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We propose a generic scenario for realizing gapful topological superconductors (TSCs) from gapless spin-
singlet superconductors (SCs). Noncentrosymmetric nodal SCs in two dimensions are shown to be gapful under
a Zeeman field, as a result of the cooperation of inversion-symmetry breaking and time-reversal-symmetry
breaking. In particular, non-s-wave SCs acquire a large excitation gap. Such paramagnetically induced gapful
SCs may be classified into TSCs in the symmetry class D specified by the Chern number. We show nontrivial
Chern numbers over a wide parameter range for spin-singlet SCs. A variety of the paramagnetically induced
gapful TSCs are demonstrated, including D + p-wave TSC, extended S + p-wave TSC, p + D + f -wave TSC,
and s + P -wave TSC. Natural extension toward three-dimensional Weyl SCs is also discussed.
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I. INTRODUCTION

Topological superconductors (TSCs) and superfluids are
one of the central issues in the modern condensed matter
physics [1,2]. They are theoretically proposed in an extremely
wide range of contexts, such as ultracold atoms [3,4] as well
as electron systems in solids: from one-dimensional (1D)
nanowires [5–9] and two-dimensional (2D) thin films [10–12]
to bulk three-dimensional (3D) systems [13–16]. However,
many of these suggestions assume rather hard situations to
achieve in experiments: some require special band structures
by fine tuning of parameters [3,4,6–9], and others assume
odd-parity superconductivity [5,10,11,13–19] and/or chiral
superconductivity with spontaneously broken time-reversal
symmetry [10,11] which rarely appear in real superconductors
(SCs) with a few exceptions [20–23]. Therefore, the research
field for TSCs is still limited at present. The topological
superconducting states in familiar materials are desired,
although indications for TSCs have been already obtained by
a few state-of-the-art experiments [24,25].

Recent theoretical studies point to topological crystalline
SCs protected by crystal symmetry [26–32] or to gapless
SCs specified by a weak (low-dimensional) topological index
[33–37]. In contrast to these TSCs, strong TSCs are specified
by a strong topological index and protected only by local
symmetry. The complete classification has been summarized in
the topological periodic table [13,26,38,39]. Strong TSCs are
believed to be robust against perturbations such as disorders
and interactions because of their gapped energy spectrum and
the symmetry protection [40]. Therefore, a design of strong
TSCs may pave a new way to experimental studies for the
topological superconductivity.

In particular, a design of strong TSCs based on spin-
singlet SCs is desired. Although most of real SCs are
induced by the condensation of spin-singlet Cooper pairs,
gapful spin-singlet SCs are usually topologically trivial. The
mainstream of research field has been naturally limited to the
exceptional case, namely, the topologically nontrivial s-wave
SCs [3,4,7–9,24,25]. On the other hand, we are familiar to
nodal spin-singlet SCs in strongly correlated electron systems
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[41]. For instance, the d-wave SCs have been identified to
be gapless TSCs specified by a low-dimensional topological
invariant [33,34]. However, gapless excitations in the bulk
may be harmful for the topological response. The gapful
superconducting phase generated from the nodal SCs has not
been recognized in previous studies.

In this paper, we show that originally gapless SCs lacking
inversion symmetry may be gapful TSCs under the magnetic
field. Our idea is based on a numerical study of the 2D
D + p-wave SCs [12]. Reference [12] showed that noncen-
trosymmetric 2D D + p-wave SCs are nodal at zero magnetic
field, but they become gapful TSCs under the magnetic field.
We generalize this scenario for the paramagnetically induced
gapful TSCs, by deriving analytic expressions of the excitation
spectrum and the Chern number. The mechanism for realizing
gapful TSCs is applicable to most of noncentrosymmetric
nodal SCs with time-reversal symmetry, and relies on nei-
ther specific symmetry of superconductivity nor electronic
structure. In particular, a spin-singlet SC is rather likely to
be topologically nontrivial, in sharp contrast to the fact that
most of the time-reversal-invariant TSCs are spin-triplet SCs
[19]. Importantly, we are familiar to nodal spin-singlet SCs
although we hardly encounter a spin-triplet SC in materials
[41]. It is stressed that our scenario for realizing gapful TSCs
does not need any fine tuning of the chemical potential, in
contrast to proposals for topological s-wave SCs [3,4,7,24,25]
whose platform is limited to artificial systems such as cold
atoms and semiconductors. For these reasons, this paper
may significantly extend the research field on topological
superconducting materials, especially in natural solid-state
systems.

The outline of this paper is illustrated as follows: In Sec. II,
we show an analytic expression of the excitation spectrum and
discuss the gap-generation mechanism in nodal noncentrosym-
metric SCs. The excitation gap emerges from the cooperation
of the broken inversion symmetry in crystal structures and
the broken time-reversal symmetry due to the magnetic field.
The broken inversion symmetry leads to unusual magnetic
responses of SCs robust against the paramagnetic effect,
which were experimentally demonstrated in transition-metal
dichalcogenides [42,43]. The broken time-reversal symmetry
is required in order to break the topological protection of the
gap node [33–35,44]. In Sec. III, we derive the Chern number

2469-9950/2016/94(5)/054519(20) 054519-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.054519


AKITO DAIDO AND YOUICHI YANASE PHYSICAL REVIEW B 94, 054519 (2016)

in the paramagnetically induced gapful phases. Analyzing the
general formula, we show that most of dominantly spin-singlet
SCs are TSCs. In Sec. IV, we introduce several models for
paramagnetically induced TSCs and numerically verify the
analytic formula obtained in Secs. II and III. The models
introduced are D + p-wave TSC, extended S + p-wave TSC,
p + D + f -wave TSC, and s + P -wave TSC. Finally, we
discuss experimental setup for the TSCs in Sec. V, and give a
brief summary in Sec. VI.

II. PARAMAGNETICALLY INDUCED GAPFUL SCS
WITHOUT INVERSION SYMMETRY

A. BdG Hamiltonian for parity-mixed SCs

We introduce a Bogoliubov–de Gennes (BdG) Hamiltonian
describing parity-mixed SCs under a Zeeman field:

HBdG(k) =
(

H2(k) �(k)

�(k)† −H2(−k)T

)
, (1)

where H2(k) = ξ (k) + αg(k) · σ − μB H · σ is the Hamilto-
nian in the normal state. The first term is a kinetic energy
measured from a chemical potential μ, the second term is
an antisymmetric spin-orbit coupling (ASOC), and the last
term is a Zeeman field. The Zeeman field may be induced by
an applied magnetic field or by a proximity to ferromagnet.
We here consider the former case, for simplicity. The latter

case may be described by the same model. We assume α > 0
without loss of generality. The superconducting gap function is
given by �(k) = [ψ(k) + d(k) · σ ]iσy , where the even-parity
component ψ(k) and odd-parity one d(k) may be admixed
because of the broken inversion symmetry.

In this section, we clarify the effect of Zeeman field on
the gap structure without assuming any specific symmetry
of superconductivity. What we assume is only the existence
of excitation nodes at zero magnetic field. The orbital effect
of the magnetic field is neglected in the following discussions.
Experimental situations for our setup will be discussed in
Sec. V.

First, we show quasiparticle energy bands in the absence of
the magnetic field. Two electron bands

E±(k) ≡ ξ (k) ± α|g(k)| (2)

are obtained in the normal state as a result of the Zeeman-
type splitting by ASOC. The E± electrons have spin paral-
lel/antiparallel to the g vector,

ĝ(k) ≡ g(k)/|g(k)|, (3)

and there may be two Fermi surfaces (FSs) defined by E±(k) =
0. In the following expressions, we may omit the variable in ξ ,
E±, g, ψ , and d, and denote H ≡ |H|, d ≡ |d|, and g ≡ |g|,
for simplicity.

The BdG Hamiltonian in ẑ ‖ ĝ coordinates has the form

⎛⎜⎜⎜⎜⎜⎝
E+ 0 −d

(g)
x + id

(g)
y ψ + d

(g)
z

0 E− −ψ + d
(g)
z d

(g)
x + id

(g)
y

−d
(g)∗
x − id

(g)∗
y −ψ∗ + d

(g)∗
z −E− 0

ψ∗ + d
(g)∗
z d

(g)∗
x − id

(g)∗
y 0 −E+

⎞⎟⎟⎟⎟⎟⎠, (4)

where d(g) is a d vector in the new coordinates. First-order
perturbation theory with respect to ψ/αg and d/αg shows that
the off-diagonal matrix element between the ±E+ bands, i.e.,

ψ + d · ĝ
(= ψ + d (g)

z

)
, (5)

serves as the gap-opening term. For this reason, ψ + d · ĝ is
regarded as the gap function in the E+ band. In the same way,
ψ − d · ĝ is the gap function in the E− band. Energy spectrum
of Bogoliubov quasiparticles is given by

E± = ±
√

E2± + |ψ ± d · ĝ|2. (6)

Equation (6) reveals that the direction of the g vector, namely,
the spin polarization axis at each k relative to the d vector, is
crucial for the gap structure. This fact plays an essential role
on the gap generation demonstrated in the next subsection.

In contrast to the isotropic s-wave SCs, the order parameter
in the band basis, ψ ± d · ĝ, may have some zeros in nodal
SCs. Then, a gap node appears on FSs, and the electron band
E± touches to the hole band −E± at the nodes. This is the
situation we consider in this paper.

B. Excitation gap in nodal parity-mixed SCs
by paramagnetic effect

Second, we elucidate the excitation spectrum around the
nodes under a magnetic field. For the clarity, the magnetic
field should be decomposed into two parts at each k:

H ≡ H‖(k) + H⊥(k), (7)

where the first term is parallel to ĝ(k) and the second term is
the perpendicular component:

H‖(k) ≡ [H · ĝ(k)] ĝ(k), (8)

H⊥(k) ≡ ĝ(k) × [H × ĝ(k)]. (9)

Since the E± bands show spin texture polarized to the ±ĝ(k)
direction, the parallel component H‖(k) just increases or de-
creases the spin splitting. On the other hand, the perpendicular
component H⊥(k) modifies the spin texture, and therefore,
it may modify the gap function. Indeed, a new gap-opening
term arises from the perpendicular component. We obtain the
energy spectrum of Bogoliubov quasiparticles around the gap
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nodes originating from the E+ band:

E+ = − μB H · ĝ

±
√

E2+ + |(ψ + d · ĝ) + i(μB H · ĝ × d/αg )|2.
(10)

Equation (10) is obtained by the perturbation theory with re-
spect to μBH‖/αg, ψ/αg, and d/αg, with the nonperturbative
Hamiltonian

HBdG
(
� = 0, H‖ = 0, H⊥ �= 0

)
. (11)

Note that the contribution from the perpendicular magnetic
field is nonperturbatively taken into account. Similarly, we
have

E− = μB H · ĝ

±
√

E2− + |(ψ − d · ĝ) + i(μB H · ĝ × d/αg )|2,
(12)

for energy spectrum around the gap nodes in the E− band. The
derivation of Eqs. (10) and (12) is shown in Appendix A.

Equations (10) and (12), the main result of this section, are
valid as long as the conditions

μBH � αg(k), (13)

|ψ(k)| � αg(k), (14)

d(k) � αg(k) (15)

are satisfied around the nodes. These conditions are likely to be
satisfied in the low magnetic field region, unless the gap nodes
are located at zeros of the g vector, such as time-reversal-
invariant momenta. We discuss the exceptional cases in the
next subsection.

In the following part of this paper, we consider SCs which
are time-reversal invariant at zero magnetic field. Thus, we
assume ψ ∈ R and d ∈ R3 without loss of generality [44],
although Eqs. (10) and (12) are also valid for complex-valued
order parameters in time-reversal-symmetry-broken chiral
SCs. The 2D chiral SCs are gapful and beyond the scope
of this paper. It is true that the d vector acquires an addi-
tional complex-valued component by the paramagnetic effect.
However, such admixed component is negligible because its
amplitude is considerably small [45] and its effect is just to
slightly change the minimum of the induced excitation gap.

