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In order to study the dependence of the coercive force of sintered magnets on temperature, nucleation and
domain wall propagation at the grain boundary are studied as rate-determining processes of the magnetization
reversal phenomena in magnets consisting of bulk hard magnetic grains contacting via grain boundaries of a
soft magnetic material. These systems have been studied analytically for a continuum model at zero temperature
[A. Sakuma et al., J. Magn. Magn. Mater. 84, 52 (1990)]. In the present study, the temperature dependence is
studied by making use of the stochastic Landau-Lifshitz-Gilbert equation at finite temperatures. In particular,
the threshold fields for nucleation and domain wall propagation are obtained as functions of ratios of magnetic
interactions and anisotropies of the soft and hard magnets for various temperatures. It was found that the threshold
field for domain wall propagation is robust against thermal fluctuations, while that for nucleation is fragile. The
microscopic mechanisms of the observed temperature dependence are discussed.
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I. INTRODUCTION

The mechanisms by which the coercive force manifests
itself in permanent magnets have been studied extensively [1].
It is known that a single crystal of magnetic material does not
show the hysteresis phenomenon; that is, the coercive force
is absent, and thus, the structure of ensembles of fine grains
plays an important role for the coercive force. Magnetization
reversal in an antiparallel field occurs as a nucleation event
at some point in the system, and it propagates through the
material, forming a domain. Nucleation may occur due to
intrinsic or extrinsic sources. Thermal fluctuations of the bulk
material constitute an intrinsic source of nucleation, while
extrinsic sources are due to the inhomogeneous structure
of the material, e.g., misalignment of the easy axis and
impurities, etc. Regardless of the origin, the nucleated reverse
magnetization propagates throughout the material if the bulk
magnetic region is connected.

To prevent the propagation of the reversed domain and
maintain the coercive field, we must consider the conditions
under which the pinning of the domain wall is realized. To
understand the nucleation phenomenon and also the properties
of domain wall propagation at the grain boundary, one may
study a system extending in one direction with a defect region,
as depicted in Fig. 1. The magnetization reversal phenomena
in this system have been studied at zero temperature [2], and
in particular, Sakuma et al. studied the threshold fields as a
function of the ratios of magnetic interactions and anisotropies
of the soft and hard magnets at zero temperature analytically by
solving a one-dimensional nonlinear equation and presented
the corresponding phase diagram [3]. In the present paper,
we study the threshold magnetic fields for nucleation and for
domain wall propagation at finite temperatures by making use
of simulations of the stochastic Landau-Lifshitz-Gilbert (LLG)
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equation [1,4–7] for the system in Fig. 1. In the analytical
studies, the case in which the soft-magnet grain boundary
has the exchange energy A2 < A1 and the anisotropy energy
K2 < K1 was studied.

The case with strong anisotropy which was studied by
Hirota et al. [8] is also interesting. However, in the present
paper we focus on the temperature dependence of the case
which was considered in previous analytical studies at T = 0.
The case with strong anisotropy will be studied separately
in the near future. A strong anisotropy causes the formation
of narrow domain walls, which is a phenomenon that also
occurs effectively in the case we studied. We discuss the narrow
domain wall phenomenon in more detail in the later sections
of this paper.

It has also been pointed out that the magnetic reversal of
this type of system depends on the size of the boundary region
due to the so-called spring exchange effect [9,10]. It is also
known that this dependence is weak for large width. With
this in mind, we choose a fixed defect width larger than the
domain wall width. We consider a material similar to Nd-Fe-B,
in which the correlation length (ξ ∝ √

A/K) is long compared
to the lattice spacing, in contrast to the case of Sm-Co. To take
this fact into account, we choose the ratio K1/A1 = 0.2 in
the hard magnet. This value is still large when compared with
real materials, but we believe that it can represent a situation
where there is a long correlation length. As for the soft magnets
(grain boundary), there are various situations to consider. For
example, depending on the concentration ratio of Fe and
Nd in the grain boundary region of a Nd-Fe-B magnet, the
parameters A and K would change [11]. Thus, we investigate
the general tendency of the threshold fields in a wide range
of parameters. The case in which the grain boundary width is
narrow compared with the correlation length is interesting as
well but lies beyond the scope of this work.

In soft magnets, the magnetic order weakens with rising
temperature, and the threshold field for nucleation shows
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FIG. 1. Schematic picture of a system consisting of two bulk
hard magnets and a boundary soft magnet. Regions I and III are
characterized by A1, K1, and M1, while region II is characterized by
A2, K2, and M2. Free boundary conditions are adopted for the lattice
model.

a rapid decrease with increasing temperature. However, the
threshold field for the domain wall propagation is found to
show a more complicated dependence due to competition
between the following mechanisms. On the one hand, the
reduction of ordering in the hard magnetic regions due to the
rise in temperature causes a reduction of the threshold.

On the other hand, in a lattice system, the discreteness of
the system becomes important when the anisotropy becomes
strong, where the so-called narrow domain wall appears
instead of the Bloch-type wall [12], thus reducing the spring
effect. When the spring effect disappears, the domain wall
propagation is regarded as a nucleation at the surface of
the hard magnet, and thus, the threshold for the propagation
of the domain wall has little dependence on the parameters
of the soft magnet. Because of this effect, the threshold
field of domain wall depinning shows a nonmonotonic de-
pendence on the parameters under consideration, which is
qualitatively different from the analytical results [3] even at
T = 0, and generally, the temperature dependence is milder
than that of the threshold field of nucleation. As a result, the
threshold field for domain wall propagation is robust against
thermal fluctuations, while that for nucleation is fragile.

The paper is organized as follows: In Sec. II, we explain the
model under consideration and the method we used to obtain
our results. In Sec. III, we study the nucleation phenomenon at
the boundary region and its propagation to the hard magnetic
regions. In Sec. IV, the domain wall propagation phenomenon
is studied. In Sec. V, we summarize and discuss our results.
In Appendix A, the temperature dependence of the anisotropy
energy in the bulk magnets is given. In Appendix B, we show
how sharply the relaxation time changes with the magnetic
field around the threshold values. In Appendix C, the narrow
domain wall phenomenon is explained.

