SU(2S + 1) baryonic RSP
may be realized in a different symmetry group. Exploring
spin-chain Hamiltonians with SO(N ) symmetry is the next
step of our research. This is not of just academic curiosity since
experimental realizations of these groups have been proposed
in cold-atomic systems [13,15].

Finally, we point out that our method has exciting ap-
plications to the Hamiltonian in Eq. (1) generalized to any
dimension or geometry (as in ladders) or with long-range
interactions. For instance, in higher dimensions there are
quantum phase transitions between the Néel AFM state to other
phases (such as a valence bond crystal phase) upon increasing
the value of the terms other than the bilinear one. Our method
can thus be directly used to study the disorder effects on such
quantum phase transitions.
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APPENDIX A: DICTIONARY OF CONVERSION OF DIFFERENT NOTATIONS

In this appendix, we list several conversions between different forms of the relevant operators and Hamiltonians used in
the paper. The calculations are tedious but straightforward. Alternatively, the use of a software like Mathematica expedites the
procedure.

We first explicitly show the decomposition of (S1 · S2)J , for J = 1, . . . ,4, in terms of the ÔJ operators

(S1 · S2) = 4π

3
Ô1, (A1)

(S1 · S2)2 = −2π

3
Ô1 + 8π

15
Ô2 + 1

3
S2

1S2
2, (A2)
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(S1 · S2)3 =
[
−8π

30

(
S2

1 + S2
2 − 3S2

1S2
2

) + 8π

15

]
Ô1 − 16π

15
Ô2 + 8π

35
Ô3 − 1

6
S2

1S2
2, (A3)

(S1 · S2)4 = 2π

3

(
S2

1 + S2
2 − 2S2

1S2
2 − 1

)
Ô1 + 8π

105

(
31 − 5S2

1 − 5S2
2 + 6S2

1S2
2

)
Ô2 − 8π

7
Ô3 + 32π

315
Ô4

+ 2

15
S2

1S2
2 − 1

15

(
S4

1S2
2 + S2

1S4
2

) + 1

5
S4

1S4
2. (A4)

Conversely,

Ô1 = 3

4π
(S1 · S2), (A5)

Ô2 = 15

16π
(S1 · S2) + 15

8π
(S1 · S2)2 − 5

8π
S2

1S2
2, (A6)

Ô3 = 7

8π

(
S2

1 + S2
2 − 3S2

1S2
2 + 3

)
(S1 · S2) + 35

4π
(S1 · S2)2 + 35

8π
(S1 · S2)3 − 35

16π
S2

1S2
2, (A7)

Ô4 = − 45

32π

[
17S2

1S2
2 − 6

(
S2

1 + S2
2

) − 9
]
(S1 · S2) − 45

32π

[
6S2

1S2
2 − 5

(
S2

1 + S2
2

) − 39
]
(S1 · S2)2

+ 1575

32π
(S1 · S2)3 + 315

32π
(S1 · S2)4 − 729

64π
S2

1S2
2 − 27

16π

(
S2

1S4
2 + S4

1S2
2

) + 27

32π
S4

1S4
2. (A8)

The coupling constants can be mapped according to

α(1) = 1

16π

[
12K (1) + 15K (2) + 14

(
3 + S2

1 + S2
2 − 3S2

1S2
2

)
K (3)] +

[
405

32π
+ 135

16π

(
S2

1 + S2
2

) − 765

32π
S2

1S2
2

]
K (4), (A9)

α(2) = 5

8π

(
3K (2) + 14K (3)) +

[
1755

32π
+ 225

32π

(
S2

1 + S2
2

) − 135

16π
S2

1S2
2

]
K (4), (A10)

α(3) = 35

8π
K (3) + 1575

32π
K (4), (A11)

α(4) = 315

32π
K (4), (A12)

and

K (1) = 4π

3
α(1) − 2π

3
α(2) − 8π

30

(
S2

1 + S2
2 − 3S2

1S2
2 − 2

)
α(3) + 2π

3

(
S2

1 + S2
2 − 2S2

1S2
2 − 1

)
α(4), (A13)

K (2) = 8π

15
α(2) − 16π

15
α(3) + 8π

105

(
31 − 5S2

1 − 5S2
2 + 6S2

1S2
2

)
α(4), (A14)

K (3) = 8π

35
α(3) − 8π

7
α(4), (A15)

K (4) = 32π

315
α(4). (A16)

Also relevant is the decomposition of projection operators
into spin objects. Unlike the previous equations, which can
be found for any values of S2 and S3, this has to be done in
a case-by-case manner. For two coupled spin- 3

2 , we find the
correspondence

ε(0) = α(0) − 15
4 α(1) + 225

16 α(2) − 3375
64 α(3), (A17)

ε(1) = α(0) − 11
4 α(1) + 121

16 α(2) − 1331
64 α(3), (A18)

ε(2) = α(0) − 3
4α(1) + 9

16α(2) − 25
64α(3), (A19)

ε(3) = α(0) + 9
4α(1) + 81

16α(2) + 729
64 α(3), (A20)

and, conversely,

K (0) = π

4
ε(0) − 3π

4
ε(1) + 5π

4
ε(2) + 7π

4
ε(3), (A21)

K (1) = − π

15
ε(0) − 11π

75
ε(1) − π

15
ε(2) + 7π

25
ε(3), (A22)

K (2) = π

45
ε(0) + π

75
ε(1) − π

15
ε(2) + 7π

225
ε(3), (A23)

K (3) = − 4π

315
ε(0) + 4π

175
ε(1) − 4π

315
ε(2) + 4π

1575
ε(3). (A24)

APPENDIX B: DERIVATION OF THE RG STEP

In this Appendix, we give details about the perturbative
calculations that allow one to make one RG decimation step.
We divide this appendix into three sections. In the first and
second sections, we derive how the first- and second-order
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perturbation theories are applied to this problem, while the
details about the calculation of coefficients that appear in the
first two sections are left for the final section.

