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Coherent diffraction of thermal currents in long Josephson tunnel junctions
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We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane
magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat
current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both
the length and the damping of the junction, highlighting deviations from the standard “Fraunhofer” pattern
characteristic of short junctions. The heat current diffraction patterns show features strongly related to the
formation and penetration of Josephson vortices, i.e., solitons. We show that a dynamical treatment of the system
is crucial for the realistic description of the Josephson junction, and it leads to peculiar results. In fact, hysteretic
behaviors in the diffraction patterns when the field is swept up and down are observed, corresponding to the
trapping of vortices in the junction.
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I. INTRODUCTION

The signature of phase coherent heat currents in an extended
Josephson junction (JJ) was recently successfully confirmed
by means of diffraction patterns experiments [1]. Specifically,
the Fraunhofer diffraction for thermal currents manifests itself
with a modulation of the electron temperature in a small
metallic electrode nearby contacted to a temperature-biased
short JJ when sweeping the external magnetic field. The
proof of the phase-coherent behavior in thermally-biased JJs
paved the way to the implementation of superconducting
hybrid coherent caloritronic [2] circuits such as, for instance,
interferometers [1,3,4], heat diodes [5,6] and transistors [4,7],
and solid-state memory devices [8].

In this paper we theoretically investigate heat transport in
temperature-biased extended long JJs, showing interference
of the phase-dependent component of thermal current in the
presence of an in-plane magnetic field. Accordingly, a heat
diffraction pattern results, in full analogy to what occurs for
the Josephson critical current. We discuss the influence of
the length and the damping of the device on both the char-
acteristics of the diffractions patterns and the configurations
of Josephson vortices, i.e., solitons, set along the junction.
Moreover, according to a full dynamical description of the
system, hysteretic behaviors of the critical heat current and the
magnetic flux through the JJ come to light.

To measure the thermal effect we discuss in long JJ a
setup similar to the one recently proposed [9] and successfully
implemented [1] for a thermally biased rectangular short JJ can
be used. Specifically, this junction consists of a first electrode
coupled to two source and drain normal metal electrodes,
allowing Joule eating and thermometry, and a second one,
extending into a large bonding pad that is kept open during
the heat diffraction experiment. An extra probe is connected,
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through a bias JJ, to the first electrodes to perform the electric
characterization of the device.

The paper is organized as follows. In Sec. II, the model used
to describe a thermal biased and electrically open long JJ is
shown. Specifically, first we look at the phase dependence
of the maximum heat current and then we introduce the
mathematical approach used to describe the phase dynamics
of an electrically open long JJ in the presence of an external
uniform magnetic field. In Sec. III the results are shown and
analyzed by focusing on the thermodynamical picture of the
problem and its limits when the effects of the damping are
taken into account, the emerging hysteretic behavior as a
function of the magnetic field, and the effect of the thermal
fluctuations. In Sec. IV conclusions are drawn.

II. THE MODEL

The system analyzed is a symmetric extended long JJ
with dimensions L and W , shown in Fig. 1, formed by two
superconducting electrodes S1 and S2 in a thermal steady state
residing at different temperatures T1 and T2, respectively, with
T1 � T2. In the long junction limit, the lateral dimension L is
greater than the Josephson penetration depth [10]

λ
J

=
√

�0

2πμ0ictd
, (1)

specifically L > λ
J

and W � λ
J
, where �0 = h/2e �

2.067 × 10−15 Wb is the magnetic flux quantum, μ0 is the
vacuum permeability, ic is the critical current area density, and
td = λ1(T1) + λ2(T2) + d is the effective magnetic thickness,

λi(Ti) = λi(0)/
√

1 − (Ti/T i
c )4 being the London penetration

depth of the superconductor Si , and d is the interlayer thickness
(T i

c is the critical temperature of the superconductor Si). If
λi > ti the effective magnetic thickness has to be replaced
by t̃d = λ1 tanh (t1/2λ1) + λ2 tanh (t2/2λ2) + d. The magnetic
field Hext lies parallel to a symmetry axes of the junction and
along y.

