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We study electronic and magnetic properties of the quasi-one-dimensional spin- 1
2 magnet Ba3Cu3Sc4O12 with a

distinct orthogonal connectivity of CuO4 plaquettes. An effective low-energy model taking into account spin-orbit
coupling was constructed by means of first-principles calculations. On this basis, a complete microscopic magnetic
model of Ba3Cu3Sc4O12, including symmetric and antisymmetric anisotropic exchange interactions, is derived.
The anisotropic exchanges are obtained from a distinct first-principles numerical scheme combining, on one
hand, the local density approximation taking into account spin-orbit coupling, and, on the other hand, a projection
procedure along with the microscopic theory by Moriya [Phys. Rev. 120, 91 (1960)]. The resulting tensors of the
symmetric anisotropy favor collinear magnetic order along the structural chains with the leading ferromagnetic
coupling J1 � −9.88 meV. The interchain interactions J8 � 0.21 and J5 � 0.093 meV are antiferromagnetic.
Quantum Monte Carlo simulations demonstrate that the proposed model reproduces the experimental Neel
temperature, magnetization, and magnetic susceptibility data. The modeling of neutron-diffraction data reveals
an important role of the covalent Cu-O bonding in Ba3Cu3Sc4O12.
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I. INTRODUCTION

The CuO4 plaquette is the key structural element in the
majority of low-dimensional copper oxides [1–4]. Ideally, it
consists of the Cu atom at the center of the square formed by
four oxygen atoms. The valence 2+ of the Cu ion corresponds
to the atomic configuration in which all 3d orbitals are fully
occupied except that of the x2 − y2 symmetry containing
one unpaired electron and having the highest energy. Such
a geometry leads to a strong hybridization between the
x2 − y2 states of Cu and 2p states of oxygen, which affects
the magnetic properties of low-dimensional cuprates. For
instance, spin density is largely delocalized and spread over
the plaquette. This effect should be taken into account when
analyzing the data from neutron scattering [5].

The mutual orientation of the CuO4 plaquettes in a
particular system is very important and responsible for the
nontrivial magnetic and electronic properties observed experi-
mentally. Depending on the connectivity of the plaquettes, the
interaction between magnetic moments can be ferromagnetic
or antiferromagnetic. Here, the copper-oxygen-copper bond
angle plays a crucial role.

The topology of Ba3Cu3Sc4O12 and isostructural
Ba3Cu3In4O12 is a distinct one since it contains three mutually
orthogonal plaquette sublattices, presented in Fig. 1. This type
of geometry was coined a paper-chain model [6]. Within
each paper chain, the neighboring CuO4 plaquettes have
one common oxygen site. The corresponding angle of the
Cu-O-Cu bond is close to 90◦, which means that kinetic
superexchange processes between the neighboring Cu sites
in Ba3Cu3Sc4O12 are strongly suppressed. In this situation,
other types of the magnetic couplings may become important.
For example, the absence of the inversion symmetry between

nearest-neighbor Cu sites in Ba3Cu3Sc4O12 results in the
antisymmetric anisotropic exchange interaction that, when
taken on its own, will favor the orthogonal spin configuration
proposed as a candidate ground state of Ba3Cu3In4O12 [6].
On the other hand, the nonzero Curie-Weiss temperature
� = −70 K estimated from the high-temperature magnetic
susceptibility indicates that isotropic exchange couplings are
non-negligible and ferromagnetic.

Consecutive experimental and theoretical studies [8,9] re-
vealed that intrachain couplings are strong and ferromagnetic,
while interchain couplings are weak and antiferromagnetic.
However, no conclusive information on the magnetic ground
state has been reported, and the relevance of frustrated
next-nearest-neighbor couplings within the paper chain has
remained controversial. Last but not least, anisotropic ex-
change interactions were disregarded in previous theoretical
studies, despite the fact that the orthogonal geometry of CuO4

plaquettes should favor such contributions to the exchange.
In the following, we address all these questions in a com-
prehensive study combining first-principles calculations and
accurate numerical simulations of both magnetic ground state
and finite-temperature properties. We show that the magnetic
ground state of Ba3Cu3Sc4O12 is collinear, with ferromagnetic
order within the paper chains and antiferromagnetic order
between the chains. Magnetic anisotropy determines the
direction of the magnetic moment without affecting the ground
state qualitatively.

II. EXPERIMENTAL DATA

Structural properties. The polycrystalline sample of
Ba3Cu3Sc4O12 was prepared at high temperatures via
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FIG. 1. Left: Crystal structure of Ba3Cu3Sc4O12. Right: Paper
chains formed by CuO4 plaquettes. Barium, scandium, and inter-
chain oxygen atoms are excluded for clarity. Crystal structures are
visualized by using the VESTA software [7].

solid-state reaction from the stoichiometric mixture of high-
purity BaCO3, CuO, and Sc2O3. These reagents were ground,
pelletized, and fired in alumina crucibles at 850–950 ◦C in air
for three days with regrinding every 24 h. Then the sample
was quenched in air to room temperature. Phase purity of the
sample was confirmed by powder x-ray diffraction data taken
using the “Radian-2” diffractometer with CuKα radiation over
a 2θ range of 20–60◦.

