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We consider a two-component Bose-Einstein condensate with and without synthetic “spin-orbit” interactions
in two dimensions. Density and phase fluctuations of the condensate are included, allowing us to study the impact
of thermal fluctuations and density-density interactions on the physics originating with spin-orbit interactions.
In the absence of spin-orbit interactions, we find that intercomponent density interactions deplete the minority
condensate. The thermally driven phase transition is driven by coupled density and phase-fluctuations, but is
nevertheless shown to be a phase-transition in the Kosterlitz-Thouless universality class with close to universal
amplitude ratios irrespective of whether both the minority- and majority condensates exist in the ground state, or
only one condensate exists. In the presence of spin-orbit interactions we observe three separate phases, depending
on the strength of the spin-orbit coupling and intercomponent density-density interactions: a phase-modulated
phase with uniform amplitudes for small intercomponent interactions, a completely imbalanced, effectively
single-component condensate for intermediate spin-orbit coupling strength and sufficiently large intercomponent
interactions, and a phase-modulated and amplitude-modulated phase for sufficiently large values of both the
spin-orbit coupling and the intercomponent density-density interactions. The phase that is modulated by a single
q-vector only is observed to transition into an isotropic liquid through a strong depinning transition with periodic
boundary conditions, which weakens with open boundaries.
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I. INTRODUCTION

Spin-orbit coupling (SOC) underpins many fascinating
phenomena in condensed-matter physics, including spin-
Hall [1,2] effects and the existence of topological insulators
[3–6]. SOC is also important for determining the physical
properties of such important functional materials as GaAs [7].
Due to the fundamental magnetoelectric character of SOC
in charged systems, it also has important ramifications for
the manipulation of spin degrees of freedom using electric
fields, currently a research topic of intense focus. While
these examples represent systems in which a real physical
spin is coupled to the orbital motion of electrons, similar
phenomena may also be investigated in bosonic systems. Here,
the SOC does not originate with a relativistic correction to
the equations of motion, as it does in the electronic systems
mentioned above. Rather, it is synthetic in the sense of
being engineered [8,9], Rashba [10], and Dresselhaus [11]
coupling in multicomponent Bose-Einstein condensates. Such
multicomponent condensates could be either homonuclear,
with different species occupying different hyperfine spin
states [12,13], or they could be mixtures of different types of
bosons [14,15]. In either case, one may associate an index with
each species of the condensate, serving as an internal “spin”
degree of freedom. A great advantage of studying the physics
of competing interactions and couplings in Bose-Einstein
condensates or other ultracold atomic systems is that the
interaction parameters, namely density-density interactions
and “spin-orbit” couplings, are highly tunable. This facilitates
the study of a wide range of phenomena that are otherwise not
accessible in standard condensed-matter systems.

SOC in a confined bosonic gas of cold atoms has been
achieved using an optical Raman-dressing scheme [8]. A
similar scheme has also been used in cold fermionic gases [16].
In optical lattices [17], synthetic SOC has been realized in
a one-dimensional lattice using a similar Raman-dressing

scheme [18]. Other proposals for realizing SOC in an op-
tical lattice include periodically driving the lattice with an
oscillating magnetic-field gradient [19], or using off-resonance
laser beams [20]. The latter two schemes avoid the problem of
heating caused by spontaneous emission of photons, as they
do not rely on near-resonant laser fields.

In the case of topological insulators, the classification
scheme and the physical properties of these systems are largely
worked out and predicted at zero temperature and ignoring
many-body interactions [6,21–23]. It seems worthwhile to
examine the effects of both temperature and many-body
interactions on the effect of SOC. In this respect, looking
at “pseudospin” Bose-Einstein condensates offers an attrac-
tive alternative for studying many-body effects, since one
can, among other things, perform large-scale Monte Carlo
simulations without the complicating factors arising from
Fermi statistics in the problem. Bosonic systems also have
the attractive property of featuring a condensate at low enough
temperatures, such that one has a mean-field starting point to
compare with, at least provided the system is placed far enough
away in parameter space from the critical point arising either
from interaction effects or thermal fluctuations.

Previous works on bosonic spin-orbit coupled condensates
have shown that their ground state has a periodically modulated
striped spin structure both in a lattice model [24–27] and
by considering the continuum Gross-Pitaevskii equations
[28–30]. Including SOC splits the energy bands of spin-up and
spin-down particles into bands of definite helicity, where the
lower band will have minima at finite momentum, provided
that any additional Zeeman splitting (i.e., imbalance in the
condensate density) of the bands is not too large. A continuum
model will have a degenerate ring of minima in momentum
space, with a fixed length of the momentum vector in two
dimensions, while a square lattice will break the degeneracy
down to four points along the diagonals of the lattice. It has also
been shown that, in the weak-coupling limit, the bosons will
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condense either into one or two minima in the ground state,
depending on the strength of the intracomponent interactions.
Furthermore, the stability of the Rashba-coupled Bose gases
in the presence of thermal and quantum fluctuations has been
studied in the Bogoliubov approximation [31,32]. However,
the full range of thermal fluctuations has not been considered
before in such systems.

In this paper, therefore, we consider a two-dimensional two-
component Bose-Einstein condensate with Rashba synthetic
SOC. The condensates are also assumed to be population-
imbalanced with different densities among the components
in the ground state. Fluctuation effects are strong in two-
dimensional systems such that no local order parameters exist
for systems with continuous symmetries. Even so, one may get
some rough insights into the effects of varying interactions and
temperature at the mean-field level. For a spin-orbit coupled
system featuring a nonuniform ground state, this differs from
the case in which one expects a uniform ground state, in that
the gradient terms of the theory need to be included even at the
mean-field level. We will perform such a mean-field analysis in
this paper, and we will compare the results to what we obtain in
large-scale Monte Carlo simulations. At low temperatures, we
find that a mean-field analysis yields results for critical values
of interaction parameters that destroy the minority condensate,
in good agreement with Monte Carlo simulations. At elevated
temperatures, we find that the amplitude-fluctuating two-
component condensate undergoes Kosterlitz-Thouless phase
transitions for two qualitatively different parameter regimes.
(i) In the absence of SOC, we find that the condensate loses
phase coherence via proliferation of vortex-antivortex pairs
in an amplitude-fluctuating background, and that this phase
transition is a Kosterlitz-Thouless phase transition with a
universal amplitude ratio of the jump in superfluid density to
critical temperature given by 2/π . (ii) In a parameter regime
where SOC plays a role, and gives a nonuniform ground state
in the form of stripes of modulated phases (but not amplitudes)
of the condensate ordering fields, we find via finite-size scaling
of the structure functions at the pseudo-Bragg vectors that the
stripes melt through thermal depinning from the lattice, and not
in a Kosterlitz-Thouless phase transition. When the condensate
we study features a nonuniform ground state, it may be thought
of as a bosonic analog to either a two-dimensional two-
component superconductor in a Larkin-Ovchinnikov state, or
to a one-component superconductor in a Fulde-Ferrell state.
The former features topological order at finite temperature, the
latter is topologically disordered at any finite temperature [33].

