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Low-field magnetoresponse of strongly disordered two-dimensional superconductors
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Weak magnetic fields significantly affect the properties of strongly disordered superconductors through
diamagnetic orbital shrinking as well as geometric phase frustration effects. The relative importance of these
orbital effects is analyzed for thin films in physical regimes dominated by a Coulomb blockade, thermal phase
fluctuations, and phase frustration, respectively, using phenomenological and replica field theory approaches. As
an important outcome, we obtain the field dependences of superfluid stiffness and resistance, and we show that
they can be used to distinguish between phase frustration and diamagnetic shrinking effects. We also find that
even though highly disordered films may never become superconducting, their inhomogeneous structure leaves
a distinct signature on the magnetoresistance. The predicted low-field magnetoresistance is in very good accord
with experiment.
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I. INTRODUCTION

One of the most challenging problems in strongly dis-
ordered superconductors relates to understanding the nature
of the magnetic-field-induced superconductor-normal state
transition (SNT). Experimental and theoretical studies over
the past two decades have led to a large number of puz-
zling questions, such as determining the origin of the giant
nonmonotonous magnetic-field dependence of the resistivity
[1–7], flux quantization in the insulating state [8], and the
universality class governing the field-induced SNT [3,9–11].
The two-dimensional (2D) case in particular has attracted
intense theoretical attention, and it is the focus of this work.
In the absence of a magnetic field, it is well known that strong
homogeneous disorder introduces granularity in the form of
superconducting islands embedded in an insulating matrix
[12–16]. However, the relative importance of diamagnetic
(orbital) shrinking effects [4,5] and phase frustration effects
brought about by the Aharonov-Bohm (AB) phases of the
Cooper pairs tunneling across the islands [17,18] is not well
understood.

Mean-field analyses of the field sensitivity of the distribu-
tion of superconducting regions go back nearly two decades
for weakly disordered metals [19,20], and more recently
[4] for strongly disordered insulators. Standard, perturbative
approaches fail in the strongly disordered regime, but numer-
ical mean-field solutions of the appropriate Bogoliubov–de
Gennes (BdG) equations [4], reveal a picture of shrinking
superconducting regions in increasing fields and a downward
shift of the distribution of the local superconducting gaps.
Then through the Ambegaokar-Baratoff relation [21], a cor-
responding decrease in the Josephson couplings J between
neighboring grains is deduced. For fields much smaller than
the pair breaking value, the dominant contribution to the
field dependence of J comes from orbital shrinking effects.
To understand the physical origin of these effects, we study
a phenomenological model of repulsive bosons (Cooper
pairs) subjected to a disordered potential and a perpendicular
magnetic field. The approach is reminiscent of earlier work on
Lifshitz states [22] in disordered Bose systems [5,23,24].

We show that orbital shrinking in the presence of a
magnetic field suppresses the Josephson couplings as J (B) ∼

exp[−(B/BJ )2], and it is a primary cause of the strong
magnetoresponse seen in experiments.

To understand the magnetoresponse of these 2D granular
superconductors, we study the standard Josephson-junction
(XY ) model,

L = 1

4Ec

∑
i

(∂τφi)
2 −

∑
〈ij〉

Jij(B) cos(φij + Aij), (1)

where Ec represents the Coulomb-blockade scale, φij =
φi − φj is the superconducting phase difference between
neighboring grains at positions i and j, respectively, and
Aij = (2e/�)

∫ j
i A · dr are the AB phases acquired by the

hopping Cooper pairs. Disregarding the contribution of normal
quasiparticles means the model can provide a good description
of the magnetoresponse only at lower fields where Cooper
pair breaking is not important. Spatial disorder in the grain
positions introduces randomness in the Josephson couplings
as well as the AB phases. Studies of the 2D classical limit
of Eq. (1) in the B = 0 limit [4] have shown that strong
disorder in J does not alter the universality class of the
SNT from the homogeneous case [where it is known to
be of Kosterlitz-Thouless (KT) type], but it is nevertheless
dominated by a percolating backbone of paths with the largest
local superfluid stiffnesses. Likewise, the transition in the
quantum 1D disordered counterpart at B = 0 also obeys a
KT-like scaling [25–28]. Therefore, for simplicity we will
work with the typical value of J , ignoring its spatial disorder.