The crystal structure of Ba3Cu3Sc4O12 presented in Fig. 1
has the tetragonal I4/mcm space group with lattice parameters
a = 11.899(2) Å, c = 8.394(5) Å, V = 1188(2) Å3, and
Z = 4 [10]. The main structural units of the Ba3Cu3Sc4O12

compound are CuO4 plaquettes forming a chain along the c

axis. Within an individual chain, there are two nonequivalent
crystallographic positions for copper, CuI and CuII in the 1:2
ratio.

The copper-oxygen plaquette for CuI is undistorted and
located in the ab plane. The distances between copper and
oxygen atoms are 2.028 Å. The situation is different for CuII.
The plaquette for this copper atom is orthogonal to the ab

plane and compressed along the c axis. The copper-oxygen
distance for the CuII atom varies from 1.96 to 2.018 Å. The
plaquettes in the chain are rotated by 90◦ around the c axis
with respect to the plaquettes belonging to the neighboring
chains. Barium and scandium atoms are located between the
chains. Some of the oxygen atoms form bonds between the
chains through scandium atoms. These bonds and interactions
play a significant role in the formation of long-range magnetic
order in this system.

Magnetic properties. Field and temperature dependencies
of the magnetization in Ba3Cu3Sc4O12 were measured in
the temperature range 2–300 K and in magnetic fields up
to 9 T by means of a Physical Properties Measurement
System (PPMS–9T) from Quantum Design. The temperature
dependence of the magnetic susceptibility χ (T ) measured
in the applied field B = 0.1 T is represented in Fig. 2 (left
panel). At high temperatures, the susceptibility follows the
Curie-Weiss behavior (inset on the left panel of Fig. 2)
χ = χ0 + C/(T + θ ) with the temperature-independent part
χ0 = (5.5 ± 0.6) × 10−4 (emu/mol), � = −70 ± 2 K, and
C = (1.18 ± 0.03) (emu K/mol). From the value of the Curie
constant, the g factor can be estimated as 2.05.

FIG. 2. Left: Magnetic susceptibility χ (T ) of Ba3Cu3Sc4O12

measured in the applied field B = 0.1 T. The inset shows the Curie-
Weiss approximation with parameters � = −70 ± 2 K and C =
(1.18 ± 0.03) (emu K/mol), as denoted by the red lines. Right: Field
dependence of the magnetization measured at different temperatures
above and below TN .

The negative value of the Curie-Weiss temperature
� = −70 ± 2 K suggests that the leading exchange interac-
tions in Ba3Cu3Sc4O12 are ferromagnetic, but below 180 K
there is a strong negative deviation from the Curie-Weiss
behavior. This deviation indicates the increase of antiferromag-
netic correlations, which eventually yield antiferromagnetic
long-range order below TN = 16.4 K. As a consequence, one
can observe a sharp peak in the temperature dependence of the
magnetic susceptibility χ (T ).

Field dependence of the magnetization measured at dif-
ferent temperatures is shown in Fig. 2 (right panel). The
value of the saturation moment at 3 K equals 2.89 μB , which
roughly corresponds to three Cu2+ ions with the local spin 1/2.
Importantly, there is a deviation of the M(B) curve from the
linear dependence for the external magnetic fields smaller
than 3 T and at temperatures below TN . The same feature
of the magnetization curve was found for the Ba3Cu3In4O12

compound [6]. As we will show below, this peculiarity is due to
the interatomic symmetric anisotropic exchange interactions.

III. THEORY

A. Methods and models

To describe the electronic structure and magnetic properties
of the Ba3Cu3Sc4O12 compound, we performed calculations
within density functional theory (DFT) [11] using the gen-
eralized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [12].
To this end, we employed QUANTUM ESPRESSO [13] and
Vienna ab initio Simulation Package (VASP) [14,15] codes. In
these calculations, we set an energy cutoff in the plane-wave
construction to 400 eV and the energy convergence criteria
to 10−4 eV. For the Brillouin-zone integration, a 6 × 6 × 6
Monkhorst-Pack mesh was used.

054435-2



HYBRIDIZATION AND SPIN-ORBIT COUPLING EFFECTS . . . PHYSICAL REVIEW B 94, 054435 (2016)

The magnetic behavior of Ba3Cu3Sc4O12 is described by
the following spin Hamiltonian:

Ĥ =
∑
i<j

Jij Ŝi Ŝj +
∑
i<j

Ŝi

↔
�ij Ŝj +

∑
i<j

Dij [Ŝi × Ŝj ]

+μB

∑
i

Ŝi

↔
g iB, (1)

where Jij , Dij , and
↔
�ij are isotropic, antisymmetric

anisotropic, and symmetric anisotropic exchange interactions
between spins, respectively.