The paper is structured as follows. Section II presents
the model and observables we use to classify the states
and transitions observed. Section III contains the mean-field
calculations. Section IV describes the Monte Carlo scheme we
use. In Sec. Section V, all our Monte Carlo results as well as
discussions on their significance are included. We present our
conclusions in Sec. VI.

II. MODEL

In this section, we present the lattice model used in the
Monte Carlo simulations, discuss some of its basic properties,
and present the observables measured in simulations to classify
the phases and phase transitions that we observe.

A. Ginzburg-Landau model

The starting point of our formulation is the standard two-
component Ginzburg-Landau model with an added SOC, given
by

H =
∫

d2r

[
1

2
|∇�|2 + V (�)

]
+ HSO. (1)

Here, �† = (ψ∗
1 ,ψ∗

2 ) is a spinor of two complex fields,
where the individual components may be thought of as a
pseudospin degree of freedom, and V is the potential. We
allow the potential to contain inter- and intracomponent
density-density interactions, as well as a chemical potential.
The chemical potential is chosen to have different strengths
for each component, which may be viewed as a Zeeman-like
field acting on the pseudospins,

V (�) =
∑

i

αi |ψi |2 +
∑
ij

gij |ψi |2|ψj |2. (2)

The term containing the spin-orbit interaction, HSO, is of the
Rashba type, of the form

HSO = iκ

2

∫
d2r�†[(σ × ∇) · ẑ]� + H.c. (3)

We may write the SOC in component form,

HSO = κ

2

∫
d2r[ψ∗

2 ∂xψ1 − ψ∗
1 ∂xψ2

+ iψ∗
2 ∂yψ1 + iψ∗

1 ∂yψ2] + H.c. (4)

To simplify the representation of the potential term, we
introduce the following parametrization: α1 = α(1 − �), α2 =
α(1 + �), g11 = g(1 − γ ), g22 = g(1 + γ ), and g12 = λg.
� thus tunes the imbalance of the components, γ tunes
the relative strengths of the intracomponent density-density
interactions, while λ tunes the strength of the intercomponent
density-density interaction. The latter is responsible for pro-
ducing a phase-separated state.

This particular Ginzburg-Landau theory has been much
studied in the literature in the absence of SOC. It features a rich
phase diagram where either one or both of the condensates may
exist. In three dimensions, the phases are separated by first-
or second-order phase transitions, depending on the details
of the model [34]. The main impact of SOC is to produce a
qualitatively new feature compared to the case without SOC,
namely a nonuniform ground state; see below.

B. Lattice formulation

To arrive at a lattice model suitable for Monte Carlo
simulations, we discretize the continuous fields ψi on a
square grid, that is, we let ψi → ψr,i , where r = (rx,ry),
rμ ∈ (1, . . . ,L), and μ ∈ (x,y). The derivatives are converted
to forward finite differences through the replacement

∂μψi → 1

a
(ψr+μ̂,i − ψr,i), (5)

where μ̂ is a unit vector in the μ direction, and a is the
lattice spacing. We suppress the lattice spacing in the following
expressions, real-space distances are plotted in units of a, while
reciprocal space is plotted in units of 2π/La. By introducing
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real amplitudes and phases, ψr,i = |ψr,i | exp(iθr,i), we may
write the derivatives of the Hamiltonian in terms of trigono-
metric functions.

We write the Hamiltonian as a sum of three terms as follows:

H = HK + HSO + HV . (6)

HK contains the kinetic terms, which are written in the standard
cosine formulation

HK =
∑
r,μ̂,i

(|ψr|2 − |ψr+μ̂,i ||ψr,i | cos �μθr,i). (7)

The potential term, with the new parametrization, is now
written as

HV =
∑

r

[−α(1 − �)|ψr,1|2 − α(1 + �)|ψr,2|2

+ g(1 − γ )|ψr,1|4 + g(1 + γ )|ψr,2|4
+ 2gλ|ψr,1|2|ψr,2|2]. (8)

The SOC term on the lattice may also be described in terms of
trigonometric functions. By replacing the differential operators
of Eq. (4) by the forward difference representation of Eq. (5),
and then replacing the complex fields with the amplitude and
phase representation, we may write this particular term of the
Hamiltonian as

HSO = −κ
∑

r

[|ψr,1||ψr+x̂,2| cos(θr+x̂,2 − θr,1)

− |ψr,2||ψr+x̂,1| cos(θr+x̂,1 − θr,2)

+ |ψr,1||ψr+ ŷ,2| sin(θr+ ŷ,2 − θr,1)

+ |ψr,2||ψr+ ŷ,1| sin(θr+ ŷ,1 − θr,2)]. (9)

C. London model

Thermal fluctuations of the phases of the complex order
parameter component are the most relevant fluctuations.
Hence, it is useful first to neglect the amplitude fluctuations
and consider a London model of the problem. Toward that end,
we write the complex fields as ψi = ρi exp iθi , where only the
phase θi is allowed to fluctuate. Note that this also implies that
we assume the amplitudes to be uniform. To arrive at a London
formulation, we write the Ginzburg-Landau Hamiltonian of
Eq. (1) in component form, and we replace the complex fields
with a constant amplitude and a fluctuating phase, as described
above. This gives

H =
∫

d2r

[∑
i

ρ2
i

2
(∇θi)

2

− κρ1ρ2[sin(θ1 − θ2)∂x(θ1 + θ2)

+ cos(θ1 − θ2)∂y(θ1 + θ2)]

]
, (10)

such that two composite variables with very different behaviors
emerge. On the one hand, θ− ≡ θ1 − θ2 has a preferential
value: in the presence of the gradients of the phase sum, the
second term in the above equations has phase-locking effects.
On the other hand, θ+ ≡ θ1 + θ2 has first-order gradient terms,
which may make it energetically favorable to modulate this
phase. As the SOC term couples the two variables, there

may be a subtle interplay between them influencing the phase
transitions of the model.

The scaling dimension of the SOC term will be one less than
that of a Josephson coupling (a Josephson term has no deriva-
tives, while the SOS term has a single derivative). The SOC
coupling is therefore less relevant, in a renormalization-group
sense, than the Josephson coupling. A Josephson coupling is a
singular perturbation on the system where Josephson coupling
is absent, being highly relevant at any strength of the coupling
[see, for instance, Appendix E of Ref. [35], in particular the
discussion following Eq. (E7)]. It leads to a locking of phases
of the complex order parameters of each component of the
condensate, thus reducing the symmetry of the system from
U (1)×U (1) to U (1) (for the two-component case we study
in this paper). On the other hand, the scaling dimension of
the SOC term is one higher than current-current interactions
in a multicomponent BEC, a so-called Andreev-Bashkin
term [36,37], which leaves the U (1)×U (1) symmetry of the
uncoupled system intact. The SOC coupling is an interesting
case falling in between these two cases. Namely, at a given
imbalance, a critical value of the SOC must be reached before
the SOC term leads to a nonuniform ground state. Below this
critical strength, the system effectively is represented (ignoring
for the moment many-body interactions) as two independent
condensates with U (1)×U (1) symmetry. Above the critical
value of SOC, the system takes up a finite-momentum ground
state. The SOC then effectively acts as a finite-momentum
phase-locking Josephson coupling, as we shall see below.