In regular lattices, the AB phase is associated with flux
threading the plaquettes, and depending on the amount of
frustration f (measured as a fraction of a flux quantum), it
leads to oscillations in properties such as the critical current
and the resistance [29,30]. Such matching (commensuration)
effects are absent in the disordered case as there is random
flux penetration in different plaquettes. Phase transition in
the classical quenched random-phase XY model on a square
lattice close to integer f is well studied [31–34]. The
presence of disorder results in rare favorable regions for the
occurrence of vortices at low temperatures. At sufficiently low
temperatures [32–34], it is found that the disorder-induced
phase transition is not in the KT universality class. Very
similar results were also obtained earlier [26] in a study
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of the Anderson localization in one-dimensional Luttinger
liquids subjected to quenched phase disorder. The similar-
ity is puzzling since quenched disorder in one dimension
is equivalent to columnar disorder in the two-dimensional
case. Quantum Monte Carlo studies [18] of the interplay
of phase frustration and Coulomb blockade suggest a zero-
temperature field-driven SNT with dynamic exponent z ≈ 1.3,
placing the transition in a different universality class from
3D XY .

In this paper, we study the effect of three dominant mecha-
nisms governing the loss of phase coherence and their specific
signatures on the magnetoresistance and superfluid stiffness.
These are (a) quantum phase fluctuations originating from a
Coulomb blockade, (b) thermal fluctuations of the phase, and
(c) frustration effects due to disorder in AB phases. We show
that Coulomb-blockade effects impart a specific signature to
the magnetoresistance, ρ(B) ∼ exp[(B/B0)2]. Where the SNT
is driven by thermal fluctuations, we find a KT transition,
with ρ(B) ∼ exp[−1/

√
B − BKT] in the critical region. In

the AB phase frustration dominated regime, we find a new,
non-KT critical behavior, ρ(B) ∼ exp[−1/(B − BAB)]. The
field-dependent superfluid stiffness ϒ also shows a surprising
behavior: at small fields, we predict that phase frustration
effects on ϒ are more significant than the field dependence of
Josephson couplings. In the Coulomb-blockade regime away
from the critical region, our predicted magnetoresistance is
in excellent accord with experimental data [1,2]. However,
in the critical scaling region, existing experimental data are
somewhat less clear, and while there is some evidence for
mechanism (c) for the field-tuned SNT in oxide heterostruc-
tures [35], further study is needed, and we propose additional
probes to distinguish between the two.

The rest of the paper is organized as follows. Section II
contains an analysis of the effect of a transverse magnetic field
on the distribution of Cooper pairs in the presence of strong
disorder. This analysis provides parameters for the effective
Josephson junction model [Eq. (1)]. Three regimes of interest
corresponding to different limits of parameters in the effective
Josephson junction model are analyzed in Sec. III. Explicit
expressions for the low-field magnetoresistance and superfluid
stiffness are obtained here. Section IV compares these results
with experiment, which is followed by a discussion in
Sec. V.

II. DISORDERED BOSON MODEL

In this section, we analyze the effect of a transverse
magnetic field on the distribution of Cooper pair islands in
the granular superconductor, and we use this to estimate
parameters in the effective Josephson junction model of
Eq. (1). Consider a model of repulsive bosons (Cooper pairs)
with average density n subjected to a random potential with a
Gaussian white noise distribution:

H =
∑

p

�2

2m
a†

pap +
∫

r

[
g

2
|�(r)|4 + U (r)|�(r)|2

]
, (2)

where �(r) = 1√
V

∑
p ap exp[ip · r/�],� = (p − qA), U (r)

is the random potential, 〈U (r)〉= 0, 〈U (r)U (r′)〉= κ2δ(r − r′),
q = 2e is the boson charge, and g parametrizes the boson

repulsion. We choose the gauge A = 1
2 (B × r) with the field

in the transverse z direction. This model is equivalent to the
previously studied (for B = 0) Ginzburg-Landau models with
disorder in critical temperature [12]. The important length
scales in the model are the single-particle localization length
L = �

2/mκ characterizing the disorder, and the magnetic
length lB = √

�c/(eB). At finite temperatures, the model
has at least three parameters: γ1 = L/lB , γ2 = 2mg/�

