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Transverse forces on vortices in superfluids in a periodic potential
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The paper analyzes the transverse forces (the Magnus and the Lorentz forces) on vortices in superfluids put into
periodic potentials at T = 0. The case of weak potential and the tight-binding limit described by the Bose-Hubbard
model were addressed. The analysis was based on the balance of true momentum and quasimomentum. A special
attention was paid to the superfluid close to the superfluid-insulator transition. In this area of the phase diagram
the theory predicts the particle-hole symmetry line where the Magnus force changes sign with respect to that
expected from the sign of velocity circulation. Our analysis has shown that the magnitude of the Magnus force
is a continuous function at crossing the particle-hole symmetry line. This challenges the theory connecting the
magnitude of the Magnus force with topological Chern numbers and predicting a jump at crossing this line.
Disagreement is explained by the role of intrinsic pinning and guided vortex motion ignored in the topological
approach. It is one more evidence that in general topological arguments are not sufficient for derivation of
equations of vortex motion.

DOI: 10.1103/PhysRevB.94.054521

I. INTRODUCTION

The transverse force on a vortex in superfluids (neutral and
charged) is debated during many decades and has been a topic
of reviews and books [1–4]. Let us consider a vortex moving in
a Galilean invariant continuous superfluid at T = 0. A straight
vortex along the axis z induces the velocity field:

vv(r) = [κ × r]

2πr2
, (1)

where r is the position vector in the xy plane, κ is the vector
parallel to the vortex axis (the axis z) with its modulus equal to
the circulation quantum κ = h/m, and m is the particle mass.
If the vortex moves with the velocity vL, one should replace
the position vector r by r − vLt . There is a flow of the fluid
past the vortex with the constant transport superfluid velocity
vs = �

m
∇θ determined by the phase θ of the order-parameter

wave function. Thus the total velocity field around the vortex
is vv(r − vLt) + vs . The balance of forces on a vortex is

FM + FL = Fe, (2)

where the Magnus force

FM = nm[vL × κ] (3)

is proportional to the vortex velocity vL and the Lorentz force

FL = −[ j × κ] (4)

is proportional to the transport superfluid mass current j =
mnvs . Here n is the particle density. The total transverse force
FM + FL depends only on the relative velocity vL − vs as
required by the Galilean invariance. If the external force is
absent the vortex moves with the superfluid velocity (vL = vs)
as required by Helmholtz’s theorem.

The Magnus force leads to the Hall effect if particles have
a charge q. The electric field is determined by the vortex
velocity: E = 1

c
[B × vL]. The value of the Hall conductivity

σH = jq

E = qnc

B

vcm

vL

, (5)
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where jq = q

m
j is the charge current and

vcm = j

mn
(6)

is the center-of-mass velocity, which may differ from the
superfluid velocity vs in general. Thus the ratio vcm/vL fully
determines the Hall conductivity. If the vortex moves with
the center-of-mass velocity (Helmholtz’s theorem) the Hall
conductivity has the universal value

σ̃H = qnc

B
. (7)

If a superfluid is in a periodic potential the Galilean
invariance is broken, and the value of the Magnus force
was a matter of debates, especially in the limit of strong
periodic potential (tight-binding limit) when the Bloch band
theory reduces to a lattice model. The most known lattice
model of the superfluid is the Josephson-junction array. In the
classical theory of the Josephson-junction array usually the
particle-hole symmetry is assumed, which forbids the Magnus
force in the model (see Ref. [4] and references therein).
However, this symmetry is not exact, and there were a lot
of theoretical works aiming at finding a finite Magnus force,
mostly suggesting some quantum effects.

Intensive investigations of Bose-condensed cold atoms
attracted an interest to another lattice model of a superfluid:
the Bose-Hubbard model. The periodic structure of potential
wells for bosons, which leads to the Bose-Hubbard model in
the tight-binding limit, is realized for cold-atom Bose-Einstein
condensates (BECs) in experiments with optical lattices [5].
Lindner et al. [6] and Huber and Lindner [7] calculated the
Magnus force in the Bose-Hubbard model and revealed that
close to the superfluid-insulator transition the force changes
its sign as happens in Fermi superfluids at changing the sign
of the carrier charge. Berg et al. [8] extended this theory
to charged Fermi superfluids (superconductors). All of them
used topological arguments connecting the Magnus force with
Chern numbers, and the theory predicted a quantized Hall
conductivity multiple of the value given by Eq. (7). This led
to a conclusion [6,7] that at the particle-hole symmetry line
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the Magnus force changes its sign not continuously but with a
jump in its magnitude.

This analysis was challenged [4,9] from the position that
derivation of any force must rely first of all on the momentum
balance, which the authors of Refs. [6,7] did not consider. The
analysis based on this concept has shown that there is no jump
in the Magnus force magnitude at the particle-hole symmetry
line. However, the momentum balance analysis of Refs. [4,9]
was not free from risky assumptions and did not go beyond the
coarse-grained treatment valid only at distances much longer
that the period of the lattice.

The present paper overcomes these shortcomings. The
new analysis demonstrates that the coarse-grained model is
not sufficient indeed. Moreover, a credible estimation of the
Magnus force (and also Lorentz force) is impossible within
the lattice model such as the Bose-Hubbard model. One must
analyze a microscopic wave function defined in the whole
space but not only on discrete sites of the lattice. According
to the present analysis, the very concept of a force on a vortex
is ambiguous since ambiguity is the definition of the vortex
displacement. The vortex is not a rigid object and any of its
displacement in a periodic potential is accompanied by its
deformation. However, this ambiguity is not a serious hurdle
since it does not affect the ratio of the center-of-mass velocity
vcm and the vortex velocity vL. The ratio of the velocities is
determined by the ratio of forces but not by their absolute
values. On the other hand, Eq. (5) for the Hall conductivity
contains only the ratio vcm/vL.

II. HYDRODYNAMICS OF SUPERFLUIDS
IN PERIODIC POTENTIALS

Hydrodynamics of superfluids in periodic potentials after
coarse graining (averaging over potential periods) reduces to
the continuous model with the Lagrangian [4,9]:

L = −�nθ̇ − �
2ñ

2m
(∇θ )2 − Ec(n). (8)

We consider a two-dimensional (2D) problem, where n is the
particle number per unit area, and Ec(n) is the energy of
a resting liquid which depends only on n. The Hamiltonian
(energy) for this Lagrangian is

H = ∂L

∂θ̇
θ̇ − L = �

2ñ

2m
(∇θ )2 + Ec(n). (9)

Despite similarity of the model to hydrodynamics of the
perfect fluid, there is an essential difference. Averaging over
the potential period restores translational invariance but not
Galilean invariance. The latter is absent since the effective
superfluid density ñ is different from the true particle density
n and can be much smaller than n. The effective superfluid
density ñ characterizes stiffness of the phase field and must be
derived from the microscopic theory by averaging over scales
exceeding periods of periodic potentials [see Eq. (20) below].

According to Noether’s theorem, the gauge invariance
provides the conservation law for charge (particle number):

∂

∂t

∂L

∂θ̇
+ ∇k

(
∂L

∂∇kθ

)
= 0. (10)

This is the continuity equation (the first Hamiltonian equation)
for the fluid:

m
∂n

∂t
= −∇ · j . (11)

The mass current

j = −m

�

∂L

∂∇θ
= �ñ∇θ (12)

by the factor m/q differs from the charge current of particles
with the charge q.