Below, we will perform a mean-field analysis, where we
assume that the phases and amplitudes of the boson condensate
are modulated by some wave vector, which is included as a
variational parameter when the free energy is minimized. This
result may be compared to the previous work done on SOC
bosons. We also compare the mean-field analysis to Monte
Carlo simulations of the interacting lattice model.

D. Observables

The phase transition observed at κ = 0 is classified by
examining the helicity modulus, defined by

〈ϒi,μ〉 ≡ 1

V

∂2F (�i,μ)

∂�2
i,μ

, (11)

along with the fourth-order modulus

〈ϒ4,i,μ〉 ≡ 1

V 2

∂4F (�i,μ)

∂�4
i,μ

, (12)

where �i,μ is an infinitesimal twist applied to the phase θr,i in
the μ direction, and F (�i,μ) is the free energy with this twist
applied. The transition manifests itself as a discontinuity in the
helicity modulus in the thermodynamic limit. This translates
to a dip in the fourth-order modulus that does not vanish in the
thermodynamic limit. See Appendix for more details. As the
x and y directions are equivalent, we will consider the average
of ϒi,x and ϒi,y denoted by ϒi,⊥, as well as the average of
ϒ4,i,x and ϒ4,i,y denoted by ϒ4,i,⊥.

To examine the thermal melting of the spin-orbit-induced
ground-state modulation, we calculate the specific heat, Cv . It
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is given as fluctuations of the Hamiltonian,

CV = β2(〈H 2〉 − 〈H 〉2). (13)

To compare the Monte Carlo results to mean-field calcula-
tions, we measure the average amplitude ui , defined as

ui =
〈∑

r

|ψi,r |2
〉
. (14)

Note that we use the same notation for both the mean-field
value and the thermal average of |ψi |2. It should be clear
from the context which one is discussed. We also measure
the thermal average of the density as a function of position,
〈|ψi(r)|2〉, to examine possible modulations in the density
substrate. To monitor the thermal fluctuations in the condensate
densities, we compute their probability distribution, P(|ψi |2),
by making a histogram of the field configurations at each
measuring step of the Monte Carlo simulations.

To monitor the formation of the modulated ground state,
we compute the phase correlation function, defined by

GX(r,r ′) = 〈eiθr,X e−iθr′,X 〉. (15)

Here, X may represent either component 1 or 2, as well as
the sum or difference of the two, θ1 + θ2 and θ1 − θ2. We also
calculate its Fourier transform, the phase structure function,
defined by

GX(q) = 1

V

∑
r,r ′

eiq·(r−r ′)GX(r,r ′). (16)

At large distances, r , the correlation function is expected to
scale as GX(r) ∼ r−η. We measure this exponent by extracting
the value of GX(q) at a particular value, Q, which in turn
defines the exponent ηQ as

GX( Q) ∼ L2−η. (17)

III. MEAN-FIELD THEORY

Intercomponent density interactions suppress the minority
condensate at sufficiently strong values of the coupling value.
To get crude estimates for the interaction parameters needed
for this to occur, we start out by considering the model in
the mean-field approximation. The full fluctuation spectrum
of the bosonic ordering fields will be considered in subsequent
sections. Here, we give the mean-field theory in a continuum
model.

To account for the fact that the ground state is generically
modulated in the presence of SOC, we assume that the
complex fields ψi are given in terms of a mean-field value plus
fluctuations, multiplied by a spatial plane-wave modulation
with momentum q. In general, we may use the ansatz [38,39]

ψ1,q =
√

u1 + δu1 exp i(φ1 + δφ1 − arg q + q · r), (18)

ψ2,q =
√

u2 + δu2 exp i(φ2 + δφ2 + q · r), (19)

where arg q is the orientation of q with respect to some
reference axis. Specifically, we follow previous work [38,39]
and assume that the ground state is either modulated by a single
wave vector (denoted �0) or by two oppositely aligned wave

vectors (denoted �π ). That is,

�0 =
(

ψ1,q

ψ2,q

)
(20)

and

�π = 1

2

(
ψ1,q + ψ1,−q

ψ2,q + ψ2,−q

)

=
(

−√
u1 + δu1e

iφ1+iδφ1−iθ̄ sin q · r√
u2 + δu2e

iφ2+iδφ2 cos q · r

)
, (21)

where θ̄ is the average angle of q and −q with respect to the
x axis. Here, the amplitudes, phases, and wave vectors are to
be regarded as variational parameters in the mean-field free
energy of the modulated state.

Inserting these expression into Eq. (1) and using the mean-
field values only, we obtain the two free-energy densities f0

and fπ ,

f0 = |q|2
2

(u1 + u2) − 2|q|κ√
u1u2 sin(φ1 − φ2) + V0. (22)

fπ = |q|2
4

(u1 + u2) − |q|κ√
u1u2 cos(φ1 − φ2) + Vπ . (23)

Here, the potentials V0 and Vπ differ slightly due to numerical
factors obtained when integrating over space. They have the
forms

V0 = −α[(1 − �)u1 + (1 + �)u2]

+ g
[
(1 − γ )u2

1 + (1 + γ )u2
2 + 2λu1u2

]
(24)

and

Vπ = −α

2
((1 − �) + u1(1 + �)u2)

+ g

8

[
3(1 − γ )u2

1 + 3(1 + γ )u2
2 + 2λu1u2

]
. (25)

Note from Eqs. (22) and (23) that in a modulated ground
state, the SOC essentially acts as a phase locking on φ1 − φ2

in a system with a uniform ground state. We may minimize
Eqs. (22) and (23) with respect to this phase difference,
assuming that |q| �= 0 and ui �= 0 ∀ i, which yields a phase
locking of φ1 − φ2 = π/2 for f0 and φ1 − φ2 = 0 for fπ . The
angle arg q in the single q-vector case and the average angle θ̄

drop out of the equations, which reflects the degeneracy of the
single-particle spectrum.

Considering the modulation vector present in Eqs. (22)
and (23) as a variational parameter, and assuming ui �= 0 ∀ i,
we find

|q| = 2κ
√

u1u2

u1 + u2
(26)

in both cases. With this solution inserted into the free-energy
densities, they become

f0 = −2κ2u1u2

u1 + u2
+ V0 (27)

and

fπ = − κ2u1u2

u1 + u2
+ Vπ . (28)
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FIG. 1. Results for minimum values of f0 and fπ as a function of
λ for two values of κ . Top panel: κ = 1. Bottom panel: κ = 2. Note
how f0 ceases to be dependent on λ for large λ, at some value λ∗.
Note also the discontinuity in the derivative of f0 at λ = λ∗.