↔
g i is the g tensor for the ith site,

and B is the external magnetic field.
Exchange-interaction parameters can be estimated by

different methods. For instance, they can be calculated by
using superexchange theory [16–18] on the basis of the
DFT results. The corresponding expression for the isotropic
exchange interaction is given by Jij = 4t2

ij /U [16], where
tij and U are the hopping integral and on-site Coulomb
interaction, respectively. This expression describes only the
antiferromagnetic kinetic contribution to the total magnetic
coupling between the two sites. In the case of cuprates
with nearly 90◦ metal-ligand-metal bond angle, there is a
ferromagnetic contribution that is formed due to the direct
overlap of the neighboring Wannier functions [19,20]. All
contributions to the isotropic exchange interaction can be
accounted for on the level of DFT+U calculations [21] by
computing differences between total energies of collinear
magnetic configurations [22]. These results are presented in
Sec. III C.

In order to estimate symmetric (
↔
�ij ) and antisymmetric

(Dij ) anisotropic interactions, we used the superexchange
theory proposed by Moriya [18] and further developed in
Ref. [17]:

Dij = i

U
[Tr(t̂ij )Tr(t̂j iσ ) − Tr(t̂j i)Tr(t̂ijσ )], (2)

↔
�ij = 1

U
[Tr(t̂j iσ ) ⊗ Tr(t̂ijσ ) + Tr(t̂ijσ ) ⊗ Tr(t̂j iσ )], (3)

where σ are Pauli matrices. Within this approach, one calcu-
lates the hopping integrals t̂ij taking the spin-orbit coupling
into account. In contrast to the previous investigations [20],
where such hoppings were estimated by using the perturbation
theory on the spin-orbit coupling, we calculate them from
first-principles here, thus treating the spin-orbit (SO) coupling
on the fully ab initio level. To this end, the DFT+SO scheme
was used.

To determine the g tensor in Eq. (1), we use the second-
order perturbation theory described in Ref. [23]. Considering
the Wannier function of the x2 − y2 symmetry as the ground-
state orbital, one obtains

g
μν

i = 2
(
δμν − λ�

μν

i

)
. (4)

In this expression, λ � 0.1 eV is the spin-orbit coupling
constant of the copper atom, and

�
μν

i =
∑

n

〈x2 − y2|L̂μ

i |n〉〈n|L̂ν
i |x2 − y2〉

εn
i − ε

x2−y2

i

, (5)

FIG. 3. Left: DFT band structure of Ba3Cu3Sc4O12. The Fermi
level is at zero energy. The high-symmetry k points in the first
Brillouin zone are the following: X = ( 1

2 ,0,0), G = (0,0,0), Z =
(0,0, − 1

2 ). Right: The calculated partial densities of states for copper
and oxygen atoms.

where μ,ν = x,y,z. The index n runs over the excited states
of the copper atom, where one of the d orbitals (xy, zx, yz,
and 3z2 − r2) is half filled, whereas the x2 − y2 orbital is fully
filled. The corresponding orbital energies are defined from
DFT calculations.

Due to the complex geometry of Ba3Cu3Sc4O12, in our
study we use xyz and abc notations for local and global
coordinate systems, respectively.

B. DFT results

Electronic structure. The calculated GGA electronic struc-
ture is presented in Fig. 3. There are six well-separated bands
at the Fermi level. According to the calculated partial density
of states, these bands correspond to strongly hybridized 3d

copper and 2p oxygen states. Due to a strong overlap of
copper orbital of the x2 − y2 symmetry and 2p orbitals of the
oxygen atoms, the complex molecular orbital is formed. The
corresponding bonding and antibonding states are centered at
−4.8 and 0 eV, respectively (Fig. 4).

FIG. 4. The calculated partial densities of states for CuI atoms.
The green solid line corresponds to the x2 − y2 orbitals, and the
violet dashed line denotes the overall density of states for the four
other orbitals (xy, yz, xz, 3z2 − r2). The Fermi level is at zero energy.
The spectral functions of CuII in the local coordinate system are close
to those calculated for CuI.
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FIG. 5. Comparison of the ionic Cu2+ form factor obtained
within the 3-Gaussian approximation [27] and covalent form factor
calculated for Ba3Cu3Sc4O12 by using the constructed Wannier
orbitals. The inset shows the Wannier orbital of x2 − y2 symmetry
taken from the MLWF procedure, centered on the CuI atom in the
CuO4 plaquette. The blue and red spheres correspond to copper and
oxygen atoms, respectively.

To perform quantitative analysis of the DFT results, we
constructed a low-energy model by using the maximally
localized Wannier functions (MLWF) procedure, as described
in Refs. [24] and [25]. This procedure is implemented in the
WANNIER90 code [26].