In the presence of a temperature gradient and with no
voltage bias, a finite heat current JS1→S2 , see Fig. 1, flows
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FIG. 1. Temperature biased long Josephson junction. The heat
current JS1→S2 flows along the z direction whereas a constant,
homogeneous external magnetic field Hext is applied in the y direction.
The length and the width of the junction are L > λ

J
and W � λ

J
,

respectively, where λ
J

is the Josephson penetration depth. Ti and ti
represent the temperature and the thickness of the superconductor
Si , respectively, and d is the interlayer thickness. Fluxons in the
junction, extending over a physical distance of the order of λ

J
, are

also represented.

through the junction from S1 to S2 [11–16]

JS1→S2 (T1,T2,ϕ) = Jqp(T1,T2) − Jint(T1,T2) cos ϕ (2)

where ϕ is the macroscopic quantum phase difference between
the superconductors. In Eq. (2), Jqp is the heat flux carried by
quasiparticles [17,18] and Jint is the phase-dependent part of
the heat current which is peculiar to JJs. The latter originates
from the energy-carrying processes involving Cooper pairs
tunneling and recombination or destruction of Cooper pairs.
Since the phase difference between the annihilated and created
pairs is relevant in such a process this gives rise to the cos ϕ

contribution to the transferred heat. The oscillatory behavior
of the thermal current JS1→S2 was experimentally verified in
Refs. [1,3].

The first term on the rhs of Eq. (2) explicitly reads [11–16]

Jqp = 1

e2RN

∫ ∞

0
dεεN1(ε,T1)N2(ε,T2)[f (ε,T2) − f (ε,T1)]

(3)
where

Ni(ε,Ti) = |ε|√
ε2 − �i(Ti)2

�[ε2 − �i(Ti)
2] (4)

is the BCS normalized density of states in Si at temperature
Ti (i = 1,2). Here ε is the energy measured from the conden-
sate chemical potential, �i(Ti) is the temperature-dependent
superconducting energy gap, f (ε,Ti) = tanh (ε/2kBTi),�(x)
is the Heaviside step function, kB is the Boltzmann constant,
RN is the junction normal-state resistance, and e is the electron
charge. The second term on the rhs of Eq. (2) reads [11–16]

Jint = 1

e2RN

∫ ∞

0
dεεM1(ε,T1)M2(ε,T2)[f (ε,T2) − f (ε,T1)]

(5)

where

Mi(ε,Ti) = �i(Ti)√
ε2 − �i(Ti)2

�[ε2 − �i(Ti)
2] (6)

is the Cooper pair BCS density of states in Si at temperature
Ti [10]. The ϕ-dependent component of the heat current can
be expressed as

JH (T1,T2,H ) =
∫∫

dxdyJA(x,y,T1,T2) cos ϕ(x,y) (7)

where JA(x,y,T1,T2) is the heat current density per unit
area. By supposing a spatially uniform heat current density,
Jint(T1,T2) = WLJA(T1,T2).

In Eq. (7), ϕ(x,y) is the phase difference induced by
the applied magnetic field Hext. In fact, ϕ(x,y) depends
on the normalized local magnetic field hy(x) through the
equations [10]

∂ϕ

∂x
= 2πμ0td

�0
Hy(x) = hy(x)

∂ϕ

∂y
= 0. (8)

The latter equation comes from the condition W � λ
J
, so

that ϕ(x,y) ≡ ϕ(x). For a short rectangular JJ the external
magnetic field is spatially homogeneous along the junction,
namely Hy(x) ≡ Hext, so that the phase is linearly increasing,
ϕ(x) = 2πμ0td/�0Hextx + ϕ0. Instead, in a long JJ both
the penetrating external field and the self-field generated by
the Josephson current have to be considered, so that ϕ(x)
nonlinearly changes along the junction. Therefore, Eq. (7) can
be written as

JH (T1,T2,H ) =
∫

dxJ (x,T1,T2) cos (ϕ(x))

= Re

[∫ ∞

−∞
dxJ (x,T1,T2)eiϕ(x)