2, and
γ3 = L/λT , where λT is the de Broglie wavelength. We are
specifically interested in the regime where all three parameters
are small. At low densities, the interplay of disorder and
interparticle repulsion leads to the formation of disconnected
islands of localized bosons [24] whose typical size and
separation may be estimated as follows. The optimal potential
fluctuation that has a bound state at energy E < 0 is found
by minimizing 1

2

∫
U 2dr + λ(E − H ), where λ is a Lagrange

multiplier. We choose � to be real, assuming a spherical
fluctuation and a zero angular momentum bound state. Varying
with respect to U , we obtain U = λ�2; thus the size R of the
optimum potential well is also of the same order as the wave
function. The energy of a particle in an island, in the mean-field
approximation, is thus of the order of

E ∼ − �
2

2mR2
+ (qBR)2

8m
+ gNp/(πR2), (3)

where Np is the number of bosons in the island. The density
nw = n/Np of these islands is determined by the Gaussian
factor, exp[− 1

2κ2

∫
r U 2], from which

nw ∼
(

1

πR2

)
exp[−(L/R)2]. (4)

Minimizing the energy with respect to R, the size of the
typical island, to logarithmic precision, is

R(B) ∼ L√
ln[nc(B)/n]

, (5)

where for small fields,

nc(B) ≈ �
2

2gmL2

(
1 + (qBL2/�)2

4

1

ln2[nc(0)/n]

)
(6)

is the critical density for percolation of the islands, and
nc(B)/n > 1. For future convenience, we introduce w(B) =
nc(B)/n. Clearly, the magnetic field shrinks the islands, but the
field dependence is very different from a simple expectation
from wave-function shrinking of a localized noninteracting
particle. The distance D ∼ 1/

√
nw between the islands can be

estimated as

D(B) ∼ R(B)e
1
2 [L/R(B)]2 ∼ L

√
w(B)√

ln w(B)
. (7)

The strength of tunneling of the bosons across the nearest
islands can be estimated from the semiclassical formula t =
exp(−1/�

∫ |p|dl), where the integral path connects the two
wells. The integral can be estimated using |p| ∼ √

2m|E| ∼
�/R(B) and the length of the path is ∼D(B). This leads to
t ∼ exp[−D(B)/R(B)]. The Josephson coupling between the
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FIG. 1. Schematic phase diagram for the 2D superconductor-
normal state transition, with the XY superfluid phase in the interior
of the surface, as a function of dimensionless temperature T/J ,
Coulomb-blockade scale Ec/J , and the Aharanov-Bohm (AB) phase
disorder σ for the model described in Eq. (1). Here J is the
(field-dependent) Josephson coupling estimated in the paper. Part
(a) illustrates the Coulomb-blockade-dominated regime. The shaded
regions (b) and (c) denote transitions driven by AB phase frustration
and thermal phase fluctuation, respectively. The dotted line on the
surface separates these two different critical scaling regimes. The
critical disorder at low T and Ec is independent of T , and the scaling
of the correlation length is not of Kosterlitz-Thouless type [34].

nearest islands is J ∝ t2. Thus we obtain

J (B) ∼ e−2
√

w(B). (8)

Note that even when at small magnetic fields L/lB 	 1, the
exponent in Eq. (8) can be large at low boson densities,
w(B) 
 1. For such fields, we have J (B)/J (0) ∼ e−(B/BJ )2

,
where B−2

J ≈
√

w(0)
ln2 w(0)

(qL2/2�)2.
Even though the value of R is fixed in our mean-field

analysis, D and J nevertheless fluctuate since the wells have a
finite probability density nw to appear in any part of the system.
It is straightforward to show that the distance D between
neighboring grains has the distribution

P (D) ∼ (2πDnw)e−nwπD2
. (9)

We now analyze the effects of the three different mech-
anisms that lead to a loss of global phase coherence in
their regimes of dominance, which are determined by the
dimensionless parameters Ec/J , T/J , and σ , with the latter
a measure of disorder in the fluxes through elementary
plaquettes. Figure 1 shows the phase diagram and the regimes
of our study. To carry out this analysis, it is convenient to
work with an effective Hamiltonian that has only the collective
phases of different grains as the degrees of freedom. It is
well known that our system can be described by a Josephson
junction model with the Hamiltonian corresponding to the
Lagrangian in (1). The magnetic-field-dependent parameters
of the Hamiltonian are obtained from our analysis above.
Ec(B) = q2/2C is the typical charging energy of the grains,
where C is the typical capacitance of the grains; C ∼ εR(B),
ε being the dielectric constant. Denoting the plaquette area
fluctuation by (δD)2, we identify σ ∼ B2(δD)4. From Eq. (9),
it follows that (δD)/D � 1.