Equations (27) and (28) may be solved, in principle, for u1

and u2, but as they are cubic, the expressions for the solutions
are unwieldy and not particularly illuminating. Instead, we
numerically minimize both free-energy densities, and then
we determine the ground state for a given parameter range
by finding min(f0,fπ ). This gives the regions of the phase
diagram where the ground state is modulated by either one
or two wave vectors. For the SOC to be effective, it is also
required that u1u2 �= 0. For u1u2 = 0, the model reverts to a
single-component condensate, i.e., a “spinless” model where
SOC cannot be operative.

In Fig. 1, we plot a few representative values of f0 and fπ

as a function of λ for two values of κ . For the lowest value of
κ , it is seen that f0 < fπ for all values of λ. Hence, a ground
state modulated by two q-vectors is not found. For a larger
value of κ , f0 < fπ for low and high values of λ, while for
intermediate values of λ, fπ < f0. Thus, for large enough κ

and intermediate values of λ, there is the possibility of finding
ground states modulated by two q-vectors.

Moreover, it is seen that for both values of κ , f0 is
independent of λ when λ reaches some value λ = λ∗. This
happens at the value for which the minority condensate
(u1 in this case) is completely suppressed. Furthermore, the
second crossing of f0 and fπ always occurs at values of
λ > λ∗. Therefore, for given κ and with increasing λ, the
ground state modulated by two q-vectors always transitions
into a uniform ground state with one condensate completely
suppressed.

FIG. 2. Mean-field phase diagram in the λ-κ plane, with other
parameters α = 10.0, g = 1.0, � = 0.1, γ = 0.0, and m = 1.0.
Regions I and III are the regions where both components exist and
the effect of SOC is present, resulting in a ground state at finite
momentum. In region I, the ground state is modulated by a single
wave vector. In region III, the ground state is modulated by two
oppositely directed wave vectors. Region II is the region where the
intercomponent interactions suppress the minority condensate, which
results in a single-component condensate at zero momentum.

Note also that f0 increases more rapidly with λ than fπ .
This is due to the difference in the potentials V0 and Vπ ,
Eqs. (24) and (25). Therefore, having two crossings of f0 and
fπ as a function of λ means that one of the crossing points
must always be to the right of the point where f0 becomes
λ-independent. Thus, f0 being minimal always transitions into
fπ being minimal II as λ increases. There will never be a
transition from fπ being minimal back to f0 being minimal
with increasing λ.

This may be summarized as follows. In Fig. 2, we show
the results of numerically solving Eqs. (27) and (28) in the
λ-κ plane. Region I represents the area where the single-q
modulated ground state is preferred, region III where the
two-q modulated ground state is preferred, and region II is
the area where u1u2 = 0 minimizes the free energy, making
this state a uniform, single-component state. The two lines
separating I and II, and II and III, are located by the
crossings of the free energies f0 and fπ , and they therefore
represent first-order phase transitions at the mean-field level.
The line separating regions I and II is a direct transition
between a ground state modulated by one q-vector and a
uniform ground state, without an intermediate ground state
modulated by two q-vectors. The location of this line is
therefore determined by the value of λ where f0 ceases to be
dependent on λ, while fπ represents a higher-energy state that
is irrelevant. The order of this phase transition is determined by
whether ∂f0/∂λ is continuous or discontinuous at λc. We have
∂f0/∂λ ≈ (∂f0/∂u1)(∂u1/∂λ). Using Eq. (27), we see that this
is determined by ∂u1/∂λ. Since u1 vanishes in a finite interval
in λ, ∂u1/∂λ has to be discontinuous at λ∗, and hence so does
f0. The transition line separating I and II is therefore also
first-order.
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IV. DETAILS OF THE MONTE CARLO SIMULATIONS

The model is simulated using the Monte Carlo algorithm
with a simple restricted update scheme of each physical vari-
able, using Metropolis-Hastings [40,41] tests for acceptance.
The model is discretized on a rectangular lattice of size
Lx×Ly , with periodic boundary conditions. Typically, 5×106

Monte Carlo sweeps are used at each temperature step, with
an additional 5×105 sweeps discarded for equilibration. One
sweep consists of attempting to update each physical variable
on each lattice site once in succession. The proposed new value
for each variable is picked within a restricted region around the
old value, where the size of the region is chosen to allow for
both high acceptance rates and low autocorrelation times. To
further minimize autocorrelation times and increase simulation
efficiency, we measure observables with a period of 100 Monte
Carlo sweeps. Pseudorandom numbers are generated with the
Mersenne-Twister algorithm [42]. During equilibration, time
series of the internal energy is examined for convergence, this
ensures proper equilibration. To avoid metastable states, sev-
eral simulations with identical parameters but differing initial
seeds of the pseudorandom number generator are performed
to make sure they anneal to the same state. Measurements are
postprocessed using multiple-histogram reweighting [43], and
error estimates are determined with the jackknife method [44].

The allowed range of amplitude fluctuations is determined
during the equilibration procedure by first allowing it to
fluctuate to a very large value (|ψi |2 ∼ 10 was typically used)
and then reducing the value to include all values that had a
nonzero probability of being picked according to the measured
probability distribution, P(|ψi |2).

Unless otherwise stated, we set α0 = 10.0, g = 1.0, and
γ = 0.0. The large value of α0 = 10.0 is chosen to have
sharp probability distributions of the amplitudes. Generally,
a square lattice of Lx = Ly ≡ L = 64 is used in simula-
tions, but system sizes of L ∈ (16,24,32,40,48,56,64,96,

128,160,192,224,256) are used for performing a finite-size-
scaling (FSS) analysis.

V. RESULTS OF THE MONTE CARLO SIMULATIONS

In this section, we present Monte Carlo simulations to
corroborate and expand on the arguments given in the previous
sections. The model exhibits three different classes of BECs
for different parameter regimes. For strong intercomponent
interactions and zero to intermediate SOC, there will be
only one superfluid condensate present. With no SOC, but
for intermediate intercomponent interactions, the model is a
two-component coupled superfluid. Finally, for intermediate
interactions and SOC, the model is a two-component super-
fluid with a finite q-vector. This schematic picture shown in
Fig. 2 is captured by a simple mean-field argument, but we
find it to be essentially correct also when thermal fluctuations
are taken into account in Monte Carlo simulations. We also
examine the thermal phase transitions present in the cases of
zero SOC and when the condensate is modulated by a single
q-vector.

