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A hydrodynamic theory of transport in quantum mechanically phase-disordered superconductors is possible
when supercurrent relaxation can be treated as a slow process. We obtain general results for the frequency-
dependent conductivity of such a regime. With time-reversal invariance, the conductivity is characterized by a
Drude-type peak, with width given by the supercurrent relaxation rate. Using the memory matrix formalism,
we obtain a formula for this width (and hence also the dc resistivity) when the supercurrent is relaxed by
short-range density-density interactions. This leads to an effective field theoretic and fully quantum derivation of
a classic result on flux flow resistance. With strong breaking of time-reversal invariance, the optical conductivity
exhibits what we call a “hydrodynamic supercyclotron” resonance. We obtain the frequency and decay rate of this
resonance for the case of supercurrent relaxation due to an emergent Chern-Simons gauge field. The supercurrent
decay rate in this “topologically ordered superfluid vortex liquid” is determined by the conductivities of the
normal fluid component, rather than the vortex core.
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I. INTRODUCTION

While superconductivity is often correctly captured by
mean field physics, fluctuations can be important, espe-
cially with reduced dimensionality. The effects of thermal
superconducting fluctuations are largely understood; they are
well described within Ginzburg-Landau and, in two spatial
dimensions, Berezinskii-Kosterlitz-Thouless (BKT) theory
[1–3]. The physics of quantum superconducting fluctuations,
in contrast, presents theoretical challenges. Yet, a theory
of quantum fluctuating superconductivity is likely necessary
to address important questions such as the existence of
zero-temperature metallic phases in two dimensions (for an
overview of the challenges, see [4]).

Quantum mechanical effects can naturally lead to fluctu-
ations in the phase of the superconducting order parameter.
Quantum phase fluctuations will be the topic of this paper.
The phase and the charge density are canonically conjugate
variables. Therefore, if, e.g., Coulombic interactions act
to suppress charge density fluctuations, phase fluctuations
will necessarily be induced due to the uncertainty principle
�ρ�φ � �. These can destroy long-range phase coherence
(early papers to emphasize this fact were [5,6]). In this paper,
we will develop a theoretically controlled framework that
realizes this intuition. We do this by working in a regime in
which the supercurrent relaxation rate can be treated as a small
parameter. In any case, it is only in this regime that the metallic
nature of the state can be unambiguously characterized as
phase-disordered superconductivity.

A. Experimental motivation

Phase fluctuations are expected to be generically important
in systems with a small superfluid density such as organic and
cuprate superconductors [7–9]. Relatively inefficient Coulomb
screening can increase the importance of quantum effects
[10], as can proximity to a Mott transition [11,12]. The
most dramatic and established appearance of quantum phase

fluctuations, however, is in disordered thin films which we now
discuss in more detail.

Disordered thin films undergo “superfluid-insulator” tran-
sitions as a function of magnetic field [13–17] or film
thickness/disorder [18,19]. Of great interest for our purposes,
in both cases intermediate metallic phases often exist between
the superconducting and insulating phases. See [16,17,20–22]
and [18,23–25], respectively. These metallic phases have a
residual zero-temperature resistivity that can be orders of
magnitude smaller than the normal state resistivity. In this
regime, at least, it is plausible that the transport is controlled
by a slow relaxation rate that is distinct from the single-particle
relaxation rate. A natural possibility is that it corresponds
to a slow supercurrent relaxation due to quantum phase
fluctuations. This will be the scenario studied in this paper.

In a magnetic field, disorder in thin films destabilizes the
vortex lattice and leads to mobile vortices at any nonzero tem-
perature [26]. Therefore, thin films that are “superconducting”
in fact only have vanishing resistivity at T = 0 [27]. This
is widely observed in the thin-film references quoted above
and also, for instance, in La2-xSrxCuO2 in sufficiently large
magnetic fields [28]. These phases are good candidates for our
approach also, as they are metallic at arbitrarily low tempera-
tures where quantum phase fluctuations may be important.

Direct evidence for quantum phase fluctuations in the
intermediate metallic phase comes from measurements of the
ac conductivity in weakly disordered two-dimensional InOx

films [29]. These observations were the immediate motivation
for our work. Previous measurements, such as the magnetic
field and temperature dependence of the Nernst effect [30,31],
had established the importance of phase fluctuations in InOx .
The ac measurements, however, access the T → 0 regime and
furthermore directly reveal a long time scale. This time scale
will be the essential building block of our theory.

In [29] the complex conductivity σ (ω,T ) of a weakly
disordered InOx film was measured as the system was driven
from superconducting to (weakly) insulating behavior by
varying a magnetic field. The data show that while the
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low-temperature, zero-frequency superfluid stiffness vanishes
for magnetic fields above Bsm ≈ 3 T, weakly insulating be-
havior does not onset until the magnetic fields are larger than
Bcross ≈ 7.5 T. In the intermediate magnetic field range, the
films are metallic and, close to the superconducting phase,
the ac conductivity is characterized by a sharp “Drude-type”
zero-frequency Lorentzian peak. In the T → 0 limit, the
width of this peak tends to zero precisely as B is lowered
to Bsm. These measurements therefore directly obtain a long
current relaxation time scale that continuously diverges at the
onset of superconductivity. The natural (and possibly unique)
interpretation of this time scale is that it is the lifetime of a
supercurrent that decays due to phase incoherence.

The zero-temperature Drude-type peak just described is not
a conventional Drude peak. The width of the peak is directly
connected to superfluid dynamics rather than disorder. In this
paper, we develop a theory of Drude-type peaks caused by
quantum phase-fluctuating superconductivity. In particular, we
obtain formulas for the width of the peak and, consequently,
for the finite dc conductivity. If the width remains finite at
T = 0, the theory describes a zero-temperature metallic phase
due to phase-fluctuating superconductivity.

A further candidate for a Drude-type peak due to phase-
fluctuating superconductivity is that observed in an organic
molecular metal close to a Mott transition. Specifically,
in κ-(BEDT-TTF)2Cu[N(CN)2]Cl1−xBrx , with x = 0.73, a
Drude-type peak is seen to emerge at T � 50 K [32]. At
precisely these temperatures a substantial, magnetic-field-
dependent Nernst effect is also observed [12]. While this peak
has been interpreted in terms of “coherent quasiparticles,”
the evidence for superconducting phase fluctuations over the
same temperature range may warrant a new look. Phase
fluctuations in this family of organic superconductors are
known to lead to quantum vortex liquids when placed in a
magnetic field, even away from the Mott transition [i.e., in
κ-(BEDT-TTF)2Cu(NCS)2 [33]].

B. Summary of approach and results

The starting point will be superfluid hydrodynamics. The
hydrodynamic description is based on symmetries alone
and therefore describes any superfluid or superconducting
state. It is valid with or without the existence of long-lived
quasiparticles. We will work in the “incoherent” limit [34],
which effectively means, in the present context, that we
assume that supercurrent relaxation is parametrically slower
than momentum relaxation. In this way, our hydrodynamic
theory contains superfluid velocity but not normal velocity as
a variable. This limit seems to be relevant to the data in [29], in
which the width of the Drude-type peak is solely determined
by supercurrent relaxation (as it is much narrower than the
normal state Drude peak).

We proceed to partially “break” the hydrodynamic de-
scription by allowing for weak relaxation of the superfluid
velocity (necessarily due to vortices). This is a situation that
is tailor made for “memory matrix” techniques [35], that
are built around long-lived quantities. Using the memory
matrix, we obtain an expression for the supercurrent relaxation
rate starting from certain charge density interactions in the
low-energy effective Hamiltonian of the system. This is the

step in which microscopic input is required and at which
the quantum uncertainty relation �ρ�φ � � plays a role.
Here, ρ is the charge density. The power of a hydrodynamic
approach is that we do not need to know many details about
the microscopic Hamiltonian. Supercurrent relaxation only
depends on a certain term �H in the Hamiltonian that does
not commute with the total supercurrent operator.

Our first results concern systems in which parity and time-
reversal symmetries are unbroken (or, at least, where the effects
of symmetry breaking due to, e.g., a magnetic field can be
neglected). We show that fluctuating superconductivity leads
to the conductivity

σ = ρs

m2

1

−iω + �
+ σ0 . (1)

The superfluid relaxation rate � is given by (48) below, σ0 is the
contribution of the normal fluid component to the conductivity,
and ρs and m are susceptibilities that will be defined below.
A universal term in the low-energy Hamiltonian leading to
a nonzero � in the presence of mobile vortices is �H =
λ
2

∫
d2x ρ(x)2 [see Eq. (53)]. If the vortices are sufficiently

large, this interaction leads to

� = ρs

m2

nf πr2
v

2 σn
. (2)

This is Eq. (58). Here, nf and rv are, respectively, the number
density and radius of mobile (free) vortices and σn is the
conductivity of the normal state. In particular, this expression
recovers exactly a classic “Bardeen-Stephen” result [36,37]
for the dc resistivity due to vortices. Our approach embeds
that result in a more general, transparent, and fully quantum
framework.

We proceed to incorporate strong parity and time-reversal
symmetry breaking. The longitudinal and Hall (σ and σH )
conductivities are now given by

σH + i σ = ρs

(
1 + ρ2

v

)
m2

�H + i� + ω

(−iω + �)2 + (�H )2
+ σH

0 + iσ0 .

(3)

As above, σ0 and σH
0 are the normal fluid component conduc-

tivities. The frequency-dependent response reveals what we
will call a “hydrodynamic supercyclotron” mode at

ω� = ±�H − i� . (4)

That is to say, the mode oscillates at frequency �H with decay
rate �. If �H is large enough compared with �, the peak
in the optical conductivity moves away from ω = 0. This
mode is analogous to the hydrodynamic cyclotron mode in
a magnetic field (e.g., [38]), but supported by a long-lived
supercurrent rather than a long-lived momentum. Both �

and �H depend on the supercurrent-relaxing Hamiltonian
�H . As an example of this physics, we consider a nonlocal
interaction �H = λ′

2

∫
d2k

(2π)2
ρ−k (∇×j )zk

k2 + H.c. As we explain in
Sec. V, this interaction is equivalent to coupling the superfluid
to an emergent Chern-Simons gauge field. This field creates
superfluid vortices whose motion degrades the supercurrent.
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The supercyclotron mode in this case is found to have

ω� = λ′ρs

m2

±1 − λ′( ± σH
0 + iσ0

)(
1 − λ′σH

0

)2 + (λ′σ0)2

= λ′ρs

m2

1

±1 − λ′( ± σH
0 − iσ0

) . (5)

This is Eq. (98). The complex frequency of the mode is
proportional to the superfluid density ρs and the Chern-Simons
coupling λ′. Furthermore, � is proportional to the incoherent
conductivity σ0. This “incoherent conductivity” quantifies the
dissipation caused by the motion of nonsuperfluid charged
excitations [i.e., the “normal fluid component” (cf. [39])]. In
this example, therefore, dissipation is not caused by the vortex
cores.