II. MODEL AND METHOD

We consider a continuous magnetic system modeled by the
Hamiltonian

H =
∫

d r
(

A

2
[∇m(r)]2 − Kmz(r)2 − M H · m(r)

)
, (1)

where m is the unit vector of the direction of the magnetization
at position r , A is the exchange energy, and K is the anisotropy
energy. Here, it should be noted that the definition of exchange
energy is different from that in the continuum model [3] by
a factor of 2. The last term is the Zeeman energy, H is
the magnetic field, and M is magnetization. The magnetic
properties of the bulk hard magnet are specified by the
exchange energy A1 and anisotropy K1, and those of the grain
boundary region with width W are specified by A2 and K2. The
magnetizations in these regions are M1 and M2, respectively.

A phase diagram of the threshold magnetic fields for the
nucleation and domain wall depinning in a one-dimensional
continuum model were obtained analytically at zero tempera-
ture for the cases A1 > A2 and K1 � K2 [2,3]. The threshold
field for nucleation HNC is defined to be the field above which
a nucleation-type solution does not exist, and that for domain
wall depinning HDWP is defined to be the field above which a
domain-wall-like solution does not exist.

We adopt the following variables to parametrize the model
used in the previous work [3]:

the normalized external field

h = H

HSW
, HSW ≡ 2K1

M1
, (2)

in which HSW is the Stoner-Wohlfarth field of the bulk hard
magnets, the ratio of exchange energies

F = A2M2

A1M1
, (3)

and the ratio

E = A2K2

A1K1
. (4)

Here, it should be noted that the domain wall energy is
proportional to

√
AK.

For the nucleation process, the threshold of the normalized
external field h above which the nucleation occurs in the
boundary region (II) for infinite width W at T = 0 is given
by

hNCII(0) = E

F
. (5)

For finite width the threshold is slightly larger than this value
[3].

For the domain wall propagation, the threshold of the
normalized external field h above which the domain wall
propagates from the boundary region (II) to the bulk regions
(I and III) at T = 0 is given by

hDWP(0) = 1 − E

(1 + √
F )2

, (6)

and this quantity is known as the depinning field. For h <

hDWP(0), the domain wall is pinned at the border between the
boundary and hard magnets and does not propagate to the bulk
region.

In the case hNCII(0) < h < hDWP(0), the nucleated defect
region is confined. For the magnetization reversal of the
whole system the nucleated magnetization must propagate
to the hard magnets (regions I and III). Thus, the threshold
of the magnetization reversal in the case of nucleation, i.e.,
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magnetization reversal from the initial configuration where all
the regions are antiparallel to the applied field, is given by the
larger of hNCII(0) and hDWP(0). Thus, the threshold field for
the nucleation to propagate to the hard magnets at T = 0 is
given by

hNC(0) = max

[
E

F
,

1 − E

(1 + √
F )2

]
. (7)

In the present paper, we study this problem in a microscopic
spin system on a lattice with the shape of a long rod (Fig. 1),
modeled by the Hamiltonian

H = −
∑
〈i,j〉

Ai,j Si · Sj −
N∑

i=1

KiS
2
i,z −

N∑
i=1

Hi(t)Si,z, (8)

where the nearest-neighbor interaction constants Ai,j are
positive for all i,j , {Ki}Ni=1 is a set of positive anisotropy
constants, and H i(t) = Hi(t)ez is an external magnetic field
pointing in the z direction.

We consider a cubic lattice of length Lx = 60 with height
Lz = 6 and depth Ly = 6. Each vertex of the lattice contains
a spin, which we treat as a classical magnetic moment. We
choose units such that gμB = 1, where g is the g factor and
μB is the Bohr magneton. We denote the set of spins by {Si}Ni=1,
where N is the total number of vertices in the lattice. We set
the magnetization of the spins to be unity, i.e.,

|Si | = M1 = M2 = 1. (9)

The time evolution of this system is given by the Landau-
Lifshitz-Gilbert equation [1,4] for each i = 1, . . . ,N :

d

dt
Si = − γ

1 + α2
i

Si × Heff
i − αiγ(

1 + α2
i

)
Si

Si × [
Si × Heff

i

]
.

(10)
The parameter γ = gμB denotes the gyromagnetic constant,
and αi is the damping parameter. The effective field Heff

i on
the ith spin is given by

Heff
i ≡ − ∂H

∂ Si

= 2
∑

j :〈i,j〉
Ai,j Sj + [2KiSi,z + Hi(t)]ez. (11)

We include thermal effects by adding a white Gaussian noise
field, denoted by {ξ i(t) = (ξx

i ,ξ
y

i ,ξ z
i )}Ni=1, to Heff

i . Explicitly,
the noise field satisfies the following properties:〈

ξ
j

i (t)
〉 = 0,

〈
ξ

j

i (t)ξ l
k(s)

〉 = 2Diδikδjlδ(t − s). (12)

With the inclusion of the noise field, we treat the stochas-
tic Landau-Lifshitz-Gilbert (SLLG) equation as a Langevin
equation with the Stratonovich interpretation.

If the relation [5,7]

αi

Si

= γDi

kBT
(13)

is satisfied, the system relaxes to the canonical equilibrium
distribution Peq({Si}Ni=1) ∝ exp[−βH({Si}Ni=1)]. Even in the
case of inhomogeneous magnetic systems (Si �= Sj ), any
choice within this condition realizes the canonical equilibrium
state [7]. However, careful thought must be given to the choice
of Di and αi , which depend on Si and cause different relaxation
processes. In this study, however, we treat homogeneous

magnetic moments, i.e., Si = 1, and we do not meet this
problem.