]
, (9)

where

J (x,T1,T2) =
∫

dyJA(x,y,T1,T2) (10)

is the heat current density per unit length along x. The
maximum value of the phase-dependent component of the
thermal current is given by

Jm
H (T1,T2,H ) =

∣∣∣∣
∫ ∞

−∞
dxJ (x,T1,T2) cos ϕ(x)

∣∣∣∣. (11)

Notice that Eq. (11) resembles the expression of the maximum
Josephson current Im

s (H ) [10].
By assuming a uniform thermal current area density, i.e.,

JA(x,y,T1,T2) ≡ JA(T1,T2), for 0 � x � L and 0 � y � W ,
and zero elsewhere, Eq. (11) becomes

Jm
H (T1,T2,H )

Jint(T1,T2)
= 1

L

∣∣∣∣
∫ L

0
dx cos ϕ(x)

∣∣∣∣, (12)

where Jint(T1,T2) = WLJA(T1,T2).
It only remains to include in Eq. (12) the proper phase

difference ϕ(x,t) for a long JJ. The electrodynamics of a
damped long junction is completely described in terms of a
partial differential equation for the phase difference ϕ(x,t),
the perturbed sine-Gordon (SG) equation [10,19,20],

∂2ϕ

∂t2
+ α

∂ϕ

∂t
− ∂2ϕ

∂x2
= − sin(ϕ), (13)

where we have expressed the space variable x in units of λ
J

and
the time t in units of the inverse of the plasma frequency ωp =√

2πIc/(�0C) (C is the capacitance of the junction). The
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damping parameter α = (ωpRNC)−1 measures the intensity
of a dissipative quasiparticle tunneling through the JJ.

The effect of an external magnetic field Hext is taken into
account by the boundary conditions of Eq. (13)

dϕ(0,t)

dx
= dϕ(L,t)

dx
= H, (14)

where H = 2πμ0tdλJ
/�0Hext is the normalized external field

and L = L/λ
J

is the normalized junction length. Eqs. (13)
and (14) describe an electrically open system, namely with
zero bias current and neglecting RC loads at the ends of the
junction [21,22].

The SG equation admits traveling wave solutions, called
solitons [23]. For the unperturbed SG equation, i.e., α = 0 in
Eq. (13), solitons have the simple analytical expression [10]

ϕ(x − ut) = 4 arctan

{
exp

[
± (x − ut)√

1 − u2

]}
, (15)

where the sign ± is the polarity of the soliton and u is
the Swihart’s velocity, namely the largest group propagation
velocity of the linear electromagnetic waves (plasma waves) in
long junctions. A SG soliton corresponds to a phase solution
changing from 0 to 2π along the junction and has a well
defined physical meaning in the long JJ framework, since it
corresponds to a flux quantum �0 in the junction [24]. Thus, a
soliton is usually referred to as a fluxon or Josephson vortex in
the context of long JJ. A fluxon has a width in the order of the
Josephson penetration depth λ

J
and corresponds to a flowing

supercurrent circulating around it. In this work, apart from
the moment in which the external magnetic field is swept, we
can essentially consider configurations of quasistatic solitons
along the junction.

The number of solitons N in the junction can be evaluated
by the quantity [25]

N =
⌊

ϕ(L,t) − ϕ(0,t)

2π

⌋
, (16)

where �...	 in Eq. (16) stands for the integer part of the
argument. The Meissner state is the fluxon-free state in the
junction, corresponding to N = 0. In the low field limit,
the Meissner state ϕ

M
and the corresponding local field h

M

read, respectively,

ϕ
M

(x) ∼ Hext

cosh L/2
sinh x (17)

h
M

(x) ∼ Hext

cosh L/2
cosh x. (18)

Several authors [25–28] faced the study of SG solutions
by analyzing the Gibbs free-energy functional and its min-
imization (at least locally). The Gibbs free energy G of a
long JJ consists of the Josephson coupling energy EJ , and the
magnetic and electrical energies Em and Ee, respectively given
by [19,29]

EJ = EJ0

L

∫ L

0
dx(1 − cos ϕ) (19)