C. Mechanisms of low-temperature dissipation

Beyond the specific examples of phase-disordering inter-
actions summarized above, the formalism we develop gives
a clear perspective on possible quantum mechanisms for
supercurrent relaxation as T → 0, and hence for metallic
phases in two dimensions. Specifically, we will see the
following:

(1) Local (short-range) charge density interactions can
only lead to supercurrent relaxation in the presence of mobile
vortices with dissipative cores. Conventional vortices, if they
are present at all, are not expected to remain mobile at T = 0
[26,27].

(2) Nonlocal charge density interactions can result in
supercurrent relaxation due to dissipative processes entirely
outside of vortex cores. These dissipative processes will
involve the normal fluid component of the system. Therefore, if
a normal fluid component survives to T = 0 then, in principle,
so can supercurrent relaxation.

(3) The existence of a normal fluid component in itself is
not sufficient to relax the supercurrent. Typically, the supercur-
rent simply short circuits the normal fluid. Gapless excitations
that might mediate long-range nonlocal interactions are also
not guaranteed to relax the supercurrent, they will simply
themselves be part of the normal fluid. To disorder the phase
and relax the supercurrent, the nonlocal interaction needs to
have specific properties. The Chern-Simons interaction we
consider below is an example of an interaction that does
the job. By creating vortices through flux attachment, it ties
the dynamics of the charge density (including the normal
component) to phase-fluctuation physics.

II. SUPERFLUID HYDRODYNAMICS
OF INCOHERENT METALS

There are two important sources of infinite dc conductivities
in systems with a nonzero charge density. First, in a superfluid
phase, an infinite conductivity follows from conservation of the
supercurrent operator Jφ . Second, in a translationally invariant
system, an infinite conductivity follows from conservation of
the total momentum P . Both conservation laws must be broken
to obtain a finite conductivity.

Relaxation of momentum can be achieved by disorder, umk-
lapp scattering, or coupling to a momentum-nonconserving

bath (e.g., phonons away from the phonon drag regime). Weak
momentum relaxation in the normal, nonsuperconducting,
state results in the metal entering a hydrodynamic regime
[38,40–42]. Hydrodynamic metals exhibit unconventional
physics that is currently of considerable experimental interest
[43–45].

The opposite limit of very strong momentum relaxation (but
without localization) leads to “incoherent metals” [34]. It is
possible that many of the most interesting strongly correlated
systems are in this class: for instance, many are close to
localized phases and exhibit very broad Drude peaks, if they
have Drude peaks at all [34]. The essence of an incoherent
metal is that there is no advective transport and hence the
only hydrodynamic variables are fluctuations of the charge
ρ and energy ε densities. In particular, the local velocity u

does not appear as a hydrodynamic variable and hence there
are no sound modes [46]. The densities obey the conservation
equations

∂ε

∂t
+ ∇ · jE = 0,

∂ρ

∂t
+ ∇ · j = 0. (6)

Here, j and jE are the electric and energy currents, respec-
tively. The Green’s functions for the conserved densities are
obtained using constitutive relations. These capture dissipative
physics in a gradient expansion, as we will recall shortly.

Our object of study here is an incoherent metal that attempts
but fails to become superconducting. In a superfluid phase,
an additional hydrodynamic variable appears: the superfluid
velocity [47]

uφ = 1

m
∇φ . (7)

Here, φ is a long-wavelength perturbation of the superfluid
phase. The constant m is a mass scale, that we discuss further
later (essentially, m−1 will be the susceptibility χjuφ

, defined
below). The static susceptibility1 of uφ defines the superfluid
density ρs :

χ
ui

φu
j

φ
= 1

ρs

δij . (8)

We will study the effects of quantum phase fluctuations that
relax the superfluid velocity, and hence frustrate the attempt
to become superconducting, but leave ρs finite. Superfluid
hydrodynamics will remain useful if uφ relaxes sufficiently
slowly. We will work in this limit, in which we will be able to
get a theoretical handle on the problem. In this limit, there is a
sharp Drude-type peak in the optical conductivity with width
given by the supercurrent decay rate �. This decay rate, and
hence the dc conductivities, can be obtained using the memory
matrix formalism [35]. The power of this approach is that it
packages all microscopic details into a single quantity �. The
important input, beyond simple hydrodynamics, is a term �H

1The superfluid density appears in the free-energy density as
f = · · · + 1

2 ρsu
2
φ . The free energy is itself a function of uφ and

must be Legendre transformed to obtain the thermodynamic potential
for the superfluid source hφ = ∂f/∂uφ = ρsuφ . This potential is
then g = · · · − 1

2 h2
φ/ρs . The susceptibility (8) then follows from

χ = −∂2g/∂h2
φ .
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in the Hamiltonian responsible for phase relaxation (i.e., such
that [�H,Jφ] �= 0). An elegant memory matrix discussion
of phase fluctuations in one spatial dimension exists [48].
We will be considering the case of two spatial dimensions.
An important part of this work will be the identification
of interesting and natural terms �H . First, however, we
must describe the hydrodynamic framework with a conserved
supercurrent.

The memory matrix has been successfully used in recent
years to obtain the dc conductivity of hydrodynamic metals
with slow momentum relaxation [38,49–52]. By focusing on
incoherent metals, we can concentrate on cases where the dc
conductivity is determined solely by the physics relaxing the
supercurrent. In a separate work we will consider the interplay
of both momentum and supercurrent relaxation [53].

To obtain the equations of motion for the hydrodynamic
variables ρ,ε,uφ we need to write the constitutive relations for
the two conserved currents as well as the “Josephson relation”
for the phase [47]. The physics is most transparent if we swap
the energy density and current for the entropy density s and
heat current jQ:

dε = T ds + μdρ + ρsuφ · duφ, (9)

jQ = jE − μj. (10)

We are considering linear response about a state with no
supercurrent, so the last term in (9) will be subleading for
most purposes. To first order in a derivative expansion the
constitutive and Josephson relations are

j − ρs

m
uφ =−α1∇s − α2∇ρ + . . . , (11)

1
T
jQ =−β1∇s − β2∇ρ + . . . , (12)

∂tφ =−μ + ξρs∇ · uφ + . . . . (13)

There are five dissipative transport coefficients α1,α2,β1,β2,ξ .
The superfluid velocity (7) should be counted at zeroth order
in the derivative expansion. Therefore, it is convenient to take
the gradient of the Josephson relation and write

m ∂tuφ = −∇μ + ξ ρs∇ ∇ · uφ + . . . . (14)

The nondissipative term that we have placed on the left-hand
side of (11) is fixed by absence of entropy production to leading
order in derivatives [i.e., set ṡ + ∇ · (jQ/T ) = 0, using (9) to
calculate time derivatives, including the last term, and the
conservation laws].

The above equations assume that two-dimensional parity is
unbroken. In Sec. IV, we will describe the case with broken
parity. The parity-broken case is experimentally relevant due
to the presence of magnetic fields in many studies of quantum-
fluctuating superconductivity.

From the constitutive and Josephson relations combined
with the conservation laws, the thermoelectric conductivities
can be obtained following Kadanoff and Martin [54]. In
practice, it is simpler to use the hydrodynamic equations of
motion to eliminate uφ and hence write(

j
1
T
jQ

)
=

(
σ α

α κ/T

)(−∇μ

−∇T

)
, (15)

from which the conductivities immediately follow (with space
and time dependence e−iωt+ik·x , and setting the wave vector k

to zero in the matrix of conductivities). Thus, we obtain

σ = ρs

m2

i

ω
+ σ0, (16)

α = α0, (17)

κ = κ0. (18)

The conductivity (16) amounts to a “two-fluid” description
in which there is a superfluid and normal contribution to
the conductivity. The normal fluid in this case is com-
pletely incoherent, with no sound mode due to the ab-
sence of a long-lived momentum. The incoherent parts of
the above expressions are given by the Einstein relations
(cf. [34])(

σ0 α0

α0 κ0/T

)
=

(
α2 α1

β2 β1

)(
χρρ χρs

χsρ χss

)
. (19)

The symmetry of the matrix of conductivities (Onsager
relation) imposes one constraint on the dissipative transport
coefficients α1,α2,β1,β2. The susceptibilities are of course
symmetric so that χρs = χsρ . Note that T χss = cμ, the specific
heat at constant chemical potential. κ̄ is the thermal con-
ductivity at vanishing electric field (closed-circuit boundary
conditions). As expected, the electrical conductivity diverges
as ω → 0. We have not yet incorporated the effect of phase
fluctuations.

The normal modes of the hydrodynamic system above are
easily seen to be a pair of “second sound” (although there is
no normal sound in this case) modes

ω(k) = ±
√

ρscμ

m2T det χ
k

− i

2

(
ρsξ

m
− κ0

cμ

+ cμσ0 + χρρκ0 − 2T χsρα0

T det χ

)
k2,

(20)

where det χ = χρρχss − χ2
sρ , and a heat diffusion mode

ω(k) = −i
κ0

cμ

k2. (21)

The thermal diffusivity in this, superfluid, case is therefore
proportional to the closed-circuit thermal conductivity κ . In the
nonsuperfluid case, it is the open-circuit thermal conductivity
κ that appears [34]. In a metal, the charge-carrying sound
modes (20) are of course screened by Coulomb interactions,
which give the modes a mass. However, measurements of both
dc and optical electrical conductivities measure the current
response to the total rather than the external electric field.
They are therefore given by the unscreened Green’s functions.
The expression (16) therefore applies to superconductors as
well as superfluids, as do expressions for the dc conductivity
below such as (29).
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III. VORTICES AND SUPERCURRENT
RELAXATION (WITH PARITY)

A. Superfluid hydrodynamics with vortices

Supercurrent relaxation is necessarily tied up with vortex
physics. It is convenient to consider the system on a spatial
torus. A nonzero supercurrent implies a winding of the phase,
which can only be relaxed by topological defects. Vortices are
defects in the superfluid velocity. While the superfluid velocity
is locally a gradient (7), at a vortex a quantized circulation is
present. If nv is the local density of vortices, then

εij∇ iu
j

φ = 2π

m
nv . (22)

In a continuum description, the incorporation of vortices
requires a transverse part in the superfluid velocity. Therefore,
for a global description, we must generalize (7) to

ui
φ = 1

m
(∇ iφ + εij∇jψ) . (23)

However, microscopically speaking, nv comes from coarse
graining over many separated vortex cores. Outside of the
vortex cores the vorticity vanishes and hence ∇2ψ = 0. This
means that locally, outside of vortex cores, uφ can be written
as the gradient of a phase. The superfluid hydrodynamics we
are about to describe takes place outside the vortex cores, even
while it depends on the local density nv of vortices.