A. Kosterlitz-Thouless transition in the absence
of spin-orbit coupling

When κ = 0, the model represents a two-component BEC
coupled by density-density interactions, which may collapse
to a single-component condensate for strong intercomponent
interactions. When neglecting amplitude fluctuations (which
of course decouples the condensates), the model reduces to the
XY model. Here, the low-temperature phase is characterized
by quasi-long-range order of the superfluid order parameter,
where vortices and antivortices form bound pairs. As the
temperature is increased, the bound vortex-antivortex pairs
unbind at a Kosterlitz-Thouless (KT) transition [45,46]. As a
check of simulations, we indeed obtain that the two-component
model with amplitude fluctuations included belongs in the KT
universality class by establishing that the helicity modulus
undergoes a discontinuous jump to zero as the system is heated
from the low-temperature state, with the value of the jump
close to the predicted universal value. We examine various
values for the intercomponent coupling λ, and we find that the
above remains true for all the values of λ we have considered.

Figure 3 shows the helicity modulus and fourth-order
modulus of component 2 for system sizes L ∈ (16,24,32,

40,48,56,64) with intercomponent coupling strength λ = 2.0.
The inset shows the depth of the dip in the fourth-order
modulus as a function of inverse linear system size. By
fitting the helicity modulus to Eq. (A8), we determine the
discontinuous jump to be ϒ(∞)βc = 0.650(1) at βc = 0.282.
Extrapolation of the value of the negative dip to 1/L = 0
gives a finite value of 0.49(1). This is clear evidence for
a discontinuous jump in the helicity modulus, placing the
transition in the Kosterlitz-Thouless universality class.

Similar results are obtained for values of λ ∈ (0.0,0.25,0.5,

0.75,1.25,1.5,1.75,2.0), as shown in Table I. For the values of
λ where both condensates persist, transitions of KT type are
observed in both components, at different critical couplings.
In all cases considered, the value of the minimum in ϒ4

converges to a nonzero value. This demonstrates that there is a
discontinuous jump in the helicity modulus, regardless of the
value of the intercomponent interaction strength, and whether
or not the minority condensate is depleted. Additionally, the
value of the discontinuous jump varies weakly with λ, and
is close to the universal value of 2/π . This indicates that
fluctuations in the condensate amplitude only have a minor
effect on the details of the transition. None of the obtained
jumps is within the prediction 2/π , with error estimates, but
most are close. Moreover, the fitting routine was sensitive to
the system sizes that were included. Both effects may have
been caused by the inclusion of amplitude fluctuations. Also
note that the critical temperature and depth of the dip varies
very weakly with λ, as long as λ � 1.0. This is very reasonable,
as the model is effectively a single-component condensate in
this regime, so varying the intercomponent interaction strength
should have little to no effect.

Finally, we remark that the fit of the discontinuous jump and
the determination of the depth of the dip in the fourth-order
modulus are two independent methods for detecting a KT
transition. As both methods give good results consistent with
the KT prediction, we are confident in claiming that the
two-component imbalanced BEC without SOC has one or
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FIG. 3. Helicity modulus (top panel) and fourth-order modulus
(bottom panel) of component 2 as a function of β for several system
sizes, with λ = 2.0 and κ = 0.0. The inset of the bottom figure shows
the value of the dip in the fourth-order modulus as a function of
inverse system size. The dashed line is a linear extrapolation to the
thermodynamic limit. At this value of the intercomponent coupling
strength, the condensate density of component 1 is extinguished, and
hence it exhibits no KT transition.

two transitions, depending on the value of the intercomponent
coupling strength, in the KT universality class. However,
pinning down a KT transition with great confidence is
notoriously difficult. In particular, Eq. (A8) involves slowly
decaying corrections that are suppressed only logarithmically.
Several works [47,48] have successfully utilized this particular
method in various models, and methods to overcome the slowly
decaying corrections do exist [49]. A detailed study of this is
not the main focus of the present paper. We limit ourselves to
noting that our results are consistent with a KT transition, as
is expected for the model in the absence of SOC.

B. Spin-orbit induced modulated ground states

Preliminary arguments based on the noninteracting energy
spectrum and mean-field calculations suggest that the ground
state of the spin-orbit coupled BEC resides at either one or
two finite q-vectors. To confirm this, Monte Carlo simulations
of the full lattice model, Eqs. (6)–(9), were performed in
parameter regions corresponding to regions I and III in the
phase diagram of Fig. 2.

1. Single q-vector

To observe the predicted modulated state in which a single
q-vector is present, we perform simulations of the lattice model
at κ = 1.0 and λ = 0.0. Figure 4 shows the real parts of the
phase-correlation function, Eq. (15), and the structure factors
of the phase-sum and phase-difference variable in the low-
temperature phase, when the inverse temperature is β = 1.5.
The phase-correlation function Eq. (15) for the phase-sum
composite variable is modulated with a single q-vector along
the diagonal. The phase-difference composite variable shows
no modulation. It is, however, highly correlated, which is a
result of the effective Josephson locking. This is in accord
with expectations based on the London approximation, where
amplitudes are frozen; see Eq. (10). The London case, with
nonmodulated amplitudes, suffices to describe the situation
with relatively small values of intercomponent density-density
interactions, where amplitudes are constant throughout the
system. The SOC term tends to lock θ1 − θ2 at constant value,
since the strength of the SOC term is effectively constant due
to the constant values of the amplitudes, while SOC induces

TABLE I. Summary of the results obtained when searching for the KT transition. Each row shows, for both components, the critical inverse
temperature with the best fit to Eq. (A8), βc, the size of the jump at this inverse temperature, ϒ∞βc, as well as the extrapolation of the value of
the minimum in the fourth-order modulus to 1/L = 0. When λ � 1.0, the density of component 1 has been completely depleted, and there is
no phase transition in this sector, as signified by the entries marked N/A.

Component 1 Component 2

λ βc ϒ∞βc Value of minimum in ϒ4 βc ϒ∞βc Value of minimum in ϒ4

0.00 0.280 0.617(1) 0.56(3) 0.226 0.642(2) 0.58(7)
0.25 0.391 0.609(1) 0.367(8) 0.249 0.5(3) 0.67(3)
0.50 0.605 0.595(1) 0.239(9) 0.284 0.625(1) 0.49(3)
0.75 2.24 0.58(1) 0.068(4) 0.290 0.627(1) 0.50(2)
1.00 N/A N/A N/A 0.292 0.662(1) 0.48(2)
1.25 N/A N/A N/A 0.290 0.667(1) 0.46(3)
1.50 N/A N/A N/A 0.290 0.703(1) 0.50(1)
1.75 N/A N/A N/A 0.284 0.653(1) 0.61(5)
2.00 N/A N/A N/A 0.282 0.650(1) 0.49(1)
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FIG. 4. The real part of the phase correlation function Eq. (15)
in real (top row) and reciprocal (middle row) space of the phase
sum (left column) and phase difference (right column), at parameters
κ = 1.0, λ = 0.0, and β = 1.0. The bottom panel shows a real-space
cut along the diagonal perpendicular to the stripes, rd , of both the
phase-sum and phase-difference correlation functions. The effect of
the SOC is manifest in the phase sum, which is modulated by a
wave vector, Q. The phase difference exhibits no modulations in the
spatial correlation. We have removed the reference point r = 0 from
the real-space plots to improve the visibility of the correlations.

a gradient in θ1 + θ2. The θ1 + θ2 modulations, therefore,
originate with SOC coupling.