Throughout this derivation, we need to compute matrix
elements of ISTs in a two-site problem. Let us then already set
the notation we are going to follow. The notation is the same
as in Edmonds’ book [23] (see, for instance, page 74). Assume
that the largest energy gap is due to a bond connecting sites 2
and 3 and let us call the spins of this two-site problem S2 and
S3. The Wigner-Eckart theorem, that gives the matrix elements
of ISTs of rank J and component M , YJM (Si) (i = 2,3) in the
total angular momentum basis, is given by

〈S2S3,J
′M ′|YJM (Si)|S2S3,J

′′M ′′〉

= (−1)J−J ′+J ′′ 〈JJ ′′; MM ′′|JJ ′′; J ′M ′〉√
2J ′ + 1

×〈S2S3,J
′||YJ (Si)||S2S3,J

′′〉, (B1)

where 〈J ′||Yk(S)||J 〉 is the reduced matrix element, indepen-
dent of the IST component M and the angular momentum pro-
jections M ′ and M ′′. To simplify the notation, in this appendix
we write 〈S2S3J

′||YJ (Si)||S2S3J
′′〉 ≡ 〈J ′||YJ (Si)||J ′′〉.

1. First-order perturbation theory

The algebraic challenge is to simplify the projection defined
in the main text in Eq. (15), i.e., to find effective couplings
between S1 and the new spin S̃, introduced to replace S2 and
S3, at low energies. For concreteness, we focus on operators
of site 2, YJ−M (S2). By using the projection operator onto a
multiplet of total angular momentum S̃, as defined in Eq. (10),

PS̃ =
S̃∑

M ′=−S̃

|S̃M ′〉〈S̃M ′|, (B2)

we find the projection to be

PS̃YJ−M (S2)PS̃ =
(∑

M ′
|S̃M ′〉〈S̃M ′|

)

×YJ−M (S2)

(∑
M ′′

|S̃M ′′〉〈S̃M ′′|
)

=
∑

M ′,M ′′
|S̃M ′〉〈S̃M ′′|〈S̃M ′|YJ−M (S2)|S̃M ′′〉.

(B3)

We now apply the Wigner-Eckart theorem, Eq. (B1), in
order to calculate the matrix element 〈S̃M ′|YJ−M (S2)|S̃M ′′〉.
This matrix element is proportional to 〈S̃||YJ (S2)||S̃〉 and to the
Clebsch-Gordan coefficient 〈J S̃; −MM ′′|J S̃; S̃M ′〉. In order
to rewrite the projection as a new IST acting on the ground-state
manifold, we use the Wigner-Eckart theorem again to calculate
〈S̃M ′|YJ−M (S̃)|S̃M ′′〉, where S2 has been replaced with S̃.
The latter is proportional to 〈S̃||YJ (S̃)||S̃〉 and to the same
Clebsch-Gordan coefficient, which implies

〈S̃M ′|YJ−M (S2)|S̃M ′′〉
〈S̃M ′|YJ−M (S̃)|S̃M ′′〉 = 〈S̃||YJ (S2)||S̃〉

〈S̃||YJ (S̃)||S̃〉 . (B4)

Therefore, we get

PS̃YJ−M (S2)PS̃ = 〈S̃||YJ (S2)||S̃〉
〈S̃||YJ (S̃)||S̃〉

∑
M ′

∑
M ′′

|S̃M ′〉

× 〈S̃M ′|YJ−M (S̃)|S̃M ′′〉〈S̃M ′′| (B5)

= 〈S̃||YJ (S2)||S̃〉
〈S̃||YJ (S̃)||S̃〉 PS̃YJ−M (S̃)PS̃ (B6)

= f (J )(S2,S3,S̃)PS̃YJ−M (S̃)PS̃. (B7)

This a fundamental part of the process, which guarantees that
the renormalized Hamiltonian has the same functional form as
the undecimated one. We leave the calculation of the ratio of
reduced matrix elements f (J )(S2,S3,S̃) to the third part of this
appendix. The new coupling is, therefore,

K̃
(J )
1 = f (J )(S2,S3,S̃)K (J )

1 . (B8)

For the effective coupling between S̃ and S3, the calculation
can be done following the same steps with the replacement
S2 � S3. Therefore,

K̃
(J )
3 = f (J )(S3,S2,S̃)K (J )

3 . (B9)

2. Second-order perturbation theory

In the main text, we gave some of the steps for the second-
order perturbation theory calculation. Particularly, we showed
that selection rules restrict the values of the angular momentum
of virtual states in such a way that we are left with the task
of computing 〈00|YJ−M (S2)|JM〉〈JM|YJM (S3)|00〉. In this
section, we want to justify the simplification we made from
Eq. (24) to Eq. (25), that is, the M independence of g(J,S).
From the Wigner-Eckart theorem, Eq. (B1), the M depen-
dence of the product 〈00|YJ−M (S2)|JM〉〈JM|YJM (S3)|00〉
is given by the product of the Clebsch-Gordan coefficients
〈JJ ; −MM|JJ ; 00〉 and 〈J0; M0|J0; JM〉, since both the
prefactor and the reduced matrix elements are M independent.
These Clebsch-Gordan coefficients can be explicitly calcu-
lated, and are equal to

〈JJ ; −MM|JJ ; 00 〉 = (−1)J+M

√
1 + 2J

, (B10)

〈J0; M0|J0; JM 〉 = 1. (B11)

The M dependence is, then, (−1)M , and

〈00|YJ−M (S2)|JM〉〈JM|YJM (S3)|00〉 = (−1)Mg(J,S),

(B12)

as defined in the main text. The function g is calculated in the
next part of this appendix.