Under the reasonable conditions ψ ∈ R and d ∈ R3,
Eqs. (10) and (12) are reduced to

E± = ∓ μB H · ĝ

±
√

E2± + |ψ ± d · ĝ|2 + |μB H · ĝ × d/αg|2. (16)

From Eq. (16) we understand that the modified spin texture
due to the perpendicular magnetic field H⊥ gives rise to a
gap-opening term μB H · ĝ × d/αg. Owing to this term, the
order parameter in the band basis looks like a chiral SC with
the gap function

�±(k) ≡ ψ ± d · ĝ + iμB H · ĝ × d/αg (17)

[see Eqs. (10) and (12)]. The chiral gap function �± may
make superconducting state fully gapped. This is a direct
consequence of the time-reversal-symmetry breaking.

The time-reversal-invariant nodal parity-mixed SCs acquire
an excitation gap under the magnetic field when

μB H · ĝ × d �= 0. (18)

This condition is satisfied by appropriately adjusting the
direction of the magnetic field. For Eq. (18) to be satisfied,
the d vector must have a component perpendicular to the
g vector at the nodes so that ĝ × d �= 0. This component
is expected to be finite in general. It is true that the d

vector in noncentrosymmetric SCs tends to be parallel to
the g vector, as it is thermodynamically favored by the
spin-orbit coupling [46,47]. However, the relation ĝ ‖ d is
not imposed by any point-group symmetry, and hence a
perpendicular component in general exists. For example, we
here consider heterostructures of cuprate SCs [48–54]. The
dominant order parameter may be a dx2−y2 -wave one such as
ψ(k) = cos kx − cos ky as it is in the bulk. Then, the supercon-
ducting state belongs to the B1 irreducible representation of
the C4v point group. The admixed spin-triplet order parameter
naturally belongs to the B1 representation. The basis function
is d(k) = (sin ky, sin kx, 0)T when we assume Cooper pairs
on nearest-neighbor bonds. Since the ASOC has to belong
to the identity (A1) representation, the relation ĝ ‖ d is not
supported by symmetry. Indeed, one of the simplest basis
functions of the g vector is Rashba-type (− sin ky sin kx,0)T .
Hence, the d vector is not parallel to the g vector at the
nodal directions k ‖ [110] or ‖ [11̄0]. Another example is
the interface of Sr2RuO4. Microscopic calculations reveal the
B1 superconducting state in the presence of the Rashba ASOC
[55,56]. Then, the spin-triplet component is dominant, but
ĝ × d �= 0 as in the spin-singlet dominant case.

It should be noted that ĝ × d is finite even when the order
parameter belongs to the A1 representation. In this case, the
g vector and the d vector belong to the same representation.
However, we have ĝ × d �= 0 in general because the basis
function of a certain irreducible representation is not unique.
According to the microscopic calculation of ASOC based on
multiorbital models, the g vector has a complex momentum
dependence in the presence of the orbital degeneracy [56–58].
For this reason, a theoretical study on CePt3Si [57] showed
a d vector which is far from parallel to the g vector. These
examples demonstrate that the assumption g(k) ‖ d(k) is
not supported by microscopic theories as pointed out in
Ref. [57], although this assumption is adopted in many
phenomenological models. Thus, the condition for the gap
opening may be satisfied in most nodal parity-mixed SCs.

Let us assume the magnetic field perpendicular to the g

vector in the whole 2D Brillouin zone (BZ):

H · g(k) = 0. (19)

This situation is realized when the magnetic field is parallel to
the c axis in Rashba systems [gz(k) = 0] or when the field is
perpendicular to the c axis and the ASOC is the Zeeman type
[gx(k) = gy(k) = 0] [42,43]. Then, the paramagnetic term
±μB H · ĝ in Eqs. (10) and (12) disappears, and we obtain
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the induced local energy gap at each gap node:

|μB H · ĝ × d|/αg. (20)

Global excitation gap �E is the minimum of Eq. (20) among
nodes at H = 0.

Equation (20) is roughly estimated as follows. First, we
discuss spin-singlet-dominant SCs. Most of the noncentrosym-
metric SCs are classified into the case. The amplitude of ad-
mixed spin-triplet component d is estimated by d 
 |ψ |αg/EF

[47] with EF being the Fermi energy. Thus, we obtain

�E 
 μBH
ψ0

EF
, (21)

where ψ0 is a typical magnitude of the spin-singlet order
parameter. The larger ψ0/EF and H are, the larger gap �E

we obtain. For this reason, high-transition-temperature SCs
may give a large induced gap. In this sense, the cuprate
[48–54] and iron-selenide [59] thin films may be suitable
for experimental studies. Artificial heterostructures of heavy-
fermion SC, CeCoIn5 [60,61], may also be a good platform
because of its small Fermi energy and large ψ0/EF. The energy
gap is roughly estimated to be �E ∼ 1 K in cuprate high-
temperature SCs with μBH ∼ 10 T, when ψ0/EF ∼ 1/10 is
adopted [41]. It should be noticed that Eq. (21) is independent
of the magnitude of the ASOC. Therefore, a small spin-orbit
coupling does not decrease the induced gap, although the
spin-orbit coupling is actually small in cuprate and iron-based
SCs.

Next, we consider spin-triplet-dominant SCs. In this case,
we simply obtain

�E 
 μBH
d0

α
, (22)

with d0 being a typical magnitude of the spin-triplet order
parameter. The induced gap is large in materials with a
small ASOC and a high transition temperature. Note that
Eq. (22) is EF/α times as large as Eq. (21), when we assume
ψ0 = d0. Therefore, spin-triplet-dominant SCs may acquire
a large excitation gap. The interface of Sr2RuO4 may be
such an example because a small ASOC is obtained from
the first-principles band structure calculation [62].

C. Excitation spectrum around zeros of the g vector

In this section, exceptional cases are discussed. We inves-
tigate the time-reversal-invariant SCs which show gap nodes

at zeros of the g vector. The formula for the energy spectrum,
Eqs. (10) and (12), is not justified in this case. Although the FS
of 2D materials hardly crosses zeros of the g vector, following
results are useful for the analysis of 3D Weyl SCs.

Energy spectrum on zeros of the g vector is given by

E = ±
√

ξ 2 + |ψ |2 + |d|2 ± |ψ∗d + ψd∗ + id∗ × d| (23)

= ±
√

ξ 2 + (|ψ | ± |d|)2 (ψ ∈ R and d ∈ R3), (24)

in the absence of magnetic field. Therefore, we have gap nodes
right on zeros of the g vector only when FS is right on the k
points where

g = 0, (25)

|ψ | − |d| = 0 (26)

are satisfied. These conditions (25) and (26) are hardly satisfied
at the same time, without any symmetry requirements. Thus,
only the case which we have to consider is a situation where
FS crosses “symmetry-protected zeros” (SPZs) defined by

g(kSPZ) = ψ(kSPZ) = d(kSPZ) = 0. (27)

Actually, the order parameter of non-s-wave SCs may vanish
at symmetric points of BZ owing to the symmetry, and
the g vector may also disappear there. For instance, the
D + p-wave superconductivity in the 2D Rashba systems (see
Sec. IV A) shows the SPZs at k = (0,0) and (π,π ).

It is true that the g vector may have zeros which are not
protected by symmetry. For instance, the zeros appear as a
result of the nontrivial topological defects in the g vector
[47,57]. However, no symmetry protects |ψ | − |d| = 0 there,
and gap node does not appear in most cases.

The energy spectrum of Bogoliubov quasiparticles around
the SPZ is calculated by analyzing the “high-magnetic-field
region”

|ψ(k)| � μBH, (28)

d(k) � μBH, (29)

αg(k) � μBH. (30)

Carrying out a similar calculation to Sec. II B, we obtain the
energy spectrum (see Appendix B for the derivation)

E+ = −g · Ĥ ±
√

(ξ + μBH )2 + (d · ĝ⊥ × Ĥ )2 + (d · ĝ⊥ + ψg⊥/μBH )2, (31)

E− = g · Ĥ ±
√

(ξ − μBH )2 + (d · ĝ⊥ × Ĥ )2 + (d · ĝ⊥ − ψg⊥/μBH )2. (32)

When the direction of Zeeman field is adjusted so that g(k) · H = 0, the conditions for excitation nodes are given by

ξ (k) ± μBH = 0, (33)

d(k) · ĝ(k) × Ĥ = 0, (34)

d(k) · ĝ(k) ± ψ(k)g(k)/μBH = 0. (35)
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A system of Eqs. (34) and (35) has a unique solu-
tion, k = kSPZ, unless the two equations have an acciden-
tal solution. Therefore, we obtain nodal excitations only
when

ξ (kSPZ) ± μBH = 0. (36)

Otherwise, the excitation is gapful. Interestingly, the high-
field phase defined by μBH > |ξ (kSPZ)| is topologically
distinct from the low-field phase where μBH < |ξ (kSPZ)|.
For instance, Eq. (36) determines the phase boundary of the
ν = 6 phase in Fig. 2(c). Note that the Chern number in the
high-field phase is beyond the applicability of the formula
given in Sec. III.

Summarizing, we stress that the excitation gap is generated
in nodal superconducting states by the paramagnetic effect,
even when the gap nodes coincide with the zeros of the g

vector. However, the gap is closed at the topological phase
boundary determined by Eq. (36).

D. Criterion for gap opening and application
to 3D nodal SCs

On the basis of the results obtained in this section, we give a
practical criterion for the gap opening. Nodal parity-mixed SCs
acquire an excitation gap unless the FS crosses the momentum
where

(1) ψ ± d · ĝ = μBĤ · ĝ × d = 0 or
(2) |ψ | − |d| = g = 0.
Here, we assumed ψ ∈ R, d ∈ R3, and g(k) · H = 0. Note

that the first condition includes not only the zeros of the chiral
gap function �±(k), but also Eq. (36) for SPZs in the limit
μBH → 0. Therefore, we only have to care about the first
condition. The second condition is hardly satisfied because it
requires an accidental situation.

Now, we conclude that 2D nodal SCs are very likely
to be gapped by the paramagnetic effect, contrary to naive
expectations. Three equations E± = ψ ± d · ĝ = μB H · ĝ ×
d = 0 are hardly satisfied for two variables (kx,ky). Therefore,
the gapped excitation is robust unless the FS accidentally
crosses the special momentum on the 2D BZ.

Similarly, 3D SCs are also likely to become gapful SCs
when the FS is a quasi-2D cylinder. On the other hand, 3D
SCs with a closed FS may have point nodes in general. The
point nodes are determined by the solution of the above three
equations for (kx,ky,kz). This is intuitively understood by
considering a 2D slice of the 3D BZ at a certain kz, that is,
an effective 2D model parametrized by kz. The effective 2D
model is gapful at most kz. However, the FS may cross the
gapless momentum at some kz ∈ (−π, π ]. For this reason, 3D
line-nodal SCs are likely to become point-nodal SCs under the
magnetic field, although there may be a few exceptional cases.
We will show that such point-nodal 3D SCs are classified into
the Weyl SCs.

The gap-opening mechanism clarified in this section is
applicable to the nodal parity-mixed SCs without orbital
degrees of freedom, regardless of the dimension and the sym-
metry of systems. An extension toward multiorbital systems
is straightforward, and the above results may be valid as long
as the band splitting is larger than the spin-orbit coupling,
Zeeman field, and superconducting gap.

The criteria 1 and 2 are derived on the basis of an
implicit assumption that the gap does not close in the
intermediate region between αg  μBH‖, ψ , d and αg = 0.
This assumption is confirmed to be valid in the models we
discuss in Sec. IV. Thus, it is expected that the criteria are valid
in general. Anyway, we can ignore exceptional cases in most
2D SCs, where the relations (13), (14), and (15) are satisfied on
the FS.

In closing this section, we comment on the Zeeman field
with H · g(k) �= 0. Then, quasiparticle excitation may be
gapless owing to the paramagnetic term μB H · ĝ [see Eqs. (10)
and (12)], even when above criteria 1 and 2 are satisfied. The
paramagnetic term shifts the energy of E± bands, and thus, the
band gap between the hole band and the electron band is not
suppressed in each sector E+ and E−. Therefore, we may have
a band gap even in the gapless SCs. Later, we briefly comment
on this case.