In these simulations, the amplitudes are also allowed to
fluctuate. The real-space amplitude plots shown in Fig. 5 show

FIG. 5. Thermal amplitude averages in real space for component
1 (left panel) and 2 (right panel), at parameters κ = 1.0, λ = 0.0,
and β = 1.0. There are only minor spatial fluctuations around the
average, ui , in each individual component.

FIG. 6. Real part of phase-correlation function Eq. (15) in real
(top row) and reciprocal (middle row) space of the phase sum
(left column) and phase difference (right column), at parameters
β = 1.0, λ = 1.2, and κ = 1.7. In the bottom panel, we also show a
real-space cut along the diagonal perpendicular to the stripes, rd , of
both correlation functions. It is shown that both the phase sum and
the phase difference are modulated by two oppositely aligned wave
vectors, ± Q, with equal magnitude. We have removed the reference
point r = 0 from the real-space plots to improve the visibility of the
correlations.

that the spatial amplitude fluctuations are small. In this regime,
the potential does not favor large density differences between
the two components, and there is no phase separation. The state
we observe is the same as was found in Refs. [25,27], where
a single minimum in the noninteracting spectrum is populated
for λ < 1.

2. Double q-vector

The ground state modulated by two oppositely directed
q-vectors only occurs, in mean field, at sufficiently high values
of both κ and λ. To observe this state, we perform simulations at
κ = 1.7 and λ = 1.2, with β = 1.0, inside region III of Fig. 2.
In Fig. 6, we show Monte Carlo calculations of the correlation
function of the phase sum and difference in both real and
reciprocal space. As in the single-q vector case, the phase-sum
correlation is modulated, although now with a larger |q|. The
increase of the length of the q-vector directly reflects the larger
value of the SOC strength.
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FIG. 7. Thermal amplitude averages in real space for components
1 (top row, left panel) and 2 (top row, right panel) at parameters
β = 1.0, λ = 1.2, and κ = 1.7. The bottom panel shows a cut of
the amplitude averages along the diagonal perpendicular to the stripe
modulations, rd . Both amplitudes are modulated in this region of
parameter space, but around different mean values because of the
density imbalance. Furthermore, the amplitude of component 1 is
staggered compared to component 2. This minimizes the potential
energy from the intercomponent density-density interaction while
still minimizing the SOC interaction energy.

Another important difference between the double-q vector
state compared to the single-q vector state is shown in Fig. 7,
which shows the thermal averages of the amplitudes. In
this case, the amplitudes are also modulated. Furthermore,
the amplitudes of the two components are staggered when
component 1 has a large amplitude, component 2 has a low
amplitude, and vice versa. This is further exemplified in the
bottom panel of Fig. 7, where we show a cut along the diagonal
perpendicular to the stripes in the amplitude densities. Here
it is clearly seen that the two amplitude variations are mirror
images of each other, only shifted relative to each other by
the difference in the average amplitudes due to the component
imbalance.

Unlike the single-q vector case, the phase-difference
correlation is also modulated. This may now be understood
as follows. The system is in a parameter regime where λ

is large enough to induce staggering of the amplitudes of
the condensates in order to minimize energy. The London
approximation, Eq. (10), therefore no longer suffices to
describe the system, and we revert to Eq. (9). It is the term with
the minus sign in HSO that leads to the frustration of θ1 − θ1.
Were this sign to be reversed, we would have had θ1 − θ2 = 0.

FIG. 8. Thermal amplitude averages in real space for components
1 (top row, left panel) and 2 (top row, right panel) at parameters
κ = 1.0, λ = 2.0, and β = 1.0.

Since the amplitudes are modulated, so are the gradients of the
amplitudes, and so is therefore the strength of the frustration
in the phase difference. This difference is therefore itself
modulated. The modulation of θ1 − θ1 therefore originates
with the modulation of amplitudes, which is a consequence
of strong intercomponent density-density interactions. Recall
from above that the modulation of θ1 + θ1 originates with
SOC.

C. Interaction-induced destruction of modulated ground states

The mean-field calculations presented in Sec. III predict
a breakdown of the modulated ground state shown in Fig. 4
when the intercomponent interaction parameter, λ, reaches the
threshold shown in Fig. 2, provided κ � 1.5. Above this thresh-
old, the condensate transitions from a single-q condensate
into a condensate modulated by two opposite wave vectors.
For γ = 0 and � > 0, which we consider here, component
1 is the minority component that collapses. The mechanism
for the collapse is that intercomponent interactions drive the
minority component to zero to eliminate the interaction energy.
When the model collapses to an effective one-component
model, there will be no effects of the SOC, as the q-vectors of
the modulation induced by it are proportional to u1u2 at the
mean-field level.

To show this suppression, we compute the thermal am-
plitude averages of both components in the low-temperature
phase, shown in Fig. 8, when β = 1.0, κ = 1.0, and λ = 2.0.
That is, every parameter is identical to what is shown in Figs. 4
and 5, except the intercomponent interaction is increased above
the critical value given by the mean-field calculations. It is
evident that both amplitudes are now again unmodulated, but
the amplitude of component 1 has been almost completely
depleted. Its small finite value is only a remnant of the thermal
fluctuations included in the simulations.

To further explore the effect of the depletion, we compute
the phase-correlation function Eq. (15) and its Fourier trans-
form, Eqs. (15) and (16). Figure 9 shows the real parts of both
the phase-correlation function Eq. (15) and the structure factor
of both individual components. There are no modulations in the
phase-correlation function Eq. (15), and both structure factors
are isotropic. However, while the phase of component 1 is
completely uncorrelated, the phase of component 2 is strongly
correlated. The reasons for this are that (i) the condensate
amplitude of component 1 has been completely depleted,
leaving the phase of this component completely uncorrelated
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FIG. 9. Real part of the phase-correlation function Eq. (15) in
real space (top row) and reciprocal space (bottom row) for the phase
of component 1 (left column) and component 2 (right column)
at parameters κ = 1.0, λ = 2.0, and β = 1.0. We have removed
the reference point r = 0 from the real-space plots to improve the
visibility of the correlations.

at all temperatures, and (ii) the nonsuppressed condensate has
entered a low-temperature superfluid state, akin to what we
observe for κ = 0, even though we still have a finite SOC,
however ineffective.