The example of the constructed Wannier orbital is presented
in the inset of Fig. 5. One can see that, being centered at the
copper atom, the orbital has large tails at the oxygen sites
belonging to the plaquette. The electronic density described
by the Wannier function centered on the copper atom can be
decomposed as follows: 52% on the central copper atom, 11%
on each oxygen atom in the plaquette, and approximately 1%
on nearest-neighbor copper atoms.

Such a delocalization of the electronic density affects
the magnetic behavior. For instance, the account of the
hybridization with oxygen states changes the magnetic form
factor, which is the Fourier transform of the electronic density
[5]. From Fig. 5, one can see that the covalent form factor
decays much faster at small q than the pure ionic Cu2+ one [27].
As we will show below, such a redistribution of the scattering
density and the ensuing renormalization of the magnetic form
factor plays an important role for simulating neutron-scattering
spectra.

The hopping matrices between different copper sites in
the basis of Wannier functions of x2 − y2 symmetry are
represented in Table I. They agree reasonably well with
those obtained by using the tight-binding linearized muffin-
tin orbitals (TB-LMTO) method [8]. The difference can be
attributed to the fact that the structure of Ba3Cu3Sc4O12 is
not close packed. In this case, the TB-LMTO method is
very sensitive to computational details, such as the radii of
muffin-tin spheres and the composition of the valence shell.
We demonstrate this in the Supplemental Material [28].

The hopping integral t1, which describes the interac-
tion between the nearest-neighbor copper atoms within the

TABLE I. Comparison of the hopping integrals (in meV) calcu-
lated by using the MLWF method in this work and the downfolding
procedure described in Ref. [8]. The interaction paths are labeled in
accordance with Fig. 6 (left panel) and additionally denoted by Cu-Cu
distances dCu−Cu (in Å).

Path dCu−Cu MLWF Ref. [8]

1 2.74 5.45 16.3
2 3.53 38.80 53.0
3 4.19 40.07 45.0
4 4.88 15.84 13.6
5 6.88 9.68 8.1
6 6.97 6.25 5.4
7a 8.39 7.36 8.0
7b 8.39 13.76 13.6
8 8.41 18.23 19.0
9 9.15 14.21 14.9

chain, is considerably smaller than other interactions. It is
due to the cosine-type dependence of the hopping integral
on the Cu-O-Cu bond angle, t ∼ cos α. In Ba3Cu3Sc4O12,
α is about 86.8◦. As a result, the corresponding kinetic
exchange interaction is strongly suppressed for the nearly
orthogonal superexchange path. According to the obtained
hopping integrals, the strongest interactions are t2 and
t3 between Wannier functions belonging to parallel CuO4

planes. Among the interchain couplings, the largest one is
between the CuI atoms, t8. As we will show below, it is
mainly responsible for three-dimensional magnetic ordering
in Ba3Cu3Sc4O12.

Magnetic interactions. With the hopping parameters de-
scribed above, one can calculate isotropic exchange interac-
tions using Anderson’s formula for superexchange interaction
Jij = 4t2

ij /U [16], where U is an effective on-site Coulomb
interaction for the one-band model. These results are repre-
sented in Table III. The U value of 4 eV was estimated within
constrained calculations by using TB-LMTO-ASA [29–31]
described in the Supplemental Material [28].

One can see that the kinetic antiferromagnetic exchange
interaction between nearest neighbors in the chain is negligibly
small (∼ 0.03 meV). At the same time, there is a strong
ferromagnetic contribution due to the direct overlap of the
neighboring Wannier functions on the oxygen atoms [19]. We
have calculated the direct exchange interaction via numerical
integration of Wannier functions using the Monte Carlo
method. It yields bare exchange interaction J FM

ij = −40 meV
between nearest neighbors in the chain. Since the resulting
exchange interaction is sensitive to the structure of the
Wannier function as follows from the analysis reported in
Ref. [19], at the moment we restrict ourselves to the qualitative
conclusion that the interaction between nearest neighbors is
ferromagnetic. Such a conclusion is further confirmed by
our DFT+U calculations (Sec. III C) and comparison of
the quantum Monte Carlo results with the experimental data
(Sec. IV B).

In order to evaluate the anisotropic exchange interactions,
the DFT+SO scheme was used. The resulting band structure
is presented in Fig. 7. One can see that the account of the
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spin-orbit coupling leads to weak band splittings at the Z

point.
In contrast to the DFT results, the hopping matrix be-

tween the x2 − y2 Wannier functions calculated within the
DFT+SO approach has nondiagonal complex parts that are
triggered by the mixing of excited states by the spin-orbit
coupling. For instance, in the case of the 1-3 bond, we have
(in meV)

t̂13 =
(

6.1 3.7 + 3.7i

−3.7 + 3.7i 6.1

)
.