III. PARAMAGNETICALLY INDUCED TSCS:
GENERAL RESULTS

A. Chern number

As shown in the previous section, most of parity-mixed
nodal SCs may have an excitation gap under the Zeeman field.
Such paramagnetically induced gapful SCs are candidates
of strong TSCs, characterized by topological invariants in
the so-called topological periodic table [13,26,38,39]. The
BdG Hamiltonian HBdG preserves the particle-hole symmetry,
while breaks the time-reversal symmetry. Thus, the BdG
Hamiltonian belongs to the symmetry class D, which can
be topologically nontrivial in zero, one, and two dimensions
[13,26,38,39]. Since 0D and 1D nodal SCs are thermodynam-
ically unstable, we focus on the topological superconductivity
in two dimensions which is specified by the Chern number.
For 3D SCs, we can not define the topological invariant based
on the topological periodic table. However, the topological
properties of 3D systems are often characterized by effective
2D models cut from the 3D BZ. For instance, Weyl SCs
have been identified by the Chern number of 2D models
[12,63,64]. Because various 2D point-nodal SCs and 3D line-
nodal SCs have been realized in strongly correlated electron
systems, the gap-opening mechanism discussed above may
produce various TSCs as a result of their originally nodal gap
structure.

In this section, we show the analytic expression of the
Chern number in 2D paramagnetically induced gapful SCs.
The assumption g(k) · H = 0 does not need to be satisfied, as
long as the excitation is gapful. We begin with the definition
of the Chern number [65]

ν ≡
∑

i,j ; n∈P

1

2πi

∫
k∈[2D BZ]

d2k(iσy)ij ∂ki
〈un(k)|∂kj

|un(k)〉 ,

(37)

where |un(k)〉 is a quasiparticle wave function of the nth energy
band, and P is the set of occupied bands:

P ≡ {n | En(k) < 0 (k ∈ [2D BZ])}. (38)
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As shown in Appendixes C, D, and E, we obtain the Chern number of the BdG Hamiltonian:

ν =
∑

(±, k0)

1

4

{
sgn

[ [
ψ ± d · ĝ](k0 + εk̂‖)

μB H · ĝ(k0) × d(k0)/α

]
− sgn

[ [
ψ ± d · ĝ

]
(k0 − εk̂‖)

μB H · ĝ(k0) × d(k0)/α

]}
ε→+0

, (39)

where k̂‖ shows a direction along the FS of the E± bands. The
definition of k̂‖ is given by

k̂‖ ≡ ẑ × ∇kE±(k)

|ẑ × ∇kE±(k)| . (40)

The summation is taken over all the gap nodes k0 on the E±
FSs in the absence of magnetic field, defined by

E±(k0) = ψ(k0) ± d(k0) · ĝ(k0) = 0. (41)

For the clarity we decompose the Chern number as ν = ν+ +
ν−, where ν± is given by the partial summation of Eq. (39)
over the nodes on the E± FS.

B. Reduced formulas for the Chern number

We recast Eq. (39) for usual linear nodes where ∂(ψ ± d ·
ĝ)/∂k‖ �= 0:

ν =
∑

(±, k0)

1

2
sgn

[
∂(ψ ± d · ĝ)/∂k‖
μB H · ĝ × d/α

]
k=k0

(42)

=
∑

(±, k0)

1

2
sgn

[
(ẑ × ∇kE±) · ∇k(ψ ± d · ĝ)

μB H · ĝ × d/α

]
k=k0

. (43)

This formula holds in most paramagnetically induced gapful
TSCs. Since the number of linear nodes must be even, Eq. (43)
is quantized to be integer.

Equation (43) is furthermore simplified by analyzing the
symmetry of nodes. Nodal SCs often have several crys-
tallographically equivalent gap nodes. Then, it is proved
that those nodes give the same contribution to the Chern
number, when the order parameter belongs to a certain 1D
irreducible representation of the point group and the Zeeman
field is perpendicular to the system. Table I summarizes the
transformation rule under the 2D point-group operation. It
turns out that the summand in Eq. (43) is invariant under all the
symmetry operations. Thus, contributions to the Chern number
from the symmetrically equivalent nodes are additive. This fact
enables us to simplify the calculation of the Chern number.
We divide the 2D BZ into crystallographically equivalent

TABLE I. Transformation properties under symmetry operations
in 2D systems. Supposing the superconductivity in a 1D irreducible
representation, we denote point-group indices of ψ ± d · ĝ by ωi .
It is shown that the summand of Eq. (43) belongs to the identity
representation in the magnetic field H = Hẑ. Note that C[abc]

n

represents an n-fold rotation around the [abc] axis.

Symmetry (if it is preserved)

Functions C[001]
n C

[ab0]
2 σv σd σh Sn

ψ ± d · ĝ ω1 ω2 ω3 ω4 ω5 ω6

(ẑ × ∇kE±) · ∇k 1 −1 −1 −1 1 1
μB H · ĝ × d ω1 −ω2 −ω3 −ω4 ω5 ω6

Summand in Eq. (43) 1 1 1 1 1 1

sectors, and we count the contribution from the nodes in
one of the sectors. Then, the Chern number is obtained
just by multiplying the number of sectors. In particular, we
immediately conclude that the Chern number is nontrivial,
when we have an odd number of nodes in a sector.

Generally speaking, superconductivity may not belong to
a 1D irreducible representation, or magnetic field may be
applied out of the vertical direction. In such a situation,
the symmetry of the system essentially reduces from that in
the normal state, and contribution from crystallographically
equivalent gap nodes are sometimes additive and sometimes
canceled out. However, we can estimate the contributions from
symmetry-related nodes by the following formula:

νszρ̂ H (ρ̂2k2) = νH (k2), (44)

where νH (k2) is the contribution to the Chern number from
a node at k2 = (k2x, k2y)T under magnetic field H , and the
symmetry operation ρ maps vectors of the system as

(x, y, z)T
ρ�−→ ρ̂(x, y, z)T , (45)

ρ̂ ≡
(

ρ̂2 0
0 sz

)
, ρ̂2ρ̂

T
2 = 12×2, sz = ±1 (46)

[see Appendix F for details and derivations of Eq. (44)]. In
situations where magnetic field is applied in some symmetry
axis, szρ̂ H = H may be satisfied. Then, we obtain

νH (ρ̂2k2) = νH (k2), (47)

as the relation between a node k2 and another symmetry-
related node ρ̂2k2. Contributions from crystallographically
equivalent nodes are additive in this case.

The formula for the Chern number is furthermore reduced
when the parity mixing in the order parameter is weak. Then,
we replace ψ ± d · ĝ in the numerator of Eq. (43) by the
dominant order parameter, that is, ψ for spin-singlet-dominant
SCs, while ±d · ĝ for spin-triplet-dominant SCs. In reality, the
magnitude of the admixed order parameter is small. The ratio
ψ0/d0 or d0/ψ0 is typically less than 0.3 [66]. Therefore, the
reduced formula holds in most cases. With the use of the
reduced formula, we evaluate the contributions from the E±
bands, and clarify the relation between ν+ and ν−.

Focusing on a system under vertical Zeeman field, we
discuss spin-singlet-dominant SCs and spin-triplet-dominant
SCs in Secs. III B 1 and III B 2, respectively. The following
results also hold for general magnetic-field directions, as long
as the contributions of symmetry-related nodes are additive.

1. Chern number in spin-singlet-dominant SCs

For spin-singlet-dominant SCs, we obtain the reduced
formula

ν =
∑

(±, k0)

1

2
sgn

[
(ẑ × ∇kE±) · ∇kψ

μB H · ĝ × d/α

]
k=k0

, (48)

with E±(k0) = ψ(k0) = 0. In many cases including the
examples we show in Sec. IV, all of the nodes on a E± FS
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are crystallographically equivalent. Then, the Chern number
is obtained by a simple formula

ν = s+N+ + s−N−
2

, (49)

where s± is sgn [. . .] in Eq. (48) for nodes on the E± FS,
and N± is the number of nodes on each FS. In “usual cases,”
s+ = s− and N+ = N− are naturally satisfied. The “usual case”
is specified by the following condition: The dispersion relation
of the E+ band may be deformed to that of the E− band in an
adiabatic way, that is, without closing the gap. Then, the spin-
split bands give the same contribution to the Chern number,
and we have s+N+ = s−N−. The adiabatic deformation is not
allowed in the presence of zeros of the chiral gap function
�±(k) between the E+ and E− FSs since an intersection of
the zeros and FSs closes the gap [Eq. (16)]. However, this is a
rare event when the ASOC is smaller than the Fermi energy.
Therefore, we obtain a nontrivial Chern number

ν = s+N+ �= 0 (50)

in most of paramagnetically induced gapful SCs. Now it is
concluded that the paramagnetic effect changes the dominantly
spin-singlet nodal SCs to the gapful TSC in the D class. This
is one of the most important results of this paper.

2. Chern number in spin-triplet-dominant SCs

The same procedure leads to a reduced formula for spin-
triplet-dominant SCs:

ν =
∑

(±, k0)

±1

2
sgn

[
(ẑ × ∇kE±) · ∇k d · ĝ

μB H · ĝ × d/α

]
k=k0

, (51)

with E±(k0) = d(k0) · ĝ(k0) = 0. When all the nodes are
symmetry related, a simple formula

ν = s+N+ − s−N−
2

(52)

is obtained. In contrast to the spin-singlet-dominant SCs, we
obtain a trivial Chern number

ν = 0 (53)

in usual cases where s+ = s− and N+ = N−. Contributions to
the Chern number are canceled out between spin-split bands.
Therefore, spin-triplet SCs are disadvantageous in creating
paramagnetically induced gapful TSCs, although it is possible
to induce topological superconductivity by fine tuning of the
parameters such as the chemical potential. This result is in
sharp contrast to the fact that the spin-triplet SCs are candidates
of the time-reversal-invariant TSC [19].

C. Applicability of the formula (39)

The formula (39) is derived for nodes far from zeros of
the g vector in Appendixes C and D. However, topological
invariance of the Chern number ensures that Eq. (39) is reliable
as long as excitations are gapful (see Appendix E). Therefore,
Eq. (39) is applicable to the FS near zeros of the g vector.

On the other hand, we showed in Sec. II C that a large
Pauli-pair-breaking effect may close the gap at zeros of the g

vector. The critical magnetic field Hc at which the excitation
is gapless at SPZs is given by Eq. (36). In the magnetic field

larger than Hc, the superconducting state is again gapful, but
the formula (39) is no longer applicable. In Sec. IV B, we
show that the Chern number in the high-field phase is different
from the low-field phase specified by Eq. (39). This means
that a topological transition occurs at the critical magnetic
field Hc.

In most 2D systems, the critical magnetic field given by
Eq. (36) is unrealistically high. The topological superconduct-
ing phase beyond the description in Eq. (39) appears only
when the chemical potential is fine tuned within the order of
Zeeman field O(μBH ). Indeed, the ν = 6 phase appears in a
tiny region of the topological phase diagram for the extended
S + p-wave SC (see Fig. 2 in Sec. IV B). Thus, the formula
(39) is applicable to almost all the topological phases in the
low-magnetic-field region.

Finally, we briefly comment on the gapless superconducting
state by the paramagnetic term ∓μB H · g(k) in Eqs. (10) and
(12). Then, the Chern number in Eq. (37) is ill defined because
of the gapless excitation. However, the band gap between the
hole band and electron band in each sector E± is robust as
mentioned in Sec. II D. Therefore, we can define the band
Chern number even in the gapless region. Elsewhere we will
show a signature of the nontrivial band Chern number in the
gapless superconducting state [67].

D. Relationship between Chern number and
winding number of nodes

Nodes in time-reversal-symmetric SCs are sometimes
protected by the winding number defined by [33,35]

W (k0) ≡ Im
∮

C(k0)

dk
2π

· ∇k ln det q(k), (54)

where C(k0) is a sufficiently small loop running anticlockwise
around the node k0, and q(k) is the Hamiltonian in the chiral
basis

UcHBdG(k)U †
c =

(
0 q(k)

q(k)† 0

)
, (55)

UcU †
c =

(
12×2 0

0 −12×2

)
,  ≡

(
0 σy

σy 0

)
. (56)

 is the chiral operator obtained by combining the time-
reversal symmetry with the particle-hole symmetry, satisfying
the chiral symmetry {,HBdG(k)} = 0. In this section, we
clarify the relationship between the winding number of a node
in the presence of time-reversal symmetry and contribution
from the node to the Chern number in the absence of time-
reversal symmetry.