We carried out simulations of the model by integrating
Eq. (10) numerically using a middle point method [7] which
is equivalent to the Heun method [5].

A. Parameterization of the model

The width of the domain wall is given by

ξ =
√

A

2K
. (14)

In our simulations, the width of region II is 20, and we choose
ξ smaller than this width.

We investigate the case in which the bulk regions have
the properties of a hard magnet, while region II has weaker
magnetic properties. Therefore, we set the constants Ai,j =
A1, Ki = K1 inside regions I and II and Ai,j = A2 < A1, Ki =
K2 < K1 in region II. The interaction constant Ai,j is taken
such that, if both the ith and j th particles belong to region
II, Ai,j = A2, while if either of the two particles belongs to
region I or III, Ai,j = A1.

It is known [13] that the critical temperature of the classical
Heisenberg model is about Tc 	 1.443A for K = 0. In the
model with K = 0.2A, the critical temperature increases
slightly. The anisotropy is defined by the anisotropy energy
as HA = 2K/M or by the anisotropy constant given by
D = K/M2. Hereafter, we use only the anisotropy energy
K to avoid confusion between the anisotropy constant at each
region Di and the strength of the random field at site i, Di .

To obtain a rough estimation of the temperature dependence
of the ordering property, we study the temperature dependence
of the square of the magnetization 〈m2

z(T ,H = 0)〉,

〈
m2

z

〉 =
〈(∑

i Si,z

)2〉
N2

, (15)

and also the temperature dependence of the anisotropy energy
K(T ) of the bulk system for a system of N = 203 spins
and K = 0.2. In Appendix A, we depict 〈m2

z(T ,H = 0)〉 for
various values of K . There, we find that the critical temperature
does not depend largely on K/A. There are several ways
to estimate the temperature dependence of K(T ) [14]. For
example, the temperature dependence of the anisotropy field
HA(T ) = K(T )/M is defined to be the magnetic field at
which the magnetization curve in the easy axis mz(H ) and an
extrapolated magnetization in the hard direction mx(H ) meet
[15]. In the present paper, we define K(T ) from the zero-field
transverse susceptibility, which is explained in Appendix A,
where the temperature dependence of the order parameter and
the anisotropy K(T ) is given for various values of K(0). There,
we find that the temperature dependence of the anisotropy is
more significant than that of the spontaneous magnetization
ms(T ). The Callen-Callen law [16], K(T ) ∝ ms(T )3, holds for
a wide range of temperatures. Indeed, for the case K(0) = 0.2,
this relation holds approximately for all temperatures.

To study the field thresholds for the system depicted in
Fig. 1, we apply a uniform external magnetic field Hi(t) = H

in the negative z direction in the system with the following
two initial conditions:
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(1) In order to study the process of nucleation in region II,
we start our simulations from the configuration in which all
the spins point in the positive z direction (+ + +).

(2) In order to study the process of domain wall propagation,
we start our simulations from the configuration in which the
spins in region III point in the negative z direction while the
rest of the spins point toward the positive z direction (+ + −).

In the present paper, we set the parameter for the noise
amplitude Di = αikBT/γ , with αi = 0.1 and γ = gμB = 1.
We take A1 as the unit of energy and measure the temperature
in this unit. To determine the threshold fields, we perform
simulations for 5 × 105 updates with time steps with a value
of �t = 0.01. In the present notation the period of precession
is of order O(1), and �t = 0.01 is small enough to simulate
the situation.

If we simulate for a longer time the results may change,
but we regard the observation time t = 5 × 103 to be enough
to grasp the dependence of the threshold on its parameters.
Usually, an observation time of 1 s corresponds to a simulation
time of order t ∼ 1012, which is much longer than t = 5 × 103.
However, the change of relaxation time around the threshold is
very sharp, which is usual in critical phenomena. In Appendix
B, we show examples of the field dependence of the relaxation
time observed in long simulations. Thus, we expect that the
estimation of the thresholds of the field do not depend largely
on the observation time.

We classify the final configurations by specifying the
signs of the magnetization in the three regions (mI,mII,mIII).
For example, (+ + +) denotes the configuration where no
nucleation occurs, (+ − +) denotes the case where nucleation
occurs but the reversed magnetization does not propagate, and
(− − −) denotes the case where nucleation occurs and the
reversed magnetization propagates. The case of (+ − −) when
we start from (+ + −) to study the domain wall propagation
phenomenon also exists.

We define hNCII(T ) as the boundary between the fields
for which the final configurations are (+ + +) and (+ − +),
hNC(T ) as the boundary between the fields for which the final

configurations are (+ − +) and (− − −) or between (+ + +)
and (− − −), and hDWP(T ) as the boundary between the fields
for which the final configurations are (+ − −) and (− − −).

We give examples of (+ − +), and (− − −) in Figs. 2(a)
and 2(b), respectively. There, we depict the time evolution of
the spin configuration. To represent the configuration we draw
spins at a line of the system (x,y = 4,z = 4),x = 1, . . . ,60,
at a set time in rows, and the vertical axis represents the time
evolution.

III. TEMPERATURE DEPENDENCE OF NUCLEATION

Starting from the initial condition (1) with (+ + +), we
investigate the threshold fields for the nucleation in region II.
We studied the time evolution of systems with F = A2/A1 < 1
and E = FK2/K1 � 1 for t = 5 × 103 and various values of
h = H/2K1 to find the threshold fields.

A. T = 0

First, we study the phase diagram at T = 0. Figures 2(a) and
2(b) present instances of processes of nucleation and propaga-
tion from the nucleated reversed magnetization, respectively.
For small values of h, nucleation does not occur (not shown),
and as h increases, nucleation begins to occur. In Fig. 2(a),
for h = 0.2 we find nucleation at around t = 2700. There, the
reversed magnetization remains inside the defect region. Thus,
h = 0.2 is between hNCII(0) and hNC(0). For a larger field, the
reversed magnetization propagates into the bulk hard magnetic
region. We depict an example in which h = 0.3 in Fig. 2(b).