Because vortices are topological defects, they can only
disappear within low-energy dynamics through annihilation
with an antivortex. Therefore, the local vorticity is conserved
and there exists a vortex current jv satisfying

∂nv

∂t
+ ∇ · jv = 0 . (24)

Equation (22) means that we can always trade the vortex
density nv for the curl of the superfluid velocity. The superfluid
velocity is a zeroth-order variable in the gradient expansion and
hence the vortex density is first order.

Vortices modify the Josephson relation (14) to

m∂tu
i
φ = −∇ iμ + 2πεij j j

v + ξ ρs∇ i ∇ju
j

φ + . . . . (25)

Taking the curl of this equation, we see that it implies the vor-
ticity conservation law (24). The new term in the “generalized
Josephson relation” above has a direct physical interpretation:
a flow of vortices induces a transverse electrostatic potential
gradient. In a magnetic field this dynamics underlies, for
instance, the vortex Nernst signal [55,56]. The fact that a vortex
current causes a time dependence in the perpendicular phase
gradient will ultimately allow relaxation of the supercurrent.

The constitutive relations for the charge and heat currents
[(11) and (12) above] are not changed by the presence of
vortices. We must add a new constitutive relation for the vortex
current

j i
v − m

2π
�εiju

j

φ = −γ∇ inv + . . . . (26)

The “intrinsic vortex diffusivity” γ in (26) must be positive.
γ will not play an important role in our discussion. More
important is the � term in (26). The � term is allowed by
parity and is the analog (in our incoherent limit with no
conserved momentum) of the superfluid Magnus force. It

has some similarity with the term appearing on the left-hand
side of the electric current constitutive relation (11). As we
noted, however, the vortex density and current are already first
order in the gradient expansion (unlike the charge density and
electric current). � itself must therefore be counted as first
order in derivatives, and leads to dissipation. It is required by
positivity of entropy production to satisfy � > 0. A formula
for � will be obtained in Sec. III B. Indeed, because the �εiju

j

φ

term in (26) introduces a transverse part into the vortex current,
it “breaks” the Josephson equation (13) for the phase to

∂tφ = −μ − �φ + . . . . (27)

It follows that a nonzero � is tantamount to saying that φ is
no longer a Goldstone boson. The precise meaning of � will
become clearer in Sec. III B. It will not, therefore, be a surprise
when we find shortly that it gaps out various hydrodynamic
modes, leading to a finite dc conductivity. These effects can
still be captured within hydrodynamics so long as � is much
smaller than the local equilibration rate (presumably set by the
temperature and chemical potential).

Extracting the matrix of conductivities (15) from the
hydrodynamic equations as above now gives the Drude-type
form for the electrical conductivity

σ = ρs

m2

1

−iω + �
+ σ0 . (28)

The thermoelectric and thermal conductivities are unchanged
from (17) and (18) by the presence of vortices (recall we con-
sider a parity-invariant theory). The dc electrical conductivity
is now finite and given by

σdc = ρs

m2

1

�
+ σ0. (29)

The coefficients ρs and m2 here (we will see later that they are
both thermodynamic susceptibilities) are those in the theory
with a nonzero �.

While we will mostly focus on charge transport, it is clear
from the electrical (29) and thermal (18) conductivities that
the Weidemann-Franz law will be strongly violated in the
fluctuating superconductivity regime, with Lorenz ratio

L ≡ κ

σT
∼ κ0m

2

ρs

�

T
	 1. (30)

Recall that the open-circuit thermal conductivity κ = κ −
α2T/σ .

The collective hydrodynamic modes are now seen to be
as follows. The thermal diffusion mode (21) is unaffected
to leading order at small �. A new mode appears which
describes the dynamics of the vorticity. This transverse part
of the superfluid velocity was previously inert. This mode is a
gapped diffusive mode

ω(k) = −i� − iγ k2. (31)

The second sound modes (20) become one gapped and one
ungapped diffusive mode. For small �, the gapped mode has
the dispersion

ω(k) = −i� + i
ρs

m2

cμ

T det χ

k2

�
(32)
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(note that this is the dispersion in the limit in which k → 0 is
taken before small �, so the mode is causal) while the new
gapless diffusive mode has

ω(k) = −i
ρs

m2

cμ

T det χ

k2

�
≡ −iD� k2 . (33)

The diffusivity D� of this last mode is the speed of the
unrelaxed sound mode (20) squared, divided by the superfluid
relaxation rate �. A diffusive mode with a large diffusivity,
of order D� ∼ 1/�, should have been anticipated on general
grounds in order for the finite dc conductivity (29) to obey an
Einstein relation. That is (to leading order as � → 0),

σdc = T det χ

cμ

D� . (34)

This expression is very much in the spirit of classic studies
of the BKT phase in two-dimensional superconductors, such
as [37], that obtain the conductivity in terms of a “vortex
mobility” proportional to �. Note that any “pinning forces”
have already been accounted for by working in the incoherent
limit with no conserved momentum. Note also that it is �

rather than the intrinsic diffusivity γ in (26) that determines
the dominant dissipative motion of the vortices here.

As in our discussion in the previous section of normal
modes without vortices, the (now diffusive) charge-carrying
mode is gapped by dynamical Coulomb interactions. However,
also as above, because the conductivity is defined as the
current induced by the total (rather than external) electrical
field, optical and dc conductivities are computed from the
unscreened Green’s functions. Electromagnetism also alters
the long-range interactions between vortices. This can be
ignored so long as the sample is sufficiently thin [57].

B. Supercurrent relaxation from the memory matrix

A formula for � can be obtained using the memory
matrix method. This method will be useful if the underlying
Hamiltonian of the system can be written as

H = H0 + ε�H, (35)

such that

[H0,Jφ] = 0, but J̇φ = ε i[�H,Jφ] �= 0 . (36)

Here, Jφ is the total supercurrent operator, to be defined
more precisely below, and ε is, for the moment, a formal
small expansion parameter. The point is that we wish to treat
the supercurrent-relaxing physics perturbatively. In the theory
with ε = 0 the supercurrent is conserved and hence � = 0.
The memory matrix formalism will now allow us to obtain a
perturbative formula for �, which will be of order ε2.

The electrical conductivity is given by [35]

σJJ (ω) =
∑
CD

χJC

(
1

−iωχ + M(ω) + N

)
CD

χDJ . (37)

Here, the sum runs over both the long-lived operator (the total
supercurrent Jφ) as well as the external hydrodynamic current
(the total electric current J ). That is, {C,D} ∈ {J,Jφ}. The first
thing that (37) says is that the weight of the Drude-type peak
in the conductivity is given by the χ ’s. We will see that these

determine the overlap between the various current operators
with the supercurrent. The width and location of the peak are
determined by the matrices M and N . We proceed to define
χ,M,N . We give more general definitions than are needed in
this section, for later use. In particular, the formulas quoted
hold in the absence of time-reversal invariance.

The static susceptibility of two operators C and D is given
in terms of the retarded Green’s function as

χCD ≡ 1

2π

∫ ∞

−∞

(
Im GR

CD(ω) + Im GR
DC(ω)

)dω

ω
(38)

= 1

2π

∫ ∞

−∞

(
Im GR

CD(ω,B)

+ ηCηDIm GR
CD(ω, −B)

)dω

ω
. (39)

The second line here reminds us that in the absence of time
reversal, e.g., in the presence of a magnetic field B, the two
terms in the integrand are not always equal. ηC/D are ±1
depending on whether the operators are even or odd under
time reversal. The susceptibilities as defined above are equal to
the thermodynamic susceptibilities [35]. They are symmetric,
even without time-reversal symmetry: χCD = χDC . Let us
write

χJJφ
= 1

m
, χJφJφ

= 1

ρs

. (40)

These should be taken to be the definitions of m and ρs in this
approach.

The matrix N is given by (note the time derivative on one
of the operators)

NCD ≡ χCḊ = −χĊD . (41)

In the present, time-reversal-invariant case, N = 0. All
{C,D} ∈ {J,Jφ} are odd under time reversal. Therefore, the
derivative Ċ has the opposite time-reversal transformation to
D and hence their overlap in a time-reversal-invariant state is
zero.

The memory matrix M is given by

MCD(ω) ≡ i

T

(
Ċ

∣∣∣∣ Q 1

ω − QLQQ
∣∣∣∣ Ḋ

)
. (42)

We will not need to define the inner product of operators (A|B)
here (see [35]). The quantum Liouville operator L = [H,• ].
All we need to know about the projection operator Q is that,
with respect to this inner product, it projects onto the space of
operators orthogonal to the set {J,Jφ} that are being summed
over in the basic expression (37). In a time-reversal-invariant
state, it can be shown that, working to leading nontrivial order
in ε, the projection operators have no effect, and one can
set Q = 1. The argument leading to this conclusion is not as
simple as has been claimed in past works. We give a correct
argument in Appendix A. With the projectors set to unity, one
has [35]

MCD(ω) = 1

iπ

∫ ∞

−∞

Im GR
ĊḊ

(ω′) dω′

ω′(ω′ − ω)
. (43)

The integral is regularized by taking ω to have a small
positive imaginary part. We will only need the result for small
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frequencies. Standard Kubo-formula-type manipulations give

MCD(0) = lim
ω→0

Im GR
ĊḊ

(ω)

ω
. (44)

With time-reversal invariance, the memory matrix is symmet-
ric: MCD = MDC .

One more quantity that will be useful to introduce is the
“incoherent susceptibility” [39]

χ inc
JJ = χJJ − ρs

m2
. (45)

This is the susceptibility of the incoherent current operator
J inc ≡ J − ρs

m
Jφ .

The crucial point is that the memory matrix is proportional
to the time derivative of operators. Components of this matrix
are therefore small if the corresponding operators are long
lived. In particular, MJφJφ

∼ ε2 follows immediately from the
definition (44) together with the fact that Jφ is long lived
according to (36). This observation allows us to consider the
following scaling limit of the full expression (37) as ε → 0:

ω ∼ MJφJφ
∼ ε2, MJJφ

∼ ε2, χ inc.
JJ ∼ 1

ε
. (46)

All other quantities remain order one. Two comments are in
order. First, one might have anticipated MJJφ

∼ ε because
J is not a long-lived operator. However, in Appendix A we
show that in some generality, in fact MJJφ

∼ ε2. An analogous
fact was noted in [50]. Second, the final assumption that the
incoherent susceptibility be large is not essential, but is needed
in order for the incoherent contribution to the conductivity σ0

in (28) to appear at the same order in ε as the fluctuating
superfluid contribution. This limit thereby avoids ambiguities
in the incoherent contribution due to spectral weight transfer
from the Drude peak [58,59]. A similar, but slightly different,
limit was considered in [52].