First, let us consider the following Dirac model:

HDirac(k) ≡ akxσx + bkyσy + mσz. (57)

When m = 0 and time-reversal symmetry is respected, there
is a Dirac point protected by the chiral symmetry Dirac ≡ σz.
(Although definition of Dirac has an ambiguity of sign, positive
sign adopted here ensures that Dirac corresponds to  of HBdG

in the next paragraph.) The winding number defined by Dirac
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is given by

W = −sgn [ab]. (58)

When m �= 0 and time-reversal symmetry is broken, the
massive Dirac model is gapful and gives the Chern number

νDirac = − 1
2 sgn [abm] = 1

2W sgn [m]. (59)

Thus, we can obtain the winding number of the node by

W = 2νDiracsgn [m]. (60)

Now we turn to our model for SCs Eq. (1) in the presence
of Zeeman field. Note that we can adiabatically decompose
Eq. (1) around a node into two subsectors: one is reduced
to a massive Dirac model, while the other is gapful even
in the absence of Zeeman field, and therefore irrelevant of
topological properties (see Appendixes C, D, and E). In
fact, the Chern number (39) is obtained by the sum of the
contribution from massive Dirac systems. In other words, each
node is regarded as a Dirac system (57) and, thus, the winding
number of the node is given by Eq. (60):

W±(k0) = −sgn [∂(ψ ± d · ĝ)/∂k‖]k0 (61)

= −sgn [(ẑ × ∇kE±) · ∇k(ψ ± d · ĝ)]k0
, (62)

where we assumed usual linear nodes. [We can also derive
Eq. (61) by directly evaluating the definition Eq. (54) in the
weak-coupling limit.] We can easily evaluate the winding
number of nodes by the formula (61), estimating the sign
change of order parameter along the FS. Clearly, it has nonzero
values ±1, and therefore, linear nodes in noncentrosymmetric
SCs are topologically protected by time-reversal symmetry.
When we consider centrosymmetric limit, a pair of nodes
is combined to give the winding number W+(k0) + W−(k0),
which is nonzero for spin-singlet SCs and zero for spin-triplet
SCs. This is consistent with the fact that, for example, nodes
in polar p-wave superconducting state are unstable [44].

Winding number of nodes Eq. (62) does not belong to the
identity representation of 2D point group. However, the Dirac
mass belongs to the same representation, and the contribution
to the Chern number, which is the product of winding number
and the Dirac mass, belongs to the identity representation (see
Table I).

IV. PARAMAGNETICALLY INDUCED TSCs: EXAMPLES

In this section, we show several examples of paramagneti-
cally induced gapful TSCs in two dimensions and Weyl SCs
in three dimensions. We demonstrate the gap opening and
nontrivial Chern number in accordance with the formula (39).
It is verified that extremely wide range of parity-mixed nodal
SCs acquire an excitation gap and become TSCs regardless of
symmetry of the superconductivity. The following examples
include D + p-wave SCs, extended S + p-wave SCs, p +
D + f -wave SCs, and s + P -wave SCs.

A. D + p-wave TSC

First, we analyze 2D D + p-wave SCs (B1 irreducible
representation of C4v point group), which have been realized
in superconducting cuprate thin films and heavy-fermion
superconductor CeCoIn5 heterostructures [48–54,60,61]. As

we discussed in Sec II, these atomically thin films are
good candidates realizing Majorana edge states because a
large excitation gap is induced [see Eq. (21)]. Because the
inversion symmetry is broken by the interfacial potential, the
p-wave order parameter as well as the Rashba ASOC are
induced.

The system is described by the BdG Hamiltonian [Eq. (1)]
with ξ (k) = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky − μ,
g(k) = (− sin ky, sin kx,0)T , μB H = μBHẑ, ψ(k) =
ψ0(cos kx − cos ky), and d(k) = d0(sin ky, sin kx,0)T [12]. In
the following part, we adopt above ξ (k), g(k), and μB H ,
unless mentioned otherwise. In the absence of the magnetic
field, the superconducting state has eight excitation nodes
along diagonal directions kx = ±ky on FSs split by the
ASOC. The Bogoliubov quasiparticles around the nodes show
a linear dispersion [Fig. 1(a)] and, thus, regarded as Dirac
quasiparticles.

Equations (10) and (12) give the energy spectrum under the
magnetic field around the eight nodes. At the nodal momentum
k0, the chiral gap function remains finite to give the energy
gap

|μBHẑ · ĝ × d/αg|k=k0 = μBH
d0

α
. (63)

Owing to the induced energy gap, Bogoliubov quasiparticles
are regarded as a massive Dirac system [Fig. 1(b)]. The Chern
number is well defined, and takes a nontrivial value ν = −4
over a wide parameter regime except for the low-carrier-
density region, as numerically shown before [12]. (Note that
definition of the sign of the Chern number is different from
Ref. [12].)

Looking at Fig. 1(d), we simply understand the Chern
number ν = −4 on the basis of the formula (39). Solid (red)
lines show the FSs of the E+ band (left panel) and the E−
band (right panel), while dashed (blue) lines show zeros of
ψ ± d · ĝ. Four intersections in each panel are the nodal
points at zero magnetic field. All of the four nodes on each
FS are crystallographically equivalent as they are transformed
by the fourfold rotation. Therefore, the contribution to the
Chern number is additive, and ν± must be either 2 or −2.
Furthermore, the E+ FS can be adiabatically deformed to the
E− FS without passing the zeros of the chiral gap function
�±(k), where μB H · g × d = ψ ± d · ĝ = 0 (see Sec. II D).
Hence, we immediately conclude from Eq. (50) that the Chern
number is nontrivial and is either 4 or −4. Estimating the
sign, we obtain ν = −4 for our choice of parameters. In
accordance with the bulk-edge correspondence, four chiral
Majorana edge modes appear on the edge, as we show in
Fig. 1(c). We stress that the Majorana edge modes appear
irrespective of direction of the edge. Indeed, Fig. 1(c) shows the
edge modes at the (100) edge, although the Majorana flat band
protected by the time-reversal symmetry does not appear there
at H = 0.

In Fig. 1(d), we see zeros of the chiral gap function �±(k)
only around k = (0,0) and (π,π ). As summarized in Sec. II D,
excitation is gapful as long as FSs do not cross such zeros.
Therefore, we obtain the nontrivial Chern number ν = −4 as
long as the FSs are far from those momentum, regardless of
the topology of FSs. Indeed, the Chern number ν = −4 is
numerically obtained in a large parameter space [12]. This
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FIG. 1. (a), (b) Bulk energy spectrum around E 
 0. The energy band En(k) is calculated by numerically diagonalizing the BdG Hamiltonian
HBdG(k). We take t = 1, t ′ = 0.2, α = 0.3, μ = −0.7, ψ0 = 0.4, and d0/ψ0 = 0.2. (a) μBH = 0 and (b) μBH = ψ0/5. (c) Edge-state spectrum
for the parameters in (b). Edge states localized at a (010) edge are highlighted by the red lines, while edge states on the opposite edge are shown
by the green lines. (d), (e) Illustrations for counting the Chern number of D + p-wave TSCs: zeros of E± (solid red line), ψ ± d · ĝ (dashed
blue line), and μB H · g × d (dotted black line) are shown. In the shaded region (ψ ± d · ĝ)μB H · g × d > 0. The left panels in (d) and (e)
are illustrated for the estimation of ν+, while the right panels for ν−. We assume (d) μ = −0.7 and (e) μ = −3.1. The other parameters are the
same as Fig. 1(b).

means that the topological superconducting phase is robust
against small renormalization of the band structure E± and
the order parameters ψ and d.

Before closing the section, we briefly discuss the trivial
phases in the low carrier-density region [12], which can also be
explained by using the formula (39). Figure 1(e) is illustrated
for this case (μ = −3.1). Both E+ FS and E− FS have
four nodes, but their contributions to the Chern number are
canceled out. Thus, we obtain ν± = ±2 and ν = 0. This is
the situation which we mentioned about spin-triplet-dominant
SCs in Sec. III B 2. The right panel of Fig. 1(e) shows that the
E− FS can be adiabatically deformed into the E+ FS. Then,
the p-wave order parameter is larger than the d-wave order
parameter on the whole FS because the p-wave component
is first order in |k| while the d-wave one is second order.
The former is larger than the latter near k = (0,0) and (π,π )
although ψ0 > d0. Thus, in the low carrier-density region, the
superconducting state is adiabatically deformed to the spin-
triplet superconducting state. Indeed, the sign of ψ ± d · ĝ is
opposite between the E± bands.

The superconducting state in the B1 representation of C4v

point-group symmetry may also be realized on the interface
of Sr2RuO4 [68]. It has been theoretically proposed that the
antiferromagnetic spin fluctuation [55] and/or multiorbital
effect [56] stabilizes the B1 state instead of the Eu state in
the bulk [20]. Then, the spin-triplet component is dominant in
contrast to the cases studied above. The spin-triplet-dominant

(d + P )-wave SC is topologically trivial as we discussed in
Sec. III B 2.

B. Extended S + p-wave TSC

Second, we show another example of the spin-singlet-
dominant TSC. We consider an extended s-wave order pa-
rameter admixed with p-wave one:

ψ(k) = ψ0(δ1 + cos kx + cos ky), (64)

d(k) = d0(− sin 2ky, sin 2kx)T . (65)

Here, we assume δ1 = 0, and later we show the results
for a finite δ1. A candidate material for the 2D extended
s-wave SC includes iron-based superconducting thin films
FeSe/SrTiO3 [70]. We also discuss 3D Weyl superconductivity
in noncentrosymmetric heavy-fermion SCs, CeRhSi3 [71] and
CeIrSi3 [72], by analyzing a certain 2D slice of the 3D BZ.

We estimate the Chern number by using the formula
(39). Figure 2(a) illustrates FSs and zeros of ψ ± d · ĝ and
μB H · g × d for μ = −0.7. We see 16 nodes on the E+ FS
[left panel of Fig. 2(a)]. Because of the fourfold rotational
symmetry and the mirror symmetry with respect to the yz

plane, eight nodes are related with each other by symmetry.
However, the crystallographically nonequivalent nodes give
an opposite contribution to the Chern number and, therefore,
the Chern number of the E+ band vanishes, ν+ = 0. On the
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FIG. 2. (a) Illustrations for counting the Chern number of extended S + p-wave TSCs: zeros of E± (solid red line), ψ ± d · ĝ (dashed blue
line), and μB H · g × d (dotted black line) are shown. In the shaded region, (ψ ± d · ĝ)μB H · g × d > 0. The left panel is illustrated for the
estimation of ν+, while the right panel for ν−. We take t = 1, t ′ = 0.2, α = 0.3, μ = −0.7, ψ0 = 0.05, d0/ψ0 = 0.2, and δ1 = 0. (b) Edge-state
spectrum. Edge states localized at a (010) edge are highlighted by the red lines, while edge states on the opposite edge are shown by the green
lines. We assume ψ0 = 0.4 and μBH = ψ0/5. Other parameters are the same as Fig. 2(a). (c), (d) Chern number of the extended S + p-wave
state. In (c) the parameters are the same as Fig. 2(a), while δ1 = −0.1 in (d). The Chern number is numerically calculated by using the method
developed by Ref. [69]. The black region is trivial, while ν = 4 in the red region and ν = 8 in the yellow region. The white region with ν = 6
is an exceptional case where Eq. (39) is not valid.

other hand, eight nodes on the E− FS are crystallographically
equivalent [right panel of Fig. 2(a)], and each node gives
the Chern number + 1

2 . Thus, we obtain the nontrivial Chern
number ν = ν− = 4.

As indicated by the bulk-edge correspondence, the chiral
edge modes appear on the edge. Figure 2(b) shows eight chiral
edge modes localized at a (010) edge (highlighted by the red
color). The velocity of six modes is positive while that of other
two modes is negative, which is consistent with the Chern
number ν = −4, as illustrated in Fig. 3. The edge modes
obtained in Fig. 2(b) may be adiabatically changed to four
edge modes with positive velocity.