The second Hamiltonian equation for the phase θ canoni-
cally conjugating to n (Josephson equation) is

�
∂θ

∂t
= −∂H

∂n
= −mμ = −mμ0 − dñ

dn

�
2(∇θ )2

2m
, (13)

where μ0 = ∂Ec(n)/m∂n is the chemical potential μ of the
fluid at rest.

Noether’s theorem also provides the conservation law

∂gk

∂t
+ ∇l�̃kl = 0, (14)

for the momentum with the density (current)

g = −∂L

∂θ̇
∇θ = �n∇θ. (15)

The conservation law is related to translational invariance of
the model.

Here the flux tensor is

�̃kl = − ∂L

∂∇kθ
∇lθ + Lδkl = �

2

m
ñ∇kθ∇lθ

+Pδkl. (16)

The pressure P is determined by the T = 0 thermodynamic
relation

P = n
∂E

∂n
− E = mnμ0 − Ec(n) + �

2

2m

(
n
dñ

dn
− ñ

)
(∇θ )2.

(17)

Using Bernoulli’s law following from the Josephson equation
(13) for the stationary case one can exclude the pressure from
Eq. (16), and

�̃kl = − ∂L

∂∇kθ
∇lθ + Lδkl = �

2

m
ñ∇kθ∇lθ

+
[
P0 − ñ

�
2(∇θ )2

2m

]
δkl, (18)

where P0 is a constant pressure in the absence of any velocity
field, which has no effect on the further analysis.

In the Galilean invariant system the current g, which
appears in the Noether conservation law following from the
translation invariance, coincides with j . But in our case with
broken Galilean invariance (ñ �= n) the currents g and j
differ. The true mass current, which at the same time is true
momentum density, is j . This is because averaging of the
microscopic quantum-mechanical current,

ĵ = − i�

2
(ψ̂†∇ψ̂ − ∇ψ̂†ψ̂), (19)
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yields j but not g. Here ψ̂ and ψ̂† are the annihilation and the
creation operators normalized to the density.

One can derive our hydrodynamic model from the Bloch
band theory taking into account only quantum states close to
the lowest band bottom [4,9]. This derivation shows [10] that

ñ

n
= m

m∗ , (20)

where m∗ is the effective mass of particles at the bottom of the
lowest Bloch band. At the same time, Noether’s momentum
density g coincides with the density of particle quasimomen-
tum. Therefore we call the flux tensor �̃ij emerging from
Noether’s theorem [Eq. (16)] the quasimomentum flux tensor.

For a stationary vortex the phase θv around the vortex axis
varies with the gradient

∇θv = [ẑ × r]

r2
, (21)

where r is the position vector with the origin at the vortex axis.
The kinetic energy related with this gradient essentially sup-
presses the particle density close to the vortex line. Correction
n′ to the density n is determined from the Josephson equation
(13) at θ̇ = 0. The distance at which n′ ∼ n determines the
vortex core radius [11]

rc ∼ �

mcs

√
dñ

dn
, (22)

where cs = √
n∂μ0/∂n is the sound velocity in a uniform

fluid. This estimation makes sense as far as rc is longer than
the period of the periodic potential, to which we apply our
model (see below).

Our equations are not invariant with respect to the Galilean
transformation. In the coordinate frame moving with the
velocity w

H ′ = �
2ñ

2m
(∇θ ′)2 + �(ñ − n)w · ∇θ ′ + Ec(n), (23)

g′ = �n∇θ ′, j ′ = �ñ∇θ ′ + (ñ − n)mw, (24)

�̃′
kl = �

2

m
ñ∇kθ

′∇lθ
′ + �(ñ − n)∇θ ′wl

+
[
P0 − ñ

�
2(∇θ ′)2

2m
− �(ñ − n)w · ∇θ ′

]
δkl . (25)

The relation between phase gradients in the laboratory and the
moving coordinate frame is ∇θ ′ = ∇θ − mw/�.

In a Galilean invariant superfluid any force on the vortex
is determined by the momentum flux through a cylindric
surface surrounding the vortex line [1,4]. In a superfluid in
a periodic potential the true momentum is not conserved since
there is a momentum exchange between the superfluid and
the system, which provides the periodic potential. Instead of
it there is a conservation law for quasimomentum. Then one
may expect that forces on the vortex are determined by the
quasimomentum fluxes

∮
�̃kldSl through a cylindric surface

surrounding the vortex. This agrees with the well-established
result of the Bloch theory for solids that an external force on
particles is related with variation of quasimomentum but not

true momentum. Let us derive the Magnus and the Lorentz
forces on the basis of this assumption.

In the case of the Lorentz force the vortex is at rest
in the laboratory coordinate frame connected with periodic
potential. Then one must use Eq. (18) for the quasimomentum
flux, where the phase gradient ∇θ = ∇θv + ∇θt consists
of the gradient ∇θv induced by the vortex line [Eq. (21)]
and the gradient ∇θt = j/�ñ produced by the transport
current. The force arises from the cross terms ∇θv · ∇θt in
the quasimomentum flux tensor. Their integration yields the
Lorentz force given by Eq. (4) The mass current j = �ñ∇θt

is proportional to ñ, which differs from the particle density n.
Calculating the Magnus force proportional to the vortex

velocity it is convenient to use the coordinate frame moving
with the velocity w = vL, in which all variables are time inde-
pendent. In this frame the quasimomentum flux is determined
by Eq. (25). The superfluid is at rest in the laboratory frame, but
in the moving frame it moves with the velocity −vL. Then the
phase gradient in Eq. (25) is ∇θ ′ = θv − mvL/�. Eventually
one obtains the same Eq. (3) for the Magnus force like in the
Galilean invariant fluid.

Thus the quasimomentum balance yields that the vortex
moves with the center-of-mass velocity given by Eq. (6).
This is a generalization of Helmholtz’s theorem for a Galilean
invariant perfect fluid, which tells that the vortex moves with
the fluid velocity. In general the fluid velocity must be the
center-of-mass velocity, but not the superfluid velocity vs .
The latter is the average fluid velocity [4]. The center-of-mass
velocity coincides with the group velocity (�/m∗)∇θ in the
Bloch band theory. For charged fluids the quasimomentum
balance confirms the universal quantum Hall conductivity
given by Eq. (5).

Validity of derivation of forces on the vortex from the
quasimomentum balance is not self-evident. The vortex in a
sense is an alien body immersed into the fluid. If one looks for
the force between the immersed body and the fluid strictly
speaking one cannot rely on the quasimomentum balance
because the very concept of the quasimomentum is valid only
inside the fluid and cannot be used on the other side of the
interface between the fluid and the body. For strict justification
one should refer to the true momentum balance.

III. COURSE-GRAINED GROSS-PITAEVSKII THEORY

We need to analyze the momentum balance at scales
smaller than the core radius rc given by Eq. (22) at which
the hydrodynamic model of Sec. II is not valid. One must refer
to a more general theory, namely, the course-grained Gross-
Pitaevskii theory, i.e., averaged over the potential period. We
shall derive this theory for a weak periodic potential. Although
the weak potential weakly affects forces on the vortex its effect
can be calculated exactly.