III. ANALYSIS OF THE EFFECTIVE JOSEPHSON
JUNCTION MODEL

We now proceed to the analysis of the effective Josephson
junction model in the three different regimes mentioned above.

A. Quantum phase fluctuation dominated insulating
regime (Ec/J, Ec/T � 1)

We treat the Josephson term in Eq. (1) as a perturbation,
and we calculate the conductivity using the Kubo formula
[36,37]. Transport in this model proceeds through Arrhenius
activation and incoherent sequential hopping of charges
between neighboring islands—this leads to a resistivity of the
form

ρ(B) ∼ J (B)−2eEc(B)/T ∼ e[4
√

w(B)+(q2/LT )
√

ln w(B)]. (10)

The above behavior shows the insulating nature of the normal
state. For small fields, the magnetoresistance obeys the law
ρ(B)/ρ(0) ∼ exp[(B/B0)2], where B−2

0 ≈ (qL2/2�)2

2 ln2 w(0)
[
√

w(0) +
q2

LT
√

ln w(0)
]. More accurately, one must also take into account

the renormalization of the charging energy by Josephson
coupling [37,38], Ec → Ec − J . It is interesting to note that
a similar field dependence of resistivity, ρ(B) ∼ e(B/Bc−1)2

,
has been obtained in the context of a superconductor to Hall
insulator transition [39].

B. AB phase frustration dominated regime
(Ec/J � 1, T/J � 1, σ/σc ∼ 1)

To study this regime, it is useful to consider the Coulomb
gas representation of the model in Eq. (1). Following earlier
works [34,40], we assume a Gaussian white noise distribution
for the AB phases on the links, reckoned from a background
average corresponding to a typical separation of islands, D. In
the Coulomb gas representation, such disorder translates to a
random flux threading elementary plaquettes, corresponding to
an external potential Vr acting on the “charges” (vortices) with
a Gaussian distribution 〈(Vr − Vr′ )2〉 = 4σJ 2 ln |r − r′| +
O(1). It is crucial that the random background potential
has long-range (logarithmic) correlations. In the continuum
description of the model with a lower cutoff scale a0, Vr
has a local part, vr : 〈(vr − vr′ )2〉 ∼ σJ 2, and a long-range
correlated part, V >

r , with no cross-correlation between these
two parts. The Coulomb gas Hamiltonian then reads

H = −J
∑
r�=r′

nrnr′ ln

( |r − r′|
a0

)
−

∑
r

[nrV
>

r − ln Y [nr,r]],

(11)

where nr represents the integer charge at r, the spatially
dependent fugacities have the bare value ln Y [nr,r] = γ Jn2

r +
nrvr, and γ is a constant of order unity. We have dropped the
background term as it just sets the chemical potential of the
vortices and does not affect the scaling equations [41].

In the absence of disorder, the usual RG procedure consists
of (i) increasing the short-scale cutoff, a0 → a0 + dl, and
eliminating all dipoles in the annulus of thickness dl, and
(ii) disregarding all configurations that increase the net charge
within the cutoff region. The RG procedure is perturbatively
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controlled by small dipole fugacities. For the disordered case,
we follow Ref. [34] and introduce replicas, which allows us
to perform the average over Gaussian disorder. The lowest
excitations continue to carry charges 0,±1, but now the nα

r also
carry a replica index α. An important difference from the RG
procedure of the disorder-free case is that now when the cutoff
is increased, one must, apart from considering annihilation of
replica charges, also take into account “fusion” of unit charges
in different replicas (see the Appendix A). Another important
difference that invalidates the usual perturbative expansion in
small dipole fugacities is that the random potential creates
favorable regions for single vortex formation. Hence we study
the scale dependence of the single vortex fugacity distribution
identifying the density of rare favorable regions, ρv

a0
, for

the occurrence of vortices as the perturbation parameter. By
studying the scaling of ρv

a0
, two distinct regimes can be

identified for T/J 	 1: (a) an XY phase at sufficiently low
bare disorder, where ρv

a0
scales to zero, and (b) a disordered

phase beyond a critical bare disorder where ρv
a0

diverges (see
the Appendix B for details). In the disordered phase, the
phase correlation length has a surprising non-KT behavior,
ξ ∼ e1/(σ−σc), which in our context translates to a field depen-
dence ξ ∼ e1/(B−BAB), with BAB ∼ �/q(δD)2. Such a non-KT
behavior is a direct consequence of the logarithmic scaling of
the disorder potential correlations. Another peculiarity is that
over a range of low temperatures up to a scale of order J , the
critical disorder σc is independent of the temperature [34].