In Fig. 3, the phase diagrams for T = 0 for F = 0.3,0.5,
and 0.7 are shown. The dotted lines show the threshold fields
for the nucleation, hNCII(0), and domain wall propagation,
hNC(0), given by Eqs. (5) and (6), respectively [3]. The borders
between the cases of final configurations (+ + +) and (+ − +)
are plotted by blue upward triangles, and the borders between
(+ − +) and (− − −) are plotted by red downward triangles.
Here, at T = 0, the error bars denote the step size of the

0 20 40 60
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time

0 20 40 60
0

1000

2000
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(a) (b)

FIG. 2. Time evolution of magnetization for F = 0.7, E = 0.07, and (a) h = 0.2 and (b) h = 0.3 at T = 0. Each row denotes a configuration
of spins at the site (x,4,4),x = 1, . . . ,60 at a time t . The vertical axis denotes the time. Spins of positive and negative Sz are plotted by the thin
gray bar and thick blue bar, respectively. This notation is used in other plots of configurations in this paper.

054430-4



TEMPERATURE DEPENDENCE OF THE THRESHOLD . . . PHYSICAL REVIEW B 94, 054430 (2016)

FIG. 3. Phase diagram (T = 0) of the final configuration starting from the initial condition (+ + +) for (a) F = 0.3, (b) 0.5, and (c) 0.7.
The border between (+ + +) and (+ − +) is given by blue upward triangles. The upper limit of the error bar denotes the field above which
(+ − +) appears, and the lower limit denotes the field below which (+ + +) appears. Similarly, the border between (+ − +) and (− − −) is
given by red downward triangles, and (− − −) appears above the upper limit of the error bars, while (+ − +) appears below the lower limit.
The blue and red lines are guides for the eye. The dotted lines denote the analytical estimation for the threshold nucleation field, Eq. (5), and
the threshold domain wall propagation field, Eq. (6), for the continuum system [3].

external field, �h = 0.01. The small deviation of the threshold
of nucleation from the theoretical estimation is due to the fact
that the width of region II is fixed to be W = 20. Namely,
there is correlation from the hard magnet in the defect region
due to its finite size, and this correlation stands in the way
of the nucleation phenomenon. Consequently, the threshold in
the simulation is larger than the analytical estimation, but the
overall features are well reproduced.

It should be noted that at zero temperature, if we start from
the completely aligned initial configuration, the initial state
remains unchanged because it is an unstable stationary state.
To avoid this situation, we introduced a small fluctuation to the
angle of the magnetization (θ,φ) with a Gaussian distribution
of standard deviation

√
〈(θ − θ0)2〉 = 0.01 with θ0 = 0.03

(rad). We confirmed that our results have little dependence
on the choice of θ0.

B. T > 0

Now, we study the temperature dependence of the phase
diagram. Nucleation occurs stochastically in region II, and the
corresponding waiting time obeys a Poisson distribution. In
order to determine the threshold field, we made a histogram
of the number of events. Namely, we performed simulations
of ten samples for each parameter and counted the number
of cases in which the system showed nucleation within the
observation time (t = 5 × 103).

In Fig. 4, we show an example of the rate p(− − −,h) of
samples in which the final configuration was (− − −), denoted
by red open circles, and the rate p(+ + +,h) of the number of
samples in which the final configuration was (+ + +), denoted
by blue open squares, for F = 0.7 and E = 0.14 at T = 0.1
when taking ten samples. We also performed 100 samples and
show the rates with solid circles and solid squares. We find that
a larger sample number does not change the estimation of the
threshold point significantly, and thus, we took the histograms
with ten samples in other cases.

We assign an error bar which extends from the point where
there are ten (all) occurrences to the point where there are zero
occurrences of the configuration in question.

FIG. 4. The frequency p(+ + +,h) of cases in which the final
state (t = 5000) has the configuration (+ + +) is plotted with
squares. The solid squares denote the frequency for each h obtained
from 100 samples, while the open squares denote that obtained
from 10 samples. The frequency p(− − −,h) of cases in which
the final state (t = 5000) has the configuration (− − −) is plotted
with circles. The solid circles denote the frequency for each h

obtained from 100 samples, while the open circles denote that
obtained from 10 samples. The frequency p(+ − +,h) is given by
1 − p(+ + +,h) − p(− − −,h). Here, we find that the threshold
field is well estimated by the sampling of 10 samples, and we define
the threshold to be the field at which the dotted line crosses 0.5
and define the error bars to be the interval between the fields for
p(m1,m2,m3) = 1 and p(m1,m2,m3) = 0.
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FIG. 5. Dependences of the threshold fields between (+ + +) and (+ − +) (blue upward triangles) and between (+ − +) and (− − −)
on E for T = 0.1, 0.3, and 0.5 with F = 0.3, 0.5, and 0.7. The straight lines are guides for the eye, and the dotted lines correspond to the
analytical estimation at T = 0.

We identify the threshold as the point where the interpolated
line of the histogram crosses p = 0.5. For example, the error
bar of the threshold field hNCII(0.1) between p(+ + +,h)
and p(+ − +,h) is from 0.19 to 0.23, and the threshold
point obtained from taking 100 samples lies at h = 0.203.
Similarly, the error bar of hNC(0.1) between p(+ − +,h)
and p(− − −,h) is from 0.23 to 0.26, with the 100-sample
threshold estimation lying at h = 0.242.

In Fig. 5, we show the dependence of the threshold fields
of nucleation at finite temperatures. We show diagrams for
T = 0.1,0.3, and 0.5 at F = 0.3, 0.5, and 0.7. We find that
the nucleation field decreases significantly as the temperature
rises.