In the Gross-Pitaevskii theory one can replace the operators
ψ̂(r) and ψ̂†(r) by classical complex-conjugated fields ψ(r)
and ψ∗(r) satisfying the nonlinear Schrödinger equation

i�ψ̇ = −�
2∇2ψ

2m
+ U (r)ψ + V |ψ |2ψ, (26)

where U (r) is an external potential for particles (periodical in
our case) and V is the amplitude of particle-particle interaction.
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The balance equation of nonconserved momentum can be
derived from this equation:

∂jk

∂t
+ ∇l�kl = |ψ |2∇kU (r). (27)

The true momentum flux tensor is

�kl = �
2(∇kψ

∗∇lψ + ∇kψ∇lψ
∗)

2m

+
(

−�
2∇2|ψ |2

4m
+ V |ψ |4

2

)
δkl . (28)

Let us start from a one-dimensional periodic potential
varying only along the axis x. In the coordinate frame moving
with the velocity w the Gross-Pitaevskii equation is

i�ψ̇ = −�
2∇2ψ

2m
+ U0 cos

2π (x − wt)

a
ψ + V |ψ |2ψ. (29)

If the particle-particle interaction ∝V is weak the general
solution of this equation is a superposition of Bloch functions

ψB(r,t) = ul(r,k)eik·r−iE(k)t/�, (30)

where ul(r,k) are periodic functions with a period a. We want
to derive a continuous description in terms of the envelope
function


(r,t) =
∫


(k,E)eik·r−iE(k)t dkdE, (31)

which slowly varies on the lattice period a. The derivation
assumes that only states with small k (k 	 1/a) in the lowest
Bloch band l = 0 are important in the superposition of Bloch
functions. Using the perturbation theory one can obtain an
expression for the microscopic wave function not averaged
over the period:

ψ = 


(
1 − u

2
cos

2πx ′

a
+ u

imwa

2π�
sin

2πx ′

a

)

+ ua

2π
∇x


(
sin

2πx ′

a
+ 2imwa

π�
cos

2πx ′

a

)

+ ua2

2π2

(
∇2

x
 + mV |
|2
�2




)
cos

2πx ′

a
, (32)

where x ′ = x − wt and u = ma2U0/π
2
�

2 is the parameter of
the perturbation theory. One can check by substitution that
if the envelope function satisfies the coarse-grained Gross-
Pitaevskii equation,

i�
̇ = −�
2∇2

x


2m

(
1 − u2

2

)
− �

2∇2
y


2m

+ �u2

2
iw∇x
 + Ṽ |
|2
, (33)

the microscopic wave function (32) satisfies the original
microscopic Gross-Pitaevskii equation (29) neglecting the
gradients of 
 higher than of second order and higher
harmonics of the periodic potential with wave numbers 2πl/a

at integer l > 1. Here

Ṽ = V

(
1 + u2

2

)
. (34)

The Gross-Pitaevskii equation for the envelope function 


corresponds to the Lagrangian

Lv = i�

2
(
∗
̇ − 

̇∗) − H, (35)

where

H = �
2∇2

x |
|2
2m

(
1 − u2

2

)
+ �

2∇2
y |
|2

2m

+ i�u2

4
w(
∗∇x
 − 
∇x


∗) + Ṽ |
|4
2

(36)

is the Hamiltonian.
From Noether’s theorem one obtains the conservation law

for the quasimomentum density g,

g = −∂Lv

∂
̇
∇
 + ∂Lv

∂
̇∗ ∇
∗ = − i�

2
(
∗∇
 − 
∇
∗),

(37)

with components of the quasimomentum flux tensor:

�̃xx = �
2

m
|∇x
|2

(
1 − u2

2

)

+ i�u2

4
w(
∗∇x
 − 
∇x


∗)

− �
2∇2

x |
|2
4m

(
1 − u2

2

)
− �

2∇2
y |
|2

4m
+ Ṽ |
|4

2
,

(38)

�̃yy = �
2

m
|∇x
|2 − �

2∇2
x |
|2

4m

(
1 − u2

2

)

− �
2∇2

y |
|2
4m

+ Ṽ |
|4
2

, (39)

�̃xy = �
2

2m
(∇x


∗∇y
 + ∇x
∇y

∗), (40)

�̃yx = �
2

2m
(∇x


∗∇y
 + ∇x
∇y

∗)

(
1 − u2

2

)

+ i�u2

4
w(
∗∇y
 − 
∇y


∗). (41)

The flux tensor is not symmetric because cylindric symmetry
is absent.

The theory is easily extended to more general harmonic
periodic potentials, since in the perturbation theory up to the
second order in the potential U0 contributions from separate
harmonic potentials are additive. For periodic potentials of
square,

U (r) = U0

(
cos

2πx

a
+ cos

2πy

a

)
, (42)

or hexagonal symmetry,

U (r) = U0

[
cos

2πx

a
+ cos

2π (
√

3x + y)

2a

+ cos
2π (

√
3x − y)

2a

]
, (43)
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the coarse-graining Gross-Pitaevskii equation in the coordinate
frame moving the velocity w is

i
̇ = −�
2∇2


2m∗ +
(

1 − m

m∗
)
i�w · ∇
 + Ṽ |
|2
. (44)

This corresponds to the Hamiltonian

H = �
2|∇
|2
2m∗ +

(
1 − m

m∗
) i�

2
w

·(
∗∇
 − 
∇
∗) + Ṽ |
|4
2

. (45)

The mass current and the quasimomentum flux are

j = − i�(
∗∇
 − 
∇
∗)

2m∗ −
(

1 − m

m∗
)
m|
|2w, (46)

�̃kl = �
2(∇k


∗∇l
 + ∇k
∇l

∗)

2m∗

+
(

1 − m

m∗
) i�

2
(
∗∇k
 − 
∇k


∗)wl

+
(

−�
2∇2|
|2

4m∗ + Ṽ |
|4
2

)
δkl . (47)

For square symmetry

m

m∗ = 1 − u2

2
, Ṽ = V (1 + u2), (48)

and for hexagonal symmetry

m

m∗ = 1 − 3u2

4
, Ṽ = V

(
1 + 3u2

2

)
. (49)

After Madelung transformation 
 = √
neiθ the coarse-

grained Gross-Pitaevskii theory reduces to the hydrodynamic
theory of Sec. II with Ec(n) = Ṽ n2/2 neglecting contributions
from density gradients.

Although Noether’s theorem does not lead to the conser-
vation law for the true momentum, the balance equation for
the true momentum, which can be derived from the Hamilton
equations (11) and (13) neglecting gradient terms of more than
second order, appears as a conservation law:

∂jk

∂t
+ ∇lπkl = 0. (50)

Here the momentum-flux tensor is

πkl = �
2

m

dñ

dn
ñ∇kθ∇lθ + P̃ δkl, (51)

and the partial pressure P̃ is determined by the relation dP̃ =
ñdμ. Earlier it was suggested to use this momentum flux tensor
for calculation of the Magnus force [4,9]. The present analysis
has not supported this approach, because the flux tensor πkl

differs from the microscopical momentum flux tensor (28)
averaged over the potential period. This is because the force on
the right-hand side of the balance equation (27) after averaging
can also be reduced to a divergence of some flux, which
becomes a part of the momentum flux πkl . Thus derivation
of the momentum balance from the coarse-grained equation is
not satisfactory since this introduces an uncontrolled constant
flux. Further we shall use the momentum flux derived from
equations for a microscopical wave function ψ .