The Chern number numerically obtained for other parame-
ters is also consistent with Eq. (39). We show the topological
phase diagram as a function of the chemical potential and
Zeeman field in Fig. 2(c). When μ � −0.85 or μ � 0.42, the

FIG. 3. Schematic picture for adiabatic change of chiral edge
states in Fig. 2(b). Edge modes around kx = π are topologically
equivalent to two positive velocity modes. Taking other two edge
states around kx = 0 into account, edge modes in Fig. 2(b) are
equivalent to four net chiral edge states with positive velocity, in
accordance with bulk-edge correspondence.

superconducting state is gapful even at zero magnetic field and,
therefore, the superconducting state is trivial. Otherwise, the
extended S + p-wave state is gapless at zero magnetic field.
Figure 2(c) shows that the topological superconducting state
is induced by the paramagnetic effect in a large range within
the interval −0.85 � μ � 0.42.

We here point out an exceptional case in which Eq. (39)
is not valid. A finite range of the ν = 6 phase appears in
the vicinity of μ = −0.8 in the topological phase diagram
[Fig. 2(c)]. If we use Eq. (39), we obtain ν = 4, which looks
inconsistent with the numerical result. This is because the FS
for μ = −0.8 crosses zeros of the g vector at k = (0, ± π )
and (±π,0). For our choice of δ1 = 0,

ψ(±π,0) = ψ(0, ± π ) = 0, (66)

d(±π,0) = d(0, ± π ) = 0, (67)

and, therefore, the order parameter disappears there. Thus,
the situation is similar to the case discussed in Sec. II C.
The excitation is gapful unless Eq. (36) is satisfied. When
the Zeeman field is increased for the chemical potential in the
vicinity of μ = −0.8, the excitation gap is once closed at the
critical field. Since Eq. (39) is obtained in the low-field limit,
it is not justified in the high-field ν = 6 phase.

It should be noticed that Eq. (67) is accidentally satisfied
owing to our choice of δ1 = 0: (0, ± π ) and (±π,0) are not
SPZs. Actually, δ1 can be finite, allowed by the symmetry
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of A1 representation. In such a case, we can use Eq. (39)
for all μ as long as μBH < O(|ψ0δ1|). Figure 2(d) shows the
topological phase diagram for δ1 = −0.1. Indeed, the low-field
ν = 8 phase is continuous around μ = −0.8, although the
high-field ν = 6 phase still appears at μBH > 0.005.

Recently, superconductivity in atomically thin FeSe films
on SrTiO3 substrate has been established [59,70]. The s-wave
symmetry of superconductivity has been identified in iron-
based SCs [73], and the nodal excitation has been observed
in bulk FeSe [74]. Therefore, nodal superconductivity may be
realized in FeSe thin films by tuning heterostructures, although
a nodeless superconducting gap has been observed in highly
electron-doped systems [59]. Thus, a gapful S + p-wave TSC
may be realized in FeSe thin films by applying the magnetic
field.

Now, we turn to the 3D systems and discuss ex-
tended S + p-wave Weyl SCs. For simplicity we here
consider a naturally extended model to 3D systems. We
adopt a 3D dispersion relation ξ (k) = −2t(cos kx + cos ky) +
4t ′ cos kx cos ky − 2tz cos kz − μ with keeping other functions
to be kz independent. Then, the effective chemical potential
in the 2D model parametrized by kz is given by μ(kz) =
μ + 2tz cos kz. When μ(kz) goes through the topological phase
boundary shown in Fig. 2(d), nodal Weyl points appear at kz

where μ(kz) takes critical values. For μ = −0.8, δ1 = −0.1,
tz = 0.1, and μBH < 0.005, we obtain 24 Weyl nodes. The
position of the Weyl nodes is given by the condition E± =
ψ ± d · ĝ = μBĤ · ĝ × d = 0.

In order to clarify realistic Weyl SCs, we examine the model
proposed for extended s-wave superconductivity in CeRhSi3
and CeIrSi3 [66,75]. It has been shown that both CeRhSi3
and CeIrSi3 have quasi-2D FSs split by the Rashba ASOC
[66,76–78]. A theoretical analysis of the noncentrosymmetric
Hubbard model points to the extended s-wave pairing state
with dominant order-parameter component ψ ∼ cos 2kz [75].
We here adopt a 3D dispersion relation

ξ (k) = − 2t(cos kx + cos ky) + 4t ′ cos kx cos ky

− 8t̃ cos
kx

2
cos

ky

2
cos kz − μ, (68)

in accordance with Ref. [75], and additionally take into account
a small in-plane k-dependent term δ2:

ψ(k) = ψ0[cos 2kz + δ2(cos kx + cos ky)], (69)

allowed in the A1 representation.
The kz-dependent Chern number is defined as a topological

invariant of effective 2D models parametrized by kz cut from
the 3D BZ. Figure 4 shows nontrivial values of the Chern
number ν = 4 around kz = ±π/4 and ±3π/4. Otherwise,
effective 2D models are nodeless even in the absence of the
magnetic field and, therefore, the Chern number is trivial. The
jump of the Chern number indicates Weyl nodes, topological
defects in the momentum space specified by the monopole
charge. Counting the jump of the Chern number in Fig. 4, we
conclude that the 3D extended S + p-wave superconducting
state in the magnetic field along the z axis is a Weyl SC with
64 Weyl nodes.

Note that the FS assumed here does not completely
reproduce the experimental data for CeRhSi3 and CeIrSi3

FIG. 4. kz-dependent Chern number ν of the extended S + p-
wave Weyl SC. We take t = 1, t ′ = 0.475, and t̃ = 0.3 in accordance
with Ref. [75]. Chemical potential μ = −0.9 is assumed so that
the charge density is near half-filling. In-plane k dependence of the
spin-singlet order parameter is parametrized by δ2 = 0.3. The other
parameters are α = 0.3, ψ0 = 0.05, and d0/ψ0 = 0.2.

[76,78]. However, the details of the FS do not qualitatively
affect the results obtained above. This is because only 2D
models around kz = ±π/4 and ±3π/4 are important, and there
topologically nontrivial phases appear in a wide parameter
regime, as shown in Figs. 2(c) and 2(d). Thus, it is expected
that CeRhSi3 and CeRhSi3 are Weyl SCs under a magnetic
field in the z direction. For the evaluation of Weyl points,
more sophisticated treatment taking into account the multiband
effect is required.

C. p + D + f -wave TSC

Next, we study the 3D p + D + f -wave SC. The domi-
nantly dxz-wave superconductivity has been discussed for an
antiferromagnetic superconducting state in a noncentrosym-
metric CePt3Si [79]. Then, the p- and f -wave order parameters
are induced by the Rashba ASOC. The order parameters are
described by

ψ(k) = ψ0 sin kx sin kz, (70)

d(k) = d0(−β sin kx sin ky sin kz, sin kz,0)T . (71)

We analyze effective 2D models parametrized by kz as we
carried out in the previous subsection. FSs of a 2D model are
shown in Fig. 5(a). The two nodes at kx = π on the E+ FS
are symmetry related by twofold rotation. Each of them gives
− 1

2 to the Chern number, and hence ν+ = −1. The E− FS
gives the same contribution to the Chern number because the
E+ FS and the E− FS are adiabatically connected with each
other. Thus, we conclude ν = −2. It is easily verified that the
formula (39) reproduces the numerical result of the chemical
potential dependence of the Chern number shown in Fig. 5(b).
We see that the Chern number is nontrivial unless the FS is
close to the Van Hove singularity.

For CePt3Si, the β FS centered at the Z point [k = (0,0,π )]
[80,81] may mainly cause the superconductivity [66,79]. Then,
the kz-dependent Chern number is +2 for most kz crossing the
FS. Weyl nodes appear near the poles of the 3D FS where the
kz-dependent Chern number changes from 2 to 0.

It may be important to point out that the topological
phase transition does not occur by increasing the Zeeman
field μBH , unlike extended S + p-wave TSCs. g(±π,0,kz) =
ψ(±π,0,kz) = 0 holds, but d(±π,0,kz) �= 0 in this case
because k = (±π,0,kz) is not a time-reversal-invariant
momentum for a general kz. Since d ⊥ H holds, the excitation
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FIG. 5. (a) Illustrations for counting the Chern number of
p + D + f -wave SCs. The left panel is for the estimation of ν+ at
kz = 0.3, while the right panel for ν−. We adopt the 2D dispersion
relation in Sec. IV A and take t = 1, t ′ = 0.2, α = 0.3, μ = −0.6,
β = −0.2, ψ = 0.05, and d0/ψ0 = 1

3 . (b) Chern number as a function
of the chemical potential. The black region is trivial, while ν = 2 in
the pink region and ν = −2 in the light-blue region. Other parameters
are the same as Fig. 5(a).

gap around such zeros of the g vector are robust against
Pauli-pair-breaking effect.

Note that the paramagnetic effect does not remove the line
nodes on kz = 0 and π , where ψ = d = 0. Therefore, the 3D
p + D + f -wave SCs have a line node in addition to the Weyl
point nodes under the magnetic field parallel to the z axis. This
gap structure is similar to the chiral d-wave superconducting
state in URu2Si2 [22,23].

D. s + P-wave TSC

Finally, we discuss an example of spin-triplet-dominant
SCs. The s + P -wave SC has been intensively studied after the
discovery of superconductivity in CePt3Si [82]. In particular,
an accidental line node arising from the parity mixing in order
parameter has attracted interest [83,84]. We here investigate
s + P -wave SCs by taking

ψ(k) = ψ0, (72)

d(k) = d0(− sin ky, sin kx)T , (73)

g(k) = (− sin 2ky, sin 2kx)T . (74)

The comparison between theories and experiments for CePt3Si
points to this paring state [66,79]. A higher harmonics in the
g vector is adopted in accordance with a complicated spin
texture on the β FS of CePt3Si [58].

Figure 6(b) demonstrates that spin-triplet-dominant SCs
under the Zeeman field are topologically nontrivial in a tiny
region of the phase diagram, in accordance with the results in
Sec. III B 2. The zeros of the gap function at H = 0, namely,

FIG. 6. (a) Illustrations for counting the Chern number of s + P -
wave TSCs. The left panel is for the estimation of ν+, while the right
panel for ν−. We take t = 1, t ′ = 0.2, α = 0.3, d0 = 0.05, ψ0/d0 =
0.5, and μ = −3.315. (b) Chern number of the paramagnetically
induced gapful s + P -wave SC. The Chern number is trivial in large
black regions, while we obtain ν = 4 in tiny red regions. Other
parameters are the same as (a).

ψ ± d · ĝ = 0, are drawn with dashed lines in Fig. 6(a), which
include the accidental zeros induced by the parity mixing
[83,84]. The gap nodes look rather different between the left
panel and the right panel because we assume a large parity
mixing by ψ/d0 = 0.5 for visibility. However, at H �= 0 we
can perform an adiabatic deformation of the gap function from
ψ ± d · ĝ to ±d · ĝ in most cases. Therefore, the discussion
in Sec. III B 2 is applicable, and the Chern number is trivial in
the wide range of the chemical potential.

We illustrate the FSs for μ = −3.315 in Fig. 6 for the
purpose of clarifying the nontrivial Chern number ν = 4. For
this parameter, the E+ FS disappears and, therefore, ν+ = 0.
On the other hand, E− band has an electronlike FS and a
holelike FS, and the gap nodes appear only on the electronlike
FS. Because all of the eight nodes are crystallographically
equivalent by the fourfold rotation and the mirror reflection, the
Chern number of the nodes is additive. Indeed, we obtain ν =
ν− = 4. Note that the nodes on the electronlike FS originate
from the parity mixing in order parameter and disappear in the
absence of the ASOC.

When a closed 3D FS crosses the gap nodes discussed
above, nodal lines appear in the superconducting gap at
H = 0. It has been proposed that such line nodes result in
the nodal behaviors in CePt3Si [83,84]. In the presence of
the Zeeman field, the line nodes are partially gapped and
change to the point nodes. At the point nodes, the effective
kz-dependent chemical potential μ(kz) is on the topological
phase boundary in Fig. 6(b). This means that the point
nodes have a nontrivial Weyl charge. Thus, CePt3Si may
be a topologically nontrivial Weyl SC under the magnetic
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field, owing to the parity-mixed order parameter which is a
characteristic of noncentrosymmetric SCs.