We obtain the magnetic-field dependence of the superfluid
stiffness by solving the scaling equations in the critical region
at low temperatures for the coupling constant Jl and the
effective disorder σl . Taking the ratio of the scaling equations
for Jl and σl obtained in Ref. [34], we get

∂lJ
−1
l

∂lσl

∼ 1

Jl

√
σl

,

and from the solution Jl ∼ e−2
√

σl it follows that the superfluid
stiffness ϒ(B) has the behavior

ϒ(B) ∼ J (B)e−2
√

σ (B) ∼ e−(B/B1)−(B/BJ )2
, (12)

where B1 is of the order of BAB. Phase frustration effects
thus play a more important role in determining the low-field
dependence of superfluid stiffness in the AB phase frustration
dominated regime compared to the effect coming from orbital
shrinking.

Now we analyze magnetoresistance in the disordered phase
at low temperatures and close to the field-induced transition.
Following Halperin and Nelson [42], we estimate the electrical
resistivity (which is essentially the vortex conductivity) as
ρ(B) = μvn(B), where μv is the temperature and field-
dependent mobility of the vortices, and n(B) ∼ 1/ξ 2 is the
vortex density. We make an assumption that μv(B) is well-
behaved near B = BAB, which allows us to neglect its field
dependence in comparison to the singular behavior of ξ (B).
The temperature dependence of resistivity is governed by the
temperature dependence of the mobility, and we believe it
shows an activated behavior given the logarithmic Coulomb
interaction of the vortices [43]. The magnetoresistance in this
AB phase frustration dominated regime thus grows as

ρ(B) ∼ μv(T )e−1/(B−BAB). (13)

FIG. 2. Resistivity ρ as a function of perpendicular magnetic field
B for disordered InOx thin films as reported in Ref. [1] (data 1) and
Ref. [2] (data 2) in the low-field region where the fits are to the
predicted behavior ρ(B) ∼ e(B/B0)2

corresponding to the Coulomb-
blockade-dominated regime discussed in the text.

C. Thermal phase fluctuation dominated KT regime
[Ec/J � 1, σ/σc � 1, T/J(B) ∼ 1]

In this regime, the transition is brought about by the prolif-
eration of thermally activated vortices. The superfluid stiffness
now has a field dependence ϒ(B) ∼ J (B) ∼ e−(B/BJ )2

arising
from orbital shrinking of the superconducting islands. For the
resistivity, we again consider the correlation length in the disor-
dered phase, which has the well-known form ξ ∼ e1/

√
T −TKT ,

with TKT ∝ J (B). Near the transition, this is equivalent to a
field-dependent correlation length, ξ ∼ e1/

√
B−BKT . Thus the

resistivity in this regime has the form

ρ(B) ∼ μv(T )e−1/
√

B−BKT . (14)

For regimes (b) and (c), the normal state has a “metallic” tem-
perature dependence since enhancement of vortex mobilities
at higher temperatures translates to higher resistivity.

IV. RELATION TO EXPERIMENTS

Figure 2 shows the low-temperature and low-field magne-
toresistance of disordered InOx thin films extracted from two
different experiments [1,2]. The positive magnetoresistance
data are very well-described by Eq. (10), which places
these samples in our Coulomb-blockade-dominated regime.
Deviation from the Coulomb-blockade prediction is seen near
the magnetoresistance peak, and we believe this is due to the
quasiparticle transport channel opening up. In samples with
lower disorder [2], unsurprisingly, the Coulomb blockade does
not adequately explain the data; however, the other critical
scaling regimes (AB phase frustration and KT) show better
agreement, even though we were unable to distinguish between
the two (see the Appendix B). In a recent study of the field-
tuned SNT at 2D interfaces of gated oxide heterostructures
[35], it was reported that for certain gate voltages, the critical
magnetic field at low temperatures was independent of the
temperature, suggestive of the phase frustration driven SNT
mechanism. Finally, our predictions for superfluid stiffness
in the XY regime can possibly be tested through studies of
field-dependent ac conductivity [44], and they may provide an
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independent means for distinguishing between the two regimes
in the XY phase.