IV. MOTION OF A THICK CYLINDER WITH
VELOCITY CIRCULATION AROUND IT

In a Galilean invariant fluid the Lorentz and the Magnus
forces on the vortex do not differ from these forces on a
cylinder of the radius much larger than the vortex core radius
and with velocity circulation around it moving through the
perfect fluid [4]. The cylinder can be considered as an artificial
vortex core of very large radius. It would be useful, at least for
pedagogical purposes, to consider motion of a large-radius
cylinder with velocity circulation around it. The cylinder
moves in a superfluid put into a periodic potential. A benefit
of this problem is that it allows an analytical solution, while
the nonlinear Gross-Pitaevskii theory for a real vortex has no
analytical solution even in the absence of the periodic potential.
We shall see that neither the hydrodynamic approach of Sec. II
nor the more general course-grained Gross-Pitaevskii theory
of Sec. III is sufficient for this problem, because one should
look for the momentum flux at the very surface of the cylinder
where it is necessary to know the microscopic wave function
at scales less than the potential period a.

A cylinder of large radius moves with the velocity vL

through the superfluid [Fig. 1(a)] but does not interact with the
periodic potential being fully insensitive to it. There is circular
superflow around the cylinder with the velocity circulation
h/m of a single-quantum vortex. The cylinder is impenetrable
for superfluid, and the microscopic wave function must vanish
at its surface.

Since the cylinder radius is much larger than the coherence
length, at which the wave function varies from zero at the
cylinder surface to its bulk value (healing length), the curvature
of the cylindric surface can be ignored. Therefore it is sufficient
to study the case of a plane wall restricting the superfluid and
moving with respect to the periodic potential [Fig. 1(b)]. In the
perturbation theory the contributions from various harmonics
in the periodic potential [see Eqs. (42) and (43)] are additive,
and we consider only one harmonics with the periodic potential
varying only along the axis x as in Eq. (29).

The normal to the wall is at the angle γ to the axis x. After
rotation to the new coordinate frame,

x̃ = x cos γ − y sin γ, ỹ = x sin γ + y cos γ, (52)

the Gross-Pitaevskii equation in the coordinate frame moving
with the velocity vL of the wall,

i
̇ = −�
2∇2

x̃


2m

(
1 − u2

2
cos2 γ

)

+ i�u2

2
ivL cos γ∇x̃
 + Ṽ |
|2
, (53)

becomes one-dimensional. The solution of the stationary
equation (
̇ = 0) with vanishing 
 at x̃ = 0 is


 = √
n0e

iu2mvLx̃ cos γ /2� tanh
x̃

ξ̃
, (54)

where n0 is the particle density far from the wall and the
effective healing length ξ̃ is determined by the relation

1

ξ̃ 2
= Ṽ mn0

�2

(
1 − u2

2
cos2 γ

)
. (55)
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(a)

(b)

(c)

x

x̃

ỹ
y

γ

FIG. 1. Motion of a cylinder with velocity circulation around it
through a superfluid in a periodic potential. (a) Motion of the cylinder
of the radius much larger than the potential period and the vortex
core radius. (b) Motion of the plain wall through a superfluid in a
one-dimensional periodic potential. (c) Motion of the cylinder of the
radius much smaller than the potential period.

The phase factor in Eq. (54) provides that in the coordinate
frame moving with the wall the mass current normal to the wall
is absent. However, at the analysis of the healing layer near the
wall the velocity vL of the moving periodic potential yields
only inessential quadratic corrections and will be ignored.

The force on the wall from the superfluid is given by
the true momentum flux component �x̃x̃ exactly at the wall,

x̃ = 0, where the wave function must vanish. Near the wall
one can linearize the Gross-Pitaevskii equation (53) neglecting
interaction ∝V . Then the momentum flux is

�x̃x̃ = �
2|∇x̃ψ |2

m
− �

2∇2|ψ |2
4m

. (56)

If the force on the cylinder were determined by the quasimo-
mentum flux, the true momentum flux at the cylinder surface
would coincide with the constant quasimomentum flux, which
far from the wall is equal to

�̃x̃x̃ = Ṽ |
|4
2

. (57)

However, the momentum flux (56) differs from the quasimo-
mentum flux (57) if one uses the microscopic wave function
(32) with the envelope function 
 given by Eq. (54). This is
because a vanishing at the wall envelope function 
 does
not mean that the microscopic wave function ψ vanishes
exactly. Indeed, according to Eq. (32) close to the wall the
wave function ψ at w = 0 is

ψ = ua

2π
cos γ∇x̃
 sin

2πx ′

a
. (58)

It is necessary to correct the solution of the linear Gross-
Pitaevskii equation (29) for the wave function ψ by adding
another solution compensating this error. One can check by
substitution that the wave function

ψ ′ = − ua

2π
cos γ∇x̃
e−2πx̃ cos γ /a

[
sin

2πỹ sin γ

a

+ u

4

(
cos2γ sin

2πx̃ cos γ

a
− sin 2γ cos

2πx̃ cos γ

a

)]
(59)

satisfies this equation up to the terms of the second order in U0.
The corrected wave function ψ + ψ ′ exactly vanishes at the
boundary. Using it in the momentum flux (56) one obtains
that the true momentum flux �x̃x̃ is exactly equal to the
quasimomentum flux (57). This justifies derivation of forces
from the quasimomentum balance. For the sake of simplicity
we ignored possible flow of a superfluid along the wall, but
taking it into account does not affect the conclusion. Note that
in order to satisfy the boundary condition at the wall it is not
sufficient to solve only the coarse-grained Gross-Pitaevskii
equation for the envelope function because the correct wave
function close to the wall contains components strongly
varying on the scale of the lattice constant.

Thus the cylinder of large radius moves through the
superfluid in a periodic potential with the center-of-mass
velocity in agreement with Helmholtz’s theorem. But for the
vortex with small core this conclusion is not true in general,
as we shall further see.

V. MOTION OF A CYLINDER WITH RADIUS LESS THAN
THE POTENTIAL PERIOD

Let us now consider an opposite limit (still, within the
perturbation theory for a weak periodic potential) when
the coherence length ξ = �/

√
V mn0 is much smaller than the

lattice constant a. For satisfying this condition the interaction
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parameter V must be large enough. Here n0 is the average
density. We consider a weak periodic potential of square sym-
metry. The nonlinear Schrödinger equation (Gross-Pitaevskii
equation) in the laboratory frame is

i�ψ̇ = −�
2∇2ψ

2m
+ U0

(
cos

2πx

a
+ cos

2πy

a

)
ψ + V |ψ |2ψ.