In the scaling limit (46) the memory matrix expression (37)
recovers the hydrodynamic result (28):

σ = ρs

m2

1

−iω + �
+ σ0, (47)

but now with the microscopic formulas for � and σ0:

� = ε2ρs lim
ω→0

Im GR
i[�H,J x

φ ] i[�H,J x
φ ](ω)

ω

∣∣∣∣∣
ε=0

(48)

and

σ0 =
(
χ inc.

JJ

)2

MJJ (0)
. (49)

The thermoelectric and thermal conductivities, (17) and (18),
are also reproduced. The retarded Green’s function on the
right-hand side of (48) is to be evaluated in the unperturbed
theory with a conserved supercurrent operator. This type of
formula for � goes back to the seminal work [60]. See also
[61] for a helpful discussion. The central and useful fact is that
� depends on a correlation function of J̇φ , the time derivative
of a long-lived operator, as opposed to the conductivity itself
which is just given by the correlation function of J . For recent
uses of this type of formula in the case of slow momentum
relaxation, see e.g. [49–52]. Supercurrent relaxation in one
spatial dimension has been described in this language in [48].

To evaluate the key formula (48), we must of course specify
�H . We first discuss Jφ . The supercurrent density operator is
defined outside of the vortex cores to be the gradient of the
local phase of the order parameter

jφ = 1

m
∇φ . (50)

(Note that jφ refers to the operator, while above uφ = 〈jφ〉.)
As discussed below (23) above, this is not a globally defined
operator in the presence of the vortices. However, it is well
defined outside of the vortex cores, allowing for windings
of the phase, in which we identify φ ∼ φ + 2π . The total
supercurrent operator which is to be relaxed is then (we will
be interested in the case of two spatial dimensions)

Jφ = 1

m

∫
T 2\{vortex cores}

d2x ∇φ . (51)

Here, we have placed the theory on a spatial torus. This is
the standard way to describe a supercurrent, which becomes
the winding of the phase around the torus. The expressions
(50) and (51) are also the definition of the mass scale m (we
will see below that this is the same as defining 1/m to be the
susceptibility χJJφ

).
We have just seen that Jφ is defined in terms of the local

phase of the superfluid order parameter. Now, the momentum
conjugate to this phase is the charge density ρ.2 That is, at
equal times,

[φ(x),ρ(y)] = iδ(x − y). (52)

Therefore, it is natural to build operators that do not commute
with the supercurrent (51) out of the charge density. Evaluating
the commutator can be subtle, however, because the supercur-
rent operator (51) is the integral of a total derivative. The
operator is not zero because φ admits a shift symmetry and
can therefore have winding when placed on a spatial torus.
We will need to find interactions that can have a nontrivial
commutator with the total derivative operator Jφ . In the first
case we consider, the vortex cores, which define boundaries of
the region where the phase is defined, will be crucial.

Before moving on to describe the first example of an
interaction �H , we should pause to summarize where we
are. Our entry point was the assumption that the system could
approximately be described by superfluid hydrodynamics. By
considering “incoherent” hydrodynamics, without a long-lived
momentum density, we have essentially integrated out the
effects of disorder from the start. The incoherent (“diffusive”)
part of the conductivities (19) could be metallic or insulating;
it does not matter at this point because our assumption is
that the dc conductivity (29) is dominated by the long-lived
supercurrent. It should be clear from the expression for the
supercurrent relaxation rate (48) that we are considering
quantum phase-disordering processes. We are not considering
“paraconductivity” physics in which the superfluid itself fluc-
tuates into existence above the critical temperature. Similarly,
“amplitude fluctuations” of the order parameter below the

2Using the Josephson relation (13), the conjugate momentum πφ =
∂f

∂φ̇
= − ∂f

∂μ
= ρ.
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critical temperature do not relax the supercurrent and their
effects are implicitly contained in the χ,M,N matrices.

C. Supercurrent relaxation from short-range
charge density interactions

In the search for interactions �H that weakly degrade
the supercurrent, we will pursue an effective field theory
approach. That is, we will write simple interactions that
are consistent with the symmetries of the long-wavelength
superfluid hydrodynamics. The coupling constants of these
interactions will be undetermined numbers, but are generically
expected to be nonzero. For this approach to be consistent, we
must check that indeed the effects of these interactions can be
captured perturbatively when the coupling constants are small.
They will then describe a theoretically controlled perturbation
of the low-energy superfluid hydrodynamics. In this work, we
will focus on two natural and interesting interactions. Given
the plethora of experimental systems of interest discussed in
Sec. I A above, it will be important to search for further
mechanisms in the future. Within the effective field theoretic
framework developed in this paper, it may be possible to
perform this search systematically. See the final discussion
in Sec. VI, where we also discuss percolation scenarios.

The most universal term (in the sense of being least sensitive
to short-distance details) we have found is perhaps the Chern-
Simons interaction described in Sec. V. That term, however,
breaks parity and therefore requires a more complicated
hydrodynamic description, that we develop below. In this
section, we will consider a particular �H that preserves parity
and time reversal and is therefore present even in the absence
of a magnetic field. One upshot of our discussion here will be
an elegant rederivation of established results for the resistivity
due to flux flow in a BKT phase (e.g., [36,37]). This gives,
among other things, a sanity check for our approach.

A number of previous works have studied microscopic
models for the competition between phase coherence and
Coulomb interactions, in particular with a view to accessing the
low-temperature quantum regime, e.g., [5,6,10,62–69]. Our
approach here is a bit different. We are looking for interactions
in an effective low-energy Hamiltonian that can consistently
be treated as small perturbations of a superfluid state. It is not
a priori obvious that such interactions exist. Consider, then,
the following short-range density-density interaction:

�H = λ

2

∫
d2x ρ(x)2. (53)

This term will typically be present in the low-energy de-
scription, as often ρ2 is just the kinetic term for the phase,
because ρ = πφ ∼ φ̇. See, e.g., [5,62,63]. Such a term drives
the fluctuation dynamics in the numerical study [70]. In some
microscopic models, for instance those involving Josephson
junction arrays [6,71], the kinetic term that initially appears is
instead

∫
d2x (∇ρ)2. However, such a term in the Hamiltonian

will generate the more relevant “onsite” or “self-charging”
term (53) under renormalization group flow. In fact, assuming
that charge interactions are local in the effective theory, λ is just
the inverse of the charge susceptibility λ = χ−1

ρρ . This follows
from using the linearized relation δρ = χρρ δμ in the energy

density of (53) and comparing with the expected free-energy
density f = · · · + 1

2χρρ (δμ)2.
Using the canonical commutation relation (52), one

straightforwardly obtains

J̇φ = i[�H,Jφ] = λ

m

∫
T 2\{vortex cores}

d2x ∇ρ(x) (54)

= − λ

m

∫
{vortex cores}

d2x ∇ρ(x). (55)

To obtain the second line, we use the fact that the charge
density ρ is a single-valued operator over the whole spatial
torus. Therefore,

∫
T 2 d2x ∇ρ(x) = 0. We immediately learn

from (55) that the superfluid relaxation is going to depend
only on the normal state dynamics of the vortex interior.
This conclusion will still hold if we replace (53) with any
local charge density interactions. It is an intuitively physically
reasonable fact: heat is generated as the vortices are pushed
around, but because the exterior superfluid is nondissipative,
the rate at which this heat is generated depends on the internal
degrees of freedom of the vortex.3 Furthermore, Eqs. (54) and
(55) show transparently that, while the vortex core dynamics
determines the superfluid relaxation, dissipation will occur
equally inside and outside of the cores (cf. [36,72]).

Inserting the result for the commutator (55) into the
expression for the superfluid relaxation rate (48), and dropping
the formal expansion parameter ε, we obtain

� = λ2ρs

m2
nf

∫
core

d2x

∫
core

d2y

∫
d2k

(2π )2
eik·(x−y)

× k2

2
lim
ω→0

Im GR
ρ ρ(ω,k)

ω
. (56)

Here, we have made the plausible approximation that the only
charge density correlations are within a single given vortex.
Thus, we limit the integration to a single vortex and multiply
by the prefactor nf , which is the density of free vortices (that
is, the density of all vortices with any sign for the vorticity; this
quantity does not break parity). We have also used rotational
invariance to replace k2

x → 1
2k2 inside the integral. The above

formula should be valid so long as � 	 kBT . More precisely,
� should be much smaller than typical nonhydrodynamic
relaxation rates for current density excitations. Factors that
help the validity of the computation include a small coupling
λ and a small superfluid density ρs .

If the vortex core size is set by microscopic scales, then
the expression (56) is as far as we can go without a complete
microscopic theory. In that case, the superfluid relaxation rate
is set by nonuniversal short-distance physics.4 We can do

3Vortices that have been pinned by disorder or by freezing into a
lattice do not contribute to superfluid relaxation in (55). We can think
of them as corresponding to regions where m = ∞.

4In fact, in two circumstances the low-energy spectral weight
limω→0 Im GR

ρ ρ(ω,k)/ω, appearing in (56), is a universal quantity
even at microscopic wave vector k [50]. The first is with Fermi
surface kinematics and k � 2kF . The second is with (semi)local
quantum criticality, with dynamical critical exponent z = ∞. In these
cases, an interesting universal �, distinct from the Bardeen-Stephen
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better, however, if the vortex core is sufficiently large that
the interior can be treated as the normal state in thermal
equilibrium. In this case, neglecting thermoelectric effects (cf.
[34]), the low-energy density-density correlation function will
have the diffusive form

GR
ρ ρ(ω,k) = k2Dχρρ

−iω + Dk2
. (57)

The normal state charge diffusivity D here is related to the
normal state conductivity by the Einstein relation σn = Dχρρ .
The susceptibility χρρ is also now that of the normal state.
With the Green’s function (57) we easily obtain from (56) that

� = ρs

m2

nf πr2
v

2σn
. (58)

Here, rv is the radius of the vortex. We have used the fact, noted
above, that λ = χ−1

ρρ . The susceptibility is position dependent
in the presence of vortices (normal state inside, superfluid
state outside). All of the derivations above go through in the
presence of a spatially dependent coupling λ. Inside the vortex,
the susceptibilities of course take the normal state values. This
discussion also goes through for sufficiently large Josephson
vortices because the core in the Josephson barrier will admit a
diffusive mode.