V. DISCUSSION

In summary, we studied the field dependence of the distri-
bution of SC islands in strongly disordered superconductors,
and we constructed an effective Josephson-junction model
with field-dependent parameters. Analyzing the model in
different physical regimes—dominated by a Coulomb block-
ade, thermal phase fluctuations, or Aharanov-Bohm phase
fluctuations—we obtained the field dependence of resistivity
and superfluid stiffness. In the Coulomb-blockade regime,
available experimental data are in excellent agreement with
our prediction ρ(B) ∼ e(B/B0)2

, while in the critical scaling
region, available magnetoresistance data [2] are insufficient to
distinguish between KT and AB phase frustration regimes.

At very low temperatures, the critical behavior in the vicin-
ity of the quantum critical point [Ec/J (B) ∼ 1] is expected
to be that of the 3D XY universality class. For the field-tuned
transition in systems with homogeneous potential disorder,
the rapid decrease of the Josephson coupling J (B) with field
implies that the likely experimental trajectories in the T/J

versus Ec/J plane rapidly move out of the quantum critical
region into the Coulomb-blockade-dominated region where
Ec/J 
 1. In contrast, in systems such as nanopatterned
superconducting proximity arrays, the fabrication technique is
such that the separation of superconducting regions [and thus
J (B)] is not as field-sensitive. Such systems look attractive
from the point of view of studying the critical behavior
near the field-tuned SNT, especially in the quantum critical
region Ec/J (B) ∼ 1. In our study, we neglected pair-breaking
effects, which likely play a crucial role in explaining the giant
negative magnetoresistance observed at higher fields [4,5].
Pair breaking opens up an additional quasiparticle transport
channel, and it would be interesting to study magnetic-field
effects in phase models with both quasiparticle and Cooper
pair tunneling.
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APPENDIX A: RG EQUATIONS AND THE PHASE
DIAGRAM OF THE DISORDERED XY MODEL

In this Appendix, we show the essential steps followed to
obtain the phase diagram of the two-dimensional XY model
with phase disorder. A comprehensive study can be found in
Ref. [34].

The partition function of the replicated Coulomb gas with
m-vector charges after averaging over the bare disorder is

Zm = 1 +
∞∑

p=2

∑
n1,...,np

∫
|ri−rj |>a0

exp(−βH (m)[n,r]),

where the sum is over all distinct neutral configurations, and

βH (m) =
∑
i �=j

Kabn
a
i ln

( |ri − rj |
a0

)
nb

j +
∑

i

ln Y [ni].

Here, Y [n] = exp(−naγKabn
b), where Kab = βJδab −

σβ2J 2. Significant contribution to the partition function only
comes from charges ±1,0, and hence we restrict to these.
We increase the hard-core cutoff a0 → a0e

(dl) and retain the
original form of the partition function in terms of scale-
dependent coupling constants (Kl)ab and fugacities Yl[n]. To
O(Y [n]2), we obtain the following RG flow equations [34]:

∂l

(
K−1

l

)
ab

= 2π2
∑
n �=0

nanbY [n]Y [−n], (A1)

∂lY [n �= 0] = (2 − naKabn
b)Y [n] +

∑
n′ �=0,n

πY [n
′
]Y [n − n

′
].

(A2)

Equation (A1) comes from the annihilation of dipoles of
opposite vector charges in the annulus a0 < |ri − rj | < a0e

dl .
It gives the renormalization of the interaction and of the
disorder. Simple rescaling gives the first part of Eq. (A2).
The second part comes from the possibility of fusion of two
replica vector charges upon coarse-graining. Some examples
of fusion are given below,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
+1

...
+1

...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
...
0
...

−1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
+1

...
+1

...
−1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
+1

...
0
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
...

+1
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
+1

...
+1

...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
+1

...
0
...

+1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
−1

...
0
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
...
0
...