(60)

Since the vortex core radius ∼ ξ is much smaller than
the potential period the hydrodynamic approach neglecting

forces from the periodic potential is sufficient. The density
distribution can be found in the Thomas-Fermi approximation,
and for the weak periodic potential

n(r) = n0

[
1 − ũ

(
cos

2πx

a
+ cos

2πy

a

)]
, (61)

where ũ = U0/V n0 is a new perturbation theory parameter.
Suppose that there is a transport superfluid current with the

average velocity vs = (�/m)∇θs , where ∇θs is the average
phase gradient. Solving the continuity equation (11) up to the
second order with respect to ũ, the phase gradients are

∇xθ = vsx

[
1 + ũ cos

2πx

a
+ ũ2

2

(
cos

4πx

a
+ cos

2πx

a
cos

2πy

a

)]
− vsy

ũ2

2
sin

2πx

a
sin

2πy

a
,

∇yθ = vsy

[
1 + ũ cos

2πy

a
+ ũ2

2

(
cos

4πy

a
+ cos

2πx

a
cos

2πy

a

)]
− vsx

ũ2

2
sin

2πx

a
sin

2πy

a
. (62)

The components of the spatially varying mass current are given by

jx = �n∇xθ = mn0vsx

[
1 − ũ cos

2πy

a
− ũ2

2

(
1 + cos

2πx

a
cos

2πy

a

)]
+ mn0vsy

ũ2

2
sin

2πx

a
sin

2πy

a
,

jy = �n∇yθ = mn0vsy

[
1 − ũ cos

2πx

a
− ũ2

2

(
1 + cos

2πx

a
cos

2πy

a

)]
+ mn0vsx

ũ2

2
sin

2πx

a
sin

2πy

a
. (63)

The current averaged over the whole plane is

j = mn0vs

(
1 − ũ2

2

)
. (64)

This points out that the effective mass in our case is

m∗ = m

(
1 − ũ2

2

)
. (65)

In a periodic potential the energy of the vortex (with or
without a cylinder in its core) depends on its position. This
produces a pinning force, which pins the vortex to the position,
where the energy is minimal. The force on a cylinder with
circulation around it produced by a weak gradient of the
potential was found in Sec. 1.5 of Ref. [4]:

Fp = π�
2n

m2c2
s

ln
a

rc

∇U (r). (66)

Here rc is the radius of an artificial core equal to the cylinder
radius but not that given by Eq. (22). Thus the energy, which
pins a cylinder or a vortex to the minimum of the particle
density, is

Ep = −π�
2n

m2c2
s

ln
a

rc

U (r). (67)

At the energy minimum the external potential U (r) is maximal
because the energy is proportional to the particle density, which
is minimal at the maximum of U (r). In the superconductivity
theory pinning by a periodic potential in a crystal was called
intrinsic because it is present even in an ideal crystal, in
contrast to extrinsic pinning related with crystal defects.

Because of pinning the Lorentz force proportional to the
current is able to move the vortex only if the current exceeds

the so-called depinning current [12]. At currents slightly
exceeding the depinning current dependence of the vortex
velocity on the current ceases to be linear and vortex motion is
rather irregular. However, the concept of linear dependance
of force on current becomes valid again at currents much
larger than depinning current. But even in this regime some
effect of pinning still remains. Not all trajectories of vortices
are equivalent. There are trajectories along which vortices
encounter weaker pinning forces. Preferable trajectories go
along valleys between “hills” of the potential. At vortex motion
along the axis x preferable trajectories correspond to discreet
values y = la where l is an integer. In the superconductivity
theory this phenomenon was called guided motion of vortices.
Mostly it was investigated not for intrinsic pinning but for
extrinsic pinning by defects [13].

For motion along a preferable trajectory the Lorentz and the
Magnus forces are determined by the density n and the current
j averaged not over the whole plane but only over trajectory
points:

n̄ = n0(1 − ũ), j̄ = n0vs

(
1 − ũ − ũ2

2

)
. (68)

The balance of forces, FL + FM = 0, yields the relation
between the vortex and fluid velocities:

vL ≈ vs

(
1 − ũ2

2
− ũ3

2

)
≈ m

m∗ vs

(
1 − ũ3

2

)
. (69)

This differs from Helmholtz’s theorem by terms of the
third order in ũ. Although we neglected these terms above
more accurate algebra taking into account these terms has
not revealed other third-order terms in this relation. Thus
Helmholtz’s theorem is not valid, at least in its original
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formulation. One may still discuss some of the local Helmholtz
theorem related to local currents and velocities.

This simple analysis demonstrates when the approach based
on the quasimomentum balance can be wrong. It fails to take
into account important features of vortex dynamics, namely,
those related with intrinsic pinning and guided vortex motion.

VI. BOSE-HUBBARD MODEL

The Hamiltonian of the Bose-Hubbard model [5] for a
lattice with distance a between sites is

H = −J
∑
k,l

b̂
†
kb̂l + VN

2

∑
k

N̂k(N̂k − 1) − μ
∑

i

N̂k. (70)

Here μ is the chemical potential, the operators b̂k and b̂
†
k are

the operators of annihilation and creation of a boson at the kth
lattice site, and N̂k = b̂

†
kb̂k is the particle number operator at

the same site with integer eigenvalues. The first sum is over
neighboring lattice sites k and l.

In the superfluid phase with large numbers of particles Nk

all operator fields can be replaced by the classical fields in the
spirit of the Bogolyubov theory:

b̂k →
√

〈N〉eiθk , b̂
†
k →

√
〈N〉e−iθk , (71)

where 〈N〉 is average number of particles per site and θk is
the phase at the kth island. Introducing the pair of canonical
variables, the “particle number-phase,” the Hamiltonian (70)
becomes a classical Hamiltonian:

H = −EJ

∑
k,l

ei(θl−θk ) + VN

2

∑
k

Nk(Nk − 1) − μ
∑

k

Nk,

(72)

where the Josephson energy is

EJ = J 〈N〉. (73)

When the energy J of the intersite hopping decreases,
the phase transition from superfluid to Mott insulator must
occur. In the limit J/VN → 0 eigenstates are Fock states
|
N 〉 = |N〉 with fixed number N of particles at any island. At
growing J the transition line can be found in the mean-field
approximation [5]. The phase diagram is shown in Fig. 2. The
Mott-insulator phases with fixed numbers N of particles per
site occupy interiors of lobes at small J/VN .

Close to the phase transition at minimal values of J , i.e.,
at beaks of the superfluid phase between lobes, which are
shaded in Fig. 2, the mean-field approximation is simplified
by the fact that only two states with N and N + 1 particles
interplay in the beak between the lobes N and N + 1. This is
because at μ = NVN these two states have the same energy,
whereas all other states are separated by a gap on the order of
the high energy VN . Interference of two Fock states leads to
broken gauge invariance connected with the transition to the
superfluid phase where the average value of the annihilation
operator (and its complex conjugate the creation operator) do
not vanish:

〈b̂k〉 = ψk = |ψk|eiθk , 〈b̂†k〉 = ψ∗
k = |ψk|e−iθk . (74)

FIG. 2. The phase diagram of the Bose-Hubbard model. The
Mott insulator phase occupies lobes corresponding to fixed integer
numbers N of bosons. The shaded beaks of the superfluid phase
between insulator lobes are analyzed in the text. The dashed line is
the particle-hole symmetry line, which separates the region with the
inverse Magnus force from the rest of the superfluid phase. The line
is schematic since it was really calculated only in the limit J → 0
where it is horizontal. The particle-hole symmetry line exists under
any lobe but is shown only for the beak between the N = 1 and 2
lobes.

