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The N -component London U(1) superconductor is expressed in terms of integer-valued supercurrents. We show
that the inclusion of interband Josephson couplings introduces monopoles in the current fields, which convert
the phase transitions of the charge-neutral sector to crossovers. The monopoles only couple to the neutral sector,
and leave the phase transition of the charged sector intact. The remnant noncritical fluctuations in the neutral
sector influence the one remaining phase transition in the charged sector, and may alter this phase transition from
a 3DXY inverted phase transition into a first-order phase transition depending on what the values of the gauge
charge and the intercomponent Josephson coupling are. This preemptive effect becomes more pronounced with
increasing number of components N , since the number of charge-neutral fluctuating modes that can influence
the charged sector increases with N . We also calculate the gauge-field correlator, and by extension the Higgs
mass, in terms of current-current correlators. We show that the onset of the Higgs mass of the photon (Meissner
effect) is given in terms of a current loop blowout associated with going into the superconducting state as the
temperature of the system is lowered.
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I. INTRODUCTION

Models with multiple U(1) condensates coupled by a
vector potential are relevant to a variety of condensed matter
systems. The number of possible interactions between the
individual condensates make the models much more complex
than single-band systems. Multiple, individually conserved
condensates are applicable to systems of low-temperature
atoms, such as hydrogen under extreme pressures [1–6] and
as effective models of easy-plane quantum antiferromagnets
[7,8]. Superconductors with multiple superconducting bands,
such as MgB2 [9–11] and iron pnictides [12], may also be
described by a model of multiple U(1) condensates, but in
these systems the individual condensates are not conserved.
Interband Josephson couplings must always be included, as
they cannot a priori be excluded on symmetry grounds.

Ginzburg-Landau models of N -component superconduc-
tors in the London limit host a rich variety of interesting
phenomena [13–16]. Each condensate supports topological
vortex line defects, which represent disorder in the condensate
ordering field. When the condensates are coupled through a
gauge field, the vortices carry magnetic flux quanta, and may
be bound into composite vortices with ±2π phase windings
in multiple condensates [17]. It turns out that this gives rise to
composite superfluid modes that do not couple to the gauge
field, even though their constituent vortices interact via the
gauge field. In addition to the superfluid modes, there will
be a single charged mode which is coupled by the gauge
field. This causes the N -component model without Josephson
interactions to have N − 1 superfluid phase transitions and
a single superconducting phase transition [17]. For certain
values of the gauge charge these transitions will interfere in
a nontrivial way, causing the transitions to merge in a single
first-order transition [18,19].

The question of the nature of the phase transitions
present in Josephson-coupled multiband superconductors is
of considerable interest. Symmetry arguments dictate that
the inclusion of the Josephson coupling breaks the [U(1)]n

symmetry down to U(1), at any strength. The Josephson term
locks the superfluid modes so that the phase transition in
the neutral sector is replaced by a crossover [17], while the
phase transition in the gauge-coupled sector is expected to
remain. If this transition remains continuous, it is expected
to be in the inverted 3DXY universality class [17]. A recent
study has observed a first-order transition in this model for
weak Josephson coupling [20], suggesting a subtle interplay
between the two length scales dictated by the Josephson length
and the magnetic field penetration depth. A schematic phase
diagram is shown in Fig. 1 for the two-component case. This
is based on arguments provided in this work, and supports the
numerical results obtained in recent numerical studies [20].
Also of note are multiband superconductors with frustrated
interband couplings, which is U(1) × Z2 symmetric. These
systems have been shown to have a single first-order transition
in three dimensions from a symmetric state into a state that
breaks both U(1) and Z2 symmetry for weak values of the
gauge field coupling. For stronger values of the charge, the
transitions split [21,22].

In this paper we present an alternate approach to the
multiband superconductor which has certain advantages over
standard formulations, allowing further analytical insights to
be made. In particular, we are able reconcile the different
results for the character of the phase transition in the charged
sector found in Refs. [17] and [20] in the presence of interband
Josephson couplings. By applying a character expansion
[23,24] to the action, we replace the phases of the order
parameter with integer-current fields. These currents are the
actual supercurrents of the model. Section II presents the
details and basic properties of the multiband superconductor
in the London limit. In Sec. III A we present the character
expansion, apply it to the model with no Josephson coupling,
and compare the resulting representation to the original
model. We apply the character expansion to the multiband
superconductor with Josephson couplings in Sec. III B and
discuss it in the light of the current representation. In Sec. IV
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FIG. 1. A schematic phase diagram for the model with N = 2.
The top panel shows the case λ = 0, while the lower panel shows the
case with λ > 0. Top panel, λ = 0: Phase I is the fully symmetric
normal phase with no superfluidity and no superconductivity. Phase
III is the phase with no superconductivity, but nonzero superfluid
stiffness in the neutral mode (metallic superfluid). Phase II is the
low-temperature fully ordered state with finite Higgs mass in the
charged sector and finite superfluid density in the neutral sector, a
superconducting superfluid. The solid line separating phase I from
phase II is a first-order phase transition line. The dotted line separating
phase II from phase III is a critical line in the inverted 3DXY

universality class. The solid line separating phase I from phase III
is a critical line in the 3DXY universality class. Along the line
e = 0, we recover two uncoupled 3DXY models, and the phase
transition will be two superimposed independent phase transitions
in the 3DXY universality class. Bottom panel, λ > 0: Phase I′ is the
high-temperature phase with no superconductivity. The entire phase
is analytically connected with only a crossover regime separating
the high-temperature phase from the lower-temperature phase. There
is no spontaneous symmetry breaking in the neutral sector, since the
Josephson coupling effectively acts as an explicit symmetry-breaking
term in this sector, analogous to a magnetic field coupling linearly
to XY spins. Phase II′ is the low-temperature superconducting state.
The solid part of the line separating phase I′ from phase II′ is a
first-order phase transition line. The dotted part is a critical line in
the inverted 3DXY universality class. For both λ = 0 and λ > 0,
the line separating the superconducting states (II and II′) from the
nonsuperconducting state changes character from a first-order phase
transition (solid line) to a second-order phase transition (dotted line)
as via a tricritical point. The 3DXY critical line separating phase I
from phase III for λ = 0 is converted to a crossover line in phase
I′ for λ > 0. Along the e = 0 line, the system is described by two
neutral sectors coupled by an intercomponent Josephson coupling,
such that the global U(1) × U(1) symmetry is reduced to a global
U(1) symmetry. Therefore, the phase transition reverts to a single
3DXY transition.

we present the calculation of the Higgs mass in terms of current
correlators. We present our conclusions in Sec. V.