When E is small, i.e., K2 is small, hNC(T ) and hNCII(T )
decrease with temperature. This dependence is naturally
understood as a consequence of thermal fluctuations. On the
other hand, for large E (where K2 is large) hNC(T ) and
hNCII(T ) separate. In the case where F = 0.3, the reduction

of the threshold hNCII(T ) is significant. As we show in
Appendix A, the effective anisotropy decreases rapidly at finite
temperatures, and for F = 0.3, i.e., A2 = 0.3, the effective
anisotropy falls substantially at T = 0.3. At T = 0.5, region
II is in the paramagnetic state, where the concept of nucleation
does not apply. However, regions I and III with A1 = 1 are
still robust against the external field, which keeps hNC(T ) at
high values.

1. Temperature dependence of the threshold field hNCII(T )

In Fig. 6(a), we plot the temperature dependence of
the threshold field hNCII(T )/hNCII(0) at E = F (i.e., K2 =
K1) for F = 0.3,0.5, and 0.7. The threshold field mono-
tonically decreases with rising temperature. We also find
that hNCII(T )/hNCII(0) decreases monotonically when F de-
creases. That is, if A2 decreases, nucleation in the region
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FIG. 6. (a) Dependence on temperature of the threshold field be-
tween patterns (+ − +) and (+ + +), (b) dependence on temperature
of the threshold field for nucleation, i.e., between patterns (− − −)
and (+ − +), for E = F = 0.3 (red downward triangles), 0.5 (green
squares), and 0.7 (blue upward triangles). The lines between data
points are guides for the eye.

becomes easier, and hNCII(T )/hNCII(0) decreases with F ,
which is natural.

Because hNCII(T )/hNCII(0) is the temperature dependence
of the threshold of the nucleation in region II, we may
relate hNCII(T )/hNCII(0) to the temperature dependence of
the bulk anisotropy energy K2(T ) estimated in Appendix A
[see Fig. 13(b)]. That is, from the definition (2), the field
h is proportional to 2K2, and we may expect the following
temperature dependence: hNCII(T )/hNCII(0) = K2(T )/K2(0).

In Fig. 13(b), we have data for K(T ) for a system with
A = 1 for various values of K(0) [K(0) = 0.0,0.2, . . . ,1.0].
The value of exchange energy in region II is given by A2

(= F ). We can estimate the temperature dependence K2(T ) of
the system with A2 by making use of the following scaling for
the parameters in the Hamiltonian. Because in Fig. 13(b) the
parameters are scaled by A, i.e., T/A and K/A, we replace
the parameters as

Kscaled = K2

(
A

A2

)
, Tscaled = T

(
A

A2

)
. (16)

The temperature dependence K2(T ) is estimated as

K2(T ) = KA=1

(
T

(
A

A2

)
,K2

(
A

A2

))(
A2

A

)
, (17)

where KA=1(T ,K) is the dependence given in Fig. 13(b).
If we adopt this transformation, the ratio hNCII(T )/hNCII(0)

is given by

hNCII(T )

hNCII(0)
= KA=1

(
T

(
A

A2

)
,K2

(
A

A2

))(
A2

A

)
1

K2(0)
. (18)

The estimated value of K2(T ) for the system of F = 0.5,
T = 0.3, E = F , and K2 = 0.2 is obtained by putting A2 =
0.5,K2(0) = 0.2:

hNCII(0.5)

hNCII(0)
= KA=1

(
0.3

(
1

0.5

)
,0.2

(
1

0.5

))(
0.5

1

)
1

0.2

= KA=1(0.6,0.4) × 2.25. (19)

In Fig. 13(b) we find that KA=1(0.6,0.4) 	 0.25, and thus,
hNCII(0.5)/hNCII(0) 	 0.6. On the other hand, in Fig. 6(a),
we find hNCII(0.5)/hNCII(0) 	 0.5. Thus, we find that the
estimation of hNCII(T ) [Fig. 6(a)] is lower than the estimation
from the temperature dependence of the anisotropy energy
K2(T ) obtained from the data in Fig. 13(b). For other points,
we find the same tendency, and we conclude that the thermal
effects are stronger than the estimation from the temperature
dependence of the anisotropy energy.

2. Temperature dependence of the threshold field hNC(T )

In Fig. 6(b), the threshold field hNC(T ) at E = F , i.e., K2 =
K1, is shown. In contrast to hNCII(T )/hNCII(0), the threshold
field hNC(T )/hNC(0) shows a nonmonotonic dependence on
F at T = 0.5.

To understand the magnetic reversal processes of the case
where F = E = 0.3 at T = 0.5, we depict time evolutions of
the line configurations at various values of h in Fig. 7. At this
temperature, we find that the magnetization of region II with
A2 = 0.3 is always reversed, which should not be regarded as a
nucleation process, but it should be regarded as a paramagnetic
state with a field-induced negative magnetization. Thus, the
reversal of the hard magnets (regions I and III) occurs as a
surface nucleation under a field consisting of the external field
and the molecular field from region II:

hsurface = −H + A1〈Si,z〉regionII. (20)

Now let us consider the dependence of hNC(T ) on F .
Because F = E, we have K1 = K2 and A2 = F . Therefore,
the dependence on F is the same as that on A2. Increasing A2

causes the increase in the threshold hNCII(T ) in region II, as we
see in Fig. 6(b). As long as there is no nucleation in region II,
the reversal of regions I and III does not take place. Thus, the
increase of the threshold hNCII(T ) with A2 causes an increase
of hNC(T ). For F = 0.5 and 0.7, just after the nucleation takes
place the whole system reverses. Thus, hNCII(T ) 	 hNC(T ),
and they decrease with A2.