Close to the phase transition |ψk|2 is not equal to 〈N〉 as
Eq. (71) assumed but can be much smaller:

|ψk|2 = (N + 1)

(
1

4
− N2

e

)
. (75)

Here

Ne = 〈N〉 − N − 1

2
. (76)

As in any second-order phase transition, ψ vanishes at the
phase transition lines, where Ne = ± 1

2 and the number of
particles reaches N at the lower border and N + 1 at the
upper one. Since only a coherent part of the wave function
is responsible for Josephson tunneling between islands in the
hopping term one should replace in the expression (73) (but
importantly not in the interaction term) the average particle
number 〈N〉 by much smaller |ψk|2, and the Josephson energy
is

EJ = J (N + 1)

(
1

4
− N2

e

)
. (77)

VII. BEYOND THE BOSE-HUBBARD MODEL

Any lattice model does not allow one to analyze the balance
of true momentum, since one needs to know a continuous
microscopic wave function in the whole space and not only at
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sites. Therefore we return to a continuous fluid but in the tight-
binding limit (strong potential), for which the Bose-Hubbard
model was derived.

We suggest a 2D analog of the Kronig-Penney model. There
is a square lattice of cylindric deep potential wells (islands),
in which most of the particles are trapped, while between the
islands particles are described by evanescent tails described
by the linear Schrödinger equation. A benefit of this model is
that there is no force on the superfluid in the intersite space,
and one can rely on the momentum conservation law.

Let us consider first a single potential well of radius r0. The
potential in the linear Schrödinger equation is

U (r) =
{−U0 at r < r0

0 at r > r0
. (78)

The solution of the linear Schrödinger equation for the ground
state in the island is

ψ =
{√

ncJ0(pr) at r < r0

Ae−r/ζ√
r

at r > r0
, (79)

where J0(pr) is the Bessel function, nc is the particle density
at the island center, and

ζ = �√
2mU0 − �2p2

≈ �√
2mU0

(80)

is the penetration depth into the intersite space. Continuity of
ψ and its derivative at r = r0 requires that

√
ncJ0(pr0) = A

e−r0/ζ

√
r0

, p
√

ncJ1(pr0) = A

ζ

e−r0/ζ

√
r0

. (81)

At ζ 	 r0 this yields

p = 2.4

r0
, A = 1.71

√
Nk

r0

ζ

r0
, (82)

where the number of particles in the island is

Nk = 2π

∫ r0

0
ncJ0(pr)2r dr = 0.533ncr

2
0 . (83)

We can also estimate the energy of particle-particle inter-
action assuming it to be too weak for affecting the density
distribution in the island:

Ei = 2π

∫ r0

0

V |ψ |4
2

r dr = 0.0737V n2
cr

2
0 . (84)

Now let us consider two islands with centers located at the
points x = 0 and y = ±a/2 with different phases θ± of the
wave functions. The distance a essentially exceeds all other
scales, and overlapping of the wave functions generated by
two islands is weak. The wave function outside the islands is

ψ = A
eiθ+−r+/ζ

√
r+

+ A
eiθ−−r−/ζ

√
r−

, (85)

where r± =
√

x2 + (y ∓ a/2)2. Close to the lattice cell center
(small x and y),

ψ = 2
√

2A√
a

e−a/2ζ−x2/aζ

(
cos

θ

2
cosh

y

ζ
+ i sin

θ

2
sinh

y

ζ

)
.

(86)

The phase difference θ = θ+ − θ− leads to the Josephson
current between islands:

I = �

∫ ∞

−∞
Im(ψ∗∇yψ)dx = mEJ

�
sin θ, (87)

where the Josephson energy

EJ = 2
√

2πA2
�

2

m
√

aζ
e−a/ζ = 14.66�

2Nkζ

mr3
0

√
ζ

a
e−a/ζ (88)

determines the critical current Ic = mEJ /� of the weak
Josephson link between two islands.

Returning back to the square lattice of superfluid islands it
is sufficient to take into account only Josephson links between
nearest neighbors. Any link is described by our two-islands
case, and we receive the Bose-Hubbard model with EJ given
by Eq. (88) and

VN = 2Ei

N2
k

= 0.519V

r2
0

. (89)

Up to now we addressed the case when the superfluid is
very far from the phase transition. Close to the phase transition
one must replace in the expression (88) Nk by |ψk|2 given by
Eq. (75). Our Bose-Hubbard model leads to the coarse-grained
hydrodynamics of Sec. II with the parameters

n = N

a2
, ñ = 2mEJ

�2
= 4

√
2πA2e−a/ζ

√
aζ

, Ec(n) = VNn2a2

2
.

(90)

Close to the phase transition

ñ = 2m

�2
J (N + 1)

(
1

4
− N2

e

)
, (91)

and the derivative

dñ

dn
= a2 dñ

d〈N〉 = −2m

�2
J (N + 1)Nea

2 (92)

vanishes at the line Ne = 0. This is the particle-hole symmetry
line, at which the Magnus force changes its sign. In Fig. 2 it is
shown by the dashed line.

VIII. INTRINSIC PINNING AND GUIDED
MOTION OF VORTICES

Effects of intrinsic pinning and guided motion of vortices
are definitely stronger in stronger periodic potentials. The
preferable trajectory for a vortex moving in a lattice of islands
along the axis x goes in the bottom of the valley between two
rows of neighboring islands. Along this trajectory the vortex
energy has a minimum if the vortex node (the zero of the wave
function) is located in a center of the lattice cell with islands at
its corners. Such a vortex has the highest fourfold symmetry.
The maximum of the energy along the trajectory is at the
saddle point in the middle of the Josephson link connecting
two neighboring islands.

Accurate calculation of the pinning force at vortex shift is
not possible analytically. Therefore starting from this point
we present only qualitative calculations based on dimensional
estimations. The difference between the maximal and the
minimal energies along the trajectory is on the order of �

2ñ/m.
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FIG. 3. Three-dimensional plot for the particle density inside the
lattice cell, in which the vortex node is located.

Under natural assumption that the dependence on the vortex
displacement d close to the cell center is parabolic the vortex
energy there is about

Ep ∼ �
2ñ

m

d2

a2
. (93)

Then the qualitative estimation of the pinning force is

Fp ∼ Ep

d
∼ �

2ñ

m

d

a2
. (94)

This estimation defined the vortex shift as a displacement of
the vortex at large distances from its node (we shall call this
global shift or displacement) and defined the force as derivative
of the energy with respect to this displacement. However,
the vortex is not a solid rigid object. Any shift other than
multiple of a/2 also deforms it. This leads to ambiguity of the
force definition, which will be discussed later in the paper.