Within the single-band treatment adopted here, the 3D
s + P -wave SC is classified into the Weyl SC with 16 Weyl
nodes whose positions are determined by the condition

E±(k) = ψ(k) ± d(k) · ĝ(k) = μBĤ · ĝ(k) × d(k) = 0.

(75)

We again stress that once the FS and order parameter are
given, the Chern number is obtained by Eq. (39) without using
numerical calculation.

The ASOC adopted in this section has accidental zeros
of the g vector [Eq. (74)]. For instance, g(k) = 0 at k =
(±π/2, ± π/2). However, the superconducting gap is finite at
these momenta |ψ | − |d| �= 0 and, therefore, any topologically
distinct behavior does not occur around the zeros. The Weyl
nodes do not appear around these accidental zeros of the g

vector.

V. EXPERIMENTAL SETUP

Throughout this paper, we studied topological supercon-
ductivity induced by the paramagnetic effect. When the
magnetic field is applied in order to introduce the Zeeman
field, the orbital effect simultaneously occurs and it is not
negligible in some cases. Therefore, the results obtained in
this paper are valid in the following situations:

(1) Heterostructures of ferromagnet and superconductors.
Magnetic moment may be induced in SCs by the proximity
effect from the ferromagnet. Then, the orbital effect is
negligible. The heterostructures of high-temperature cuprate
SCs and ferromagnetic manganites have been fabricated by
recent experimental developments [85–88]. We here propose
that these heterostructures are promising candidates for the
TSCs.

(2) SCs with a large Maki parameter. In SCs with a large
Maki parameter

√
2H orb

c2 /H P
c2, the density of vortices is small

near the “Pauli limiting field” H P
c2. Note that the “Pauli limiting

field” of noncentrosymmetric SCs is fictitious and defined in
the absence of the ASOC. In reality, the superconducting state
is protected by the ASOC, and the upper critical field may
exceed the “Pauli limiting field” [42,43,76,77]. In this sense,
the cuprate SC thin films [48–54] and the heavy-fermion SC
heterostructures [60,61] discussed in this paper are believed
to have a large Maki parameter [89]. Thus, our theoretical
treatment is appropriate for the superconducting state far from
vortices because the mean intervortex distance is considerably
larger than the coherence length and most of the spatial
region is regarded as bulk superconducting state. Then, the
orbital effect may be taken into account through the Doppler
shift due to the supercurrent, by which many experimental
results are fitted well [90]. Since the Doppler shift just
shifts the energy spectrum of Bogoliubov quasiparticle, the
topological properties are expected to be robust against a weak
orbital effect. Therefore, it is feasible to observe Majorana
quasiparticles under the applied magnetic field.

(3) Superconducting cuprate thin films driven by a high-
frequency laser. Zeeman-type term appears in the effective
Hamiltonian derived from the Floquet theory. Thus, the

topological Floquet superconducting state is induced by the
mechanism proposed in this paper [91].

VI. CONCLUSIONS AND DISCUSSIONS

We outline the results obtained in this paper. We revealed
a gapful topological phase that universally appears in noncen-
trosymmetric nodal SCs in the Zeeman field. The topological
phase is characterized by the Chern number, and hosts chiral
edge states. Since the Chern number is a bulk topological
invariant, the chiral edge states appear regardless of the
direction of the boundary, in contrast to the surface flat-band
edge states in gapless weak TSCs specified by 1D winding
number [33,34]. The mechanism for such paramagnetically
induced gapful TSCs has been clarified by the following two
steps:

(1) First, the d-vector component perpendicular to the g

vector induces an excitation gap through the modification of
the spin texture due to the paramagnetic effect. The perpen-
dicular component is ensured by symmetry in unconventional
SCs which are not classified into the identity representation
of point group. Even when the order parameter belongs to the
identity representation, for instance in the extended s-wave
state, the perpendicular component is generally finite, although
its amplitude may be small. Owing to the paramagnetic
effect, noncentrosymmetric 2D nodal SCs are gapful in most
cases, and 3D line-nodal SCs have a full gap or a point-
nodal gap, depending on the FS and the order parameter of
superconductivity.

(2) Second, the Chern number of 2D gapful supercon-
ducting phases in the D class takes nontrivial values in most
spin-singlet-dominant superconducting states, although it is
trivial in most spin-triplet-dominant states. Thus, spin-singlet-
dominant SCs are advantageous for the design of TSCs, in
sharp contrast to the fact that most of time-reversal-invariant
TSCs are spin-triplet SCs. The spin-singlet-dominant 2D
gapful SCs are strong TSCs, and 3D point-nodal SCs may
be Weyl SCs, which support chiral Majorana quasiparticles on
the edge/surface.

We demonstrated several paramagnetically induced topo-
logical superconducting states. Cuprate thin films and heavy-
fermion SC thin films under the (effective) Zeeman field
are candidates for the 2D topological D + p-wave SCs.
The 2D topological extended S + p-wave state may be
realized in the iron-based superconducting thin films such
as FeSe/SrTiO3. Noncentrosymmetric heavy-fermion SCs,
CeRhSi3 and CeIrSi3, may support 3D extended S + p-
wave Weyl superconducting state. The p + D + f -wave state
and S + p-wave state which have been proposed for the
superconducting state of noncentrosymmetric CePt3Si are also
identified to be Weyl superconducting states.
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APPENDIX A: ENERGY SPECTRUM EQUATIONS (10)
AND (12)

We derive the quasiparticle energy spectrum by using the
perturbation theory in terms of ψ(k)/αg(k), d(k)/αg(k), and
μBH/αg(k). First, we carry out the unitary transformation of
the BdG Hamiltonian HBdG by the unitary matrix:

Uspin ≡
(

exp[−iπĝ(k) · σ/4] 0
0 {exp[iπĝ(k) · σ/4]}∗

)
.

(A1)

By Uspin, the spin coordinates of electrons and holes are
rotated by ∓π/2 around ĝ(k), respectively. The perpendicular
component of the magnetic field H⊥(k) is rotated around
ĝ(k) by π/2, and thus H ′

⊥(k) ≡ R(k)H⊥(k) with R(k) ≡
exp[πĝ(k)/2×] and (ĝ×)ij ≡ εikj ĝk , although the parallel
component H‖(k) remains unchanged. It should be noticed
that the transformed component H ′

⊥(k) is antisymmetric with
respect to the momentum

H ′
⊥(k) = ĝ(k) × H = −H ′

⊥(−k), (A2)

while H⊥(k) = ĝ(k) × [H × ĝ(k)] = H⊥(−k) is symmetric.
It follows from the antisymmetry that H ′

⊥(k) can be incorpo-
rated into the ASOC as

g′(k) ≡ αg(k) − μB H ′
⊥(k). (A3)

Now, the physical meaning of the decomposition (7) is
unraveled. We decompose the BdG Hamiltonian

UspinHBdGU †
spin = H0(k) + H1(k), (A4)

with

H0(k) =
(

ξ (k) + g′(k) · σ 0
0 −ξ (k) + g′(k) · σ T

)
, (A5)

H1(k) =
(−μB H‖(k) · σ �′(k)

�′(k)† μB H‖(k) · σ T

)
. (A6)

The order parameter in the new coordinate is given by

�′(k) = [ψ ′(k) + d ′(k) · σ ]iσy, (A7)

where ψ ′(k) = −iĝ · d, and

d ′(k) = −iψĝ + R(d × ĝ) = −iψĝ + ĝ × (d × ĝ). (A8)

That is, parity-mixed SCs under the magnetic field are
mapped onto the SCs with the ASOC specified by g′(k), the
(time-reversal-symmetry-breaking) gap function �′(k), and
the momentum-dependent Zeeman field H‖(k).

This unitary transformation is useful because the per-
pendicular component H ′

⊥(k) is naturally included in the
unperturbed part H0(k). In other words, the modification of
electronic wave functions by the magnetic field is taken into
account in a nonperturbative way, although its effect appears
in higher-order terms in the perturbation theory for the original
BdG Hamiltonian with respect to μBH/αg(k).

The modified electronic wave functions affect the gap
function, namely, the order parameter in the band basis.
As expected, the gap function ψ ′ ± d ′ · ĝ′ is equivalent
to ψ ± d · ĝ within the global U(1) phase factor, when
H ′

⊥ = 0. However, the perpendicular magnetic field H ′
⊥

changes the gap function through the modification of the g

vector [Eq. (A3)]. For this reason, the gap function may be
nodeless on the FS.

In order to derive the excitation spectrum, H0(k) is diago-
nalized by again rotating the spin space. This is easily done
by a rotational transformation around the axis θ̂ (k) = ĝ′(k) ×
ẑ/|ĝ′(k) × ẑ|. Using θ (k) by which exp[θ(k)×]ĝ′(k) = ẑ, we
write the unitary matrix as

Urot ≡
(

exp(−iθ · σ/2) 0
0 exp(iθ · σ ∗/2)

)
. (A9)

Operating Urot on the unperturbed part of Eq. (A4), we obtain

UrotH0U
†
rot = diag (E′

+,E′
−, − E′

−, − E′
+), (A10)

where E′
± = ξ (k) ± g′(k). The second term of Eq. (A4)

becomes

UrotH1U
†
rot

=
(

−μB H (θ)
‖ (k) · σ (ψ ′ + d ′(θ) · σ )iσy

−iσy(ψ ′∗ + d ′(θ)∗ · σ ) μB H (θ)
‖ (k) · σ T

)
,

(A11)

where the superscript (θ ) denotes vectors rotated by Urot. The
energy spectra near the FS of the E′

+ band are obtained by
projecting the Hamiltonian onto the subspace spanned by
|±E′

+〉. From the reduced Hamiltonian(
E′

+ − μB H (θ)
‖ · ẑ ψ ′ + d ′(θ) · ẑ

(ψ ′ + d ′(θ) · ẑ)∗ −E′
+ − μB H (θ)

‖ · ẑ

)
, (A12)

we obtain the quasiparticle spectrum in Eq. (10) with the use
of

H (θ)
‖ · ẑ = ĝ′ · (H · ĝ)ĝ = (H · ĝ)αg/g′ (A13)

and

d ′(θ) · ẑ = d ′ · ĝ′ = −iψαg/g′ + μB H · ĝ × d/g′. (A14)

Note that higher-order terms with respect to |μB H⊥|/αg are
ignored, and thus αg/g′ → 1. From the subspace spanned
by |±E′

−〉, the energy spectrum near the FS of the E− band
[Eq. (12)] is obtained in the same way.

APPENDIX B: ENERGY SPECTRUM AROUND SPZ

We here derive the energy spectrum of Bogoliubov quasi-
particles around zeros of the g vector. Equations (10) and
(12) obtained in Appendix A are not valid around the zeros.
The ASOC disappears on the high-symmetry momentum, and
such zeros coincide with the zeros of the superconducting gap
in some cases. Then, the symmetry requires g(k) = d(k) =
ψ(k) = 0 at such “symmetry-protected zeros” (SPZs), and the
excitation spectrum is obtained under the conditions described
in Eqs. (28)–(30).

This section is mainly given in order to explain a rare region
in Fig. 2(c), that is, the ν = 6 phase in the extended-S + p-
wave SCs. In this case, Eqs. (28) and (29) are satisfied around
k = (0,π ) and (π,0) which lie near the FS, and Eq. (30) is
accidentally satisfied owing to our choice of the extended-s-
wave order parameter. The following results ensure that the
excitation is gapful even though Eq. (16) is not valid.