Namely, the nonzero t
↑↓
13 and t

↓↑
13 components are responsible

for the anisotropic couplings for this bond.
In the global coordinate system abc, the symmetric

anisotropic tensors calculated by using Eq. (3) for the nearest-
neighbor bonds are given by (in meV)

↔
�15 = ↔

�24 = ↔
�14 = ↔

�25 =
⎛
⎝ 0.009 −0.028 0

−0.028 0.009 0
0 0 −0.018

⎞
⎠,

↔
�13 = ↔

�26 = ↔
�16 = ↔

�23 =
⎛
⎝0.009 0.028 0

0.028 0.009 0
0 0 −0.018

⎞
⎠.

Our calculations revealed that the anisotropic
↔
�ij for other

pairs of spins are negligibly small and can be excluded from
further consideration.

We first analyze symmetric anisotropic interactions be-
tween CuI and its magnetic environment. The calculated non-

diagonal elements of
↔
�1j in the global coordinate system are

bond dependent and correspond to a quantum compass model
[32]. The clockwise rotation of the coordinate system by 45◦
around the c axis leads to the diagonal form of the anisotropic
tensors, �a′a′

1j = �aa
1j ± |�ab

1j | and �b′b′
1j = �bb

1j ∓ |�ab
1j |, where

the upper (lower) sign stands for the bonds 1-4 and 1-5 (1-3
and 1-6). One finds that �a′a′

1j = �c′c′
1j (�b′b′

1j = �c′c′
1j ) for j = 3,6

(j = 4,5). Given the ferromagnetic nature of the coupling J1,
the lowest component of the anisotropy defines the magnetic
easy axis. By calculating the sum of anisotropic exchange
couplings

∑
j �1j , we find that the c axis is the magnetic easy

axis for CuI.
The anisotropic couplings between the CuII ion and its near-

est neighbors are different. We obtain easy-plane anisotropy of
a′c′ and b′c′ symmetry for atoms 3 (6) and 4 (5), respectively.
Based on the analysis of the calculated symmetric anisotropic
exchange interactions, we conclude that the c axis is the easy
axis for the total magnetization of the system.

In turn, Dzyaloshinskii-Moriya (DM) vectors were calcu-

lated using Eq. (2). Similar to
↔
�, we found that the strongest

DM couplings are between nearest neighbors within the chain,
D24 = D15 = d(−1,1,0), D25 = D14 = d(1, − 1,0), D13 =
D26 = d(1,1,0), and D16 = D23 = d(−1, − 1,0), where d =
0.046 meV. Nearest-neighbor Dzyaloshinskii-Moriya interac-
tions within the chain will typically produce either a spiral or
canted configuration for uniform and staggered arrangement of
the DM vectors, respectively. In the case of Ba3Cu3Sc4O12, the
Dzyaloshinskii-Moriya interactions along the 2-6-1 path tend
to misalign the ferromagnetic order of spins 1 and 2. However,

TABLE II. The calculated energies εn (in eV) of the Wannier
orbitals centered at copper atoms in the local coordinate frame. The
results were obtained by using the maximally localized Wannier
functions procedure. The atom numeration is taken from Fig. 6 (right
panel).

Atom 3z2 − r2 xz yz x2 − y2 xy

CuI −2.51 −2.47 −2.47 0 −2.70
CuII −2.81 −2.97 −2.84 0 −3.22

this effect is fully compensated by the Dzyaloshinskii-Moriya
interactions of different sign along the 2-3-1 bond that will
produce the same misalignment, but in the opposite direction.
Thus the antisymmetric anisotropic exchange interactions do
not distort the collinear ferromagnetic configuration along the
chain.

The next important quantity that we analyze is the g

tensor. Experimentally, it was measured for the Ba3Cu3In4O12

compound [6]. It was shown that the g-factor value for the
direction parallel to the normal to the CuO4 plaquettes is larger
than in the perpendicular direction: 2.15 and 2.08, respectively.
Since the uniaxial symmetry axes of three CuO4 plaquettes in
the unit cell are mutually orthogonal, the corresponding g

tensors should be mutually orthogonal as well.
We have calculated the components of the g tensor by

using perturbation theory on the spin-orbit coupling, given
by Eq. (4). To this end, the energies of the Wannier orbitals for
copper atoms presented in Table II were derived from the DFT
calculations. For CuII, the splitting between the x2 − y2 and xy

orbitals is 0.5 eV larger than that for CuI. This difference can
be explained by the difference in the copper-oxygen distances
within the plaquette. In the case of the CuII plaquette, the
shorter Cu-O bond leads to a stronger hybridization between
the Cu-x2 − y2 and O-2p states.

The resulting g tensors in the global coordinate frame are as
follows (the atoms are numbered according to the right panel
of Fig. 6):

↔
g 1,2 =

⎛
⎝2.082 0 0

0 2.082 0
0 0 2.296

⎞
⎠,

↔
g 3,6 =

⎛
⎝2.158 −0.09 0

−0.09 2.158 0
0 0 2.070

⎞
⎠,

↔
g 4,5 =

⎛
⎝2.158 0.090 0

0.090 2.158 0
0 0 2.070

⎞
⎠.