The dc conductivity is now given by (29). In order to
facilitate comparison with past work, we will use the fact
that the vortex radius is approximately equal to the Ginzburg-
Landau correlation length rv ≈ ξGL, in regimes where that
description is applicable (see, e.g., [72]). We will furthermore
restore, in the following formula only, factors of the charge
e∗ of the condensate that we will otherwise be setting to
unity throughout. In particular, e∗ appears multiplying the
supercurrent operator (50). Thus, we obtain

σdc = 2σn

πnf ξ 2
GL

e2

e2∗
. (59)

The result (59) agrees exactly, setting e∗ = 2e, with that given
in, for instance, Eq. (32a) of [37]. The fully quantum derivation
given above shows how this result is ultimately connected to
�ρ�φ � � physics in a rather universal way, through the
effective coupling (53). The classical nature of the Bardeen-
Stephen result has been recovered in taking the diffusive form
(57) for the charge density correlations. Our treatment is valid
away from this limit. We noted one circumstance where a more
general formulation may be useful in footnote 4. In the Sec. VI,
we furthermore note that more general local interactions than
(53) can lead to different, quantum, formulas for the rate of
dissipation in the vortex core.

According to Eq. (59), the phase-disordering interaction
(53) can lead to a finite and nonzero dc conductivity at T → 0
only if (i) there is a density nf of mobile vortices and (ii)
the residual normal state resistivity σn is finite and nonzero.
While the normal state is insulating in two dimensions, zero
conductivity is only realized at exponentially large-distance
scales, greater than the size of the vortex cores. Whether

formula that we rederive shortly in (58), can be obtained even from
microscopic vortices. This physics will be explored elsewhere.

vortices proliferate or not at a given temperature involves
BKT-type dynamics beyond the hydrodynamic approach taken
here [2]. The presence of vortices is a topological fact assumed
in our argument above (we do not have a general formula for
nf ). The expression (58) can also be applied in sufficiently
weak magnetic fields, where vortices will certainly be present.
The question is then whether or not these vortices are mobile.
Vortices are not expected to be mobile at T = 0, even with a
magnetic field [26,27].

In the following section, we will consider a parity-violating
interaction that leads to a relaxation rate that is not determined
entirely by vortex core dynamics. This is possible for nonlocal
interactions �H . Whereas any local interaction of the charge
density will lead to a dissipation rate given by formulas
analogous to (56), involving an integration over the vortex
core, nonlocal interactions can “undo” the total derivative
in the supercurrent (51). The objective is to find a nonlocal
interaction that leads to a finite and nonzero �. An example of
a (parity-invariant) term that does not work is an unscreened
Coulomb interaction in the effective low-energy theory:

�H = λ

2

∫
d2k

(2π )2

ρ−kρk

k2
. (60)

One can show that this term leads to a relaxation rate � that
depends upon all of space, not just the vortex cores. However,
the expression for � diverges upon taking the ω → 0 limit in
(48). This does not mean that unscreened Coulomb interactions
necessarily destroy superfluidity, just that their effects cannot
be computed in the perturbative memory matrix approach.
Coulomb interactions are certainly expected to be screened in
the low-energy effective theory.

IV. PARITY-VIOLATING SUPERFLUID
HYDRODYNAMICS WITH VORTICES

Magnetic fields play a central role in many of the exper-
imental systems exhibiting quantum phase fluctuations, as
we described in the Introduction. In these cases, parity and
time-reversal symmetries are both broken. This leads to the
possibility of additional supercurrent-relaxing terms in the
effective Hamiltonian and also modifies the structure of the
underlying superfluid hydrodynamics.

A. Hydrodynamic conductivities without parity

In the absence of parity, new terms are allowed in the
hydrodynamic constitutive relations. First, the vortex current
can now be written as

j i
v − m

2π
�εiju

j

φ − m

2π
�Hui

φ

= − sv

2π
∇ iT − ρv

2π
∇ iμ − γ∇ inv + . . . . (61)

The new terms, relative to (26), on the right-hand side express
the fact that thermal and chemical potential gradients will drive
a flow of vortices. The coefficients sv and ρv are determined
by the entropy and charge at the vortex core relative to the
superfluid. They are also proportional to the net vorticity
and therefore can only be present if parity is broken. The
coefficients sv and ρv are properties of the hydrodynamics
at zeroth order in derivatives [because jv itself is first order,
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see (25) above]. Thus, we can anticipate the fact that these
coefficients will be given by thermodynamic susceptibilities
below. The factors of 2π are to clean up formulas below.
On the left-hand side of the equation we have included an
additional “force” term that is allowed once parity is broken.

We will obtain general expressions for � and �H below,
using memory matrix techniques. In Sec. V, we will develop
an explicit example. There is something of a choice in (61)
to parametrize the breaking of the Josephson relation [in the
sense of Eq. (27)] via the two quantities � and �H . This
choice will be seen to capture the physics correctly, although
the concrete model of Sec. V works slightly differently due to
a long-range superfluid-degrading interaction.

The constitutive relations for the charge and heat currents
are also modified to allow for parity-violating terms. These
include new nondissipative terms that are obtained as described
below Eq. (14). We have

j i − ρs

m
(δij − ρvε

ij )uj

φ = −α̂
ij

1 ∇j s − α̂
ij

2 ∇j ρ + . . . , (62)

1
T
jQ i + ρs

m
svε

iju
j

φ = −β̂
ij

1 ∇j s − β̂
ij

2 ∇j ρ + . . . . (63)

Here, the hats indicate that the quantity is a matrix, so that

α̂ij
a = αaδ

ij + αH
a εij , β̂ij

a = βaδ
ij + βH

a εij , (64)

with a = 1,2. We noted below (24) the vortex density itself is
already first order in the hydrodynamic expansion. It follows
that gradients of the vortex density are subleading compared
to other density gradients and so we have not included them
in the constitutive relations (62) and (63).

The full set of equations to solve is then the above three
constitutive relations, as well as the conservation laws and
Josephson relation (these are not changed from the parity-
invariant case above). By manipulating these equations we
can obtain the longitudinal conductivities via the procedure
described around (15). The answers are

σ = ρs

(
1 + ρ2

v

)
m2

−iω + �

(−iω + �)2 + (�H )2
+ σ0 , (65)

α± = ρs sv

m2

ρv(−iω + �) ± �H

(−iω + �)2 + (�H )2
+ α0 , (66)

κ = ρs T s2
v

m2

−iω + �

(−iω + �)2 + (�H )2
+ κ0 . (67)

The incoherent parts σ0,α0,κ0 are defined as in Eq. (19). The
thermoelectric conductivities α± refer to those obtained from
the retarded Green’s functions GR

jQj
(α+) and GR

jjQ (α−),
respectively. The expressions for α± are consistent with the
Onsager relations as follows. If we think of the time-reversal
and parity violation as ultimately coming from a background
magnetic field, then in the above equations sv and ρv are
not proportional to the magnetic field whereas �H is. This
is why �H changes sign upon transposing the matrix of linear
response functions.

The Hall conductivities are similarly obtained as

σH ≡ σxy = ρs

(
1 + ρ2

v

)
m2

�H

(−iω + �)2 + (�H )2
+ σH

0 , (68)

αH
± ≡ αxy = ρs sv

m2

∓(−iω + �) + ρv�
H

(−iω + �)2 + (�H )2
+ αH

0 , (69)

κH ≡ κxy = ρs T s2
v

m2

�H

(−iω + �)2 + (�H )2
+ κH

0 . (70)

The incoherent terms in the above expression again correspond
to the finite Hall conductivities (σH

0 ,αH
0 ,κH

0 ) in the theory
without superfluid relaxation.

From (65) and (68), the dc electrical conductivity can be
compactly written in the complexified form

σH
dc + i σdc = ρs

(
1 + ρ2

v

)
m2

�H + i �

�2 + (�H )2
+ σH

0 + i σ0.

(71)
Inverting the conductivity matrix gives the resistivities

ρ = m2

ρs

(
1 + ρ2

v

)� + . . . , ρH = − m2

ρs

(
1 + ρ2

v

)�H + . . . .

(72)

Here, we have not written out the incoherent contribution [it
will typically be subdominant in the limit of weak superfluid
relaxation, although see the discussion around (46) above]. It is
also instructive to obtain the fluctuating superfluid contribution
to the Nernst signal

eN ≡ −(ρ̂ α̂−)yx = sv

1 + ρ2
v

. (73)

Here, hats indicate that we consider the matrix of conductiv-
ities. The final expression is independent of � and �H , and
directly relates the Nernst signal to vortex physics in the way
one expects (cf. [55]).

A further interesting observable is the Lorenz ratio L.
Previously in (30) we found that L 	 1 for the obvious reason
that the electrical conductivity was large due to the long-lived
supercurrent whereas the thermal conductivity was not. This
simple argument will not apply with broken parity. We see in
(67) and (70) that, due to the entropy carried by the vortices,
the thermal conductivity is also enhanced by the fluctuating
superconductivity. However, for the Lorenz ratio one needs the
open-circuit thermal conductivities. The matrix of open-circuit
conductivities is given by κ̂ = κ̂ − T α̂+ ρ̂ α̂−. As previously,
hats denote matrices of conductivities. Using the formulas
(65) to (70) for the conductivities, one quickly finds that the
fluctuating superfluid contributions precisely cancel, so that
κ̂ is not in fact enhanced. It follows that, with long-lived
supercurrents,

L ≡ κ

σT
	 1, LH ≡ κH

σHT
	 1. (74)

This cancellation parallels that noted in [73] for the case of a
long-lived momentum. The open-circuit boundary conditions
project out the long-lived modes from the thermal current.

The physics underlying the above formulas for the conduc-
tivities is straightforward. The first effect one sees is that, in
the absence of superfluid degradation, i.e. � = �H = 0, the
vortex quantities sv and ρv have resulted in a proliferation
of divergent transport coefficients. This is because external
temperature gradients and electric fields now give rise to vortex
current flow, according to (61), and the vortex current flow in
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turn couples to the nondissipative supercurrent flow, according
to (25). This effect and several others are transparent if the
above results are recast in the language of the memory matrix.

B. Memory matrix description

The formulas of the previous subsection can be recovered
using the memory matrix approach. This works similarly to
the discussion in Sec. III B, and once again leads to explicit
microscopic formulas for the decay rates (now � and �H ) as
well as the incoherent conductivities.