II. STANDARD REPRESENTATION OF THE MODEL

We consider a model of N bosonic complex matter fields
in three dimensions. The matter fields are given by ψα(r) =
|ψα(r)| exp iθα(r), interacting through the electromagnetic
vector potential, A(r). We also allow interband Josephson
couplings of the matter fields. In the general case, this is
described by a partition function

Z =
∫

DA

(∏
α

∫
Dψα

)
e−S, (1)

where the action is

S = β

∫
d3r

⎧⎨
⎩1

2

∑
α

|[∇ − ieA(r)]ψα(r)|2

+V ({|ψα(r)|}) + 1

2
[∇ × A(r)]2

−
∑
α<β

λα,β |ψα(r)||ψβ(r)‖ cos[θα(r) − θβ(r)]

⎫⎬
⎭. (2)

The potential V contains terms that are powers of |ψα|. At this
point we employ the phase-only, or London, approximation
and choose all bare stiffnesses, |ψα|, equal to unity. Hence,
V is an unimportant constant. We will also focus on equal
couplings between all bands, i.e., λα,β = λ ∀ α,β. The action
is then given by

S = β

∫
d3r

⎧⎨
⎩1

2

∑
α

[∇θα(r) − eA(r)]2 + 1

2
[∇ × A(r)]2

− λ
∑
α<β

cos[θα(r) − θβ(r)]

⎫⎬
⎭. (3)

We regularize this action on a cubic lattice of size L3

by defining the fields on a discrete set of coordinates rμ ∈
(1, . . . ,L), that is, θα(r) → θr,α and A(r) → Ar . On the
lattice, the action reads

S = β
∑

r

⎧⎨
⎩−

∑
μ,α

cos(�μθr,α − eAr,μ) + 1

2
(� × Ar )2

− λ
∑
α<β

cos(θr,α − θr,β)

⎫⎬
⎭. (4)

Here, we use the cosine function to represent the kinetic term
of the continuum Hamiltonian in a way that preserves the
periodic nature of the phases. Alternatively, one may arrive at
Eq. (4) by directly replacing the derivatives in Eq. (2) with the
gauge-invariant forward difference,

[∇ − ieA(r)]ψα(r) → ψr+μ̂,αe−ieAr − ψr,α, (5)

and then taking the London limit as described above. We
discuss the two-dimensional case in Appendix B.
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In the formulation of Eq. (4) with λ = 0, the model is
known [17,19] to have one phase transition from a normal
state to a superconducting state in one composite degree of
freedom, and N − 1 phase transitions from a normal fluid to a
superfluid in the remaining degrees of freedom. The reason for
this division into one superconducting and N − 1 superfluid
degrees of freedom becomes apparent when one correctly
identifies the relevant combinations of the phase fields. The
part of the continuum action describing the coupling between
the phases and the gauge field is

S ′ = β

∫
d r

{
1

2

∑
α

[∇θα(r) − eA(r)]2

}
. (6)

This can be rewritten into [17]

S ′ = β

∫
d r

⎧⎨
⎩ 1

2N

(∑
α

∇θα(r) − NeA(r)

)2

+ 1

2N

∑
α<β

[∇(θα − θβ)]2

⎫⎬
⎭. (7)

Hence, the phase combination
∑

α θα will couple to the gauge
field, and is identified as the single charged mode, while all
other combinations θα − θβ do not couple, and are neutral.
Note that for N = 1 only the charged mode remains. Two
important points need to be emphasized. First, the composite
variables are not compact in the same sense that the individual
phases are. This means that the composite variables do not
support topological defects by themselves, only composite
topological defects. Second, the last term in the action of
Eq. (7) has N (N − 1)/2 terms. Therefore, one may not
interpret the phase differences θα − θβ as independent degrees
of freedom. This is because of the multiple connectedness of
the physical space; fluctuations in a single individual phase
induce fluctuations in N − 1 composite neutral modes, as well
as in the charged mode.

In the present form, with λ = 0 and e sufficiently large,
this model is known to have one phase transition in the
inverted 3DXY universality class, and N − 1 transitions in
the 3DXY universality class at a higher temperature [17,19].
These transitions correspond to proliferations of the composite
charged mode and the composite neutral modes, respectively.
If the charge is lowered, the charged and neutral transitions
will approach each other in temperature. When they merge, the
proliferation of neutral vortices will trigger proliferation of the
charged mode. Consequently, the N phase transitions collapse
into a single first-order transition. This interplay between
the charged and neutral sector has been coined a preemptive
phase transition [25], and has been verified numerically in
two-component systems in the absence of intercomponent
Josephson coupling in several detailed large-scale Monte Carlo
simulations [18,19,25].

In the following section, we reformulate the model in
terms of integer-valued current fields, considering first the case
with zero Josephson coupling and then moving on to include
Josephson coupling. The first case is useful to consider in
connecting the results of previous works mentioned above to
the current formulation.

III. CURRENT REPRESENTATION OF THE MODEL

A. Zero intercomponent Josephson coupling

The basis of the expansion used is a character expansion
[23,24].

eβ cos γ =
∞∑

b=−∞
Ib(β)eibγ , (8)

where Ib(β) are the modified Bessel functions of integer order.
We apply this to the terms exp β cos(�μθr,α − eAr ) for each
value of r , μ, and α. This introduces integer vector fields
br,α , representing supercurrents. In fact, the integer vector
fields will be the actual physical supercurrents of the system
[24]. The low-temperature phase is characterized by a state
with proliferated current loops on all length scales, while the
high-temperature phase only features small current loops.