3. Reduced matrix element calculations

a. Reduced matrix elements of ISTs

We now need to find analytic expressions for the reduced
matrix elements. There is a great simplification in the cases
we treat in this paper, in which the operators act only on the
degrees of freedom of one of the sites, as shown in Ref. [23]
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(page 111),〈
J ′||YJ (S2)||J ′′〉 = (−1)S2+S3+J ′′+J

√
(2J ′ + 1)(2J ′′ + 1)

×
{

S2 J ′ S3

J ′′ S2 J

}
〈S2||YJ (S2)||S2〉,

(B13)

where {· · · } represents the Wigner’s 6j symbol, and anal-
ogously for the reduced matrix elements of YJ (S3). The
reduced matrix element above, 〈S2||YJ (S2)||S2〉, can be easily
calculated by going back to the Wigner-Eckart theorem,
Eq. (B1), and choosing the state with highest possible value of
M , M = S, and J ′ = J ′′ = S2,

〈S2||YJ (S2)||S2〉 = (−1)J
√

2S2 + 1 〈S2S2|YJ0|S2S2〉
〈JS2;0S2|JS2;S2S2 〉 . (B14)

b. First-order perturbation theory

The ratio of reduced matrix elements is what is left in the
first-order perturbation theory calculation [Eq. (B16)]. The
numerator 〈S̃||YJ (S2)||S̃〉 corresponds to the case when J ′′ =
J ′ = S̃ of Eq. (B13). The denominator is the reduced matrix
element 〈S̃||YJ (S̃)||S̃〉, that can be easily calculated from the
Wigner-Eckart theorem, Eq. (B1), by again choosing J ′′ =
J ′ = S̃,

〈S̃||YJ (S̃)||S̃〉 = (−1)J
√

2S̃ + 1〈S̃S̃|YJ0(S̃)|S̃S̃〉
〈J S̃; 0S̃|J S̃; S̃S̃.〉 . (B15)

After some simplifications, we get

〈S̃||YJ (S2)||S̃〉
〈S̃||YJ (S̃)||S̃〉 = (−1)S2+S3+S̃+J (2S̃ + 1)!

(2S2)!

×
√

(2S2 − J )!(2S2 + J + 1)!

(2S̃ − J )!(2S̃ + J + 1)!

×
{
S2 S̃ S3

S̃ S2 J

} 〈S2S2|YJ0(S2)|S2S2〉
〈S̃S̃|YJ0(S̃)|S̃S̃〉 ,

(B16)

where the last term of the right-hand side is

〈S2S2|YJ0(S2)|S2S2〉
〈S̃S̃|YJ0(S̃)|S̃S̃〉 =

∏
S={0, 1

2 ,..., J−1
2 }(S2 − S)∏

S={0, 1
2 ,..., J−1

2 }(S̃ − S)
. (B17)

Putting it all together, we find

f (J )(S2,S3,S̃) = 〈S̃||YJ (S2)||S̃〉
〈S̃||YJ (S̃)||S̃〉 (B18)

= (−1)S2+S3+S̃+J

(
2S̃ + 1

)
!

(2S2)!

×
√

(2S2 − J )!(2S2 + J + 1)!(
2S̃ − J

)
!
(
2S̃ + J + 1

)
!

×
{
S2 S̃ S3

S̃ S2 J

}∏
S<J−1 (S2 − S)∏
S<J−1

(
S̃ − S

) .

(B19)

Using the properties of the 6j symbol, we also find (page
94 of Ref. [23]){

S2 S̃ S3

S̃ S2 J

}
=

{
S̃ S̃ J

S2 S2 S3

}
. (B20)

A necessary condition for the above 6j symbol above to be
nonzero is that the so-called triangular conditions are satisfied
by (S̃,S̃,J ) and (S2,S2,J ). A triad (l1,l2,l3) is said to satisfy
a triangular condition when it is possible to build a triangle
with edges of sizes l1, l2, and l3. The triad (S̃,S̃,J ) satisfies
the triangular condition if, and only if, J < 2S̃. In one case
discussed in the main text, S2 = S3 = 3

2 , S̃ = 1, and J = 3,
this condition is not satisfied. That is what we have called case
(a) in Sec. III A. The second triangular condition is equivalent
to S2 < 2S̃, and is always satisfied. On the other hand, in
another case discussed in the main text, S2 = S3 = 3

2 again,
but S̃ = 2 and J = 2. Even though the triangular conditions
are satisfied, the 6j symbol in Eq. (B20) vanishes. This is what
we have called case (b) in Sec. III A. Its occurrence cannot be
predicted in general.

c. Second-order perturbation theory

Now, we go back to the second-order perturbation-theory
calculation and find explicitly the g(J,S) function. The
difference when compared to first-order perturbation theory
is that the matrix elements of Eq. (23) are calculated between
a state of finite angular momentum and a singlet. The matrix
elements are, using Eqs. (B1), (B13), and (B14),

〈00|YJ−M (S2)|JM〉 = (−1)J+2S 〈JJ ; −MM|JJ ; 00 〉
〈JS; 0S|JS; SS 〉

×
√

(2J + 1)(2S + 1)

×
{
S 0 S

J S J

}
〈SS|YJ0|SS〉,

〈JM|YJM (S3)|00〉 = (−1)J+2S 〈J0; M0|J0; JM 〉
〈JS; 0S|JS; SS 〉

×
√

(2J + 1)(2S + 1)

×
{
S J S

0 S J

}
〈SS|YJ0|SS〉.