At the path through the four islands around the vortex node
the phase differences between neighboring islands are π/2.
The wave function in the cell with the vortex node is a linear
superposition of wave functions induced by four islands:

ψ =
∑

k

Ak√
rk

eiθk−rk/ζ , (95)

where summation is over four islands (k = 1, . . . ,4), phases
are

θk = (k − 1)π/2, (96)

and distances from four islands are chosen among four values:

r =
√

(x ± a/2)2 + (y ± a/2)2. (97)

Figure 3 shows the three-dimensional plot for the particle
density inside the lattice cell, in which the vortex node is
located. Figure 4(a) shows streamlines for the vector field ∇θ

in the same cell. Here θ is the phase of the wave function ψ .
The vortex node is located in the cell center. If the particle
numbers of the islands do not differ (Ak = A), close to the cell

a

(a)

(b)

FIG. 4. Streamlines for the phase gradient ∇θ for the wave
function ψ inside the lattice cell with the vortex node inside. (a)
The vortex node is at the center of the lattice cell. (b) The vortex node
is at the distance dx from the cell center.

center where x,y 	 a the wave function is

ψ = 2
√

2A√
a

e−a/
√

2ζ

(
− sinh

x + y√
2ζ

+ i sinh
x − y√

2ζ

)
. (98)

We address the case when the superfluid is close to the
particle-hole symmetry line when Eq. (22) predicts the core
radius rc shorter than the lattice constant a. This means that
particle numbers in islands around the vortex node do not differ
essentially from those very far from the axis.

Vortex shift d(dx,dy) changes the phases of islands around
the cell with the vortex node and instead of Eq. (96) they
become

θ1 = −π (dx − dy)

a
, θ2 = π

2
− π (dx + dy)

a
,

θ3 = π + π (dx − dy)

a
, θ4 = 3π

2
+ π (dx + dy)

a
. (99)
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For the vortex shift along the axis x (dy = 0) the wave function
transforms from Eq. (98) to

ψ = 2
√

2Ae−a/
√

2ζ

√
a

[
sin

πdx

a

(
cosh

x − y√
2ζ

− i cosh
x + y√

2ζ

)

− cos
πdx

a

(
sinh

x + y√
2ζ

− i sinh
x − y√

2ζ

)]
. (100)

The node of the vortex (zero of ψ) is on the axis x with the
coordinate x0 determined by

tan
πdx

a
= tanh

x0√
2ζ

. (101)

Streamlines for the vector field ∇θ for the wave function for
the vortex node shifted to the distance dx are shown in Fig. 4(b).

However, at displacements other than multiples of a/2 the
state is not stationary, and one needs some external force to
support it. An external force on the fluid can be applied to a
thin wire of small radius ρ immersed into the fluid at the point
with the position vector rw(xw,yw). We assume the simplest
boundary condition that the wave function ψ vanishes at the
wire surface. The solution of the linear Schrödinger equation
close to the wire is

ψ̃(r) = ψ(r) + ψ(rw)

[
1 −

ln |r−rw |
ζ

ln ρ

ζ

]

+∇ψ(rw) · (r − rw)

(
1 − ρ2

|r − rw|2
)

, (102)

where ψ(r) is the wave function without the wire as before.
The external force on the fluid is determined by an integral of
the true momentum flux (28) over the wire surface in which
one may neglect the interaction term ∝V :

Fe = π�
2

m ln ζ

ρ

∇|ψ(rw)|2. (103)

This force corresponds to the energy of the wire immersed into
the fluid:

Ee = π�
2

m ln ζ

ρ

|ψ(rw)|2. (104)

The connection of the global vortex displacement d with the
position vector rw where the external force is applied to
the fluid is derived from the condition that at fixed rw the
displacement d minimizes the total energy including the large
distance energy (93) of the displaced vortex and the energy
(104) of the wire. This yields the relation

dx ≈
√

aζ

ln ζ

ρ

e−a(
√

2−1)/ξ sinh
xw

√
2

ξ
. (105)

Using this relation in the expression (103) one obtains the x

component of the pinning force:

Fp ∼ �
2ñ

m

d

aζ
, (106)

which by the large factor a/ζ exceeds the estimation of the
pinning force in Eq. (94).

Note that the coordinate x0 of the vortex node [Eq. (101)]
and the coordinate xw of the wire [Eq. (105)] do not coincide,
and there is no velocity circulation around the wire. This means
that attraction of a vortex to a defect (thin wire) is not so strong
as in the case of a thick cylinder (Secs. IV and V), but still
is able to push the vortex from cell to cell. At the same time,
both x0 and xw are essentially smaller than the global vortex
displacement dx because of small ζ/a. The disagreement
between two estimations (94) and (106) for the pinning force
is connected with the question of what displacement is chosen
as a measure of the vortex shift. It appears that the global
displacement d is a more appropriate choice. The coordinates
x0 and xw describe exponentially small tails far from lattice
sites. They, as well as the scale ζ , are hardly relevant at the
macroscopical level. In other words, “tail does not wag dog.”
Fortunately ambiguity in definition of forces on the vortex
does not lead to ambiguous physical conclusions since in most
of the cases absolute values of the Lorentz and the Magnus
forces are not so important. Important is their ratio, or the
ratio vcm/vL of the center-of-mass velocity to the superfluid
velocity, which, in particular, determines the Hall conductivity
(5). Another illustration of this is the case of vortex precession
considered in the end of the next section.

IX. LORENTZ AND MAGNUS FORCE IN THE
TIGHT-BINDING LIMIT

As already discussed in Sec. V the Lorentz force is able to
make the vortex move only if the current exceeds the depinning
current, and a linear relation between force and current is
valid only at currents much larger than the depinning current.
In the lattice models of superfluid, which correspond to the
tight-binding limit in the Bloch band theory, the problem is
even more formidable since depinning velocity and critical
velocity are of the same order, and the window where the
concept of linear Lorentz force is accurate strictly speaking is
absent. The same problem complicates determination of the
Magnus force since in a periodical potential the vortex does
not move with constant velocity.

In order to overcome this hurdle we redefine the usual
procedure of determination of the Lorentz and the Magnus
force, which allows us to determine them in the linear theory
even at very low velocities. We assume that an external force
is applied to a cylinder immersed into the fluid as discussed in
the previous section. The force is programed so that it provides
a steady motion of the vortex along the prescribed trajectory
with constant velocity. A detailed time dependence of the force
and possible effects of quantum tunneling on this dependence
are not essential as far as we look for only forces transverse
to the trajectory of the vortex. The low superfluid velocity is
not able to make the vortex move, but it shifts vortex position.
As a result a pinning force emerges proportional to the vortex
shift, which must compensate the Lorentz force produced by
the superflow. Calculating this pinning force we also obtain
the magnitude of the Lorentz force. The same procedure can
be used for determination of the Magnus force proportional to
the vortex velocity.

The superflow with the velocity vs parallel to the axis x adds
to the island phases θk the same quantity as the displacement
dy = mvsa

2/�. This means that the superflow produces the
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same force on the cylinder immersed into the fluid as the force
(94) for the displacement d = dy . Thus the magnitude of the
Lorentz force is

FL ∼ �ñvs . (107)

This agrees with the Lorentz force obtained from the quasi-
momentum balance. Estimating the pinning force by Eq. (106)
for the same displacement dy the Lorentz force is by the factor
a/ζ larger.

Let us turn to the Magnus force. If the vortex motion is
not accompanied by variation of particle number in islands
no transverse force appears. This is a result of particle-hole
symmetry. Indeed, in the coordinate frame moving with the
vortex the phases on the islands slightly oscillate but have no
constant shift affecting the wave function in the intersite space.