By applying Eq. (8) to the partition function with Eq. (4) as
the action, and integrating out the phases and the gauge field,
details of which may be found in Appendix A, we arrive at the
partition function

Z =
∑
{b,m}

∏
r,α

δ�·br,α ,0

∏
r,μ,α

Ibr,α,μ
(β)

×
∏
r,r ′

e
− e2

2β

∑
α,β br,α ·br′ ,βD(r−r ′)

. (9)

This is a model of N current fields, with contact intracom-
ponent interactions parametrized by the Bessel functions, and
long-range intra- and intercomponent interactions originating
with the gauge-field fluctuations, D(r − r ′). The constraint
� · br,α = 0 forces the currents br,α to form closed loops,
and implies a nonanalytical behavior of each individual
component, and an associated phase transition.

In the current language, the interpretation of the phase
transitions explained in the previous section is as follows. Con-
sider first a single-component model. In the high-temperature
state, only the lowest term in the Bessel-function expansion
will contribute, and only small loops of supercurrents will
be present in the system. As the temperature is lowered all
orders of the expansion contribute, and the integer currents
will proliferate, filling the system with loops of supercurrent.
In the low-temperature state all b fields have proliferated.
As temperature is increased, the proliferated current loops in
the charged sector will collapse. Only the neutral superfluid
currents fill the system, and the state is therefore a metallic
superfluid [15]. As temperature is raised further the superfluid
currents collapse as well, and the system is in the normal-
metallic state.

B. Nonzero intercomponent Josephson couplings

The expansion of Eq. (8) may also be applied to the Joseph-
son term. The expansion is only valid when the argument of
the cosine is expanded around zero; the present formulation is
therefore not valid for any ground state which does not fulfill
this requirement. In particular, if the Josephson coupling is
negative and sufficiently strong, the phase differences will
be locked to nonzero values [21,22]. For N = 2 the phases
are locked to π , while for N = 3 the ground state of the
three phases may form a star pattern with an accompanying
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Z2 symmetry associated with the two possible chiralities of
the star [21,22]. These cases are not covered by the current
loop formulation derived from the character expansion Eq. (8).
While the above arguments do not constrain us to only consider
all Josephson couplings equal, we may limit our considerations
to the case λαβ = λ > 0 without loss of generality in the
present discussion. Having universal λαβ will not allow for
any additional physics than simply having unequal strength of
the individual phase lockings, when they are constrained to be
all positive.

Applying the expansion introduces an additional N (N −
1)/2 integer fields mr,α,β . After expanding both the kinetic
terms and the Josephson terms, the partition function reads

Z =
∫

DA

(∏
α

∫
Dθα

)

×
∏

r,μ,α

∞∑
br,μ,α=−∞

Ibr,μ,α
(β)eibr,μ,α (�μθr,α−eAr,μ)

×
∏

r,α<β

∞∑
mr,α,β=−∞

Imr,α,β
(βλ)eimr,α,β (θr,α−θr,β )

×
∏

r

e− β

2 (�×Ar )2

. (10)

The effect of the Josephson coupling becomes apparent when
we integrate out the phase fields. The divergences of the b
fields will no longer be constrained to zero, but may take any
finite integer value, determined by the value of the m fields.
The new constraints read

� · br,α =
∑
β �=α

mr,α,β ∀ α,r, (11)

where we have defined mr,α,β = −mr,β,α . The gauge term is
not coupled directly to the m fields, and we may integrate it out
in the same fashion as before. The resulting partition function
is

Z =
∑
{b,m}

∏
r,α

δ�·br,α ,
∑

β �=α mr,α,β

×
∏

r,μ,α

Ibr,α,μ
(β)

∏
r,α<β

Imr,α,β
(βλ)

×
∏
r,r ′

e
− e2

2β

∑
α,β br,α ·br′ ,βD(r−r ′)

. (12)

C. Monopoles and phase transitions

The effect of the m fields is to introduce monopoles into
the closed loops of b currents. A current of a particular
component (color) may now terminate at any site. However,
this termination must always be accompanied by a current of
another color originating at the same site. Termination of a
current of one component, and the appearance of a current of
another component at the same site, represents an excitation
of ±1 in m. An important observation is that if one adds the
constraints, we have∑

α

� · br,α = 0 ∀ r. (13)

This reflects the color-changing event stated above; the total
current when summing over all colors is conserved at all sites.
It also shows that there is a particular combination of currents,
the sum of all components, which will be divergence-free. The
net effect of the Josephson coupling, pictorially, is to chop
up the closed currents of the individual components and glue
them together into closed loops that may change color on any
site.

We may expand the partition function first in terms of m

fields, and then in terms of λ, by using the Bessel-function
representation

Iν(z) =
(

z

2

)ν ∞∑
k=0

(
z
2

)2k

k!(ν + k)!
. (14)

This demonstrates that the partition function consists of a
single term with zero divergence on all sites, which we know
has one or more phase transitions from a superconducting
superfluid state into a non-superconducting normal fluid, and
many terms where the divergence of br,α is finite on any
number of sites.

Let us now consider two limits, and assume e is large,
so that there is no preemptive effect for λ = 0. For λ =
0, it is evident that only m = 0 will contribute, and we
are left with only divergenceless terms, and hence the
behavior described previously. The other limit is λ → ∞.
In this case we must examine the asymptotic form of the
Bessel functions, which to leading order in the argument
is

Im(z) ∼ ez

√
2πz

, (15)

i.e., independent of m, and the monopole field will fluctuate
strongly, causing the zero-divergence constraint on each
component to be removed. The only remaining constraint on
the current fields pertains to the composite current

∑
α bα ,

which is divergence-free. The interpretation of this is that
the phase transitions in the N − 1 superfluid modes are
converted to crossovers by the Josephson coupling, while the
single superconducting mode still undergoes a genuine phase
transition. The neutral crossover will be far removed from
the charged phase transition in this limit, and the remaining
fluctuations in the neutral sector will be almost completely
suppressed. There is no possibility of any interference between
the sectors, and therefore no preemptive phase transition.
The phase transition in the charged sector will therefore
be in the universality class of the inverted 3DXY phase
transition.

For intermediate and small values of λ, the effect
of the Josephson coupling on the interplay between
the charged and neutral sectors is quite subtle in the
present formulation, and will be discussed in the following
section.