054519-14



PARAMAGNETICALLY INDUCED GAPFUL TOPOLOGICAL . . . PHYSICAL REVIEW B 94, 054519 (2016)

We carry out a unitary transformation

Umag ≡
(

exp[−iπn̂(k) · σ/4] 0
0 {exp[iπn̂(k) · σ/4]}∗

)
,

(B1)

n̂(k) ≡ ĝ⊥(k) × Ĥ , (B2)

with g⊥(k) ≡ Ĥ × [g(k) × Ĥ ]. Then, the magnetic field and
the g vector are transformed as

−μB H −→ g̃(k) ≡ μBHĝ⊥(k), (B3)

−αg(k) −→ H̃(k) ≡ α[g(k) · Ĥ ]ĝ⊥(k) − αg⊥(k)Ĥ . (B4)

It is confirmed that g̃(k) is antisymmetric in terms of k, while
H̃(k) is symmetric. Therefore, they are regarded as a ASOC

and a magnetic field in the transformed BdG Hamiltonian,
respectively. Gap functions in the transformed Hamiltonian is
obtained as

ψ̃(k) = −id(k) · ĝ⊥(k) × Ĥ , (B5)

d̃(k) = −iψ(k)ĝ⊥(k) × Ĥ + n̂(k) × [d(k) × n̂(k)]. (B6)

The original Hamiltonian HBdG is mapped to

UmagHBdGU †
mag =

(
H̃2(k) �̃(k)

�̃(k)† −H̃2(−k)T

)
, (B7)

H̃2(k) ≡ ξ (k) + g̃(k) · σ − H̃(k) · σ , (B8)

�̃(k) ≡ [ψ̃(k) + d̃(k) · σ ]iσy, (B9)

for which the perturbation theory adopted in Appendix A is
applicable. Using Eqs. (10) and (12), we obtain the energy
spectrum

E+ = −g · Ĥ ±
√

(ξ + μBH )2 + | − id · ĝ⊥ × Ĥ + d · ĝ⊥ + ψg⊥/μBH |2 (B10)

and

E− = g · Ĥ ±
√

(ξ − μBH )2 + | − id · ĝ⊥ × Ĥ − d · ĝ⊥ + ψg⊥/μBH |2. (B11)

For the order parameters preserving the time-reversal symme-
try, ψ ∈ R and d ∈ R3, Eqs. (B10) and (B11) are reduced
to Eqs. (31) and (32), respectively. In the limit g → 0
and ψ → 0, these formulas reproduce a familiar result E =
±

√
(ξ ± μBH )2 + [Ĥ × (d × Ĥ )]2 for unitary spin-triplet

SCs.
When the direction of magnetic field is chosen so that g(k) ·

H = 0, we obtain the spectrum

E = ±
√

(ξ ± μBH )2 + (d · ĝ × Ĥ )2 + (d · ĝ ± ψg/μBH )2.

(B12)

Thus, the conditions for excitation nodes are given by
Eqs. (33)–(35). Since these conditions are hardly satisfied in
the 2D models, the superconducting gap is generated by the
paramagnetic effect.

APPENDIX C: ADIABATIC DEFORMATION
OF THE BdG HAMILTONIAN

In Appendixes C and D, we derive the formula for the
Chern number, Eq. (39). First, we introduce a setup for the
calculation. We consider nodal time-reversal-invariant SCs and
adopt real order parameters ψ ∈ R and d ∈ R3. We assume
μB H · ĝ(k0) × d(k0) �= 0 so that the excitation gap is induced
at the nodes k0 by the paramagnetic effect (see Appendix A).
Although the calculation is carried out under the condition
αg  ψ,d,μBH , as in Sec. II B, Appendix E shows that the
formula is valid beyond the perturbative region with respect to
ψ/αg, d/αg, and μBH/αg.

The BdG Hamiltonian HBdG is adiabatically deformed
in order to simplify the calculation. The paramagnetically

induced gap �E at the nodal points is proportional to the
Zeeman field μBH . Since the topological invariant does not
change without closing the gap, we can take the limit �E → 0
by decreasing the Zeeman field. The following results are
obtained in the low-field limit H → 0.

In this limit, the Berry curvature takes divergent large
values at k0, where the energy spectrum is nearly degenerate.
Therefore, it is plausible that the dominant contribution to
the Chern number comes from a small region around k0.
Indeed, contribution from other parts of BZ to the Chern
number vanishes because the system apart from nodes remains
essentially time-reversal symmetric and, therefore, chiral
symmetric, in the limit H → +0. Therefore, we can obtain
the Chern number by

ν =
∑

k0

ν(k0), (C1)

where ν(k0) is the “Chern number of the node,” given by

2πiν(k0) ≡
∑

n; En(k)<0

∫
|k−k0|<a

d2k (iσy)ij ∂ki
〈un(k)|∂kj

|un(k)〉 .

(C2)

A cutoff a is introduced so that ν(k0) approximately reaches
to ± 1

2 . As H approaches zero, Berry curvature at k0 becomes
singular. Therefore, we can take sufficiently small cutoff a

so that the domains of integral |k − k0| < a do not overlap.
Strictly speaking, calculation is carried out by taking the limit
a → 0 and H → 0 with a/H → ∞.

The Chern number can be roughly estimated on the
basis of the BdG Hamiltonian in the band representation,
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Eqs. (A10) and (A11). This estimation actually gives the
precise Chern number since it is quantized. However, this pro-
cedure lacks mathematical rigor because the momentum de-
pendence of the unitary matrix UrotUspin gives rise to additional

contributions to the Berry curvature. For the mathematically
rigorous treatment, we again adiabatically deform the BdG
Hamiltonian so as to make the unitary matrix UrotUspin

momentum independent.

The adiabatic deformation is carried out by taking λ = 0 → 1 for

Hλ(k) ≡
(

rλ(k)ξ (k) + αrλ(k)Rλ(k)g(k) · σ − μB H · σ [ψ(k) + Rλ(k)d(k) · σ ]iσy

−iσy[ψ(k)∗ + Rλ(k)d∗(k) · σ ] −rλ(k)ξ (k) + αrλ(k)Rλ(k)g(k) · σ T + μB H · σ T

)
, (C3)

where

Rλ(k)ij ≡
∑

k0

{[1 − χa(|k − k0|)]δij + χa(|k − k0|) exp{λ[ĝ(k) × ĝ(k0)]×}ij } (C4)

= δij + λ
∑

k0

χa(|k − k0|)
(

ĝi(k0)
∂ĝj (k0)

∂k0
− ∂ĝi(k0)

∂k0
ĝj (k0)

)
· (k − k0) + O(a2), (C5)

rλ(k) ≡
∏
k0

{
1 + λ χa(|k − k0|)

(
g(k0)

g(k)
− 1

)}
. (C6)

A smooth function χa(|k − k0|) is unity inside of the domain of integration, i.e., |k − k0| � a, and rapidly reduces to
χa(|k − k0|) = 0 outside of the domain.

While the rotation operator Rλ is the identity matrix outside of the domain, Rλ=1 transforms the g vector ĝ to be momentum
independent inside of the domain

R1(k)ĝ(k) = ĝ(k0) ( |k − k0| < a ). (C7)

We also introduce rλ for rescaling the energy around k0:

ξ (k) → rλ(k)ξ (k),

g(k) → rλ(k)g(k)
(|k − k0| < a ). (C8)

Through the adiabatic process λ = 0 → 1, Hλ(k) smoothly and continuously changes. The deformation in Hλ just changes
the energy spectrum [Eq. (16)] by

E2
± → rλ(k)2E2

±, (C9)

|ψ ± d · ĝ|2 + |μB H · ĝ × d/αg|2 → |ψ ± d · ĝ|2 + ∣∣μB
(
r−1
λ R−1

λ H
) · ĝ × d/αg

∣∣2
. (C10)

It is clear that the rescaling by Eq. (C9) does not close the excitation gap. In the limit a → 0, Eq. (C10) leads to an infinitesimal
change in the vector H , and therefore, the excitation gap is robust.

The adiabatic process deforms Hλ=0(k) = HBdG(k) to Hλ=1(k) = H̃BdG(k):

H̃BdG(k) =
(

ξ (k)g(k0)/g(k) + αg(k0) · σ − μB H · σ [ψ(k) + R1(k)d(k) · σ ]iσy

−iσy[ψ(k)∗ + R1(k)d∗(k) · σ ] −ξ (k)g(k0)/g(k) + αg(k0) · σ T + μB H · σ T

)
( |k − k0| < a),

(C11)

without closing the gap. Since the Chern number is a
topological invariant, it does not change through the adiabatic
deformation.

APPENDIX D: DERIVATION OF THE CHERN NUMBER IN
PARAMAGNETICALLY INDUCED GAPFUL TSCs

We here calculate the “Chern number of the node” ν0(k0)
defined by Eq. (C2) on the basis of the deformed BdG Hamil-
tonian [Eq. (C11)]. Carrying out the unitary transformation by
the k-independent unitary matrix Urot(k0)Uspin(k0), we obtain
the BdG Hamiltonian in the band representation, which has
been shown in Appendix A [Eqs. (A10) and (A11)]. Obviously,

this unitary transformation does not alter the Chern number
because Urot(k0)Uspin(k0) is momentum independent.

The BdG Hamiltonian is furthermore simplified around k0

by the adiabatic deformation

Urot(k0)Uspin(k0)H̃BdG(k)Uspin(k0)†Urot(k0)†

→ H+
k0

(k) ⊕ H−
k0

(k). (D1)

In this process, we take g′ → αg in the limit H → 0 and
reduce the interband matrix elements between |±E+〉 states
and |±E−〉 states to zero. The effect of the interband matrix
element on the energy spectrum is estimated to be

μB H · ĝ × d/αg · O

( |d × ĝ|
αg

)2

. (D2)
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This correction is much smaller than the energy gap, and thus,
the energy gap is not closed by the adiabatic deformation
in Eq. (D1). The Zeeman shift [Eq. (A13)] is also dropped
because it does not affect wave functions.

As a result of the deformation, the BdG Hamiltonian is
decomposed into the subsectors corresponding to the E± band,

H±
k0

(k) ≡
(

E±(k) η±(k)

η±(k)∗ −E±(k)

)
, (D3)

with

η±(k) ≡ − i[ψ(k) ± ĝ(k) · d(k)]

+ μB H · ĝ(k) × d(k)/αg(k0). (D4)

Therefore, ν(k0) is obtained by the Chern number of the sectors

ν±(k0) = 1

2πi

∫
|k−k0|<a

d2k(iσy)ij ∂ki
〈u±(k)|∂kj

|u±(k)〉,

(D5)

where |u±(k)〉 is the wave function of occupied state in the
sector H±

k0
(k). For the gap node k0 on the E+ FS, the Chern

number of the node is given by ν(k0) = ν+(k0) because of
ν−(k0) = 0, while ν(k0) = ν−(k0) otherwise.

The Chern number of the 2 × 2 Hamiltonian in Eq. (D3) is
evaluated by mapping onto the (extended) Dirac Hamiltonian.
Below, we show the details of the calculation, for clarity.

It is useful to perform a k-independent unitary transforma-
tion by

U0 ≡ 1√
2

(
1 1
1 −1

)(
1 0
0 �

)
, (D6)

where � is the sign of η(k0) �= 0:

� = sgn [μB H · ĝ(k0) × d(k0)/α]. (D7)

The sector Hamiltonian is transformed as

U0H
±
k0

(k)U †
0 = R(k) · σ , (D8)

with

R(k) ≡ E±(k)x̂ + Im [�η(k)]ŷ + Re [�η(k)]ẑ. (D9)

Then, Eq. (D5) is reexpressed in terms of R̂(k) ≡
R(k)/|R(k)|:

ν±(k0) = −
∫

|k−k0|<a

d2k

4π
R̂(k) · ∂R̂(k)

∂kx

× ∂R̂(k)

∂ky

. (D10)

We introduce a new coordinate system (k⊥,k‖) by rotating
(kx − k0x,ky − k0y). A coordinate k⊥ is taken to be parallel to
∇kE±, and the other k‖ is parallel to ẑ × ∇kE±. Then,

E±(k) = Ak⊥ + O(a2), (D11)

A ≡ ∂E±(k0)/∂k0⊥ > 0. (D12)

Let us consider the map from the 2D momentum space (k⊥,k‖)
to the sphere R̂(k). In a usual manner, we rescale the order
parameter of superconductivity as ψ → sψ and d → sd by
0 < s � 1 and redefine sψ and sd as ψ and d, respectively.
Then, the unit vector R̂(k) is approximately R̂(k) ‖ sgn [k⊥] x̂

at k⊥ �= 0. Along the line in the BZ where k⊥ changes from

−
√

a2 − k2
‖ to

√
a2 − k2

‖ with k‖ being fixed, R̂(k) changes

from (−1,0,0) to (1,0,0) through R̂(0,k‖). Therefore, the
solid angle on the sphere mapped from the integral domain
k2
⊥ + k2

‖ � a2 is determined by the k‖ dependence of R̂(0,k‖).
Because we take the limit a → 0, we leave the lowest-order
term of R(0,k‖):

Ry(0,k‖) = −�[ψ ± d · ĝ] 
 βkm
‖ , (D13)

Rz(0,k‖) = | μB H · ĝ(k0) × d(k0)|/αg(k0), (D14)

where β �= 0 and m � 1. Although m = 1 holds in most cases,
we keep m arbitrary in order not to lose the generality. When
we take the limit H → 0 with a = O(H/α)1/2m → 0, R̂(0,k‖)
sweeps the half of the circle R̂2

y + R̂2
z = 1 for an odd m.