Em = EJ0

L

∫ L

0
dx

1

2

(
dϕ

dx
− H

)2

(20)

Ee = EJ0

L

∫ L

0
dx

1

2

(
dϕ

dt

)2

, (21)

where EJ0 = �0Ic/2π . The magnetic energy Em includes both
the energy stored in the total inductance of the JJ and the energy
supplied by the magnetic field. In case of static or slowly
changing magnetic field, the Ee contribution in Eq. (21) can
be neglected and the Gibbs free energy, normalized to EJ0 ,
reads

G = EJ

EJ0

+ Em

EJ0

= 1

L

∫ L

0
dx

{
(1 − cos ϕ) + 1

2

(
dϕ

dx
− H

)2
}

. (22)

This expression can be minimized to find which phase solution
is the most stable one [25–28].

However, as we will show below, this static and ther-
modynamics approach is in general not sufficient because
it fails to describe the JJ state when multiple solutions are
available. Here we rely on a full dynamical description and
solve Eqs. (13) and (14) in a “quasistationary” approach
with slowly-varying boundary conditions. Specifically, the
magnetic field H (t) is modeled as a staircase function with
small steps �H = 0.01 kept constant for time intervals
long enough to ensure the restoring of a steady phase
configuration before the field H is further modified. This
sweeping method closely maps an experimental setup used
to obtain diffraction patterns. The analysis is performed by
numerical integration of the system (13) and (14) using flat
initial conditions, ϕ(x,0) = dϕ(x,0)/dt = 0 ∀x ∈ [0 − L],
and time and spatial integration steps fixed at �t = 0.01 and
�x = 0.01, respectively.

III. THE RESULTS

A. Forward dynamics

The analysis is carried out studying, according to
Eqs. (12), (13), and (14), the normalized maximum heat current
Jm

H /Jint as a function of the magnetic field H , by varying the
junction length L. Moreover, different dissipative regimes are
taken into account by changing the damping parameter α, in
order to range from underdamped (α = 0.1) to overdamped
(α = 10) conditions.

Let us first focus on the magnetic field dependence for
fixed lengths, e.g., L = 2,6,10, setting α = 0.1 in panels (a),
(b), and (c) of Fig. 2. The magnetic field dependence of Jm

H

results in “Fraunhofer-like” diffraction patterns. While in the
short junction limit [1,9], different diffraction lobes are well
separated; here we observe the overlapping of the lobes. The
transitions between these lobes is usually discontinuous. These
patterns can be explained in terms of solitons entering the JJ.

Each lobe corresponds to a state with a fixed number N of
solitons. When the magnetic field increases, the configuration
with more solitons is energetically favorable and, thus, the
system jumps from a metastable state to a more stable state
with more solitons. In the region of H values in which the
diffraction lobes overlap, several solutions with different N

may concurrently exist. Therefore, the system stays in the
present configuration until the following one is energetically
more stable.

Experimental evidences of such transitions from metastable
to stable states in the diffraction patterns of the maximum
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FIG. 2. Normalized maximum heat current J m
H /Jint (left ordinate scale, full symbols) and soliton number N (right ordinate scale, empty

symbols) as a function of the sweeping up magnetic field H for JJ lengths L = 2,6,10 and damping parameter α = 0.1 [left panels (a), (b),
and (c)]. In panel (d), Gibbs free energy G [see Eqs. (22)] as a function of the sweeping up magnetic field H , for several JJ lengths L = 2,6,10
and damping parameter α = 0.1. The multiplication per L is used as an offset to avoid the superimposition of the curves.

Josephson current Im
s (H ) in long [30–32], annular

[33–35], and grain boundary [36] JJs has been observed. This
thermodynamical and energetic view is confirmed by the study
of the Gibbs free energy as a function of H . The Gibbs free
energy jumps to a new local minimum when new solitons
penetrate into the junction, as stands out in panel (d) of Fig. 2.