+1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Replica permutation symmetry, which we will assume here and which is preserved by the RG, together with na = 0,±1,
implies that Y [n] depends only on the numbers n+ and n− of +1/ − 1 components of n. We parametrize Y [n] by introducing
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a function of two arguments �(z+,z−), where z±(r) =
exp(±βvr), such that

Y [n] = 〈zn+
+ z

n−
− 〉�, (A3)

where we denote 〈A〉� = ∫
dz+dz−A�(z+,z−). After some

manipulations [34], in the limit m → 0, we can write Eq. (A2)
in terms of P = φ/(

∫
z+,z−>0 φ), which can be interpreted as a

probability distribution, as

∂lP (z+,z−)

= OP − 2P (z+,z−) + 2

〈
δ

(
z+ − z

′
+ + z

′′
+

1 + z
′
−z

′′
+ + z

′
+z

′′
−

)

× δ

(
z− − z

′
− + z

′′
−

1 + z
′
−z

′′
+ + z

′
+z

′′
−

)〉
P

′
P

′′
, (A4)

where O = βJ (2 + z+∂z+ + z−∂z− ) + σ (βJ )2(z+∂z+ −
z−∂z− )2. The m → 0 limit of Eq. (A1) similarly yields

T
dJ−1

dl
= 8

〈
z

′
+z

′′
− + z

′
−z

′′
+ + 4z

′
+z

′′
−z

′
−z

′′
+

(1 + z
′
+z

′′
− + z

′
−z

′′
+)2

〉
PP

, (A5)

dσ

dl
= 8

〈
(z

′
+z

′′
− − z

′
−z

′′
+)2

(1 + z
′
+z

′′
− + z

′
−z

′′
+)2

〉
PP

. (A6)

Equations (A4), (A5), and (A6) form the complete set of RG
equations.

Numerical study [34] of the RG equations indicates the
existence of an XY phase at low temperatures and below some
critical disorder. Guided by the RG flow observed numerically
within and near the boundaries of the XY phase, we can
approximate the full RG equations using a simpler equa-
tion involving only the single fugacity distribution, Pl(z) =∫

dz+Pl(z+,z) = ∫
dz−Pl(z,z−). In the low-T regime, the

distribution Pl(z+,z−) is broad and the physics is dominated
by rare favorable regions (z+ ∼ 1 or z− ∼ 1). Here we identify
a parameter that allows us to organize perturbation theory as
follows: Pl(1) ≡ Pl(z ∼ 1) ∼ Pl(z+ ∼ 1,z− ∼ 0) = Pl(z+ ∼
0,z− ∼ 1). We also observe that Pl(1,1) ≡ Pl(z+ ∼ 1,z− ∼
1) ∼ Pl(1)2. Using these, we can see schematically the RG
equation (A4) as a correction to Pl(1) of order Pl(1) by the
first term and order Pl(1)2 by the second term; and in RG
equations (A5) and (A6) as a correction to order Pl(1)2 to
Jl and σl . Again working to order Pl(1)2, we see that the
denominators in the δ functions in (A4) could be neglected.
This approximation also simplifies Eqs. (A5) and (A6).

Introducing

Gl(x) = 1 −
∫ ∞

−∞
du P̃l(u) exp(−eβ(u−x+El )), (A7)

where u = 1/β ln(z) and El = ∫ l

0 J (l
′
)dl

′
, we see that (A4)

can be written as 1
2∂lG = σJ 2

2 ∂2
xG + G(1 − G). If σ and J

are l-independent, we identify the above with Kolmogorov-
Petrovskii-Piscounov (KPP) equation, whose general form is
1
2∂lG = D∂2

xG + f (G), where D is a constant and f satisfies
f (0) = f (1) = 0, f is positive between 0 and 1, and f

′
(0) =

1,f
′
(G) � 1 between 0 and 1. Since at large l, both J and σ

converge and effectively become l-independent, we see that

we can use results from the study of the KPP equation in our
case at large l.

For a large class of initial conditions, the solutions of
the KPP equation are known to converge uniformly toward
traveling wave solutions of the form Gl(x) → h(x − ml). The
velocity of the wave is given by c = liml→∞ ∂lml . A theorem
due to Bramson [45] shows that the asymptotic traveling wave
is determined by the behavior at x → ∞ of the initial condition
Gl=0(x) in the following manner. If Gl=0(x) decays faster than
e−μx , where μ = 1/

√
D, then c = √

D. If Gl=0(x) decays
slower than e−μx , where μ < 1/

√
D, then c = 2(Dμ + μ−1).