Figure 10 summarizes the results obtained in the Monte
Carlo simulations, showing an overview of the different ground
states obtained at slow annealing from a random initial state
at high temperature down to β = 6.0, for different values

FIG. 10. Phase diagram obtained from numerical Monte-Carlo
simulations compared to mean-field predictions. The points with error
bars correspond to observed transition points, blue points correspond
to the transition from region I to region II, green points correspond to
the transition from region I to region III, and red points correspond
to the transition from region II to region III. The dashed lines are the
corresponding transition lines obtained from mean-field calculations
shown in Fig. 2.

of (κ,λ). The size of region I was largely unaffected. For
intermediate values of κ and sufficiently large values of λ,
we observe that the spin-orbit-induced modulations of both
the amplitudes and the phases are pinned to the crystal axes of
the numerical lattice. This is represented by the large error
bars of the red points denoting the transition from region
II to region III obtained from the Monte Carlo simulations.
We determine these particular error bars by finding the upper
and lower limits in κ , where we can confidently observe a
pure double q-vector condensate or a pure single-component
condensate. That aside, the mean-field and MC calculations
correspond remarkably well, even close to the area where the
three transition lines meet.

D. Thermal disordering of single-q modulated state

The thermal fluctuations of the superfluid phases are
also expected to disorder the modulated ground-state pattern
induced by the SOC. The modulation that appears in region I at
low temperatures is characterized by modulated superfluid or-
der, or superfluid order with a texture. The temperature-driven
disordering of this modulated superfluid state is expected to
lie in the KT-universality class. To examine the thermal phase
transition from the low-temperature phase of region I into the
high-temperature phase, we perform simulations of the full
Hamiltonian as written in Eq. (6) and in the London limit. The
London limit is employed here as it is the minimal model that
captures the effect of the SOC. As discussed in Sec. V B, in
region I where the condensate is only modulated by a single
q-vector, we find that the amplitudes are essentially uniform.
Hence, the amplitude fluctuations are largely irrelevant for
this phase, and we may therefore employ the London limit.
The London limit is taken by fixing |ψr,i | = 1 ∀ r,i, which
simplifies the Hamiltonian greatly.

To determine the nature of the thermal phase transition that
disorders the modulated superfluid, we measure the helicity
modulus of the phase-sum variable, the exponent ηQ , and the
specific heat. The helicity modulus is modified compared to the
case with no SOC, due to the extra terms in the Hamiltonian.
The value of the exponent ηq is expected to approach the
limit 1/4 from below as the critical inverse temperature is
approached from above [50]. In Figs. 11 and 12, we show
the results of the simulations with and without amplitude
fluctuations included, respectively. The top panels show the
specific heat on the left axis, and the value of the exponent ηQ

on the right axis. We also show the scaling of the specific-heat
peak in the insets of the top panels, and we find its exponent to
be 0.8(2) with amplitude fluctuations included, and 0.66(9) in
the London limit. In the bottom panels, we show the helicity
modulus of the phase-sum variable, both of which exhibit a
sharp jump that coincides with the drop in the scaling exponent
and the specific-heat peak. In both cases, the sharp peak of the
specific heat with its large scaling exponent, the abrupt drop of
the exponent ηQ , and the sharp jump and large error bars of the
helicity modulus all point toward a strong depinning transition
separating the modulated superfluid phase and the normal fluid
phase. A KT transition does not fit into the picture presented
by Figs. 11 and 12, mainly because the specific heat at the
KT-transition temperature has an essential singularity. This
singularity is virtually undetectable in numerical simulations.
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FIG. 11. Phase-sum structure function at the first Bragg peak, Q,
as a function of β for system sizes L ∈ (16,24,32,40,48,56,64) as
well as specific heat CV /V for L = 64 (top) and helicity modulus
of the phase-sum variable, ϒ+,⊥ (bottom), at κ = 1.0 in the London
limit. The inset of the top panel shows the scaling of the peak of the
specific-heat curves for the same system sizes used in the structure
function scaling. Note how the drop in the exponent ηQ as well as
the jump in the helicity modulus both coincide with the sharp peak
in the specific heat.

The fact that we observe such a large and strongly scaling
peak in Figs. 11(a) and 12(a) rules out a KT transition almost
immediately. The similar behaviors between the two cases of
Figs. 11 and 12 suggest that the London model is in fact a good
effective model for this particular transition. We believe the
main reason for the pinning is the periodic boundary conditions
applied to the model. This biases the stripes to connect with
themselves at the boundaries of the system, which in turn
causes very slow equilibration at the critical point, as evident
in the large error bars, especially of the helicity modulus.
In particular, fluctuations associated with shifting or rotating
the stripe configurations is particularly hard to resolve in the
Monte Carlo simulations, as these are large-scale movements,
which in turn are made even more difficult to resolve with
periodic boundary conditions applied.

In an attempt to reduce the pinning effects present in
Figs. 11 and 12 and to confirm their origin, we alter the model

FIG. 12. Phase-sum structure function at the first Bragg peak, Q,
as a function of β for system sizes L ∈ (16,24,32,40,48,56,64) as
well as specific heat CV /V for L = 64 (top), and the helicity modulus
of the phase-sum variable, ϒ+,⊥ (bottom), at κ = 1.0 in the London
limit. The inset of the top panel shows the scaling of the peak of the
specific-heat curves for the same system sizes used in the structure
function scaling. Note how the drop in the exponent ηQ as well as
the jump in the helicity modulus both coincide with the sharp peak
in the specific heat.

slightly. Instead of taking the London limit with |ψr,i | =
1 ∀ r,i, we define a Thomas-Fermi trap that decouples the
stripes from the boundaries of the system. Specifically, we set

|ψr,i | =
{

1 − (
r
R

)4
, r < R,

0, r > R.
(29)

However, this comes at the cost of not having a well-defined
helicity modulus. This is the case for this particular model,
as the decoupling of the stripes from the system boundary is
the same as applying open boundary conditions. The helicity
modulus relies on calculating the free-energy difference
between the system with periodic boundary conditions and the
system where an infinitesimal twist is applied to the phases
at the boundary [51,52]. The simulation results of the London
model in a Thomas-Fermi potential are shown in Fig. 13. Here
we show only the scaling of the first-order peak in the phase
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FIG. 13. Specific heat CV /V (left axis) and the exponent ηQ

(right axis). The inset shows a finite-size scaling of the peak of the
specific heat for system sizes L ∈ (16,24,32,40,48,56,64) at κ = 1.0
in the London limit with a Thomas-Fermi potential applied. The full
specific-heat curve shown in the main panel is for the largest system
sizes simulated, L = 64. Note how the peak of the specific-heat curves
coincides with the jump in the exponent ηQ .

sum structure function and the specific heat. Figure 13 shows
that the signs of pinning that we are able to examine, namely
the sharp peak of the specific heat and the sharp drop of ηQ , are
greatly reduced when the Thomas-Fermi potential is present.
The specific-heat curve still shows a peak that coincides with
the onset of scaling in the structure function, but the height and
sharpness of the peak are reduced. We also find the peak to
still exhibit scaling, with an exponent 0.17(4), as shown in the
inset of Fig. 13. Without the helicity modulus, we are unable
to determine confidently the nature of the phase transition, but
it is evident that the signs of pinning are almost removed. In
all likelihood, the remaining pinning signatures are associated
with the aforementioned difficulty of moving or rotating entire
stripe configurations, and they will disappear in the continuum
limit.