D. Charged and neutral currents

We start with the action where the phase sum and phase
differences have been separated, Eq. (7), with a Josephson
coupling included. To simplify the notation, we introduce
composite fields � ≡ ∑

α θα and ϑαβ ≡ θα − θβ . The lattice
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action then reads

S = β
∑

r

{
−

∑
μ

cos(�μ�r − NeAr,μ)

−
∑

μ,α<β

cos(�μϑr,αβ) − λ
∑
α<β

cos(ϑr,αβ)

+ 1

2
(� × Ar )2

}
. (16)

One may arrive at this form by defining the composite fields
in Eq. (7), then use the Villain approximation on the original
action of Eq. (4), rewrite the resulting action into one with the
composite fields, then reverse the Villain approximation.

In Eq. (16), there is one charged mode and N (N − 1)/2
neutral modes, while the original theory has N degrees of
freedom. There is therefore an excess of (N − 1)(N − 2)/2
degrees of freedom. (Note that there are no redundant modes
for N = 1 and N = 2.) Therefore, not all of the phase
differences are independent when N > 2. Consider the case
N = 3, where one may form the phase differences θ1 − θ2,
θ2 − θ3, and θ1 − θ3, but θ1 − θ3 = (θ1 − θ2) + (θ2 − θ3). It
suffices to include the phase differences ϑ12 and ϑ23.

This may be generalized to arbitrary N . Identify all θαβ

where

{(α,β)|α ∈ (1, . . . ,N − 1) ∧ β = α + 1}. (17)

Then, all θαβ where

{(α,β)|α ∈ (1, . . . ,N − 2) ∧ β ∈ (α + 2, . . . ,N)} (18)

may be constructed by adding up the intermediate phase
differences, that is, ϑαβ = ϑα,α+1 + ϑα+1,α+2 + · · · ϑβ−1,β .
With this in mind, we may write out the partition function
in terms of the charged and neutral modes

Z =
∫

D�

⎛
⎝∏

α<β

∫
Dϑαβ

⎞
⎠

×
⎡
⎣N−1∏

α=1

N∏
β=α+2

δ

(
ϑαβ −

β−1∑
η=α

ϑη,η+1

)⎤
⎦eS, (19)

where S is the action of Eq. (16).
As an illustration, we perform the character expansion on

the model where the charged and neutral sectors have been
separated, for the special cases N = 2 and N = 3.

For N = 2 there are no redundant variables, and we have
the two composite variables � ≡ θ1 + θ2 and ϑ ≡ θ1 − θ2.
Using the identity Eq. (8), and integrating out the phases and
gauge field, we obtain

Z =
∑

{B,B,m}

∏
r

δ�·Br ,0δ�·Br ,mr

×
∏
r,μ

IBr,μ (β)IBr,μ(β)
∏

r

Imr (βλ)

×
∏
r,r ′

exp

{
− (Ne)2

2β
Br · Br ′D(r − r ′)

}
. (20)

Here, B is the charged current field associated with �, while
B is the neutral current field associated with ϑ .

In this formulation, it is immediately clear that the model
features two integer vector-field degrees of freedom, one which
has long-range interactions mediated by the gauge field, and
one with contact interactions. The neutral current field has its
constraint removed by the m field, while the charged field is
still constrained to be divergenceless. Hence, the model will
feature a single phase transition in the charged sector driven
by the collapse of closed loops of charged currents, while the
transition of the neutral sector is converted to a crossover by
the complete removal of constraints on B.

Let us consider this in a bit more detail. In Eq. (20), we may
perform the summation over the fields m ∈ Z. Since we have
that � · Br ∈ Z as well, the summation over the m’s will guar-
antee that the constraint is satisfied for some value of m, such
that the summation over m effectively removes the constraints
on � · Br . Hence, we have

∑
{m} δ�·Br ,mr

∏
r Imr (βλ) =∏

r I�·Br (βλ), with no constraints on � · Br . We may thus
perform the now unconstrained summation of the field Br ,
namely

∑
{B}

(∏
r,μ

IBr,μ(β)

)(∏
r

I�·Br (βλ)

)
= F (β,λ), (21)

where F is an analytic function of its arguments. This may
be seen by mapping the left-hand side of Eq. (21) to a Villain
model, using the approximation [23]

Ib(x)

I0(x)
≈ 1

|b|!e
log(β/2)|b|. (22)

This may be rewritten as a Gaussian provided β is sufficiently
small so that contributions |b| > 1 are small,

Ib(x)

I0(x)
≈ e

−b2

2β′ , (23)

where β ′ is a renormalized coupling constant, and we find

F (β,λ) =
∑
{B}

(∏
r,μ

exp
−B2

r,μ

2β ′

)(∏
r

exp
−(� · Br )2

2λβ ′

)
.

(24)

Since there are no constraints B, this demonstrates that Eq. (21)
essentially is a discrete Gaussian theory, and the neutral sector
therefore does not suffer any phase transition. This point may
be further corroborated by going back to the formulation of
Eq. (16). The neutral sector of the action is seen to be identical
to that of an XY spin model in an external magnetic field, with
field strength λ. Any λ �= 0 converts the phase transition, from
a low-temperature ferromagnetic state to a high-temperature
paramagnetic state, into a crossover from an ordered to a
disordered system. Note also that in the limit λ = 0, the Bessel
function will revert to I�·B(0) = δ�·B,0, and the nonanalytical
constraint is reintroduced.

We emphasize that although the above argument utilized a
Villain approximation to the Bessel functions, the conclusion
that the phase transition is wiped out in the neutral sector by
introducing monopoles (Josephson coupling) does not depend
on this approximation. At any rate, a Villain-approximation
to the XY model does not change the symmetry of the
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problem or the character of phase transitions. What is crucial
is the introduction of monopoles and the ensuing removal of
constraints on the neutral currents.

The total partition function for the entire system is thus
given by

Z = F (β,λ)
∑
{B}

∏
r

δ�·Br ,0

∏
r,μ

IBr,μ (β)

×
∏
r,r ′

exp

{
− (Ne)2

2β
Br · Br ′D(r − r ′)

}
. (25)

The phase transition in the neutral sector is converted to a
crossover, and there are no longer any critical fluctuations
associated with disordering the neutral sector, unlike the case
λ = 0. This occurs as soon as λ is finite, however small.
However, even without a phase transition and associated
critical fluctuations, there will still be a crossover with
associated fluctuations in its vicinity. Hence, the preemptive
first-order phase transition in the charged sector, which occurs
for λ = 0, may still take place provided λ is sufficiently small.