Multiplying the previous equations and simplifying the 6j

symbol, we get

g(J,S) = (−1)J
(

1 + 2S

1 + 2J

)
(2S − J )!(2S + J + 1)!

(2S + 1)!(2S + 1)!

× |〈SS|YJ0|SS〉|2. (B21)

The matrix elements that are explicitly used in this paper
are

〈S,S|Y10|S,S〉 = 1

2

√
3

π
S, (B22)

〈S,S|Y20|S,S〉 = 1

2

√
5

π
S

(
S − 1

2

)
, (B23)
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〈S,S|Y30|S,S〉 = 1

2

√
7

π
S

(
S − 1

2

)
(S − 1), (B24)

〈S,S|Y40|S,S〉 = 3

2

√
1

π
S2

(
S2 − 1

2

)
(S2 − 1)

(
S2 − 3

2

)
.

(B25)

Note that the matrix elements are zero if S < J
2 , which

immediately implies a product of S − Si , with Si < S. The
only task for higher-rank tensors is, then, to find the overall
prefactors.

Explicitly, for the tensors studied in this paper,

g(1,S) = − (S + 1)S

4π
, (B26)

g(2,S) =
(
S + 3

2

)
(S + 1)S

(
S − 1

2

)
4π

, (B27)

g(3,S) = − (S + 2)
(
S + 3

2

)
(S + 1)S

(
S − 1

2

)
(S − 1)

4π
, (B28)

g(4,S) =
(
S+ 5

2

)
(S+2)

(
S+ 3

2

)
(S+1)S

(
S− 1

2

)
(S−1)

(
S− 3

2

)
4π

.

(B29)

The above equations suggest a general formula for g(J,S),
which, however, we were not able to prove:

g(J,S) = (−1)J

4π

(2S + 1 + J )!

22J (2S − J )!
, (B30)

= (−1)J

4π

(
S + J + 1

2

)(
S + J

2

)
· · · (S + 1)

× S

(
S − 1

2

)
· · ·

[
S − (J − 1)

2

]
. (B31)

APPENDIX C: RG DECIMATION RULES:
SPIN- 3

2 AND SPIN-2

In this Appendix, we list the RG decimation rules in the
AF region for both spin- 3

2 and spin-2 decimations. We also
comment on the planar fixed point in both cases.

1. Spin- 3
2

The RG decimation rules in the AF region are given by

K̃
(1)
14 = 15

K
(1)
1 K

(1)
3

6K
(1)
2 − 90K

(2)
2 + 441K

(3)
2

, (C1)

K̃
(2)
14 = −10

K
(2)
1 K

(2)
3

4K
(1)
2 − 40K

(2)
2 + 49K

(3)
2

, (C2)

K̃
(3)
14 = 35

2

K
(3)
1 K

(3)
3

8K
(1)
2 − 20K

(2)
2 + 63K

(3)
2

. (C3)

2. Spin-2

The RG equations for a decimation of a spin-2 pair at the
AF region are

K̃
(1)
1,4 = 16K

(1)
1 K

(1)
3

4K (1) − 21[5K (2) − 56K (3) + 270K (4)]
, (C4)

K̃
(2)
1,4 = − 28K

(2)
1 K

(2)
3

4K (1) − 85K (2) + 616K (3) − 810K (4)
, (C5)

K̃
(3)
1,4 = 112K

(3)
1 K

(3)
3

8K (1) − 110K (2) + 252K (3) − 1215K (4)
, (C6)

K̃
(4)
1,4 = − 378K

(4)
1 K

(4)
3

5[8K (1) − 30K (2) + 252K (3) − 675K (4)]
. (C7)

The method to find planar fixed points is similar to the
one we have used for the spin- 3

2 chain in the main text. The
solutions are shown in Table IV and represented as black
circles in Fig. 8.

Finally, defining s(i) = K (i)

K (1) , the globally unstable point in
the AF region of the two-sphere of the K (1) × K (2) × K (3)

space is

s̃(2)∗ = − 4
1617 (55 + 2

√
1969), (C8)

s̃(3)∗ = 1
6468 (253 + 5

√
1969). (C9)

It is represented as a pink circle in Fig. 8.

APPENDIX D: GENERATING SU(N)-INVARIANT
HAMILTONIANS USING SPIN OPERATORS

In this Appendix, we find which SU(2)-symmetric spin-S
Hamiltonians of the form (1) are also explicitly invariant under
SU(N ) transformations. The idea is to fine tune the parameters
in Eq. (1) in order to match the spectra of SU(N )-symmetric
spin Hamiltonians. Notice that this task can be accomplished
by considering just the two-site Hamiltonian.

From the dimension of the Hilbert space of a spin S in
Eq. (1) that N must be equal to 2S + 1. This leaves us
with two possibilities: Either all the SU(N ) spin operators
are the generators of the fundamental representation of the
SU(N ) group, or the SU(N ) spin operators at odd (even)
sites are the generators of the fundamental (anti-fundamental)
representation of the group.