In panels (a), (b), and (c) of Fig. 2, as long as H

increases up to a critical value Hc, the normalized heat current
monotonically reduces. Specifically, Hc � 3.5 for L = 2, see
panel (a) of Fig. 2, and Hc = 2 for L = 6,10, see panels (b)
and (c) of Fig. 2. By exceeding the threshold value Hc, the
second lobe begins. The first lobe corresponds to N = 0, i.e.,
Meissner states with zero solitons in the junction. This value
of the critical field characterizes also the diffraction patterns
of the maximum Josephson current Im

s (H ) in both overlap and
inline long JJs [10,30,32]. Above the critical field, solitons in
the form of magnetic fluxons can penetrate into the junction,
resulting in N > 0. For L = 2, see panel (a) of Fig. 2, any

transition between neighboring lobes corresponds to increase
N by one per lobe. Conversely for longer junctions, for H

just above Hc the system switches from the Meissner to a
two-solitons state, in which a pair of fluxons is symmetrically
injected from the junction edges. For high fields, N advances
again by one per lobe, as shown in panels (b) and (c) of Fig. 2.

A complete description of the junction dynamics is pre-
sented in Fig. 3. The spatial distributions of the local magnetic
field hy(x), calculated according to Eq. (8), are shown in
Fig. 3, for L = 2,6,10 and α = 0.1. The ripples in these curves
indicate fluxons along the junction. For H < Hc the system is
in the Meissner state, see Eq. (18), i.e., no ripples, meaning
zero fluxons, and a decaying magnetic field penetrating the
junction ends. According to the nonlinearity of the problem,
for high fields (H > Hc) the stable solutions are not the trivial
superimposition of Meissner and vortex fields, but are rather
solitons “dressed” by a Meissner field confined in the junction
edges [25]. The amount of fluxons, e.g., ripples, along the JJ

FIG. 3. Local magnetic field hy(x) [see Eq. (8)] as a function of x, for damping parameter α = 0.10 and several JJ lengths L = 2,6,10
[panels (a), (b), and (c), respectively]. These results are obtained when increasing H in steps of �H = 1.0 from H = 0 (black line) to H = 9
(dark-green line).
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FIG. 4. Normalized maximum heat current J m
H /Jint (left ordinate

scale, full symbols) and soliton number N (right ordinate scale, empty
symbols) as a function of the sweeping up magnetic field H for
L = 10 and α = 0.10,1.0,10 [panels (a), (b), and (c), respectively].

increases by intensifying the magnetic field. Moreover, for a
fixed value of H , the number of fluxons grows as the junction
length increases, since a longer junction means more space to
arrange “ripples” along it.

Up to now we have interpreted the diffraction patterns in
terms of transition between a metastable and stable state. This
thermodynamical picture in not complete, as the numerical cal-
culation for different damping parameter α shows (see Fig. 4).
As α increases the diffraction pattern changes and some of the
lobes vanish. For instance, for L = 10 as α increases from 0.1
to 1.0, the lobe of Jm

H (H ) for N = 3 vanishes being replaced by
a large one corresponding to four-solitons solutions [see panels
(a) and (b) of Fig. 4]. Similarly, the lobe for N = 5 for α = 1.0
[panel (b) of Fig. 4] is replaced by a large lobe describing
configurations with N = 6 solitons for α = 10 [panel (c) of
Fig. 4]. Since α is a damping parameter, these results cannot
be explained in terms of Gibbs free energy minimization, but
we need a dynamics interpretation according to Eq. (13).

From a qualitative point of view, we relate the entering of
solitons to 2π jumps in the phase [see Eq. (16)]. In a static
thermodynamics view, this is a sudden transition between
metastable and stable solutions. However, Eq. (13) gives us
the full dynamics of the transitions which is influenced by α.

As a friction parameter, α opposes the variations of ϕ and,
if it is large enough, can stabilize a state otherwise metastable.
Consequently, even if for a given H there are solutions that
are energetically favorable, the system is dynamically frozen
in a metastable one. Although this per se explains why by
increasing α some lobes vanish until new solitons can enter
the junction, we can go beyond by looking at the solitons ar-
rangement along the junction when the magnetic field is swept.