On the other hand, at F = 0.3, the magnetization in region
II |〈Si,z〉regionII| is small. Then, the magnitude of the second
term A1〈Si,z〉regionII(< 0) is small, and thus, the spring effect
decreases with the temperature, which causes an increase
in the threshold. Consequently, to reverse region I, a kind
of surface nucleation at the surface of the hard magnets
(regions I and III) must take place. On the other hand, the
thermal fluctuation reduces the robustness of regions I and
III. These mechanisms compete with each other, and hNC(T )
shows a weak dependence on temperature. Because of the
above-mentioned mechanisms, hNC(T ) has a nonmonotonic
dependence on F .

IV. TEMPERATURE DEPENDENCE OF DOMAIN WALL
PROPAGATION

Next, we use the initial condition (2) where a domain
wall exists in the system, and we study whether the domain
wall can propagate to region I. In the present situation, the
magnetization of region III is already reversed, and thus, the
threshold of the domain wall propagation hDWP(T ) should
be smaller than hNC(T ). Indeed, once nucleation occurs in
region II, hDWP(T ) should be the same as hNC(T ). However, in
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FIG. 7. Configurations at (a) h = H/K1 = 0.1 and (b) 0.5 for F = E = 0.3 and T = 0.5.

Fig. 5, hNC(T ) was raised by hNCII(T ), where the dependence
of the domain wall depinning was masked by hNCII(T ). The
parameter dependence of the domain wall propagation itself
is important, and thus, in this section we study hDWP(T ) as a
function of the parameters F , E, and T .

A. T = 0

First, we compare the results at T = 0 with those obtained
analytically [3]. The dependence of hDWP(0) on E is shown
in Fig. 8. For relatively large values of F , e.g., F = 0.5 and
0.7, we find good agreement with the analytical result which
shows that hDWP(0) decreases with E. However, for the small
value F = 0.3, it is found that hDWP(0) increases with E.

If F is small, that is, if the interaction in region II (A2) is
small, the correlation length of the magnetization is short. If
E becomes large, that is, if K2/A2 becomes large, the domain
wall width becomes short. Thus, we understand that the effect
of the reversed magnetization on region III is well shielded
in region II, and thus, a larger external field is necessary to
reverse region I by a surface nucleation process. This effect

did not appear in the analytical estimation, where a continuous
change of spins is assumed and the configuration is of the Bloch
type. In the case of large values of K/A, the usual Bloch wall
does not appear, and the so-called narrow domain wall [12]
appears with a discontinuous change, which is explained in
Appendix C.

B. T > 0

Next, we study the temperature dependence of hDWP(T ),
which is shown in Fig. 9. As the temperature rises, hDWP(T ) is
reduced. But the dependence is much weaker than in the case
of hNC(T ) except for the case F = 0.3, where hDWP(T ) shows
a dependence similar to that of hNC(T ). For F = 0.3, hDWP(T )
increases with E at low temperatures. The time evolutions of
domain wall propagation for E = 0.27 at h = 0.40 and 0.60
are shown in Fig. 10. For h = 0.4, the domain wall is pinned at
the border between regions I and II. When the field is increased
up to h = 0.6 the domain wall penetrates into region I. As we
discussed above, we may again understand this phenomenon
as a kind of surface nucleation of hard magnets.

FIG. 8. Dependence of hDWP(T ) at T = 0 for F = 0.3,0.5, and 0.7, compared with those obtained analytically. The error bars denote the
threshold between the final states (− − −) and (+ − −), and their length is given by the step size on h, i.e., �h = 0.01. The solid lines are
guides for the eye, and the dotted lines denote the analytical estimation.
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FIG. 9. Domain wall propagation field for F = 0.3, 0.5, and 0.7 and T = 0.1, 0.3, and 0.5. The lines joining the data points are guides for
the eye. The dotted lines represent the fields given by Eqs. (5) and (6), and the dashed lines represent the guides for the total nucleation field
depicted in Fig. 5.

In the case of a narrow domain wall, the effect of the reversal
of regions II and III is masked. In order to see this situation,
we plot the magnetization profiles 〈m(x)〉 in Fig. 11. These
are obtained by averaging in the steady state of the (+ − −)
type after the domain wall is pinned at the border of regions I
and II.

For F = 0.3 and E = 0.27 [Fig. 11(a)], we find a sharp
change in the spin direction. In this case, as we discussed
above, A2 = 0.3 and K2 = K1 × 0.9 = 0.2 × 0.9 = 0.18, and
the width of the Bloch domain wall in the defect region, ξ =√

0.3/(2 × 0.18) 	 0.745, is less than unity, so the continuous
approximation is not adequate. For comparison, the magnetic
profile at T = 0.1 for F = 0.7 and E = 0.63 with h = 0.1
shows a smooth profile. In this case, the increase of hDWP(T )
does not take place, as we see in Fig. 9.

In Fig. 12, we show the domain wall motion at T = 0.1 for
h = 0.05, F = 0.3, and E = 0.27. There, we observe a narrow
domain wall, and it is temporally trapped at the right border

and also at some intermediate points in region II. However, it
finally moves to the left border and remains trapped there until
the end of the observation time (not shown).

Indeed, as we discussed in previous sections, if T > 1.4A2,
then the defect region is paramagnetic. In this case the
magnetic reversal of the hard magnets can be regarded as
approximately that of isolated magnets. In all cases, the domain
wall propagation can be regarded as a surface nucleation with
the relation (20).

V. SUMMARY AND DISCUSSION

The temperature dependences of the threshold fields for
nucleation [hNCII(T ) and hNC(T )] and domain wall pinning
[hDWP(T )] were studied in the system depicted in Fig. 1, where
region II has a weaker exchange interaction F = A2/A1 < 1
and a weaker anisotropy K2/K1 = E/F < 1 (or K2 < K1)
and it is sandwiched between the hard magnets.
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FIG. 10. Time evolution of the magnetization reversal process for F = 0.3, E = 0.27, and (a) h = 0.4 and (b) h = 0.6 at T = 0.1. Each
row denotes a configuration of spins at the site (x,4,4),x = 1,60 at a time t . The vertical axis denotes time.