1. Fundamental and antifundamental representation
on alternating sites

Consider the two-site problem h
SU(N)
N−N̄

= �2 · �̄3, where

� = (
(1), . . . ,
(N2−1)) and �̄ = (
̄(1), . . . ,
̄(N2−1)), with 
(a)

(
̄(a)) being a generator of the fundamental (antifundamental)
representation of the SU(N ) group. The Clebsch-Gordan series
is simply N ⊗ N̄ = 1 ⊕ (N2 − 1). Notice that the spectrum is
very simple. It has two states, of which one is an SU(N )
singlet, which must correspond to the SU(2) singlet, with zero
total spin |S̃ = 0〉. The energy difference can be obtained via
the Casimir of the corresponding Young tableau (which can be
found, e.g., in Ref. [9]), but this knowledge is of no importance
here. We now want to recover this spectrum with a spin-S
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Hamiltonian. Naturally, it must read, up to a constant,

h
SU(N)
N−N̄

= 0 × P0 + 	E(1 − P0), (D1)

= −	EP0 + const., (D2)

where P0 is the projector onto the singlet as defined in Eq. (10)
and 	E is the energy difference between the singlet and all
the other degenerate levels.

How does this translate to the spin-spin couplings in the
Hamiltonian (1)? This is given by Eq. (10). Here we simply list
a few examples. Defining the vector αN,S = (α(1), . . . ,α(2S)),
some spin-S SU(N )-symmetric cases are αN=3,S=1 = (0,−1),
αN=4,S= 3

2
= (−93,20,16), and αN=5,S=2 = (60,17,−4,−1).

Evidently, −αN,S yields a Hamiltonian which possesses the
same symmetry but represents the FM case.

It is also interesting to recast these Hamiltonians in terms
of the ISTs defined in Eq. (5). It can be done by directly
using the dictionary between the α couplings and the K cou-
plings. For instance, in obvious notation, KN=3,S=1 = (1,− 4

5 ),
KN=4,S= 3

2
= (1,− 1

3 , 4
21 ), and KN=5,S=2 = (1,− 4

21 , 1
21 ,− 4

189 ).
We would like to show now that these Hamiltonians lie

inside the AF hyperoctant, as discussed in Sec. V A. For
that, we derive a more general approach. Let us start by
decomposing the projector P0 as

−P0 =
∑

J

φJ (S)ÔJ (S2,S3), (D3)

where S2 = S3 = S, and finding the coefficients φJ (S). We are
going to compute the matrix elements of the above equation
in states of total angular momentum S̃, that is, the multiplet
coming from the sum of angular momenta S2 with S3, denoted
by |S̃,M̃〉 = |S2S3; S̃,M̃〉. The matrix element of the ÔJ

operator is found from Ref. [23] (page 111) to be given by

〈J ′M ′|ÔJ |J ′′M ′′〉 = (−1)2S+J ′′
δJ ′J ′′δM ′M ′′

{
J ′′ S S

J S S

}

× |〈S||YJ (S)||S〉|2, (D4)

where {· · · .} is Wigner’s 6j symbol. The reduced matrix
element of YJ (S), 〈S||YJ (S)||S〉, was calculated in Eq. (B15).
Since 〈S̃,M̃|P0|S̃,M̃〉 = δS̃,0, the matrix elements of Eq. (D3)
in the |S̃,M̃〉 states yield

(−1)2S+S̃+1δS̃,0 =
∑

J

φJ

{
S̃ S S

J S S

}
|〈S||YJ (S)||S〉|2.

(D5)

Multiplying Eq. (D5) by (2S̃ + 1){J ′′ S S
S̃ S S

}, summing over

S̃, and using the orthogonality relation (page 96 of Ref. [23])

∑
S̃

(
2S̃ + 1

){S̃ S S

J S S

}{
J ′′ S S

S̃ S S

}
= δJ,J ′′

(2J ′′ + 1)
,

(D6)

we find∑
S̃

(−1)2S+S̃+1δS̃,0

{
S̃ S S

J ′′ S S

}
= |〈S||YJ (S)||S〉|2

(2J ′′ + 1)
φJ ′′ .

(D7)

Since { 0 S S

J ′′ S S} = (−1)J
′′+2S

2S+1 (page 98 of Ref. [23]), we obtain
finally

φJ (S) = (−1)J+1

|〈S||YJ (S)||S〉|2
(2J + 1)

(2S + 1)
. (D8)

The most important feature of Eq. (D8) is that it alternates
sign with J . This guarantees that the SU(N )-symmetric
Hamiltonian is in a region in parameter space where the
product (−1)J+1KJ is always positive, i.e., in the middle of the
AF hyperoctant [see Fig. (3)]. Besides, as this large symmetry
is preserved along the RG flow, it also corresponds to a fixed
point in the middle of the AF hyperoctant, which is totally
unstable. Since, as mentioned in the main text, the random
singlets generated by the RG process are the same in the entire
AF hyperoctant, we conclude that they are all also SU(N )
singlets.

2. Fundamental representation on all sites

We now repeat the same steps above for the two-site
problem h

SU(N)
N−N = �2 · �3. As before, the spectrum also has

two states but with a different degeneracy. From the Clebsch-
Gordan series, we have

N ⊗ N = N (N − 1)

2
⊕ N (N + 1)

2

= S(2S + 1) ⊕ (2S + 1)(S + 1). (D9)

It can be checked that this spectrum can be generated, up to a
constant, by

h
SU(N)
N−N = −

2S∑
J=0

[1 − (−1)J+2S]PJ ,

where PJ is the projector onto the multiplet of total angular
momentum J [see Eq. (10)]. Notice that if S is integer
(semi-integer), then only the projectors onto the odd (even)
J multiplets are included. Even though there are other ways
of reproducing the spectrum for particular values of S (e.g.,
S = 2), this is the only choice that does so for generic spin
values and, indeed, the one that realizes the SU(N ) symmetry.