For the sake of symmetry, we first observe that in the
midpoint of the system, i.e., x = L/2, the local field ηi can be
exclusively a local maximum (accordingly, a soliton is pinned
in the center of the junction and the total amount of solitons
is odd) or a local minimum (the total amount of solitons is
even) (see curves in Figs. 3 and 5 for x = L/2). As the local
field at the midpoint, i.e., hy(x = L/2), sudden switches from
a minimum to a maximum (or vice versa), the diffraction
patterns abruptly jumps and, accordingly, the soliton number
N suddenly changes by one.

Due to the symmetry of the system, as the intensity of the
magnetic field increases, the solitons set along the junction are
shifted towards its center. For low fields, this shift is strongly
affected by the damping, so that solitons are less and less
pushed by the external field as the damping increases. Let’s
suppose that the junction contains an even number of solitons.
When the external field value is such that a new pair of solitons
is injected, if the two solitons near the center are close enough
they can merge in a midpoint soliton. Correspondingly, the
total amount N of solitons gets odd. However, high damping
can prevent this phenomenon, so that, as a result of the solitons
injection, N changes by two and the total amount of solitons
remains even.

B. Forward and backward dynamics and hysteretic effect

We have seen that the dissipative dynamics is crucial to
understand the junction diffraction patterns. In general, the

FIG. 5. Local magnetic field hy(x) [see Eq. (8)] as a function of x, for damping parameter α = 0.10 and several JJ lengths L = 2,6,10
[panels (a), (b), and (c), respectively]. These results are calculated as the value of H is reduced in steps of �H = 1.0 from H = 9.5 (black
line) to H = 0.5 (dark-green line), after an initial increasing sweep.
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FIG. 6. The normalized maximum heat current J m
H /Jint [panel (a)] and the mean local field ηi , i.e., the magnetic flux through the junction

per unit area, [panel (b)], setting the length and the damping parameter to L = 10 and α = 0.1, respectively, as a function of the magnetic field
H . Specifically, H is swept forward (empty circle) from H = 0 to H = 5, then backward (full red circle) from H = 5 to H = −5 and again
forward (empty circle) from H = −5 to H = 0. For clarity, in panel (a) forward and backward directions of H are marked with empty and full
red arrows, respectively.

dissipative dynamics depends on the full evolution of the
system. Therefore, it is natural to wonder if the heat diffraction
pattern changes with the history of the system.

To answer this question, we have implemented a double-
swept drive. The external “staircase” field H is ramped up
from H = 0 to Hmax, then reduced to −Hmax and subsequently
raised again to zero. The corresponding heat diffraction pattern
is shown in Fig. 6(a), for L = 10 and α = 0.1. As we can see,
the forward, i.e., with H increasing, and the backward, i.e.,
with H decreasing, patterns are significantly different. For a
given value of the magnetic field, the heat transferred in the
backward and forward evolutions are usually different and
the system is found in a different diffraction lobe. Following
Fig. 2, we can associate the forward and backward stable
states (at fixed H ) with a different number of solitons in the
junction.

The explanation of this difference can be found again in
the damped dynamics. Suppose that, for a given H , we have
Ñ solitons in the junction, so that new solitons are injected
into (extracted from) the system by increasing (decreasing)
the magnetic field. Let’s also assume that injection of solitons
occurs for H = H̃ , so that now Ñ + 1 solitons set in the
junction. In the backward evolution, when H reaches the value
H̃ , the dissipation terms oppose the phase variations, so that
(Ñ + 1)-soliton solutions can still be the most favorable ones.
Therefore, the system remains in the Ñ + 1 lobe even if H̃

is passed. This effect generates the asymmetry between the
forward and backward evolution.

Interestingly, the overall effect is a hysteric behavior in
the heat power [see Fig. 6(a)]. The heat power difference
(J for

H − J back
H )/Jint can be as large as 0.65 for H � 1 [see

Fig. 6(a)], J for
H and J back

H being the forward and backward
maximum heat current densities, respectively. This strong
heat hysteresis paves the way to interesting implementations
of the extended long JJs. For instance, it could be used as
a heat memory by storing a “heat bit 1” if J for

H /Jint > 0.9

and “a heat bit 0” if J back
H /Jint < 0.4 at H � 1. Specifically,

we are suggesting a memory element in which the I/O
related variables defining the history-dependent behavior of
the device [37] are the external magnetic field H (t) and the
maximum heat currents J for

H (t) and J back
H (t), respectively. The

memory states could be represented by the distinct diffraction
lobes in that ranges of magnetic field, such as H ∈ [0 − 2],
in which the forward/backward diffraction patterns clearly
differ.