The parametrization (A7) implies that the distribution P̃l(u)
itself converges to a traveling front solution

P̃l(u) →l→∞ p̃(u − Xl), Xl = ml − El. (A8)

Since ∂lEl →l→∞ JR , we see that the asymptotic velocity of
the front of P̃l(u) is c − JR , where c is the KPP front velocity.
The center of the front corresponds to the maximum of the
distribution P̃ (u).

The asymptotic velocity clearly decides the phase of the
system: since we start with a distribution peaked at some small
z, if the velocity is positive, then Pl(1) will increase, and this
would imply that the system is in the disordered phase. On the
other hand, negative velocity implies that the system is in the
XY phase. The velocity vanishes at the phase boundary. By
construction, the initial condition Gl=0(x) decays for large x

as 〈z〉P0e
−βx . Hence we identify μ = β. Based on the results

discussed above about the front velocity selection in the KPP
equation, we can conclude the following about the phase
diagram of the model:

(a) For T > Tg = JR

√
σR/2, c = T (2 + σRJ 2

R

T 2 ). Thus here
the XY phase would exist for

2 − JR

T
+ σRJ 2

R

T 2
< 0. (A9)

(b) For T � Tg , c = JR

√
8σR . Thus here the XY phase

would exist for σR < σc = 1
8 .

Critical behavior at zero temperature: The zero-
temperature phase transition from the XY phase to the
disordered phase occurs at σR = 1/8. The center of the front is
located at u = Xl near the transition. It follows from [45] that
Xl ≈ (4

√
D − J )l − 3/2

√
D ln l + X0. Hence in the critical

region to leading order, we get

∂lXl ∼ 4
√

D − J − 3
√

D

2l
. (A10)

After some manipulations, the RG equations for J and σ

in the critical region read

∂l(J
−1) = k

∫
du p̃l(u − Xl)p̃l(−u − Xl),

∂lσ = k

∫
u+u

′
>−2Xl

p̃l(u)p̃l(u
′
),

where k is some constant. Using the asymptotic form of p̃l(u)
discussed in [45] and working up to leading order in (σ − σc),
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we can simplify the above equations to obtain

∂l(J
−1) ∼ C√

D
X3

l exp

(
2Xl√

D

)
,

∂lσ ∼ CX3
l exp

(
2Xl√

D

)
,

where C is a constant. To estimate the form of correla-
tion length, we first introduce the small parameter, gl =
exp(Xl/

√
D). Then (A10) reads

∂lg ∼
(

16(σ − σc) − 3

2l

)
g.

Now starting away from criticality, ε = σc − σR > 0, we
find gl ∼ l−3/2 exp(16εl). Identifying the correlation length ξ

as when gξ ∼ 1, we find

ξ ∼ exp

(
b

|σ − σc|
)

,

where b is some constant. We then see that the universality
class of this transition is clearly different from the KT
universality class.

APPENDIX B: COMPARISON
OF KOSTERLITZ-THOULESS (KT) AND

NON-KT SCALING WITH EXPERIMENTS

In Fig. 3, we show the sheet resistance R� ver-
sus magnetic-field data near a field-driven SIT in a
homogeneously disordered InOx thin film from Ref. [2], and
we attempt to fit these data to the Kosterlitz-Thouless (KT)
behavior (R� = R0e

−1/
√

B−BKT ) and the non-KT behavior

R
�

(Ω
)

B(T)

FIG. 3. Sheet resistance R� of homogeneously disordered InOx

thin films as a function of perpendicular magnetic field B near the
field-driven SIT (data extracted from Ref. [2]). The fits are to a

Kosterlitz-Thouless (KT) law R� = 5.02×104e−16/

√
B2−9.22 (solid

red curve) and the non-KT law R� = 1.53×104e−61.2/(B2−8.92) (blue
dashed curve). The KT transition is driven by thermal phase fluc-
tuations, while the non-KT transition is driven by phase frustration.
Both laws fit the data equally well; however, the prefactor of the
exponential, which represents the high-field sheet resistance, is a
more reasonable number in the non-KT case since in the actual data,
the peak value of resistance is of comparable order.

(R� = R0e
−1/(B−BAB)) obtained in this paper. It is difficult to

say which of these two laws describes the data better; however,
we argue that the non-KT fit might be a bit better on account
of a more reasonable value for the high-field resistance R0.
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