As in the N − N̄ case, we can use Eq. (10) in order
to find the corresponding Hamiltonian in the form (1) in
terms of spin operators. Some examples are αN=3,S=1 = (1,1),
αN=4,S= 3

2
= (−81,44,16), and αN=5,S=2 = (−90,−13,6,1).

They correspond to KN=3,S=1 = (1, 4
5 ), KN=4,S= 3

2
= (1, 1

3 , 4
21 ),

and KN=5,S=2 = (1, 4
21 , 1

21 , 4
189 ). Note the similarities with the

N − N̄ case: Only the signs of the even-rank couplings are
reversed.

As in the previous case, by using Eq. (5), the Hamiltonian
can be rewritten in terms of ISTs. The generators of the
fundamental representation of the SU(N ) group are N2 −
1N × N traceless Hermitian matrices. We choose them to
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satisfy the trace condition

Tr(�i�j ) ∝ δi,j . (D10)

There are 2J + 1 linearly independent components for each
rank J IST. By collecting all of them (except for J = 0), the
number of linear independent ISTs up to order 2S is

2S∑
J=1

(2J + 1) = 2S(2S + 1) + 2S (D11)

= 4S(S + 1), (D12)

which is exactly N2 − 1, with N = 2S + 1. The J = 0 IST
was excluded because its trace is nonzero. The proper choice
of the SU(N ) generators is found by combining the ISTs of
same rank and components M and −M , namely,

�J,M ∝

⎧⎪⎨
⎪⎩

YJ,M (S) + YJ,−M (S), M > 0,

YJ,0(S), M = 0,

YJ,M (S) − YJ,−M (S), M < 0.

(D13)

When the linear combination with minus sign is taken,
the overall constant is an imaginary number. The above
�J,M matrices are Hermitian, traceless, and also linearly
independent, since, by construction, the ISTs are linearly
independent. This shows that the set of matrices in Eq. (D10)
is composed of generators of the fundamental representation
of the SU(N ) group.

The trace orthogonality condition Eq. (D10) is also satis-
fied. In order to show that, we start by expanding a product of
two ISTs as a linear combination of ISTs (page 69 of Ref. [23]),

YJ,M (S)YJ ′,M ′ (S) =
∑

J ′′,M ′′
ζ (J,J ′,J ′′)

×〈JJ ′; JM|JJ ′; MM ′〉YJ ′′,M ′′ (S),

(D14)

where ζ (J,J ′,J ′′) does not depend on the tensor components
and the sum over J ′′ runs from |J − J ′| to J + J ′. The trace
involves the computation of diagonal elements of the above
equation:

〈SM|YJ,M (S)YJ ′,M ′ (S)|SM〉 =
∑

J ′′,M ′′
〈JJ ′; J ′′M ′′|JJ ′; MM ′〉

× 〈SM|YJ ′′,M ′′ (S)|SM〉.
(D15)

From the Wigner-Eckart theorem, Eq. (B1), the only value of
M ′′ that survives the sum is M ′′ = 0, and the Clebsch-Gordan
coefficient then requires M ′ = −M . Thus,

Tr[YJ,M (S)YJ ′,−M (S)]

=
J+J ′∑

J ′′=|J−J ′ |
〈JJ ′; J ′′0|JJ ′; M − M〉 Tr

[
YJ ′′,0(S)

]
.

(D16)

However, only Y0,0(S) has a nonvanishing trace. Therefore,
the only term that survives in the sum is J ′′ = 0. However,
J ′′ = 0 requires J = J ′. It follows that only YJ,M (S)YJ,−M (S)
has a nonzero trace. Let us assume, for concreteness, that

M,M ′ > 0. The other cases follow analogously. Then

Tr(�J,M�J ′,M ′ ) ∝ Tr[YJ,M (S) + YJ,−M (S)]

× [YJ ′,M ′(S) + YJ ′,−M ′(S)], (D17)

∝ 2δJ,J ′ (δM,M ′ + δM,−M ′ ). (D18)

Therefore, the trace condition Tr(�J,M�J ′,M ′ ) ∝ δJ,J ′δM,M ′

is satisfied by the operators defined in Eq. (D13). We have
thus proved all the conditions that are necessary in order
that the collection of the N2 − 1 traceless ISTs of rank up
to 2S (excluding zero rank) can be chosen as generators of the
fundamental representation of the SU(N ) group.

APPENDIX E: WHEN THE TWO-SPIN HAMILTONIAN
HAS A SINGLET GROUND STATE

Fundamental to our understanding of the ψ = 1
2 AF phases

is the fact that singlets are formed in the decimations on
some of the semiaxes. In this appendix, we analyze in detail
the conditions under which the ground state of the two-spin
problem S2 = S3 = S is a singlet. We focus on a given axis
and, therefore, only ISTs of a given rank, say J , are nonzero.