Hysteresis results also studying the local magnetic field
hy(x) for a backward sweeping magnetic field (see Fig. 5).
Specifically, for sufficiently long JJs, see panels (b) and (c)
of Fig. 5 for L = 6 and 10, respectively, when switching off
the field, i.e., bottom curves for H = 0.5, a fluxon remains
confined in the midpoint of the junction.

The hysteretic behavior as a function of the magnetic field
clearly manifests also in the magnetic flux �i through the
junction per unit area. This quantity coincides with the mean
value ηi of the local field according to

�i

A
= 1

tdL

∫ td

0
dy

∫ L

0
hy(x)dx = 1

L

∫ L

0
hy(x)dx = ηi,

(23)

being A = tdL the effective magnetic area of the junction.
Panel (b) of Fig. 6 shows the mean local field ηi as a function of
H , for L = 10 and α = 0.1. We observe that ηi � H (ηi � H )
when sweeping forward (backward) the magnetic field. Each
branch of these curves corresponds to configurations with a
specific amount of fluxons. For |H | � Hc, we note a long
branch around ηi ∼ 0 corresponding to the Meissner field
and three branches with higher values of |ηi | corresponding
to configurations with N = 1,2,3 fluxons. For high field
intensities, both forward and backward ηi curves approach
the H values, meaning full penetration of strong external field
inside the junction.
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C. Effect of the temperature

We take also into account the effect of the temperature on
the phase dynamics by including the thermal fluctuations in
the SG model [20,38]

∂2ϕ

∂t2
+ α

∂ϕ

∂t
− ∂2ϕ

∂x2
= − sin(ϕ) + if (x,t) (24)

with boundary conditions still given by Eq. (14). The normal-
ized thermal current if (x,t) is characterized by the well-known
statistical properties of a Gaussian random process

〈if (x,t)〉 = 0, (25)

〈if (x,t)if (x ′,t ′)〉 = 2γ (T )δ(x − x ′)δ(t − t ′), (26)

where δ is the Dirac delta function and the noise intensity γ is
proportional to the temperature T according to [29]

γ (T ) = 2π

�0
Lα

kbT

Ic(T )
. (27)

For instance, for an Nb/AlOx /Nb long JJ with a critical
current Ic(0) = 2.7 mA and L = 10, the noise amplitudes
γ = 10−4,10−3,10−2,10−1 correspond to the temperatures
T = 0.034,0.34,3.3,8.1 K, respectively. With the aim of
observing the overall effect of the thermal fluctuations on the
diffraction patterns, we can in first approximation consider the
temperature T in Eq. (27) as the temperature T1 of the hot
electrode.

According to the stochastic nature of Eq. (24), the quantity
Jm

H /Jint is computed by averaging the normalized maximum
heat current over the total number of numerical realizations
Nexp = 100. Results for L = 10, in underdamped conditions
α = 0.1, and with different values of the noise intensity
γ = 10−4,10−3,10−2, and 10−1, are shown in panels (a), (b),
(c), and (d) of Fig. 7, respectively. By increasing the noise

intensity, we obtain a smoothing of the diffraction patterns with
broadened transitions between stable configurations. Also the
hysteretic behavior is affected by an enhancement in the noise
intensity. Moreover, as the noise increases, the “Fraunhofer-
like” structure of the patterns persists up to γ values of the
order of the activation energy �U of the thermally induced
phase slippage in long JJs [29]. In fact, for γ = 0.1, forward
and backward Jm

H (H ) curves are superimposed, resulting in a
large peak centered in H = 0, see panel (d) of Fig. 7.