The argument is as follows. In the preemptive scenario for
λ = 0, fluctuations in the neutral and charged sectors increase
as T is increased from below in the fully ordered state. The
charged sector influences the fluctuations in the neutral sector
and vice versa, such that the putative continuous transitions
in these sectors are preempted by a common first-order phase
transition [17,19]. The important point to realize is that neither
of the sectors actually reaches criticality, since there are
no critical fluctuations at the preemptive first-order phase
transition.

We may have the same scenario occurring with finite but
small λ. A necessary requirement is that the gauge charge e

is not too large, such that gauge-field fluctuations are not so
large as to separate the phase transitions in the charged and
the neutral sector too much [17,19]. The key point is that the
inclusion of Josephson couplings converts the phase transition
in the neutral sector to a crossover in exactly the same way
that the ferromagnetic-paramagnetic phase transition in the
3DXY model is converted to a crossover by the inclusion of a
magnetic field coupling linearly to the XY spins; cf. Eq. (16).
This leaves only a phase transition in the charged sector, but it
does not completely suppress fluctuations in the neutral sector.
It merely cuts the fluctuations off on a length scale given
by the Josephson length 1/λ, thereby preventing them from
becoming critical. As temperature is increased, the neutral
sector approaches its crossover region, with increasingly large
fluctuations. At the same time, the charged sector approaches
its putative inverted 3DXY fixed point. Provided that the
crossover region of the neutral sector and the fixed point
of the charged sector are sufficiently close, the fluctuations
in both sectors may still strongly influence each other, and
a first-order preemptive phase transition may still occur in
the charged sector. This is consistent with recent numerical
work [20], which observed a first-order phase transition in
multiband superconductors with weak Josephson coupling in
Monte Carlo simulations using the original U(1) phases.

For N = 3 we must consider carefully the redundant
variable, ϑ13 = ϑ12 + ϑ23. The partition function, prior to

integration of the phases and the gauge field, reads

Z =
∫

D�

⎛
⎝∏

α<β

∫
Dϑαβ

⎞
⎠δ(ϑ13 − ϑ12 − ϑ23)

×
∏
r,μ

∞∑
Br,μ=−∞

IBr,μ (β)eiBr,μ(�μ�r−NeAr,μ)

×
∏
r,μ

α < β

∞∑
Br,μ,αβ=−∞

IBr,μ,αβ
(β)eiBr,μ,αβ�μϑr,αβ

×
∏

r,α<β

∞∑
mr,αβ=−∞

Imr,α,β
(βλ)eimr,α,βϑαβ

×
∏

r

e− β

2 (�×Ar )2

. (26)

Again, B is the charged current associated with �, while Bαβ

are the neutral currents associated with ϑαβ . The δ function is
included to account for the redundancy of the composite phase
representation.

We now proceed with the integration of phases and gauge
field, taking care to integrate out the redundant phase first. The
partition function may then be written as

Z =
∑

{B,B,m}

∏
r

δ�·Br ,0

∏
r,μ

IBr,μ (β)

×
∏

r

δ�·Br,12+�·Br,13,mr,12+mr,13

×
∏

r

δ�·Br,23+�·Br,13,mr,23+mr,13

×
∏
r,μ

α < β

IBr,μ,αβ
(β)

∏
r

α < β

Imr,αβ
(βλ)

×
∏
r,r ′

exp

{
− (Ne)2

2β
Br · Br ′D(r − r ′)

}
. (27)

This is a model of a single gauge coupled supercurrent B
which is constrained to form closed loops, and three superfluid
currents B12, B23, and B13 which are not constrained to
form closed loops. The three superfluid currents are not
independent, as is seen from the two constraints on them.
As in the case N = 2, the summation over the m fields may
be performed, eliminating the constraints on the fields Br,μ,αβ ,
after which the unconstrained summation over these fields may
be performed. As for N = 2, this yields multiplicative analytic
factors in the partition function, and the phase transitions in
the neutral sectors will be converted to crossovers. Given
that the crossovers in the neutral sectors and the charged
fixed point have sufficient overlap, the system may still
feature a single preemptive first-order phase transition arising
from the interplay between the charged and neutral modes.
Furthermore, the inclusion of the additional degree of freedom
enhances the combined fluctuations of the neutral mode at a
given Josephson coupling, λ, and therefore strengthens the
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preemptive first-order transition. This is consistent with the
results of recent numerical work [20].

E. Preemptive effect and current loop interactions

In this subsection, we discuss further the preemptive
scenario discussed above, interpreting it in terms of renormal-
izations of current-current interactions. This provides a dual
picture to the physical picture of the first-order phase transition
presented in Ref. [20].

The preemptive phase transition may be understood in the
current loop picture by considering the effect of the monopoles
on the neutral counter-flowing current sector (facilitated by
the presence of monopoles, i.e., Josephson coupling), and how
this in turn influences the interaction between the charged
co-flowing currents which interact via the fluctuating gauge
field.

Consider first the current loop excitations allowed by
Eq. (12) for the case N = 2. The lowest order configurations
in the individual fields are closed loops of a single color. On
top of these one may add monopoles, such that one has closed
loops that change color twice before completing a closed loop.
The presence of the Josephson coupling also allows for small
dumbbells of counter-flowing currents with a monopole at one
end and an anti-monopole at the other end. The gauge field
will bind loops of co-flowing currents together, creating small
loops of both colors flowing in the same direction. At high
temperatures, the co-flowing currents only form small closed
loops, and the system is non-superconducting. Barring any
influence from the neutral sector, they will proliferate in an
inverted 3DXY transition [26] at some critical temperature. If
the charge, or the Josephson coupling, is sufficiently strong,
there will be no significant fluctuations in the neutral sector
that may influence this. The co-flowing current loops simply
proliferate in a background of only tightly bound counter-
flowing currents, with which they do not interact at all. The
only way they can interact is if a counter-flowing composite
current locally dissociates into individual currents on length
scales below the Josephson length, which needs to be large
enough. This will not happen if either the Josephson coupling
is sufficiently strong, or if the charge is sufficiently large so
that the charged transition is separated sufficiently from the
neutral crossover.