The energy of a multiplet of total angular momentum J ′,
EJ (J ′), can be found by using Eq. (D4) in a generic eigenstate
of the Hamiltonian, |SS; J ′M ′〉,

EJ

(
J ′) = 〈SS; J ′M ′|ÔJ |SS; J ′M ′〉 (E1)

= (−1)2S+J ′
{
J ′ S S

J S S

}
|〈S||YJ (S)||S〉|2. (E2)

Note that, since the operator is SU(2)-symmetric, the right-
hand side is the energy of the system, independent of M ′. One
can use Eq. (B15) to compute the reduced matrix element but,
for now, we just note that it is a function of only J and S,
assumed to be fixed in this analysis. We define the ratio

ẼJ

(
J ′) = EJ

(
J ′)

(−1)2S |〈S||YJ (S)||S〉|2

= (−1)J
′
{
J ′ S S

J S S

}
. (E3)

The task is to find the value of J ′ that minimizes (maximizes)
ẼJ (J ′) for integer (half-integer) S, with J varying from 0 to
2S. We have numerically checked up to J = 8 and S = 80 that
this requirement is satisfied for J ′ = 0.This provides strong ev-
idence that the singlet is the ground state when (−1)J K (J ) > 0,
which is the result quoted in the main text.

APPENDIX F: BEYOND FIRST-ORDER PERTURBATION
THEORY OF DEGENERATE MULTIPLETS

We show explicitly how to compute second-order correc-
tions to two concrete cases where the ground multiplet is not a
singlet but the first-order perturbation-theory renormalization
vanishes. The calculations to find such corrections are lengthy
and have to be done case by case. We deal with the case where
the spins are equal to 3

2 . We start by showing the steps to derive
the RG renormalization when decimations are performed on
the K (3) < 0 axis, where the local ground state is a spin-1
multiplet. The first-order perturbation theory vanishes due
to case (a) discussed in Sec. III A. After that, we compute
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second-order effects on spins connected by K (2) > 0 tensors.
This is an axis where case (b) of Sec. III A leads to a vanishing
first-order renormalization. The question we want to address
is whether higher-order corrections could give contributions
that would change the ground-state properties in a nontrivial
way. We have checked through numerical diagonalization of
the three-site problem that in both cases there are indeed small
second-order SU(2)-symmetric interactions with the side spins
of a decimated pair.

1. On the K (3) < 0 semiaxis

The four-spin Hamiltonian can be rewritten as

H = V1,2 + H 0
2,3 + V3,4, (F1)

where H 0 is the unperturbed Hamiltonian. First-order pertur-
bation theory gives a correction to the Hamiltonian,

	H (1) = PS̃V1,2PS̃ + PS̃V3,4PS̃, (F2)

where PS̃ is the projector onto the ground multiplet, which in
this case is a S̃ = 1 total angular momentum state. Applying
the Wigner-Eckart theorem, one can easily show that this
correction is zero, since the sum of angular momenta S = 1
and S = 3 cannot give S̃ = 1. The first-order effect would be,
therefore, to break the chain into two decoupled smaller chains.

A natural question is what is the lowest-order correction that
gives a nonzero contribution? The second-order correction is
given by

	H (2) = PS̃(V1,2 + V3,4)P̄
1

E0 − H 0
2,3

P̄ (V1,2 + V3,4)PS̃,

(F3)

= 	H
(2)
1,2 + 	H

(2)
3,4 + 	H

(2)
(1,2),(3,4), (F4)

where P̄ = 1 − PS̃ and we have defined

	H
(2)
i,i+1 = PS̃Vi,i+1P̄

1

E0 − H 0
2,3

P̄ Vi,i+1PS̃, (F5)

	H
(2)
(1,2),(3,4) = PS̃V1,2P̄

1

E0 − H 0
2,3

P̄ V3,4PS̃ + H.c. (F6)

We first consider 	H
(2)
(1,2),(3,4). It gives rise to different types

of terms which we call 	VJ,M̃ , where J and M̃ correspond to
the rank and component of the IST of S̃ it contains. There is a
next-nearest-neighbor ferromagnetic interaction independent
of S̃ (J = M̃ = 0),

	V0,0 = −23
√

π

35
Ô3(S1,S4). (F7)

The other terms are genuine three-body interactions given by

	V1,M̃ =
√

π

35

3−M̃∑
M=−3

α
(M̃)
M Y3,M (S1)Y1,M̃ (S̃)Y3,−M−M̃ (S4)

+ H.c., (F8)

	V2,M̃ =
√

π

35

3−M̃∑
M=−3

β
(M̃)
M Y3,M (S1)Y2,M̃ (S̃)Y3,3−M̃ (S4)

+ H.c. (F9)

TABLE V. Constants that appear in the three-body interaction
terms of Eqs. (F8) and (F9). The vector components correspond to
the M index, starting at M = −3.

M̃ α
(M̃)
M

0 1√
3
(3,−2,1,0,−1,2,−3)

1 1√
3
(
√

3,−√
5,

√
6,−√

6,
√

5)

M̃ β
(M̃)
M

0 8√
5
(−5,0,3,−4,3,0,−5)

1 8√
5
(−5,

√
15,−√

2,−√
2,

√
15,−5)

2 16√
10

(−√
5,

√
10,−√

12,
√

10,−√
5)

In Eq. (F8), M̃ runs from −1 to 1, whereas in Eq. (F9) the

sum is from −2 to 2. The coefficients α
(M̃)
M and β

(M̃)
M are given

in Table V. Through numerical diagonalization of four-site
chains, we find that all the terms 	VJ,M̃ are nonfrustrating;
i.e., the ground state is the same whether we keep them in the
RG procedure or not. For this reason, we neglect them in what
follows.

We keep, however, the 	H
(2)
i,i+1 terms. For i = 1, for

example,

	H
(2)
1,2

K
(J )
1

=
J∑

{M1,M2}=−J

(−1)M1−M2 [YJM1 (S1)YJ−M2 (S1)]

×
[
PYJ−M1 (S2)P̃

1

E0 − H 0
2,3

P̃ YJM2 (S2)P

]
. (F10)

The term YJM1 (S1)YJ−M2 (S1) can be decomposed as a linear
combination that conserves the azimuthal component of the
angular momentum, the same as in Eq. (D14) of Appendix D.
For example, for J = 3 and M1 = M2 = −3,

Y3,−3(S1)Y3,3(S1) = − 315

32
√

π
Y0,0(S1) + 63

16

√
3

π
Y1,0(S1)

− 21

16

√
5

π
Y2,0(S1) + 3

8

√
7

π
Y3,0(S1).