The components of the g tensor obey the symmetry of the
system. From g tensors for each copper atom, one can estimate
the average values for the whole system, arriving at gc = 2.132
and gab = 2.145. These values will be used in quantum Monte
Carlo (QMC) simulations, which are described in the next
section.
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FIG. 6. Left: The paths of Cu-Cu interactions. Right: Schematic
representation of anisotropic exchange interactions within the chain.

C. DFT+U results

The analysis of the magnetic interactions presented in the
previous section is based on the perturbation theory t  U .
Thus the next step of our investigation was to take into account
kinetic processes and Coulomb correlations on equal footing
within the DFT+U approach. Such calculations revealed that
the Ba3Cu3Sc4O12 compound is insulating with the band gap
of about 2 eV. The obtained value of the copper magnetic
moment is about 0.65 μB , which is much smaller than 1 μB

expected for S = 1
2 . It is the result of the strong hybridization

between the Cu-3d and O-2p states.
On the basis of the DFT+U calculations, we calculated

exchange interactions as differences between total energies of
collinear spin configurations. Table III lists leading isotropic
exchange interactions for different values of the on-site
Coulomb interaction Ũ in DFT+U . In accordance with DFT
results, the largest interaction, J1, is ferromagnetic. Among
the interchain interactions, we are mainly interested in J8 that
runs between CuI atoms belonging to the plaquettes, which

FIG. 7. Comparison of the Ba3Cu3Sc4O12 band structures near
the Fermi level (0 eV) calculated by the DFT and DFT+SO methods.
The band structure in a wide-energy window is presented in Fig. 3.

TABLE III. The leading isotropic exchange interactions (in meV)
in Ba3Cu3Sc4O12 calculated by using the total energies difference
method on the basis of the DFT+U results and estimated by means
of Anderson’s superexchange theory. The notation of the exchange
interactions is taken from Fig. 6 (left panel).

Ref. [8]
N 4t2/U Ũ = 8 eV Ũ = 10 eV Ũ = 11 eV (Ũ = 8 eV)

J1 0.03 − 15.71 − 11.98 − 9.88 − 13.88
J2 1.51 1.95 1.31 1.06 6.93
J3 1.61 0.91 0.51 0.35 2.74
J4 0.25 − 0.15 − 0.16 − 0.15 2.53
J8 0.33 0.59 0.36 0.21 3.89

are perpendicular to the chain axis. In Fig. 1, one can see that
the corresponding magnetic x2 − y2 orbitals from neighboring
chains point toward each other, which guarantees the largest
overlap.

According to Anderson’s superexchange theory, the distant
intra- and interchain interactions J4 and J8 are much smaller
than J2 (Table III). This scenario is well reproduced by
our DFT+U calculations, in contrast to the DFT+U results
reported in Ref. [8]. Moreover, we observe a large difference
between the values of antiferromagnetic exchange interactions
J2, J3, J4, and J8.

The Curie-Weiss temperature was estimated by us-
ing isotropic exchange interactions, �CuI = 1

4kB
(4J1 + 2J3 +

4J8),�CuII = 1
4kB

(2J1 + J2 + 2J4), where kB is the Boltzmann
constant. Taking into account the number of atoms of each type
in the unit cell, the averaged Curie-Weiss temperature can be
defined as � = 1

3 (�CuI + 2�CuII ). For Ũ = 11 eV, we obtain
� = −73 K, which is consistent with the experimental value
of −70 ± 2 K.

D. DFT+U+SO results

The account of the spin-orbit coupling within the DFT+U

scheme gives us an opportunity to study orbital magnetism in
Ba3Cu3Sc4O12. The size of the orbital magnetic moment on the
given copper site in the chain depends on the direction of the
total magnetization of the system. For instance, we get Lz

CuI =
0.175 μB and Lz

CuII = 0.045 μB when the total magnetic
moment is along the c axis. Thus, the preferable direction
for the orbital moment is normal to the CuO4 plaquette.
This effect can be explained on the level of the crystal-field
splitting revealed by the DFT calculations (Table II). The
energies of the xy and yz (xz) orbitals are close to each other.
However, the corresponding matrix elements of the orbital
momentum operator are very different, 〈xy|Lz

i |x2 − y2〉 = 2i

and 〈x2 − y2|Ly

i |xz〉 = i. Therefore, within the perturbation
theory on the spin-orbit coupling, the preferred positioning
of the orbital moment along the normal of the plaquette is
confirmed.