Figures 2 and 3 show simple representations of current
configurations as the transition occurs in the two scenarios. For
simplicity the illustration is given in two spatial dimensions.
In Fig. 2, we show the case of having a sufficiently strong
Josephson coupling. A generic snapshot of a single loop of
charged current is shown, represented by two co-flowing red
and green lines, surrounding a gas of tightly bound pieces of
counter-flowing neutral currents. As there are no individual
red or green lines, there will be no interactions between the
loop of composite charged current and the small pieces of
composite neutral current, and hence no renormalization of the
interactions in the charged sector. The loops of charged current
will therefore proliferate in an inverted 3DXY transition [26]
as the temperature is lowered. In Fig. 3, the situation is
different. Here, the Josephson coupling is sufficiently low,
or alternatively the Josephson length is sufficiently large,
so that the individual pieces of current may undergo local

FIG. 2. Example of a current loop configuration in the case of
strong interband Josephson coupling, when there is no screening of
the charged-current interaction. Red and green lines represent currents
of the individual fields bi flowing in the direction indicated by the
arrows. Charged and neutral currents are therefore represented by
overlapping red and green lines flowing either in the same or the
opposite direction, respectively. The configuration shown represents
a snapshot close to the charged transition, where a closed loop of
charged current encircles pieces of a tightly bound composite neutral
current. As there is no interaction between pieces of charged and
neutral current, the inverted 3DXY transition of the charged sector is
not influenced by the tightly bound composite neutral currents.

dissociations of the tightly bound counter-flowing configura-
tions. These individual pieces of currents, represented by only
red or green lines, will interact with the loop of charged current,
and may therefore influence the proliferation of composite
charged current loops.

The current loops are dual objects to vortex loops. It is
known that there is a precise correspondence between the sign
of vortex interactions and the character of the phase transition
in superconductors. Namely, attractive interactions between
vortices leads to a first-order phase transition, while repulsive
vortex interactions lead to second-order phase transitions
[20,27]. Therefore, an alternative natural way of interpreting
the preemptive first-order phase transition in the dual picture is
that neutral counter-flowing currents on the co-flowing charged
currents screen or overscreen the interactions between the
latter, effectively changing the sign of the interactions between
charged current segments.

With reference to Fig. 3, we elaborate briefly on how the
configurations depicted there may cause attractive interactions
between composite charged current segments. Note that the
screening is accounted for entirely by removing all tightly
bound counter-flowing currents, leaving only the closed
color-changing loops. The relevant screening fluctuations are
therefore complicated collective phase fluctuations amounting
to inserting closed color-changing loops in the problem.
Loops which interact attractively with the composite charged
current segments will have a larger Boltzmann weight in
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FIG. 3. Example of a current loop configuration in the case of
weak, but nonzero, interband Josephson coupling. Red and green
lines represent currents of the individual fields bi flowing in the
direction indicated by the arrows. Charged and neutral currents are
therefore represented by overlapping red and green lines flowing
either in the same or the opposite direction, respectively. The present
configuration shows the same loop of charged current encircling
pieces of neutral current, as shown in Fig. 2. However, in the case
of weak interband Josephson coupling, the individual currents will
fluctuate away from the neutral-current configuration slightly close
to the neutral crossover. The screening of the interaction between
the segments of the outer charged composite current is accounted for
by removing all tightly bound counterflowing currents in the interior,
leaving only closed loops that change color an even number of times as
the loops are traversed. These closed loops screen the charged-current
interaction and may effectively change the sign of the interaction
between the segments of charged currents, as explained in the text.
This in turn may cause the transition of the charged sector to turn first
order.

the dual action than those that attract repulsively, and they
will therefore dominate the configurations where many closed
color-changing loops (originating with tightly bound counter-
flowing currents) are present. This attraction may cause an
effective attraction between the charged composite current
segments, via the attraction to the closed current-changing
loops. An identical physical picture holds when working with
the dual objects to the currents, namely vortices.

To summarize, the basic mechanism causing a first-order
phase transition is the influence of partial decomposition of
composite neutral currents on the interaction between charged
composite currents, equivalently the influence of partial
decomposition of composite neutral vortices on the interaction
between composite charged vortices. These pictures are partic-
ular dual manifestations of the general concept of a preemptive
first-order phase transition. In such a transition, a putative
second-order phase transition associated with proliferation of
topological defects in a given order parameter is converted to a
first-order phase transition preemptively by strong fluctuations
(not necessarily critical) in some other field.

IV. CURRENT CORRELATIONS AND THE
HIGGS MECHANISM

The defining characteristic of the inverted 3DXY transition
in the charged sector is a spontaneous U(1) gauge-symmetry
breaking associated with the gauge field A becoming massive
as the system crosses the transition point of the metallic state
into the superconducting state. In this section, we investigate
how the onset of the mass mA of the photon (the Higgs
mass), which is equivalent to the Meissner effect of the
superconductor, comes about as result of a nonanalytic change
in the infrared properties of the current correlations of the
system. mA is found from the limiting form of the gauge-field
correlation function〈

Aμ
q Aν

−q

〉 ∼ 1

q2 + m2
A

. (28)

To calculate 〈Aμ
q Aν

−q〉, we consider the action of the charged
sector given on the form Eq. (A7) before integrating out the
gauge field, and insert source terms source J q ,

SJ =
∑

q

[
ie

2

∑
α

bq,α · A−q + ie

2

∑
α

b−q,α · Aq

+ β

2
| Qq |2 Aq · A−q

+ 1

2
( J q · A−q + J−q · Aq)

]
, (29)

which in turn may be written in the form

SJ =
∑

q

⎧⎨
⎩

⎡
⎣Aq + 1

2

(
J q + ie

∑
α

bq,α

)
D−1

q

⎤
⎦Dq

×
[

A−q + 1

2

(
J−q + ie

∑
α

b−q,α

)
D−1

q

]

− 1

4

(
J q + ie

∑
α

bq,α

)
D−1

q

×
⎛
⎝ J−q + ie

∑
β

b−q,β

⎞
⎠

⎫⎬
⎭. (30)

Here, Dq = β| Qq |2/2 as before. After shifting and integrating
the gauge field, we have