(F11)

The projection onto the ground-state multiplet also con-
serves the M values and, therefore, can be decomposed in
terms of ISTs of the effective new degrees of freedom,

PYJ−M1 (S2)P̃
1

E0 − H 0
2,3

P̃ YJM2 (S2)P

= 1

K
(3)
2

∑
J ′

βJ ′,(M2−M1)YJ ′,(M2−M1)(S̃ = 1). (F12)
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FIG. 10. RG step when the spins are equal to 3
2 and K (3) < 0.

The two-spin ground-state multiplet is S̃ = 1 and the first-order
perturbation theory yields a vanishing renormalization. Unlike in the
cases discussed in Sec. III A, the second-order step generates tensors
of ranks that were not present in the original chain.

Plugging this decomposition into Eq. (F10), we find

PV1,2P̃
1

E0 − H 0
2,3

P̃ V1,2P

=
(
K

(3)
1

)2∣∣K (3)
2

∣∣
2∑

J=0

γJ ÔJ

(
S1 = 3

2
,S̃ = 1

)
. (F13)

For this particular case,

γ0 = 2079
128 , γ1 = 63

20 , γ2 = 189
100 . (F14)

Neglecting the constant factor, we find the residual two-body
interaction between the effective S̃ = 1 spin and the S1 = 3

2
spin,

	H
(2)
1,2 =

(
K

(3)
1

)2∣∣K (3)
2

∣∣
(

63

20
Ô1 + 189

100
Ô2

)
, (F15)

where Ôi = Ôi(S1 = 3
2 ,S̃ = 1). By symmetry, we obtain the

coupling connecting to site 4 by replacing 1 ↔ 4. Note that
the decimation generates couplings between ISTs that were not
coupled in the initial Hamiltonian (Ô1 and Ô2). A schematic
representation of the RG rule, Eq. (F15), is represented in
Fig. 10. As explained in Fig. 11, although the first steps yield
a nonzero renormalization of couplings, in later steps the RG
procedure breaks the chain into two parts.

FIG. 11. Schematic representation of the RG decimations after
the decimation procedure shown in Appendix F is implemented and
the generation of zero couplings after some RG time. The strongest
coupled pair is represented by the red line. The first decimation
generates an effective spin S̃ = 1 (light red), which is coupled to
its neighbors via K (1,2), but not K (3). The second decimation leads
back to an effective spin- 3

2 , with its left neighbor having K (3) = 0.
The third decimation is a second-order singlet-formation decimation
and the final effective coupling of the edge spins is zero. This is
so because K̃ (J ) involves the product of neighboring couplings of
same rank and, whereas the right neighbor has only K (3) �= 0, the left
neighbor has K (3) = 0.

2. On the K (2) > 0 semiaxis

In this case, the reason why the first-order calculation
vanishes is that the couplings constants are proportional to
the following 6j symbol:{

2 2 2
3
2

3
2

3
2

}
= 0. (F16)

The steps of this calculation are analogous to those of
the previous case. The decomposition of Y2,M1 (S1)Y2,−M2 (S1)
gives terms with J ranging from 0 to 3, except J = 2. The
effective Hamiltonian that connects a spin S1 = 3

2 with a spin
S̃ = 2 is, up to an additive constant,

	H
(2)
1,2 =

(
K

(2)
1

)2

K
(2)
2

(
9

16
Ô1 − 3

56
Ô3

)
. (F17)

Here Ôi = Ôi(S1 = 3
2 ,S̃ = 2). As in the previous section, this

procedure generates an RG flow with nonzero couplings in
the first steps, but vanishing couplings are generated later via
the same mechanism as the one described in Fig. 11. Also
analogous to the previous section are the calculations of all the
three-body and long-ranged effective couplings.
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S. S. Fölling, Nat. Phys. 10, 779 (2014).

[20] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, Nat. Phys.
8, 825 (2012).

[21] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Phys. Rev.
B 55, 12578 (1997).

[22] K. Yang and R. N. Bhatt, Phys. Rev. Lett. 80, 4562 (1998).
[23] A. R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton University Press, Princeton, NJ, 1996).

[24] C. V. Ciobanu, S.-K. Yip, and T.-L. Ho, Phys. Rev. A 61, 033607
(2000).

[25] S. Alexander and J. Bernasconi, J. Phys. C 12, L1 (1979).
[26] T. A. L. Ziman, Phys. Rev. Lett. 49, 337 (1982).
[27] G. Theodorou, J. Phys. C 15, L1315 (1982).
[28] M. Cieplak and G. Ismail, J. Phys. C 20, 1309 (1987).
[29] S. Evangelou and D. Katsanos, Phys. Lett. A 164, 456

(1992).
[30] T. Hikihara, A. Furusaki, and M. Sigrist, Phys. Rev. B 60, 12116

(1999).
[31] J. A. Hoyos, Phys. Rev. E 78, 032101 (2008).
[32] G. Refael, S. Kehrein, and D. S. Fisher, Phys. Rev. B 66, 060402

(2002).
[33] A. Saguia, B. Boechat, and M. A. Continentino, Phys. Rev. B

68, 020403 (2003).
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