In the parity and time-reversal-noninvariant case, it is
instructive to consider the entire matrix of conductivities. The
memory matrix formalism gives the conductivity σAB , where
A,B can be the x or y components of the total electrical or
heat currents {J,JQ}, as [35]

σAB(ω) =
∑
CD

χAC

(
1

−iωχ + M(ω) + N

)
CD

χDB. (75)

As previously, the sum runs over both the long-lived operators
and the hydrodynamic currents. The long-lived operators are
now {J x

φ ,J
y

φ }. That is, {C,D} ∈ {J,JQ,Jφ}. Both the x and y

components of these operators appear.
The static susceptibilities are again given by Eq. (38).

Several of the susceptibilities appearing in (75) can be used
as the definition of the quantities m,ρs,sv,ρv that appeared in
hydrodynamics of the previous subsection. Specifically, let5

χ
J i

φJ
j

φ
= 1

ρs

δij , χJ i
φJ j = 1

m
δij + ρv

m
εij , χ

J i
φJ

j

Q
= T sv

m
εij .

(76)

These quantities are defined in the full theory with superfluid
relaxation. With the definitions in (76), one can immediately
see that the weights of the Drude-type peaks in the con-
ductivities (65) through (70) are recovered from (75). Recall
that in the Kubo formula for the thermoelectric and thermal
conductivities, the current-current Green’s function is divided
by temperature. The susceptibilities show that these Drude
peaks are determined by how the quantities m,ρs,sv,ρv result
in various components of the thermoelectric currents J and JQ

being “dragged” by the supercurrent Jφ .
The full formula (75) is a little complicated, as it includes

both the fluctuating superfluid modes and the incoherent
contributions. As in Sec. III B, the formula becomes useful
once we zoom into the physics of the slowly decaying
superfluid excitations. We can imagine two different small
parameters, ε and η, so that

MJφJφ
∼ MJJφ

∼ ε2, NJφJφ
∼ NJJφ

∼ η. (77)

We have already discussed the scaling of the components of
M around Eq. (46) and in the Appendix. The new parameter
η quantifies the extent of time-reversal symmetry breaking

5We have not allowed a δij term in the final quantity χ
Ji
φJ

j
Q

in (76).

That is, the supercurrent does not directly “drag” a parallel thermal
current. Such a coupling would violate the Josephson relation at
zeroth order in the derivative expansion [leading to additional terms
in (61)], and is disallowed by gauge invariance.

FIG. 1. Optical conductivity for different values of �H . From
bottom to top: �H = {0,�/

√
3,�}. In each plot, � has been chosen

so that σdc = 1, in units with ρs (1 + ρ2
v )/m2 = 1 in (65).

(without which all the components of N vanish). In order to
bring out the physics in the cleanest possible way, we will take
η ∼ ε2. With this scaling, various effects arise at the same order
in an ε → 0 expansion. In particular, taking ω ∼ ε2, combined
with the above scalings, in (75) leads precisely to the superfluid
part of the hydrodynamic formulas for the thermoelectric
conductivities (65) through (70) obtained above. One can also
reproduce the incoherent hydrodynamic contributions at the
same order in the scaling limit if the incoherent susceptibility
is to taken to be large as in (46) above. Furthermore, the inverse
lifetime and oscillation frequency of the collective mode are
now given by

� = ρsMJx
φ J x

φ
, (78)

�H = −ρs

(
MJx

φ J
y

φ
+ NJx

φ J
y

φ

)
. (79)

In the low-frequency scaling limit we have taken, ω may be set
to zero in the memory matrix components M

Ji
φJ

j

φ
(ω) appearing

in the above formula. The expression for � is essentially that
obtained previously in (48), while the expression for �H is
new. Given an explicit mechanism for superfluid relaxation,
these microscopic formulas can in principle be evaluated to
obtain, for instance, the dc resistivities via (72).

Beyond the dc resistivities, an interesting generic conse-
quence of time-reversal-breaking fluctuating superconductiv-
ity, seen for instance in (65) and (68), is the existence of what
we might call a “hydrodynamic supercyclotron” mode with
complex frequencies

ω� = ±�H − i�. (80)

Depending on the relative values of � and �H , however,
a peak in the conductivity may or may not be visible at
ω ∼ �H . Specifically, if �H �

√
3�, the only visible feature

is a Lorentzian-type peak at ω = 0. This is illustrated in
Fig. 1. Interestingly, the InOx optical conductivity data [29],
discussed in the Introduction, potentially show a flattening
in the Drude-type peak and the possible emergence of a
maximum away from zero frequency as the magnetic field
is increased.
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The following section considers a particular instance of a
simple parity-violating interaction that degrades supercurrent.
This interaction will lead to η ∼ ε, rather than the η ∼ ε2

assumed for illustrative purposes below (77), and thus the
hydrodynamics is a little different to that developed above.
That is to say, we will have M 	 N . Furthermore, special
features of this interaction will allow us to obtain more exact
results for the conductivity than are possible in general.

V. SUPERCURRENT RELAXATION
BY A CHERN-SIMONS INTERACTION

Consider the nonlocal and parity-violating density-current
interaction

�H = λ′

2

∫
d2k

(2π )2

ρ−k(∇ × j )zk
k2

+ H.c. (81)

The z superscript tells us to take the component orthogonal
to the two-dimensional plane. Here, λ′ is a dimensionless
coupling.

As before, we consider this interaction as a perturbation
of the low-energy effective description of the system in terms
of superfluid hydrodynamics. There is a simple way that the
new interaction (81) can arise when parity is broken. Suppose
that the low-energy description contains an emergent U(1)
gauge field that couples to charged fields and furthermore has
a Chern-Simons term. That is, we have the full Lagrangian

L = Lmatter + jμ(Aμ + aμ) − 1

2λ′ ε
μνρaμ∂νaρ. (82)

Here, A is the background electromagnetic field and a the
emergent gauge field. In this theory the electromagnetic current
j still corresponds to a global symmetry, while a linear
combination of j with the topological current j

μ
top ≡ εμνρ∂νaρ

is gauged. Integrating out the emergent gauge field (this
requires gauge fixing to invert the propagator, as usual)
generates the “Hopf interaction” [74]

L = λ′

2
jμ

εμνρ∂ρ

∂σ ∂σ

jν. (83)

The nonrelativistic limit of this interaction gives the Hamilto-
nian (81), together with a current-current interaction that will
not relax the superfluid efficiently.

The Chern-Simons interaction (81) causes a time depen-
dence in the supercurrent operator according to6

i
[
�H,J i

φ

] = −λ′

m
lim
k→0

εij jT j . (84)

6The result (84) comes from the commutator of the supercurrent
with the density operator ρ in the Hamiltonian (81). The commutator
of the supercurrent with the current operator j in (81), where j

can be taken to have the form j = m−1(1 + α ρ + β ρ2 + . . . )∇φ, is
subleading. This is because the terms in j that we have just written that
involve ρ are nonlinear in hydrodynamic variables. Hydrodynamic
correlators obey Gaussian factorization, and thus, upon taking the
correlator (48) of [�H,Jφ] to obtain the decay rate, nonlinear effects
are suppressed by factors of (small) momenta times the correlation
length. That is to say, we can neglect nonlinear terms for the same
reason that we can focus on linearized hydrodynamics to obtain
Green’s functions.

Here, jT is the transverse part of the electrical current, satis-
fying ∇ · jT = 0. While used in deriving (84), the distinction
between longitudinal and transverse is not important at the
end of the day because the k = 0 mode of the current can be
considered as either longitudinal or transverse (strictly, it is
the harmonic part of the current).

As in the previous case of Eq. (54), technically the right-
hand side of (84) should be the integral of the current outside of
vortices. However, the essential difference with (54) is that J̇φ

is not a total derivative in this case. The relaxation rate will be
dominated by the contribution from throughout the superfluid
rather than vortex cores. This will allow, below, the relaxation
rate to be evaluated in terms of universal quantities that appear
in the superfluid hydrodynamics.

The result (84) can be understood physically from the
Chern-Simons term for the emergent gauge field (82). In
particular, this perspective clarifies the role of vortices. This
Chern-Simons term has two effects. The equations of motion
following from (82) tie together the charge density with an
emergent magnetic field b and the current density with an
emergent electric field e:

b(x) = λ′ ρ(x), ei(x) = −λ′ εij j j (x). (85)

The second of these equations is essentially (84): an electric
current creates a transverse emergent electric field, which
is in turn equivalent to a time-dependent phase gradient
(as the emergent gauge potential will also now appear in
the Josephson relation). As we noted above, topologically
speaking, we expect a time-dependent phase gradient should
involve vortex flow. The first equation in (85) shows this
explicitly via the following steps. First, electric current is of
course the flow of charge density (via the conservation law
ρ̇ + ∇ · j = 0). The first equation in (85) shows that a flow
of charge necessitates a flow of emergent magnetic flux. But,
this flux can only penetrate the superconductor by creating
a vortex. Therefore, current flow is accompanied by vortex
flow. The beautiful fact about the first equation in (85) is that
it ties the presence of vortices directly to the hydrodynamic
variable ρ. Thus, unlike in the case discussed in Sec. III C,
which required additional input from, e.g., BKT theory to
obtain the free vortex density nF , the computation of � and
�H in the following sections will be self-contained within
hydrodynamics.

Something close to the dynamics described above is
realized in recent theories of the metallic “vortex liquid”
state [75,76]. It is also interesting to note that the theory of
anyon superconductivity (e.g., [77]) contains a nonrelativistic
Chern-Simons term that imposes the first but not the second
of the equations in (85). Therefore, supercurrent is not relaxed
in that theory (at least, not by this mechanism). Superfluid
hydrodynamics with a topological term analogous to (83), but
higher order in derivatives, was considered in [78]. That term
does not relax the total supercurrent.

We will obtain the conductivity by two distinct methods.
First, from the memory matrix formalism together with the
interaction (81), that leads to superfluid relaxation via (84).
Second, by incorporating the effects of the emergent Chern-
Simons gauge field directly into hydrodynamics.
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A. Conductivities from the memory matrix

The memory matrix expression for the conductivity is again
(75). Several simplifications and special features occur in the
case of Chern-Simons relaxation. This is because the time
derivative of the supercurrent in (84) is itself a hydrodynamic
variable (the total electrical current). We can then do the
following. First, restrict attention to the electric conductivities,
so that the external {A,B} indices in (75) only run over the x

and y components of the electric current J . The summed-over
indices {C,D} now need only run over the x and y components
of {Jφ,J }. It follows from the expression for the memory
matrix in (42) that all components of the memory matrix
involving Jφ vanish. This is because, from (84), J̇φ ∼ J , but the
projector Q projects out both components of the J operator,
and hence Q|J̇φ) = 0 = (J̇φ|Q. That is, the memory matrix
takes the form

MJiJ j �= 0, MJ i
φJ j = M

JiJ
j

φ
= M

Ji
φJ

j

φ
= 0. (86)

Note the difference with the more typical case considered in
Sec. IV. The components of the memory matrix that typically
control slow relaxation are in fact zero in this case.