SJ = −
∑

q

⎧⎨
⎩ 1

2β| Qq |2

⎡
⎣Jμ

q P
μν

T J ν
−q − e2

∑
αβ

bμ
q,αb

μ
−q

+ ie
∑

α

(
J

μ
−qb

μ
q,α + Jμ

q b
μ
−q,α

)⎤
⎦

⎫⎬
⎭, (31)

where repeated indices are summed over, and P
μν

T is the
transverse projection operator

P
μν

T = δμν − Q
μ
q Qν

−q

| Qq |2 . (32)
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The gauge-field correlator is then given by

〈
Aμ

q Aν
−q

〉 = 1

Z0

δ2ZJ

δJ−q,μδJq,ν

∣∣∣∣
J=0

= 1

Z0

∑
{b,m}

∏
r,α

δ�·br,α ,
∑

β �=α εαβmr,α,β

∏
r,μ,α

Ibr,α,μ
(β)

×
∏

r,α<β

Imr,α,β
(βλ)

×
(

− δ2SJ

δ Jμ
−qδ Jν

q
− δSJ

δ Jμ
−q

δSJ

δ Jν
q

)
e−SJ

∣∣∣∣
J=0

.

(33)

Here, Z0 is the partition function with the sources set to zero.
The functional derivatives of the action are given by

− δSJ

δ Jν
q

= 1

β| Qq |2
(

J ν
−qP

μν

T + ie
∑

α

bν
−q,α

)
(34)

and

− δ2SJ

δ Jμ
−qδ Jν

q
= 1

β| Qq |2 P
μν

T . (35)

Inserting this into Eq. (33) and setting the currents to zero, we
have

〈
Aμ

q Aν
−q

〉 = P
μν

T

β| Qq |2 − e2

β2| Qq |4
〈∑

αβ

bμ
q,αbν

−q,β

〉
. (36)

Setting ν = μ and summing over μ yields the relevant
correlator

〈Aq · A−q〉 = 1

β| Qq |2
(

2 − e2

β| Qq |2 〈Bq · B−q〉
)

, (37)

where we have defined 〈Bq · B−q〉 = 〈∑αβ bq,α · b−q,β〉.
The effective gauge field mass is given by the zero-

momentum limit of the inverse propagator,

m2
A = lim

q→0

2

β〈Aq A−q〉 . (38)

As is seen from Eq. (37), the relevant combination of current-
field correlators is the superconducting current, while charge-
neutral currents do not appear in the expression. The current-
correlator may be interpreted as the helicity modulus, which
at a charged fixed point has a nonanalytic behavior of the term
proportional to q2. We expect the leading behavior to be [28]

lim
q→0

e2

2β
〈Bq · B−q〉 ∼

⎧⎪⎨
⎪⎩

[1 − C2(T )]q2, T > TC,

q2 − C3(T )q2+ηA, T = TC,

q2 − C4(T )q4, T < TC.

(39)

The result given above is dual to an expression for the gauge
mass in terms of correlation function of topological defects
of the superconducting order, i.e., vortices [17,28,29], since
vortices are dual objects to the currents b. In 3D, it is known
that the dual of a superfluid is a superconductor, and vice
versa [17,24,28,29]. Therefore, the above result for the current
correlator of a superconductor features the same behavior as
the vortex-vortex correlator at a neutral fixed point, since a

neutral fixed point in the original theory is a charged fixed
point in the dual theory. Here, C2 is the helicity modulus of
the system, C3 is a critical amplitude, and C4 is essentially the
inverse mass of the gauge field. The physical interpretation of
limq→0

e2

2β
〈Bq · B−q〉 is that when this quantity is zero, there

are no long-range correlations of current loops in the system;
i.e., there are no supercurrents threading the entire system
which is therefore normal metallic. Conversely, when T < Tc

this correlator is nonzero. There are supercurrents threading
the entire system, which is therefore superconducting. When
T > TC , the gauge mass will be zero in the long-wavelength
limit. When T < TC , however, the factors of q2 will cancel,
and the gauge correlator obtains a finite expectation value, and
hence a mass. The Higgs mechanism (Meissner effect) in an N -
component superconductor is therefore a result of a blowout of
closed loops of charged currents as the temperature is lowered
through the phase transition. Conversely, the transition to the
normal state is driven by a collapse of closed current loops,
which is dual to a blowout of closed vortex loops. In either way
of looking at the problem, the Higgs mechanism is fluctuation
driven.

Note that the above result is valid for any number of
components N � 1, and any value of the Josephson coupling
λ � 0.

The preemptive scenario described in the previous section
impacts the temperature dependence of the Higgs mass at the
transition from the superconducting to the normal-metallic
state. The mass vanishes continuously in an inverted 3DXY

phase transition if the value of the gauge charge is large enough
for the preemptive scenario to be ruled out for any λ, including
λ = 0. For small enough gauge-charge, such that fluctuations
in the neutral sector strongly affect fluctuations in the charged
sector, and vice versa, the preemptive effect comes into play.
In that case, the Higgs mass vanishes discontinuously at the
phase transition.

V. CONCLUSION

We have formulated an N -component London supercon-
ductor with intercomponent Josephson couplings as a model of
N integer-current fields bα and N (N − 1)/2 monopole fields,
mα,β . These monopoles allow supercurrents of a particular
condensate component to be converted to a supercurrent of a
different component; i.e., currents may change “color” at any
site. For zero Josephson coupling, λ, only configurations where
all the monopole fields are zero contribute, and the model
reverts to an N -component gauge-coupled 3DXY model. This
model is known to have either (i) N − 1 transitions in the XY

universality class and a single phase transition in the inverted
XY universality class, or (ii) a single preemptive first-order
phase transition for intermediate values of the charge. For
any λ > 0, the N − 1 phase transitions in the neutral sector
are converted to crossovers. In the limit λ → ∞, all orders of
monopole excitations will contribute. This effectively removes
the constraints � · bα = 0 on each individual component.
There is only one particular composite mode,

∑
α bα , which is

still divergenceless, and which thus features a phase transition.
This transition is known to be in the inverted 3DXY universality
class for λ = 0. For small but finite λ, fluctuations in the neutral
sector are still substantial although the phase transitions are
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all converted to crossovers. These charge-neutral noncritical
fluctuations nonetheless substantially influence the putative
critical fluctuations in the charged sector, particularly at
temperatures close to the λ = 0 3DXY critical point. This
converts the inverted 3DXY critical point into a first-order
phase transition via a preemptive effect. The degree to which
the charge-neutral fluctuations influence the fluctuations in
the charged sector for small λ increases with the number of
composite charge-neutral fluctuating modes. In the parameter
regime (e,λ) where one may have a preemptive effect,
the first-order character of the superconductor–normal metal
phase transition will therefore be more pronounced with
increasing N .