From DFT+U+SO calculations, we also estimated diago-

nal components of the anisotropic
↔
� by using the total energies

difference method. The obtained diagonal components are
�aa

13 = �bb
13 = 0.05 and �cc

13 = −0.1 meV. The symmetry of

the resulting
↔
� agrees with those estimated by using the
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FIG. 8. Three candidate ground-state magnetic configurations of Ba3Cu3Sc4O12 considered in this work.

perturbation theory in Eq. (3). However, the absolute values

of the
↔
� elements obtained in DFT+U+SO are about five

times larger than those from DFT+SO calculations presented
in the previous section. Such a difference can be naturally
explained by the fact that the perturbation theory results were
obtained for the one-band model with spin-orbit coupling.
The account of the complex multiorbital structure of the
copper atoms within the DFT+U+SO scheme gives additional
contributions to the intersite anisotropic exchange interaction.
These contributions originate from the intra-atomic Hund’s
rule exchange, as discussed in Refs. [17,32].

IV. COMPARISON WITH EXPERIMENT

In this section, we investigate the magnetic model of
Ba3Cu3Sc4O12, define the ground-state spin configuration, and
describe magnetic properties observed experimentally.

A. Classical ground state

We start with the solution of the magnetic model consider-
ing spins as classical vectors. Three magnetic configurations
presented in Fig. 8 are considered:

(i) A—ferromagnetic chains with spins directed along the
c axis [Fig. 8(a)];

(ii) B—ferromagnetic chains with spins directed along the
a + b axis [Fig. 8(b)];

(iii) C—orthogonal spin arrangement [Fig. 8(c)] proposed
in Ref. [6].

In all three cases, antiferromagnetic ordering between the
chains is assumed.

We found that configuration A has the lowest energy. The
energy of configuration B is 0.15 meV higher according to
the difference �aa

13 − �cc
13. Configuration C has the highest

energy because the leading exchange interaction J1 does
not contribute to the total energy of this orthogonal spin
configuration.

B. Quantum Monte Carlo simulations

Since the absolute value of J1 is much larger than J2 and
J3, we can tentatively neglect frustration by second-neighbor
interactions within the chain and proceed to the numerical

treatment of the quantum spin model by quantum Monte Carlo
(QMC) simulations.

Thermodynamic properties were obtained using the
stochastic series expansion (SSE) [33] method implemented in
the loop [34] algorithm of the ALPS [35] simulation package.
We performed simulations for L/2 × L/2 × L finite lattices
with L � 20 and periodic boundary conditions. In these
calculations, we take into account the leading intrachain
interaction J1 and interchain couplings J8 estimated from
DFT+U . To take other interchain couplings into account,
an effective interaction of the J5 type between CuII atoms
is introduced into our model. The value of this interaction was
chosen to be 4t2/U = 0.093 meV. To include the effects of the
spin-orbit coupling, we used anisotropic exchange interactions
between nearest neighbors. The corresponding � tensors taken
from the DFT+U+SO calculations have a diagonal form
for all bonds and favor spin alignment along the c axis. In
Table IV, we summarize the magnetic couplings used in QMC
simulations.

From Fig. 9, one can see that the magnetic suscep-
tibility calculated using ab initio microscopic parameters
reproduces experimental data quite well. Here, we used the
averaged value of the g factor, g = 2.138, estimated from
the first-principles calculations. Magnetic anisotropy shifts
the magnetic transition to higher temperatures. This effect is
rooted in the suppression of quantum fluctuations in the XXZ
model compared to the pure Heisenberg system without the
anisotropy.

To calculate the Néel temperature, we used two com-
plementary approaches proposed in Refs. [36,37]. They are
based on the determination of the spin stiffness and Binder’s
cumulant for staggered magnetization at different temperatures
and for different lattice size. These results are represented in
Fig. 10 (top and bottom panels, respectively). The crossing
point for finite lattices of different size identifies the Néel

TABLE IV. Exchange-interaction parameters (in meV) used in
QMC simulations for Ba3Cu3Sc4O12.

J aa
1 = J bb

1 J cc
1 J5 J8

−9.83 −9.98 0.093 0.21
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FIG. 9. Results of QMC simulation for the magnetic suscepti-
bility. The blue solid and red dashed lines correspond to QMC
simulations with and without anisotropic exchange interactions,
respectively. The black line denotes the experimental curve. The inset
shows spin-spin correlation functions depending on the inverse linear
size of the system L.

temperature TN = 15.5 K, which is in good agreement
with the experimental value of 16.4 K. These dependencies
were obtained for the spin Hamiltonian without anisotropic
exchange interaction. The account of such interactions results
in correction of the Néel temperature estimate by about 1 K.

We simulated magnetization of our anisotropic spin model
for the c and a + b directions of the external magnetic
field. The powder-averaged magnetization curve is presented
in Fig. 11. Within our approach, we can reproduce the
experimental profile of the magnetization at small magnetic
fields that is characterized by the deviation from the linear
behavior. This feature of the M(B) curve originates from the
anisotropic exchange interaction.

FIG. 10. Determination of the Néel temperature. Top: Binder’s
cumulant for staggered magnetization. Bottom: The calculated spin
stiffness. The crossing point for lattices with different linear sizes L

indicates the phase transition at TN = 15.5 K.