Because the Chern number (D10) is given by the swept solid
angle of −R̂(k), we obtain

ν(k0) = −1

2
sgn [β]

∑
i∈N

δm, 2i−1 (D15)

= �

4
[sgn [ψ ± d · ĝ](0, + 0)

− sgn [ψ ± d · ĝ
]
(0, − 0)]. (D16)

Note that ν(k0) = 0 when m is even. From Eqs. (D7) and
(D16), we reach the general expression for the Chern number
in Eq. (39).

In usual cases, m = 1 and thus

∂(ψ ± d · ĝ)/∂k‖ �= 0 (D17)

at all the nodal points. Then, we can simplify the expression
for the Chern number:

ν =
∑

(±, k0)

1

2
sgn

[
∂(ψ ± d · ĝ)/∂k‖
μB H · ĝ × d/α

]
k=k0

. (D18)

Using the formula

k̂‖ · ∇k = ∂/∂k‖ = ẑ × ∇kE±
|ẑ × ∇kE±| · ∇k, (D19)

Eq. (D18) is reduced to Eq. (43).

APPENDIX E: EXTENSION OF THE FORMULA (39)

We derived the analytic expression of the Chern number of
paramagnetically induced gapful TSCs in Appendixes C and
D under the conditions

|ψ(k0)| � αg(k0), (E1)

d(k0) � αg(k0), (E2)

μBH � αg(k0). (E3)

Therefore, Eq. (39) holds as long as the nodes are away from
the zeros of the g vector. We here show Eq. (39) precisely
specifies the low-field topological phases, even when nodes
are close to the zeros of the g vector.

It is not clear whether the adiabatic condition for the Chern
number [Eq. (37)] is equivalent to that for Eq. (39). The Chern
number is invariant under the adiabatic deformation in which
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the gap is not closed. This condition is basically equivalent
to Eq. (18) at nodes, as shown in Sec. II D. However, the gap
is also closed at the zeros of the g vector when Eq. (36) is
satisfied. We here show that the right-hand side of Eq. (39)
is invariant under the condition (18). In other words, it is
concluded that the Chern number is appropriately given by
Eq. (39) in the low-magnetic-field phase, which is defined as
“smoothly connected phase from those satisfying αg  μBH ,
ψ , d at nodes.”

Now, we discuss Eq. (39). Note that the adiabaticity keeps
the sgn [. . .] in Eq. (39) well defined. Therefore, we have only
to examine the continuity against the change of the number of
nodes. It is sufficient to consider a situation where a node
is generated or disappears on a FS as a result of a local
deformation in a small region U around a momentum on the
FS. When the order of the node [ m in Eq. (D13)] is even,
its contribution to Eq. (39) is zero. Thus, we study odd m

including the usual linear nodes with m = 1.
When a node is generated and locally changes the sign of

ψ ± d · ĝ, the periodicity of ψ ± d · ĝ along the FS ensures
the existence of another node generated at the same time. In
other words, local deformation allows only the pair creation
or pair annihilation of nodes, and the sign change of ψ ± d · ĝ

is opposite between the nodes. The sign of H · ĝ × d is the
same between the nodes since the adiabatic condition ensures
the sign of H · ĝ × d to be constant in U . Therefore, the net
contribution to the Chern number from the pair of nodes is
zero. Thus, the continuity of Eq. (39) holds.

In conclusion, the right-hand side of Eq. (39) is invariant in
the adiabatic process satisfying Eq. (39). Thus, the formula for
the Chern number (39) precisely characterizes the topological
phases at low magnetic fields.

APPENDIX F: CONTRIBUTION FROM
SYMMETRY-RELATED NODES TO THE CHERN NUMBER

In this section, we investigate the contribution to the
Chern number from symmetry-related nodes. For generality,
we consider 3D systems k = (k2, kz) with k2 = (kx, ky). The
results for 2D systems are easily reproduced by taking kz → 0.
For clarity, we show the magnetic-field dependence explicitly,
like H2 = H2(k,H).

Let us consider a system with the symmetry of some 2D
point group G in the normal state under zero magnetic field.
Then, a symmetry operation ρ ∈ G maps wave number as

ρ(k) = ρ̂k, (F1)

ρ̂ =
(

ρ̂2 0
0 sz

)
, (F2)

where ρ̂2ρ̂
T
2 = 12×2 and sz = ±1. In superconducting state,

the symmetry of the system drops to a subgroup G0 ⊂ G.
The reduced symmetry G0 is defined by the set of symmetry
operations ρ ∈ G satisfying the following transformation
properties:

H2(ρ(k),0) = UρH2(k,0)U †
ρ, (F3)

�(ρ(k)) = eiχρ Uρ�(k)UT
ρ , (F4)

where Uρ is a k-independent unitary matrix and χρ is a
constant phase factor. Then, the preserved symmetry of the
BdG Hamiltonian is expressed by

HBdG(ρ(k),0) = ÛρHBdG(k,0)Û †
ρ, (F5)

Ûρ ≡
(

1 0

0 eiχ

)(
Uρ 0
0 U ∗

ρ

)
. (F6)

Note that G = G0 holds in many cases, where superconduc-
tivity belongs to a certain 1D irreducible representation of G.

In the presence of the Zeeman field, the symmetry ρ ∈ G0

may not be preserved in general. Then, the transformation
properties by ρ are given as follows:

H2(ρ(k),fρ(H)) = UρH2(k,H)U †
ρ, (F7)

�(ρ(k)) = eiχρ Uρ�(k)UT
ρ , (F8)

HBdG(ρ(k),fρ(H)) = ÛρHBdG(k,H)Û †
ρ. (F9)

Transformed magnetic field fρ(H) is given by fρ(H) =
(det ρ̂)ρ̂ H .

From the gauge invariance of the Berry curvature Bn(k,H),
we immediately understand

Bn(ρ(k),fρ(H)) = (det ρ̂2)Bn(k,H), (F10)

where

Bn(k,H) ≡ (iσy)ij ∂ki
〈un,kz,H (k2)|∂kj

|un,kz,H (k2)〉. (F11)

Since the symmetry ρ isometrically maps the domain of
integral around k to that around ρ(k), we have

νszkz,fρ (H)(ρ̂2k2) (F12)

=
∑

n; En<0

∫
|q2−ρ̂2 k2|<a

dq2

2πi
Bn[q2,szkz,fρ(H)] (F13)

=
∑

n; En<0

∫
|ρ̂2q2−ρ̂2 k2|<a

dρ̂2q2

2πi
Bn[ρ̂2q2,szkz,fρ(H)] (F14)

=
∑

n; En<0

∫
|q2−k2|<a

dq2

2πi
(det ρ̂2)Bn(q2,kz,H) (F15)

= (det ρ̂2)νkz,H (k2). (F16)

Note that det ρ̂ = sz det ρ̂2, and νkz,±H (k) = ±νkz,H (k) from
Eq. (39). It follows that

νszkz,szρ̂ H (ρ̂2k2) = νkz,H (k2). (F17)

For 2D systems, Eq. (44) is obtained by taking kz → 0.
When we consider the case H ‖ ẑ, Eq. (F17) becomes

νszkz,H (ρ̂2k2) = νkz,H (k2). (F18)

Thus, we find that the crystallographically equivalent nodes
give the same contributions to the Chern number. This
result is consistent with Table I which explicitly shows the
transformation properties of Eq. (43).

054519-18



PARAMAGNETICALLY INDUCED GAPFUL TOPOLOGICAL . . . PHYSICAL REVIEW B 94, 054519 (2016)

[1] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[2] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,
011013 (2012).

[3] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,
020401 (2009).

[4] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. B 82, 134521
(2010).

[5] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[6] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[7] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[8] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[9] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407 (2013).
[10] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[11] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[12] T. Yoshida and Y. Yanase, Phys. Rev. B 93, 054504 (2016).
[13] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

in Advances in Theoretical Physics: Landau Memorial Confer-
ence, edited by V. Lebedev and M. Feigel’man, AIP Conf. Proc.
No. 1134 (AIP, New York, 2009), p. 10.

[14] L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).
[15] L. Hao and T. K. Lee, Phys. Rev. B 83, 134516 (2011).
[16] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato,

and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011).
[17] M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).
[18] M. Sato, Phys. Rev. B 79, 214526 (2009).
[19] M. Sato, Phys. Rev. B 81, 220504 (2010).
[20] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida,

J. Phys. Soc. Jpn. 81, 011009 (2012).
[21] R. Joynt and L. Taillefer, Rev. Mod. Phys. 74, 235 (2002).
[22] Y. Kasahara, T. Iwasawa, H. Shishido, T. Shibauchi, K. Behnia,

Y. Haga, T. D. Matsuda, Y. Onuki, M. Sigrist, and Y. Matsuda,
Phys. Rev. Lett. 99, 116402 (2007).

[23] S. Kittaka, Y. Shimizu, T. Sakakibara, Y. Haga, E. Yamamoto,
Y. Onuki, Y. Tsutsumi, T. Nomoto, H. Ikeda, and K. Machida,
J. Phys. Soc. Jpn. 85, 033704 (2016).

[24] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).

[25] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346,
602 (2014).

[26] T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129
(2013).

[27] T. Mizushima, M. Sato, and K. Machida, Phys. Rev. Lett. 109,
165301 (2012).

[28] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111,
056403 (2013).

[29] C.-K. Chiu, H. Yao, and S. Ryu, Phys. Rev. B 88, 075142 (2013).
[30] Y. Ueno, A. Yamakage, Y. Tanaka, and M. Sato, Phys. Rev. Lett.

111, 087002 (2013).
[31] K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014).
[32] T. Yoshida, M. Sigrist, and Y. Yanase, Phys. Rev. Lett. 115,

027001 (2015).
[33] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Phys. Rev. B

83, 224511 (2011).
[34] K. Yada, M. Sato, Y. Tanaka, and T. Yokoyama, Phys. Rev. B

83, 064505 (2011).
[35] A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504 (2011).

[36] C.-K. Chiu and A. P. Schnyder, Phys. Rev. B 90, 205136
(2014).

[37] A. P. Schnyder and P. M. R. Brydon, J. Phys.: Condens. Matter
27, 243201 (2015).

[38] A. Kitaev, in Advances in Theoretical Physics: Landau Memo-
rial Conference, edited by V. Lebedev and M. Feigel’man, AIP
Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22.

[39] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New
J. Phys. 12, 065010 (2010).

[40] T. Morimoto, A. Furusaki, and C. Mudry, Phys. Rev. B 92,
125104 (2015).

[41] Y. Yanase, T. Jujo, T. Nomura, H. Ikeda, T. Hotta, and K.
Yamada, Phys. Rep. 387, 1 (2003).

[42] Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y.
Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y.
Yanase, and Y. Iwasa, Nat. Phys. 12, 144 (2016).

[43] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler,
K. T. Law, and J. T. Ye, Science 350, 1353 (2015).

[44] M. Sato, Phys. Rev. B 73, 214502 (2006).
[45] Y. Yanase and M. Sigrist, J. Phys. Soc. Jpn. 76, 124709 (2007).
[46] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys.

Rev. Lett. 92, 097001 (2004).
[47] Non-Centrosymmetric Superconductors: Introduction and

Overview, edited by E. Bauer and M. Sigrist (Springer, Berlin,
2012), Vol. 847.

[48] A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich,
and I. Bozovic, Nature (London) 472, 458 (2011).

[49] J. Garcia-Barriocanal, A. Kobrinskii, X. Leng, J. Kinney, B.
Yang, S. Snyder, and A. M. Goldman, Phys. Rev. B 87, 024509
(2013).

[50] R. Werner, C. Raisch, A. Ruosi, B. A. Davidson, P. Nagel, M.
Merz, S. Schuppler, M. Glaser, J. Fujii, T. Chassé, R. Kleiner,
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