As a comparison, we show results for the specific heat
and the exponent ηQ taken from a simulation of the 2D
XY model in Fig. 14. Here the exponent is measured by
performing a finite-size scaling of the height of the q = 0 peak
in the phase-structure function. The defining characteristic that
shows that this is a KT transition is the fact that the exponent ηQ

reaches the limiting value of 1/4 exactly at the KT-transition
temperature, βKT ≈ 1.12. We also show the scaling of the
specific-heat peak, which has an exponent of 0 within the
errors of our simulation.

Comparing the three different models of Figs. 11–13, we
may conclude that the thermal transition from region I of the
phase diagram shown in Fig. 10 into the disordered phase
is a transition from a modulated two-dimensional superfluid
phase into a normal fluid state. The transition has strong
depinning characteristics when we apply periodic boundary
conditions. These characteristics weaken and we approach a
transition consistent with a KT-transition when we remove
the periodic boundary conditions, but we are not able to

FIG. 14. Finite-size scaling of the height of the q = 0 peak of
the structure function calculated in an XY model. System sizes
L ∈ (16,24,32,40,48,56,64) have been used. The exponent grows
linearly with temperature to the predicted value of 1/4 (represented
by the dotted line) at the critical temperature of the KT transition,
βKT ≈ 1.12.

rigorously characterize the transition as such due to the lack
of a well-defined helicity modulus.

VI. CONCLUSIONS

We have studied a model of an imbalanced two-component
Bose-Einstein condensate, with and without spin-orbit cou-
pling in two spatial dimensions, including density-density
interactions among the components. Specifically, we have
examined the modulations in the phase texture of the complex
order-parameter components induced by the spin-orbit cou-
pling, its disordering and suppression by thermal fluctuations
and interaction effects, as well as the modulations of the
amplitude texture induced by a subtle interplay between
spin-orbit and intercomponent interactions. We also examined
the phase transitions of the model in the parameter regime
where SOC is absent.

In the absence of SOC, we found that the phase transition
of the model is in the KT universality class for all values of the
intercomponent interaction strength we have considered. Here
we observed a KT transition in the nonsuppressed superfluid
condensate. These conclusions are made based on finite-size
scaling of the helicity modulus at the transition point, as well as
extrapolation of the negative dip of the fourth-order modulus
to a nonzero value in the thermodynamic limit. Both methods
strongly indicate a discontinuous jump in the superfluid density
at the critical temperature.

In the presence of SOC, we observed a phase-modulated
ground state at finite momenta in Monte Carlo simulations.
When the intercomponent interactions are weaker than the
intracomponent interactions, we find that the condensate
occupies a single minimum at finite momentum, in agreement
with previous works. This manifests itself as a modulation of
the phases of the condensate ordering fields. For sufficiently
strong intercomponent interactions and intermediate spin-
orbit interactions, we observed that the spin-orbit induced
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modulation is completely suppressed in favor of a completely
imbalanced condensate. For strong spin-orbit coupling and
sufficiently strong intercomponent interactions, however, the
total interaction energy is minimized by keeping the phase
modulation and introducing an additional, staggered modula-
tion of the amplitudes with the same period. In this phase, we
observe that the condensate occupies two q-vectors of equal
magnitude but opposite alignment.

Finally, we examined the thermal phase transition of the
spin-orbit-induced plane-wave modulated superfluid ground
state into the normal fluid state in the London approximation.
We show that the inclusion of periodic boundary conditions
introduces a strong pinning effect, which weakens as we
decouple the stripes from the edges of the system by applying
a Thomas-Fermi potential. In the presence of the potential, we
see signs of a Kosterlitz-Thouless transition, but we are not
able to confirm this.
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APPENDIX: CLASSIFICATION OF THE KT TRANSITION

The defining characteristic of a Kosterlitz-Thouless transi-
tion is the universal jump of 2/(πβc) of the superfluid density at
the critical temperature, in the thermodynamic limit. Consider
the free energy, where the phase of component i is twisted
by an infinitesimal factor along the μ direction, F (�i,μ).
Technically, this amounts to replacing the phase of component
i by a twisted phase,

θi,r → θi,r − rμ�i,μ. (A1)

The superfluid density, or helicity modulus, is the second
derivative of the free energy with respect to the twist,

〈ϒi,μ〉 ≡ 1

V

∂2F (�i,μ)

∂�2
i,μ

. (A2)

Similarly, the fourth-order modulus is the fourth derivative of
the free energy with respect to the twist,

〈ϒ4,i,μ〉 ≡ 1

V 2

∂4F (�i,μ)

∂�4
i,μ

. (A3)

Derivatives of odd order vanish due to symmetry.

In terms of amplitudes and phases of the Ginzburg-Landau
theory for a two-component condensate, the helicity modulus
is

V 〈ϒi,μ〉 = 〈ci,μ〉 − β
〈
s2
i,μ

〉
, (A4)

while the fourth-order modulus is

V 2〈ϒ4,i,μ〉 = −3V 2β〈(ϒi,μ − 〈ϒi,μ〉)2〉
− 4V 〈ϒi,μ〉 + 3〈ci,μ〉 + 2β3

〈
s4
i,μ

〉
, (A5)

where we have defined

ci,μ ≡
∑

r

|ψi,r+μ||ψi,r| cos(θi,r+μ − θi,r), (A6)

si,μ ≡
∑

r

|ψi,r+μ||ψi,r| sin(θi,r+μ − θi,r). (A7)

This is similar to the expressions obtained when considering a
2D XY model. The amplitude fluctuations only influence the
moduli indirectly by weighting the terms in the sums. Hence,
the moduli of each component are coupled indirectly through
the potential.

At the critical temperature, the helicity modulus is expected
to scale as

ϒi,μ(L) = ϒ(∞)

(
1 + 1

2

1

log L + C

)
(A8)

with system size [45]. We fit the data at finite size for different
values of β, and we determine at which β the best fit is obtained
by using the Anderson-Darling test statistic. This allows an
extrapolation of the value of the jump, ϒ(∞), which may be
compared to the KT prediction. This will also result in an
estimate of the critical temperature.

By considering an expansion of the free energy in terms of
the phase twist,

F (�i,μ) − F (0) = 〈ϒi,μ〉�
2
i,μ

2
+ 〈ϒ4,i,μ〉�

4
i,μ

4!
. (A9)

For the system to be stable, the change in the free energy has to
be greater than or equal to zero. If ϒ4,i,μ is finite and negative
in the thermodynamic limit at the critical temperature, ϒi,μ

cannot go continuously to zero at the critical temperature [46].
Therefore, by calculating the negative dip in the fourth-order
modulus for increasing system size, a finite value as L → ∞
signals a discontinuous jump in the helicity modulus. Further-
more, the temperature at which the dip is located should con-
verge to the critical temperature. Extrapolation of the location
of the dip may therefore be compared to the above estimate
of the critical temperature, as an additional consistency check.
However, this convergence is generally quite slow.
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