One can estimate the effect of particle number variation
in islands with the help of the Josephson equation for the
Bose-Hubbard model with the Hamiltonian (72):

�θ̇k = ∂H
∂Nk

= −∂EJ

∂Nk

∑
j

ei(θl−θk ) + VNNk − μ. (108)

Close to the particle-hole symmetry line the Josephson-energy
term is small, and at low velocity vL the particle number
variation at islands around the vortex node is

δNk = �θ̇k

VN

= −�vL∇xθ

VN

∼ ∓ �vL

aVN

, (109)

where the upper and the lower signs correspond to the islands
above and below the axis x, respectively. Variation of the
particle number Nk leads to variation of the parameters Ak in
the wave function (95):

Ak ∼ A

(
1 + ∂EJ

∂Nk

δNk

EJ

)
. (110)

The corrections to the parameter A result in the same
corrections of the wave function ψ as those produced by the
vortex shift

dy ∼ a
∂EJ

∂Nk

δNk

EJ

∼ ∂EJ

∂Nk

�vL

EJ VN

∼ ∂ñ

∂n

�vL

ña2VN

(111)

along the axis y [see Eq. (100)]. Equating the Magnus force
to the pinning force (94) one obtains

FM ∼ ∂ñ

∂n

�
3vL

ma4VN

. (112)

But estimating the pinning force by the force (106) on the
cylinder immersed into the fluid one obtains by the factor a/ζ

larger Magnus force.
A detailed analysis of the case far from the particle-hole

symmetry line is more complicated. We restrict ourselves with
some extrapolation arguments helping to guess what happens
in that case. Our assumption that the particle density in islands
close to the vortex line is only weakly suppressed by circular
superflows around the vortex becomes invalid when the core
radius rc given by Eq. (22) reaches the value of the order of
the lattice constant a. This corresponds to the condition

VN ∼ �
2

ma4n

dñ

dn
. (113)

Substituting this estimation into Eq. (112) one obtains the
Magnus force

FM ∼ �nvL, (114)

which qualitatively agrees with that following from the
quasimomentum balance. One may expect that this conclusion
would be still valid further away from the particle-hole
symmetry line.

In conclusion of this section let us consider the phenomenon
of vortex precession in the potential well produced by intrinsic
pinning. Equation (111) is in fact one of the two dynamical
equations describing this precession keeping in mind that vL =
ḋ. Another equation connects dx with the y component of the
vortex velocity vL. Using the relations (91) and (92) valid close
to the phase transition the precession frequency is

ω = ∂n

∂ñ

ña2VN

�
∼ VN

�Ne

. (115)

The quantity Ne is given by Eq. (76). In the past precession
of the vortex in a potential well formed by the trap confining
the BEC cloud of cold atoms was discussed theoretically (see
Sec. 4.5 of Ref. [4]) and was detected experimentally [14]. The
precession frequency in the intrinsic pinning well can be much
higher than the frequency in the trap since the former diverges
at the particle-hole symmetry line where Ne = 0. Observation
of the vortex precession in the cold atom BEC in the presence
of an optical lattice could be a method to measure the Magnus
force experimentally.

X. CONCLUSIONS AND DISCUSSION

The paper presented derivation of the Magnus and the
Lorentz force on the vortex in a superfluid put in a periodic
potential. We considered a weak periodical potential, as well
as a strong periodical potential in the tight-binding limit,
in which continuous superfluids are frequently described by
lattice models. The latest example is the Bose-Hubbard model
describing BECs of cold atoms in optical lattices.

The starting point of the analysis was the principle argued
in Refs. [4,9]: Only the analysis of the balance of the true
momentum of the superfluid is a reliable basis for derivation
of forces on vortices. The balance of the quasimomentum as
it was defined in the Bloch band theory in solid-state physics
does not guarantee a correct result in general. Quasimomentum
balance predicts that the vortex moves with the center-of-mass
velocity of the superfluid in accordance with Helmholtz’s
theorem. In charged superfluids this yields the universal
value of the Hall conductivity [Eq. (7)], which depends
only on particle density, magnetic field, and world constants.
Helmholtz’s theorem is correct for normal fluids, for an
electron gas in a crystal, for example. In superfluids the
theorem sometimes also holds but not in general because the
superfluid state is not uniform, which results in pinning and
guided motion of vortices.

The analysis demonstrated that the transverse force on the
vortex cannot be derived from the coarse-grained description
of superfluid, which deals only with envelope wave functions
averaged over scales larger than the potential period just
because within this description one cannot take into account
pinning and guided motion. Nor can the transverse force
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can be derived from lattice models for superfluid, the Bose-
Hubbard model in particular, because they do not contain any
information on the wave function in the space between lattice
sites. In order to overcome this obstacle the paper went beyond
the Bose-Hubbard model suggesting some 2D analog of the
Kronig-Penney model, from which the Bose-Hubbard model
can be directly derived.

The theory was applied for a superfluid close to the
superfluid-Mott insulator transition. In this part of the phase
diagram Lindner et al. [6] and Huber and Lindner [7] discov-
ered a line at which the Magnus force changes its sign. The line
was called in the present paper the particle-hole symmetry line.
They derived the force from topological arguments connecting
the Magnus force with Chern numbers. They predicted a sharp
transition with a jump in the strength of the Magnus force
at the particle-hole symmetry line. The present analysis has
shown that the behavior of the Magnus force at crossing the
line is purely analytical without any jump. This qualitatively
agrees with conclusions of Refs. [4,9], although quantitative
expressions for the Magnus force were not correct because an
improper expression for the true momentum flux was used (see
the end of Sec. III).

Instead of dealing with the momentum balance the authors
of Refs. [6–8] justified their approach by referring to the Kubo
formula for the Hall conductivity derived, in particular, by
Avron and Seiler [15]. But Avron and Seiler emphasized that
the derivation was valid only if the excitation spectrum has a

gap. Oshikawa [16] formulated the theorem that in a periodic
lattice the gap is possible only if the particle number per unit
cell of the ground state is an integer. This definitely does not
take place in superfluid states. The Kubo formula describes a
linear response of the current to the electric field, whereas the
electric field vanishes at currents smaller than the depinning
current when vortices are pinned [17]. Thus the Kubo formula
totally ignores effects of intrinsic pinning and guided vortex
motion, which played a crucial role in our analysis. This alone
makes using this formula in the superfluid state at least ques-
tionable. It is worth mentioning some analogy with another
problem of the Hall conductivity at the particle-hole symmetry
line. Barkeshli et al. [18] discussed a conflict of composite-
fermion theories with particle-hole symmetry in the half-filled
first Landau level (the filling factor ν = 1/2) in the quantum
Hall effect. Although a jump of the Hall conductivity at cross-
ing the particle-hole symmetry line was among options dis-
cussed, Barkeshli et al. argued that the transition at this line is
continuous. The present paper provides one more evidence that
topological arguments not accompanied by the analysis of the
momentum balance can be only guesses for transverse forces
justified sometimes in simple cases but not in general [4].

A possible method of experimental detection of the Magnus
force in BECs of cold atoms is observation of precession of
a vortex pinned by an optical lattice (Sec. IX). In a three-
dimensional BEC cloud the precession frequency is a gap in
the spectrum of Kelvin waves along the vortex line.
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