We found that the threshold fields of nucleation phenomena
hNCII(T ) and hNC(T ) strongly depend on temperature. The
threshold hNCII(T ) decreases monotonically with the tempera-
ture and also with A2 [Fig. 6(a)]. This is due to the reduction of
magnetic order in the soft-magnet region II. We estimated the
reduction of anisotropy energy of region II K2(T ) by making
use of the bulk information given in Appendix A, and we
found that the reduction of the threshold is faster than that
estimated from K2(T ). As for the threshold of deconfinement
of the nucleated magnetization hNC(T ), we found a similar
dependence for relatively large F (i.e., F = 0.5 and 0.7). But
for F = 0.3 the spring effect from region II is suppressed, and
a saturation behavior was found [Fig. 6(b)]. There, the process
can be regarded as a surface nucleation phenomenon in the
hard-magnet region.

The domain wall pinning shown in Fig. 9 has a mechanism
similar to that for the deconfinement of the nucleated negative
magnetization h > hNC(T ). That is, the threshold hDWP(T )
is the same as hNC(T ) if the nucleation already takes place.
But the process of hNC(T ) must occur after nucleation

occurs in region II, i.e., hNC(T ) > hNCII(T ), and the intrinsic
dependence of the depinning process is not observed when
hNCII(T ) is large at large E. Thus, we studied the threshold
of depinning hDWP(T ) starting from the initial configuration
(+ + −). The comparison of hNCII(T ) and hDWP(T ) was given
in Fig. 9. As observed in the analytical estimation at T = 0, the
general tendency is that a small F (interaction J2) makes the
threshold of the domain wall propagation large, while a large
F causes the threshold of the nucleation in the soft magnet to
become large. As new phenomena due to the temperature and
the discreteness of the atomic structure, we found the following
properties. The depinning threshold generally increases with
decreasing F (i.e., with A2), as given in the analytical
estimation at T = 0. For small values of K2 the threshold
becomes smaller than that estimated for the continuous model
at T = 0 (the dotted line), which is a natural temperature effect.
However, for small F , the threshold increases with E (i.e., K2),
which we have attributed to the narrow domain wall effect.
Moreover, for small F , the threshold is robust against changes
in temperature. We have concluded that this robustness is due

FIG. 11. Magnetization profiles 〈m(x)〉 for (a) F = 0.3, E = 0.27, and h = 0.45 at T = 0.1 and (b) F = 0.7, E = 0.63, and h = 0.10 at
T = 0.1. The lines are guides for the eye.
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FIG. 12. Time evolution of the magnetization reversal process for
F = 0.3, E = 0.27, and h = 0.05 at T = 0.1. Every row denotes a
configuration of spins at the site (x,4,4),x = 1,60 at a time t . The
vertical axis denotes the time.

to the mechanism of surface nucleation phenomena at the
surface of the hard magnet because the spring effect is reduced
largely in those cases.

Thus, for the domain wall pinning at high temperatures, the
surface nucleation of the hard magnets would be important, and
it is expected that the suppression of nucleation at the surface
would help increase the coercive force at high temperature.
In the present paper, we studied only the cases of the soft
magnet in the grain boundary, that is, in the parameter region
A1 > A2,K1 � K2. But in real situations other cases, such as
A1 � A2 and/or K1 < K2, also exist [8]. In such cases, surface
coating may assist the coercive force. We leave this case for
future study.
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APPENDIX A: TEMPERATURE DEPENDENCE OF THE
EFFECTIVE ANISOTROPY

The magnetic reversal of a single domain has been
discussed in the relation of effective anisotropy. At T = 0, the
coercive force is given by the Stoner-Wohlfarth mechanism,

i.e.,

Hc = 2K/M, (A1)

where K is the anisotropy energy and M is the magnetization of
the spin. At finite temperatures, one may characterize the prop-
erties of the system by introducing a temperature-dependent
effective anisotropy K(T ). The effective anisotropy has been
studied extensively through various methods [3,15,16]. Here,
we estimate K(T ) from the temperature dependence of the
transverse magnetic susceptibility

χxx =
(

∂mx

∂Hx

)
Hxx=0

. (A2)

At T = 0, all the spins are aligned, and the angle of
the magnetization is given by minimizing the energy E =
K sin2 θ − HxM sin θ . Thus, the transverse magnetization is
given by

mx = M sin θmin = HxM
2

2K
→ χxx = M2

2K
. (A3)

At T > 0, the susceptibility at Hxx is given by the fluctuations
of Mx ,

χxx =
〈
M2

x

〉 − 〈Mx〉2

T N
=

〈
M2

x

〉
T N

, Mx =
N∑

i=1

M sin θi . (A4)

Here, one may define an effective anisotropy K(T ) by analogy
with (A3) using the values at finite temperatures, i.e., K(T )
and m(T )2,

K(T ) ≡ m(T )2

2χxx

= T Nm(T )2

2
〈
M2

x

〉 , (A5)

where

m(T ) ≡
√〈

M2
z

〉 + 〈
M2

y

〉 + 〈
M2

x

〉
. (A6)

We show the temperature dependence of (
∑N

i=1 Si)
2
/N2,

which represents the square of the spontaneous magnetization
[	 ms(T )2] approximately, and the above-defined K(T ) for
various values of K/A in Figs. 13(a) and 13(b), respectively.

As we see in Fig. 13, the Callen-Callen law holds well for
K = 0.2. But, trivially, it does not hold for K = 0, and it also
does not hold for large K .