FIG. 11. Results of QMC simulation for magnetization at dif-
ferent temperatures. The blue solid line and the red dashed line
correspond to magnetization curves from QMC simulation with and
without anisotropic exchange interactions, respectively. The black
lines denote the experimental curves. The inset shows the direction of
local magnetic moments of copper atoms in nearest-neighbor chains.

One can see that the magnetization curve is continuous in
the experiment, but discontinuous in the simulation. Such a
difference may be related to Dzyaloshinsky-Moriya interac-
tions that mix different spin states and partially smear out the
spin-flop transition.

In the inset of Fig. 11, the directions of local magnetic
moments in nearest-neighbor chains are shown. Upon increas-
ing external magnetic field, the ground state goes through
a spin-flop transition toward collinear ferromagnetic order
between the chains.

Another important quantity characterizing a low-
dimensional spin system is the value of the local magnetic mo-
ment. In quantum systems with S = 1

2 , it can be considerably
reduced from its nominal value of 1 μB . For instance, in the
case of the antiferromagnetic square lattice [38,39], the value
of the magnetic moment equals 0.6 μB . It indicates a significant
suppression of the magnetic moment by quantum fluctuations
in a low-dimensional antiferromagnetic spin system.

For a realistic estimation of ordered magnetic moment in
Ba3Cu3Sc4O12, we used the procedure proposed in Ref. [40].
To this end, the nonlocal spin-spin correlation function
CL/2 between the most distant spins of a finite lattice is
used. The corresponding value of the magnetic moment per
site equals m = limL→∞

√
3CL/2. The ordered moment in

the thermodynamic limit L → ∞ can be estimated by the
extrapolation procedure [41]:

M2(L) = 3CL/2 = m2 + n1

L
+ n2

L2
+ n3

L3
, (6)

where n1, n2, and n3 are constants. Because of two inequivalent
positions of copper atoms in the Ba3Cu3Sc4O12 system, we
have calculated the spin-spin correlation functions for CuI and
CuII sublattices, respectively. These simulations produce the
local magnetic moments of 1 μB on both Cu sites (inset of
Fig. 9).
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FIG. 12. Comparison of the experimental and theoretical neutron-
diffraction patterns taking into account the hybridization effect on
the magnetic form factor. The experimental data (bold lines) are
taken from Ref. [8]. Thin black, red, blue, and green lines denote
the simulation results for different magnetic configurations presented
in Fig. 8. The inset demonstrates the effect of the copper-oxygen
hybridization on the neutron scattering.

C. Simulation of neutron scattering

To confirm the proposed magnetic ground state of
Ba3Cu3Sc4O12, we simulated neutron-diffraction data for can-
didate spin configurations. Experimental results are taken from
Ref. [8] and represented in Fig. 12. A weak low-angle magnetic
reflection at 11.8◦ is clearly seen at 2 K. This reflection
disappears at about 20 K, which is above the Néel temperature.
It is also suppressed in magnetic fields of about 6 T. While other
magnetic reflections may be present as well, the experimental
resolution was not high enough to detect them.

For modeling neutron-diffraction patterns, we used the
JANA2006 package [42]. Such simulations were performed
for three magnetic configurations presented in Fig. 8. The
resulting spectra are represented in Fig. 12. The comparison
of the neutron spectra obtained with ionic and covalent
magnetic form factors (Fig. 5) has shown that the account
of the metal-ligand hybridization decreases the intensity of the
magnetic reflection at 11.8◦.

Experimental neutron-diffraction data are compatible with
both configurations A and B. From the intensity ratio be-
tween the magnetic and nuclear peaks at 11.8◦ and 16.7◦,

respectively, model B shows a slightly better agreement with
the experiment. We note, however, that the intensity of the
magnetic reflection is largely determined by the size of the
ordered moment and by the magnetic form factor. It is also
important that configurations A and B are very close in
energy, and their relative stability may depend on the DFT
exchange-correlation functional and Ũ value. On the other
hand, configuration C proposed in Ref. [6] can be clearly
discarded because it reveals zero intensity of the magnetic
reflection at 11.8◦.

V. CONCLUSIONS

We have reported a comprehensive microscopic description
of electronic and magnetic properties of Ba3Cu3Sc4O12, a
spin- 1

2 low-dimensional magnet featuring distinct paper-chain
topology of spin chains formed by CuO4 plaquettes. We show
that interactions within the paper chains are ferromagnetic and
induce ferromagnetic order along the chains, which are ordered
antiferromagnetically. By means of the superexchange theory
and first-principles calculations, symmetric and antisymmetric
anisotropic exchange interactions were determined. Quantum
Monte Carlo simulations for the resulting magnetic model
reveal excellent agreement with the experimental Néel temper-
ature, magnetic susceptibility, field-dependent magnetization,
and elastic neutron-scattering data. We demonstrate the minor
role of intrachain magnetic frustration and pinpoint finger-
prints of the magnetic anisotropy in the nonlinear behavior of
magnetization as a function of field. This anisotropy originates
from the spin-orbit coupling.
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