The effect of the temperature has to be also taken into
account for a proper normalization of the junction length L.
In fact, according to Eq. (1), the Josephson penetration length
λ

J
depends on the temperatures T1 and T2 of the electrodes

S1 and S2 through both the critical current Ic(T1,T2) and the
effective magnetic thickness td (T1,T2). Let us suppose that
the electrodes are made by the same superconductors, so that
λi(0) ≡ λ(0),T i

c ≡ Tc, and �i(Ti) ≡ �(Ti).
For a temperature biased JJ the critical current Ic(T1,T2)

reads [39–41]

Ic(T1,T2) = 1

2eRN

∣∣∣∣
∫ ∞

−∞
dε{f (ε,T1)Re[FS1 (ε)]Im[FS2 (ε)]

+ f (ε,T2)Re[FS2 (ε)]Im[FS1 (ε)]}
∣∣∣∣ (28)

where FSj
(ε) = �(Tj )/

√
(ε + i�j )2 − �2(Tj ), �j being the

Dynes parameter [42]. The temperature-dependent Josephson
length can be written as

λJ (T1,T2)

λJ (0,0)
=

√
Ic(0,0)td (0,0)

Ic(T1,T2)td (T1,T2)
. (29)

By increasing the temperatures T1 and T2, also λ
J
(T1,T2)

slightly increases. Specifically, λ
J
(T1,T2)/λ

J
(0,0) ∼ 2 for

FIG. 7. Average value of the normalized maximum heat current J m
H /Jint over Nexp = 100 numerical realizations as a function of the

magnetic field H , setting the length and the damping parameter to L = 10 and α = 0.1, respectively, for different values of the noise intensity
γ = 10−4 (a), 10−3 (b), 10−2 (c), and 10−1 (d). Specifically, H is swept forward (empty circle) from H = 0 to H = 5, then backward (full red
circle) from H = 5 to H = −5 and again forward (empty circle) from H = −5 to H = 0. The legend in panel (a) refers to all panels.
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Ti → Tc, with i = 1,2 (setting �i/�(0) = 10−7) [43]. Thus
a JJ which is long, i.e., L(T1,T2) = L/λ

J
(T1,T2)>1, at low

temperatures becomes smaller and smaller when Ti approach
Tc. Nevertheless, for L(T1,T2)>2 the “long junction” condition
on the JJ length is always satisfied, regardless of the tem-
perature Ti of the superconductors. Since λ

J
(T1,T2)>λ

J
(0,0),

also the condition on the JJ width is clearly satisfied, i.e.,
W (T1,T2) = W/λ

J
(T1,T2) � 1.

IV. CONCLUSIONS

We have analyzed the diffractions patterns of the heat
current in a thermally-biased long Josephson junction (JJ)
when an external magnetic field H is properly swept. In
particular, we studied the maximum heat current as a function
of H by varying the length and the damping of the junction.
The phase dynamics is analyzed within the sine-Gordon
(SG) framework with proper boundary conditions modeling
a slowly-changing external magnetic field. We have shown
the lobes structure of the heat current diffraction patterns,
which is closely related to the Josephson vortices, i.e., solitons,
injections through the edges, and arrangement along the JJ
length. The amount of solitons set along the system depends
mainly on the junction length and the magnetic field intensity,
but we observed modifications in the diffraction patterns when
the value of the parameter α, describing the damping of the

system, is increased. This phenomenon can be understood by
leaving the pure thermodynamical picture of the problem, and
exploring the full dynamics of the SG model. Moreover, the
study of the full evolution of the system disclosed a clear
hysteretic effect as a function of H in both the diffraction
pattern and the magnetic flux per unit area through the junction.
Finally, we analyzed noise-induced effects in the diffraction
patterns by including a Gaussian thermal noise source into the
SG model.

The proposed systems could be easily implemented by stan-
dard nanofabrication techniques through the setup proposed
for the short JJs-based thermal diffractor [1]. Besides being
relevant from a fundamental physics viewpoint, the studied
thermally-biased long JJ represents the first effort to combine
the physics of solitons and the emerging superconducting
coherent caloritronics, e.g., the implementation of Josephson-
based heat memories.
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