So far, we have considered the case H = 0. Now we
consider the anisotropy for the case |H | > 0. At T = 0,
the energy barrier between the metastable antiparallel state
(θ = 0) and the stable state (θ = π ) can be regarded as a
quantity to measure the anisotropy. This quantity is obtained
by studying the energy as a function of θ :

E(θ ) = K sin2 θ − H cos θ. (A7)

The energy of the metastable state for a negative field H (< 0)
at θ = 0 is

E(0) = −H = |H |, (A8)
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1

T/A

K(T)2/A K(0)/A*m(T)3/2
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0.5

1

T

m(T)2

FIG. 13. Temperature dependences of (a) 〈(∑N

i=1 Si)2〉/N 2 	 ms(T )2 for various values of K (K/A = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0)
which are plotted by solid circles, upward triangles, squares, downward triangles, diamonds, and open circles, respectively. (b) Big symbols
denote temperature dependences of K(T ) for various values of K . The small symbols denote K(0)m(T )3/2 which agree with K(T ) at high
temperatures. The dashed curves are drawn as guides for the eye.

and it has a maximum at some angle θmax, so the energy barrier
is defined as

�E ≡ E(θmax) − |H |. (A9)

At T > 0, we can estimate the free-energy barrier in a
mean-field approximation from the Hamiltonian (8). Denoting
the number of nearest neighbors by z and choosing my = 0
without loss of generality, the free energy is given by

F (T ,H,mx,mz) = zNA

2

(
m2

x + m2
z

) − kBT N

× ln Z(T ,H,mx,mz), (A10)

with

Z(T ,H,mx,mz) =
∫ π

0
sin θdθ

∫ 2π

0
dφ

× exp[βAz(mz cos θ + mx sin θ cos φ)

+βK cos2 θ + βH cos θ ]. (A11)

In Fig. 14(a), we plot the angular dependence of
the free-energy gap for D = 0.2: �f (θ ) = [F (T ,H =
−0.1,mx,mz) − F (T ,H = −0.1,0, − 1)]/N . Here, the angle
θ is defined by θ = tan−1(mz/mx). This difference can be
regarded as a kind of anisotropy.

We find that the gap disappears at around T = 1.6.

FIG. 14. (a) Angular dependence of the free-energy gap f = F/N . K = 0.2, H = −0.1, T = 0.1,0.2, . . . ,2.4. (b) Temperature dependence
of the free-energy gap for K = 0.2 at H = 0 and H = −0.1.
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FIG. 15. Dependence of the average time tNC of domain wall
depinning after nucleation on the reduced field h = H/2K1. F = 0.3,
T = 0.1, K1 = 0.2, and E = 0.06. After t = 5000, tNC increases very
rapidly, and thus, we estimate tNC from data obtained with simulations
with tmax = 5000.

In Fig. 14(b), we plot the temperature dependences of the
spontaneous magnetization for H = 0 and the free-energy
gap: �f = [F (T ,H,mx,mz) − F (T ,H,0, − 1)]/N . At finite
magnetic field, the potential barrier due to the anisotropy is
reduced significantly from that at H = 0.

APPENDIX B: THRESHOLD FIELD DEPENDENCE ON
OBSERVATION TIME

At finite temperatures, if we perform simulations of systems
with a finite size for long times, the system should reach
equilibrium. That is, the lifetime of metastable states is finite.
However, when we study the coercive force, the lifetime
of metastable states is important. For the estimation of the
threshold fields of nucleation or domain wall depinning, we
look for the parameter at which the relaxation time increases
rapidly. In realistic time scales, such as 1 s, the corresponding
simulation time is extremely large. However, it is fortunate that
the relaxation time near the threshold increases very rapidly.
In Fig. 15 we show an example of the relaxation time for the
case F = 0.3, T = 0.1, K1 = 0.2, E = 0.06, which is found
in the top left panel of Fig. 5. Simulations begin with the
configuration (+ + +), nucleation occurs in region II at a very
small field (h 	 0.15), and then the transition from (+ − +)
to (− − −) takes place at around h 	 0.37.

In Fig. 15, we depict the average relaxation time tNC

obtained over ten samples by performing long simulations
which stopped when the relaxation from (+ − +) to (− − −)
occurred. We find a rapid increase of tNC at around h = 0.37,

and thus, in the present work, we decided to adopt tmax = 5000
to estimate hNC(T ). If we adopt a longer tmax, then the threshold
decreases slightly, but because of the rapid change we expect
that the estimation here gives approximate information for the
threshold fields. This observation is also valid for the case in
which the initial configuration is (+ + −) and we study the
threshold field for domain wall propagation.

APPENDIX C: BLOCH DOMAIN WALL AND NARROW
DOMAIN WALL

In the continuous limit the system is modeled by a one-
dimensional model

E =
∫

dx

[
A

2

(
dθ

dx

)2

+ K sin2 θ

]
, (C1)

where we put M = 1. The solution of the domain wall type
(Bloch wall) is given by

θ (x) = 2 tan−1(ex/ξ ), ξ =
√

A

2K
. (C2)

On the other hand, for the case of strong anisotropy, the
discreteness of the lattice is relevant, and the model should
be treated as a discrete lattice [12]:

E = −A
∑

i

cos(θi − θi+1) + K
∑

i

sin2 θi . (C3)

The minimum-energy state is given by

K

A
sin 2θi + sin(θi − θi−1) + sin(θi − θi+1) = 0 for all i.

(C4)
We assume a solution of the domain wall type and set θ−∞ = 0
and θ∞ = π . For the strong anisotropy case, we have θi 	 0
for i < 0, and we linearize the above relation:

K

A
2θi + (θi − θi−1) + (θi − θi+1)

=
(

2
K

A
+ 2

)
θi − θi+1 − θi−1 = 0. (C5)

This has the solution, for n < 0,

θn = θ0λ
|n|, λ = ρ −

√
ρ2 − 1, (C6)

where ρ = D/J + 1. Assuming that the center of the con-
figuration is located at the middle of i = 0 and 1, we set
θ1 = π − θ0. The value of θ0 is determined by the relation
(C4) at i = 0,(

1 − K

A

)
sin 2θ0 = sin[(1 − λ)θ0]. (C7)

For K > 2
3A, this relation only has the solution θ0 = 0, while

for K < 2
3A it has a nonzero solution.
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