The matrix N is computed in this case directly from the
definition (41) and the formula (84) for J̇φ . We have (using
isotropy and asymmetry of N )

NJiJ j = NJxJ y εij , N
J i

φJ
j

φ
= λ′

m2
εij ,

N
J iJ

j

φ
= −N

J
j

φ J i = −λ′

m
εjkχJ iJ k . (87)

The matrix of susceptibilities takes the form

χJ iJ j =χJxJ x δij , χ
J iJ

j

φ
=χ

J
j

φ J i = 1

m
δij , χ

J i
φJ

j

φ
= 1

ρs

δij .

(88)

To set the xy components to zero, we first used isotropy and,
second, for χJxJ

y

φ
, noted that 0 = NJxJ x = −λ′

m
χJxJ

y

φ
. All of the

above quantities M , N , and χ are exact in λ′ at this point, as
all nonzero quantities that appear {MJiJ j ,NJxJ y ,χJxJ x ,m,ρs}
are evaluated in the theory with λ′.

Inserting the above expression in the memory matrix
formula (75) and taking the dc limit ω → 0, one obtains

σ = 0, σH = − 1

λ′ . (89)

This result is exact in λ′, i.e., we do not need to take
λ′ small. In fact, the result (89) has nothing to do with
fluctuating superfluidity. It follows directly from the Chern-
Simons Lagrangian (82), with no assumptions about whether
the system is superfluid or not. To see this, we can shift
the emergent gauge field in (82) by a → a − A. So, it is a
good thing that the memory matrix reproduces this result.
Fluctuating superfluidity, however, leaves a strong imprint on
the frequency-dependent conductivity, as we now see.

The inverse matrix in (75) leads to a complicated ω

dependence. The interesting physics we wish to zoom in on
is the resonance that appears at small ω when λ′ is small.
Therefore, we take the following scaling limit of (75) with as

λ′ → 0:

ω ∼ λ′, χinc ≡ χJxJx
− ρs

m2
∼ 1√

λ′ . (90)

As in the previous discussion around (46), the second of these
two scalings is not essential. However, it makes various ex-
pressions physically more transparent, allowing the incoherent
contribution to appear at the same order as the fluctuating
superconductivity. In the present context, it also results in the
width and location of the collective “supercyclotron” mode
scaling in the same way with λ′. Otherwise, the frequency
(energy gap) of the mode is much greater than its inverse
lifetime.

In this scaling limit (90), we obtain from (75)

σ = − m2

λ′ 2ρs

ω
[
ω� + i

(
�2 + �2

H

)]
(−iω + �)2 + �2

H

+ O[(λ′)0], (91)

σH = − 1

λ′ − m2

λ′ 2ρs

ω2 �H

(−iω + �)2 + �2
H

+ O[(λ′)0], (92)

with

� = λ′ 2ρs

m2

χ2
incMJxJx

M2
J xJ x + (MJxJy + NJxJ y )2

(93)

≡ λ′ 2ρs

m2

σ0(
1 − λ′σH

0

)2 + (λ′σ0)2
, (94)

�H = λ′ρs

m2

(
1 − λ′ χ2

inc(MJxJy + NJxJ y )

M2
J xJ x + (MJxJy + NJxJ y )2

)
(95)

≡ λ′ρs

m2

1 − λ′σH
0(

1 − λ′σH
0

)2 + (λ′σ0)2
, (96)

where to get the second equalities we identified the matrix
(σ0)ij = σ0δ

ij + σH
0 εij of incoherent conductivities as the

inverse of the incoherent resistivity matrix

(ρ0)ij ≡ MJiJ j + NJiJ j

χ2
inc

− λ′εij . (97)

Note that the MJiJ j appearing in the above expressions are
all evaluated at ω = 0. Any higher order in ω corrections are
subleading in the limit (90).

The most distinctive feature of the above expressions is
the appearance of what we have called a hydrodynamic
supercyclotron mode at frequencies

ω� = ±�H − i� = λ′ρs

m2

±1 − λ′( ± σH
0 + iσ0

)(
1 − λ′σH

0

)2 + (λ′σ0)2

= λ′ρs

m2

1

±1 − λ′( ± σH
0 − iσ0

) . (98)

This mode has some similarities with the hydrodynamic
cyclotron resonance discovered in [38,79] and further investi-
gated in [52]. In particular, in both cases, the lifetime of the
mode depends upon the incoherent conductivity σ0. However,
the underlying physics is quite different. The supercyclotron
mode above arises due to the motion of a superfluid condensate
that has become phase disordered due to the dynamics of
vortices that carry magnetic flux of the emergent Chern-
Simons field. To emphasize the formal analogy, however, in
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DAVISON, DELACRÉTAZ, GOUTÉRAUX, AND HARTNOLL PHYSICAL REVIEW B 94, 054502 (2016)

FIG. 2. Chern-Simons optical conductivity for different values of
�H . From bottom to top: �H = {0,�/

√
3,�}. In each plot, � has

been chosen so that σ (ω → ∞) = 1, in units with m2/(λ′2ρs) = 1 in
(91).

Appendix B we rederive the general magnetohydrodynamic
results of [52] using the same memory matrix manipulations
as have been performed in this section.

As we found previously, the supercyclotron mode is only
visible as a feature in the optical conductivity if �H > �/

√
3.

The optical conductivity for Chern-Simons relaxation is shown
in Fig. 2.

Due to the particular features of the Chern-Simons inter-
action, in this case the collective phase-fluctuation mode (98)
does not determine the dc conductivities (89). This is different
to the more general parity-violating dc resistivities obtained in
(72). In particular, the physics described in this section seems
not to be the dominant phase-relaxing dynamics visible in
the InOx data of [29], that finds nonvanishing longitudinal
dc conductivities, as well as � � �H . Nonetheless, the
phase of matter we have just characterized, a “topologically
ordered superfluid vortex liquid,” seems to involve plausible
ingredients and will hopefully arise in other contexts. Finally,
generalizations of the interaction (81) are likely to exist,
involving for instance the energy rather than the charge current.

B. Chern-Simons superfluid hydrodynamics

An alternative method to obtain the conductivities is
to study the hydrodynamics of a superfluid coupled to an
emergent U(1) gauge field with a Chern-Simons term, as
described by (82). Instead of integrating out the emergent
gauge field a from the start to produce a Hopf term, as was done
in the previous section, a is incorporated in the hydrodynamics
with the replacement A → Atot = A + a. The effect of the
Chern-Simons interaction is then accounted for by putting aμ

on shell in the constitutive relations and Josephson equation:

εμνρ∂νaρ = λ′jμ. (99)

Concretely, this amounts to revisiting the hydrodynamics (62)
and (63) with the following replacement:

Ei = −∇iμ −→ Etot
i = Ei + ei = −∇iμ − λ′εij jj .

(100)

In this way, the constitutive relations and the Josephson relation
become

j i − ρ̄s

m
(δij − ρvε

ij )uj

φ

= −σ̂
ij

0 (∇jμ + λ′εjkj k) − α̂
ij

0 ∇j T + . . . , (101)

1
T
jQ i + ρ̄s

m
svε

iju
j

φ

= −α̂
ij

0 (∇jμ + λ′εjkj k) − (
κ̂

ij

0 /T
)∇j T + . . . , (102)

j i
v = − sv

2π
∇ iT − ρv

2π
(∇ iμ + λ′εikj k) − γ∇ inv + . . . ,

(103)

m∂tu
i
φ = −∇ iμ + εij

(
2πjj

v − λ′j j
) + . . . . (104)

We have chosen to express the constitutive relations directly
in terms of the matrices of incoherent conductivities σ̂0,α̂0,κ̂0

rather than the diffusivities that were used in (62) and (63).
These are related via the Einstein relations (19). A bar has
been placed over ρ̄s as it will turn out shortly that, due to the
extra ji terms appearing in various places on the right-hand
side of the above equations, this quantity is no longer the
superfluid density as defined via the susceptibility (88).

The electrical conductivities can then be obtained from the
hydrodynamic equations of motion in the same way that we
have done several times in this paper. The answers are

σxx = − m2

λ′2ρ̄s

(
1 + ρ2

v

) ω
[
ω� + i

(
�2 + �2

H

)]
(−iω + �)2 + �2

H

, (105)

σxy = − 1

λ′ − m2

λ′2ρ̄s

(
1 + ρ2

v

) ω2�H

(−iω + �)2 + �2
H

, (106)

with

� = λ′2ρ̄s

(
1 + ρ2

v

)
m2

σ0(
1 − λ′σH

0

)2 + (λ′σ0)2
, (107)

�H = λ′ρ̄s

(
1 + ρ2

v

)
m2

1 − λ′σH
0(

1 − λ′σH
0

)2 + (λ′σ0)2
. (108)

These agree precisely with the memory matrix answers of
the previous subsection [Eqs. (91), (92), (94), and (96)] upon
making the identification: ρs = ρ̄s(1 + ρ2

v ).

VI. DISCUSSION

We will end with a few brief comments on the results
we have obtained. Much of our discussion has been phrased
in terms of hydrodynamics. By hydrodynamics we mean
the long-wavelength dynamics of conserved quantities and
Goldstone bosons. However, the driving motor behind our
main results is the memory matrix formalism. We could
have dispensed with hydrodynamics altogether. We have
kept the hydrodynamic perspective because it may be more
familiar to readers and is arguably physically more transparent.
We have seen, however, that in order to cleanly reproduce
hydrodynamics, including the incoherent contributions, one
needs to take a certain scaling limit of the memory matrix
expressions. The memory matrix expressions are exact in
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the first instance, and one can then see unambiguously what
approximations are required to recover the hydrodynamic
answers. The memory matrix is a systematic tool for capturing
the effects of long-lived excitations in a system.