As a by-product of our analysis, we have recast the onset of
the photon Higgs mass in the superconductor (Meissner effect)
in terms of a blowout of current loops associated with the onset
of superconductivity. This analysis goes beyond mean-field
theory and takes all critical fluctuations of the theory into
account. The description giving the onset of the Higgs mass
of the photon in terms of a current loop blowout going into the
superconducting state as temperature is lowered is dual to the
description of the vanishing of the Higgs mass of the photon in
terms of vortex-loop blowout going into the normal-metallic
state as the temperature is increased.
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APPENDIX A: THE CHARACTER EXPANSION

We apply the expansion

eβ cos γ =
∞∑

b=−∞
Ib(β)eibγ (A1)

to the cosine terms of Eq. (4), with λ = 0. This gives the action

Z =
∫

DA

(∏
α

∫
Dθα

)

×
∏

r,μ,α

∞∑
br,μ,α=−∞

Ibr,μ,α
(β)eibr,μ,α (�μθr,α−eAr,μ)

×
∏

r

e− β

2 (�×Ar )2

. (A2)

By performing a partial integration of each phase component,
θr,α , we move the lattice derivative from the phase to the
integer field b in the first term. Then we factorize the terms
dependent on the phases on each lattice site, which may then
be integrated separately,

Zθ =
∏
r,α

∫ 2π

0
dθr,αe−iθr,α (

∑
μ �μbr,μ,α ). (A3)

This constrains the b fields to have zero divergence,

� · br,α = 0 ∀ r,α. (A4)

The partition function then reads

Z =
∫

D(A)
∑
{b}

∏
r,α

δ�·br,α ,0

∏
r,μ,α

Ibr,μ,α
(β)

×
∏

r

e−[ie
∑

α br,α ·Ar+ β

2 (�×Ar )2]. (A5)

This represents N integer-current fields which must form
closed loops individually, coupled by a single gauge field, A.

The next step is to integrate out the gauge degrees of
freedom. To this end we Fourier-transform the action

S =
∑

r

[
ie

∑
α

br,α · Ar + β

2
(� × Ar )2

]
(A6)

into

S =
∑

q

[
ie

2

∑
α

bq,α · A−q + ie

2

∑
α

b−q,α · Aq

+ β

2
( Qq × Aq)( Q−q × A−q)

]
. (A7)

Here, we have symmetrized the b · A term, and Qq is the
Fourier representation of the lattice differential operator, �.
We can further simplify the expression by choosing the
gauge � · Ar = 0, which translates to Qq · Aq = 0 in Fourier
space. This reduces the last term to β| Qq |2 Aq · A−q/2, where
| Qq |2 = ∑

μ (2 sin qμ/2)2. Now we complete the squares in
Aq , to facilitate the Gaussian integration

S =
∑

q

⎡
⎣(

Aq + ie

2

∑
α

bq,αD−1
q

)
Dq

×
(

A−q + ie

2

∑
α

b−q,αD−1
q

)

+ e2

4

(∑
α

bq,α

)
D−1

q

⎛
⎝∑

β

b−q,β

⎞
⎠

⎤
⎦, (A8)

where Dq = β| Qq |2/2. Now we can shift and integrate out
the gauge field, Aq , which leaves us with

S =
∑

q

e2

2β| Qq |2
(∑

α

bq,α

)
·
⎛
⎝∑

β

b−q,β

⎞
⎠, (A9)

or in real space

S =
∑
r,r ′

e2

2β

(∑
α

br,α

)
·
⎛
⎝∑

β

br ′,β

⎞
⎠D(r − r ′). (A10)
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Here, D(r − r ′) is the Fourier transform of 1/| Qq |2. Inserting
this into the action, we arrive at

Z =
∑
{b,m}

∏
r,α

δ�·br,α ,0

∏
r,μ,α

Ibr,α,μ
(β)

×
∏
r,r ′

e
− e2

2β

∑
α,β br,α ·br′ ,βD(r−r ′)

, (A11)

which is Eq. (9).

APPENDIX B: TWO-DIMENSIONAL MULTIBAND
SUPERCONDUCTORS

In a thin-film superconductor, the effective magnetic pen-
etration depth is inversely proportional to the film thickness.
Hence, in a two-dimensional system, the magnetic penetration
depth becomes infinite, and the effective charge of the
charge carriers becomes zero. This effectively freezes out
the gauge-field fluctuations of the interior of the film, in turn
eliminating the long-range gauge-field-mediated vortex-vortex
interactions. In this case the relevant lattice action will be

S = −β
∑

r

∑
μ,α

cos(�μθr,α)

−βλ
∑

r

∑
α<β

cos(θr,α − θr,β). (B1)

That is, it is effectively a neutral condensate.

We may apply the character expansion of Eq. (8) to
Eq. (B1), which results in the partition function

Z =
∑
{b,m}

∏
r,α

δ�·br,α ,
∑

β �=α mr,α,β

×
∏

r,μ,α

Ibr,α,μ
(β)

∏
r,α<β

Imr,α,β
(βλ). (B2)

This is of course very similar to Eq. (12), with the dif-
ferences being as follows. The integer-current field, br ,
is now a two-component vector, as is naturally the posi-
tion vector, r , and the gauge-field-mediated interaction has
disappeared.

We may apply the same reasoning to Eq. (B2) as we
did in the main text. There will be a single mode,

∑
α br ,

which is divergenceless, and N (N − 1)/2 modes with finite
divergence. The only difference now in the two-dimensional
case is the lack of gauge-field-mediated interactions in the
divergenceless mode. Hence, the single remaining phase tran-
sition is expected to be a Kosterlitz-Thouless transition from a
two-dimensional superfluid to a normal fluid. This prediction
could be verified in Monte Carlo simulations, as the partition
function of Eq. (B2) is particularly well suited for worm-type
algorithms.
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