To obtain the behavior of observables for specific phase-
fluctuating systems, such as the temperature and magnetic
field dependence of the dc conductivities, one needs first
to know the supercurrent-relaxing interaction �H . We have
investigated two such interactions, but other possibilities exist.
In the cases we considered, the charge interacted with itself (as
in the short-range interaction we considered) or the electrical
current (as in the Chern-Simons interaction we considered).
However, one can imagine interactions of the charge density
with other operators, of the form �H ∼ ∫

d2x ρ(x)O(x),
for some local operator O(x). This operator will then take
the place of the charge density in the formula (56) for the
supercurrent relaxation rate. Once the interaction itself is
given, one must furthermore determine, for instance, the
temperature dependence of the thermodynamic susceptibilities
and other quantities appearing in formulas such as (58) or
(107). However, even when this temperature dependence is
not known, the formalism we have developed ties together
a collection of distinct observables in terms of just a few
quantities.

Among our more generic results is the prediction that the
optical conductivity of phase-disordered superconductors with
broken parity should reveal a “hydrodynamic supercyclotron”
mode at complex frequencies ω� = ±�H − i�. We noted
that if �H is small (relative to �), the peak in the optical
conductivity will still be centered at zero frequency, but will
exhibit deviations from a simple Lorentzian form. This mode
should be accessible to standard experimental probes.

Finally, an important scenario we have not considered is
one in which the superconducting state is close to a percolation
phase transition, with large normal state domains across the
sample. In this case, quantum tunneling of vortices between
closely spaced normal state domains gives a mechanism for
supercurrent relaxation. This is distinct from the setup of
Sec. III C, as it does not require a density of free vortices.
The vortices now only appear as virtual tunneling events.
For this reason, it is a promising framework for relaxing the
supercurrent even at zero temperature. Transport through such
“quantum melts” has been discussed in, e.g., [80]. It will be
interesting to reinvestigate this scenario from the perspective
of the memory matrix that we have developed. Such a
calculation will be similar to the one-dimensional memory
matrix computation of [48], as the tunneling occurs in the thin
necks of superconductivity separating normal domains.
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APPENDIX A: PROOFS OF MEMORY
MATRIX STATEMENTS

1. Time-reversal-invariant case

In the presence of time-reversal symmetry, and for operators
with the same sign under time reversal, the memory matrix
result (37) can be somewhat simplified. First, N vanishes since
it measures an overlap of two operators of opposite sign under
time reversal. Second, the Liouville operator L = [H,• ] must
act an even number of times in M(z) (42), so that

MCD(ω) = i

T ω

(
Ċ

∣∣∣∣ 1

1 − LQL/ω2

∣∣∣∣Ḋ)
, (A1)

where we also noted that the projection operator

Q = 1 − 1

T

∑
A,B

|A)χ−1
AB(B| (A2)

can be set to 1 when acting on Ċ or Ḋ, by time-reversal
symmetry. Since the Hermitian operator L is antisymmetric
and Q is symmetric, (A1) implies that here MCD(ω) is
symmetric.

Now, in the case of interest we consider the operators
{J,Jφ}, with

J̇φ = iLJφ = i(L0 + εL1)Jφ = iεL1Jφ, (A3)

whereas J̇ is generically of order unity. This implies

MJJ ∼ 1, MJφJφ
∼ ε2, MJJφ

∼ ε2; (A4)

the first two relations are direct consequences of (A3), and we
now prove the third. Defining

LJφ
= [Jφ,• ] (A5)

and noticing that

L|Jφ) = |[H,Jφ]) = −LJφ
|H ), (A6)

one has

MJJφ
(ω) = i

T ω

(
J

∣∣∣∣L0
1

1 − L0QL0/ω2
L

∣∣∣∣Jφ

)
+ O(ε2)

= i

T ω

(
J

∣∣∣∣L0
1

1 − L0QL0/ω2
LJφ

∣∣∣∣ − εH1

)
+ O(ε2)

= i

T ω

(
J

∣∣∣∣LJφ
L0

1

1 − L0QL0/ω2

∣∣∣∣ − εH1

)
+ O(ε2)

= 0 + O(ε2), (A7)

where we used the fact that LJφ
commutes with both L0 and

Q, and the last step follows because J carries no winding of
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the superfluid phase, so7

LJφ
J = [Jφ,J ] = 0 . (A8)

The memory matrix formula (37) can now be used to find
the small imaginary pole in the conductivity

� � ρs lim
ω→0

MJφJφ
(ω) � ρs lim

ω→0

Im GJ̇φJ̇φ
(ω)

ω
. (A9)

The last step was accomplished by setting the remaining
projection operator in (A1) to Q → 1. Although this is not
obvious from, e.g., time-reversal symmetry alone, it is in fact
correct to leading order in ε, as we now show. Let M̃JφJφ

be

the matrix element evaluated with Q → 1. First notice that the
definition (A2) of Q implies

LQL = L2 − |J̇ )(J̇ |
χinc

+ O(ε). (A10)

Using the shorthand notation

X = 1 − L2/ω2, Y = |J̇ )(J̇ |
T ω2χinc

, (A11)

one can write

MJJ

(
M̃JφJφ

− MJφJφ

) = i

T ω

(
J̇

∣∣∣∣ 1

X + Y

∣∣∣∣J̇)
i

T ω

(
J̇φ

∣∣∣∣ 1

X
− 1

X + Y

∣∣∣∣J̇φ

)
= i

T ω

(
J̇

∣∣∣∣ 1

X + Y

∣∣∣∣J̇)
i

T ω

(
J̇φ

∣∣∣∣ 1

X
Y

1

X + Y

∣∣∣∣J̇φ

)
= i

T ω

(
J̇

∣∣∣∣ 1

X + Y

∣∣∣∣J̇)
i

T ω

(
J̇φ

∣∣∣∣ 1

X

|J̇ )(J̇ |
T ω2χinc

1

X + Y

∣∣∣∣J̇φ

)
= i

T ω

(
J̇φ

∣∣∣∣ 1

X

|J̇ )(J̇ |
T ω2χinc

1

X + Y

∣∣∣∣J̇)
i

T ω

(
J̇

∣∣∣∣ 1

X + Y

∣∣∣∣J̇φ

)
= i

T ω

(
J̇φ

∣∣∣∣ 1

X
Y

1

X + Y

∣∣∣∣J̇)
i

T ω

(
J̇

∣∣∣∣ 1

X + Y

∣∣∣∣J̇φ

)
= i

T ω

(
J̇φ

∣∣∣∣ 1

X
− 1

X + Y

∣∣∣∣J̇)
i

T ω

(
J̇

∣∣∣∣ 1

X + Y

∣∣∣∣J̇φ

)
= MJJφ

(
M̃JJφ

− MJJφ

)
, (A12)

where the algebraic identity

1

X
− 1

X + Y
= 1

X
Y

1

X + Y
(A13)

was used twice. Since the right-hand side in (A12) is O(ε3),
we have

MJφJφ
= M̃JφJφ

+ O(ε3), (A14)

showing explicitly that one can take Q → 1 in Eq. (A9), to
leading order in ε.

2. Non-time-reversal-invariant case

Without time-reversal symmetry, the projection operator
Q cannot be set to 1 (even perturbatively), as illustrated in
Chern-Simons relaxation (86) where Q entirely cancels MJJφ

and MJφJφ
. However, it is still true that MJJφ

∼ ε2 since the
steps in Eq. (A7) can be carried out with the general form (42)
for M; all that is needed is that the operator LJφ

commutes

7This can be seen explicitly: isotropy and parity require [J j ,J k
φ ] =

1
2 [J i,J i

φ]δjk and using the Ward identity one has[
J i,J i

φ

] = ∫
d2x d2y ∂yi [j i(x),φ(y)]

= − ∫
d2x d2y ∂xi [j i(x),φ(y)]

= ∫
d2x d2y ∂t [ρ(x),φ(y)] = 0.

with both L0 (supercurrent conserved in the original theory)
and with Q, which follows from [Jφ,J ] = 0.

APPENDIX B: MAGNETOTRANSPORT REVISITED

The memory matrix method used in the text can also be
applied to magnetotransport [52]. Here, we will rederive some
results from [52] using manipulations very similar to those of
Sec. V A in the main text. In magnetotransport, the role of the
superfluid current is played by momentum, which is slowly
relaxed by a small magnetic field according to

Ṗ i = BεijJ j + O(B2). (B1)

The order B2 term arises if P is the gauge-invariant momentum
[52], and only gives subleading contributions to the expres-
sions below. This relaxation of momentum will resolve the
delta function in the conductivities, as can be seen by using
the memory matrix formula (75) where the indices {C,D} now
run over the operators {J,P }. Since the projector Q projects
out J , the components of the memory matrix take the form

MJiJ j �= 0, MJ iP j = 0, MP iP j = 0. (B2)

The susceptibilities are given by (these are the definitions of
Q and M)

χJ iJ j = χJxJ x δij , χJ iP j = Qδij , χP iP j = M δij , (B3)

where the relaxation equation (B1) forces χJxPy
= 0 [the same

way that we noted a certain susceptibility was zero below
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Eq. (88) in the main text]. The N matrix is given by

NJiJ j = NJxJ y εij , NJ iP j = −BχJxJ x εij ,

NP iP j = −BQεij . (B4)

Inserting the above expressions in (75) gives the following
dc conductivities:

σ = 0, σH = Q

B
. (B5)

The optical conductivities have a pair of cyclotron poles at
ω� = ±�H − i� with

� = B2(χJxJ x − Q2/M)2MJxJx

M
[
M2

J xJ x + (MJxJy + NJxJ y )2
] = B2

Mσ0 + O(B3),

(B6a)

�H = QB

M

[
1 − B

Q

(
χJxJ x − Q2/M

)2
(MJxJy + NJxJ y )

M
(
M2

J xJ x + (MJxJy + NJxJ y )2
) ]

= QB

M

[
1 − B

Q
σH

0

]
+ O(B3), (B6b)

where we defined the incoherent conductivity matrix (σ0)ij =
σ0 δij + σH

0 εij as the inverse of the incoherent resistivity
matrix

(ρ0)ij = MJiJj
+ NJiJj

χ2
inc

, (B7)

with

χinc ≡ χJxJ x − Q2

M . (B8)

These definitions are entirely analogous to those in Sec. V A.
A clean result for the conductivities can be obtained with a

scaling limit similar to (90), which is now expressed

ω ∼ B, χinc ∼ 1√
B

. (B9)

The full conductivities in this limit are given by (typically
σH

0 ∼ B, and hence it drops out of the final expression)

σxx(ω) = −iMω
(
Q2 + B2σ 2

0 − iMωσ0
)

(−iMω + σ0B2)2 + B2Q2
+ O(B0),

(B10a)

σxy(ω) = BQ

(
Q2 + B2σ 2

0 − 2iMωσ0
)

(−iMω + σ0B2)2 + B2Q2
+ O(B0),

(B10b)

which agrees with [38,52,79].
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