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Magnetoelastic properties of antiferromagnetically coupled magnetic composite media
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We study the magnetic response of a ferromagnetic bilayer with antiferromagnetic coupling, where the layers
experience magnetostrictive strains and epitaxial misfit strains. These strains cause the layers to stretch and bend
as the magnetic spins of the layers rotate, resulting in elastic energy that adds to the magnetic energy of the
system. The magnetic and elastic energies are computed as a function of spin direction in each layer for a given
set of material and geometric parameters. By finding the rotations that minimize the total energy, we compute
magnetic hysteresis loops for different combinations of magnetic and elastic parameters. The elastic contribution
is reflected in the transitions at the corners of the hysteresis curves as well as in the coercive field of the main
loop. The details of the elastic contribution depend in a complicated way on the magnetostriction of the layers,
the epitaxial strain, the magnetic anisotropies, and the system geometry.
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I. INTRODUCTION

Thin films consisting of ferromagnetic layers have been
studied extensively over the last few decades, owing to their
applications as microactuators, micromotors, magnetic sen-
sors, spin-transfer nano-oscillators, magnetoresistive random-
access memory (MRAMs), and spin valves, among others
[1–9]. Ferromagnetic layers can exhibit antiferromagnetic
coupling, for example by including an appropriate non-
magnetic layer between the ferromagnetic layers. Adjusting
the nonmagnetic layer thickness affects the strength of the
exchange interaction between the ferromagnetic layers, while
changing the ferromagnetic layer thickness varies the magnetic
anisotropy [5,6,10–12]. Examples of multilayered ferromag-
netic systems with antiferromagnetic coupling include media
multilayers such as Fe/Cr, Co/Cu, Fe/Cu, and Co/Ru [10–12].
There has also been significant work on “exchange springs,”
where magnetostrictive strains of the ferromagnetic layers
are used to vary the exchange energy by changing layer
thicknesses. Examples include TbFe/TbFe, TbFe2/Fe, and
TbFe/FeCuNbSiB multilayers [13–17]. The magnetostrictive
behavior is often explored by measuring the curvature of
the multilayer [15,16] or by inspecting magnetization curve
behavior, e.g., changes in the coercive field and squareness of
the hysteresis loops [8,18,19].

While ferromagnetic mutilayers have interesting magnetic
and magnetoelastic properties, there has been relatively little
work addressing the coupling between the two processes.
Shima et al. have measured magnetization curves in antifer-
romagnetically coupled bilayers, and have also measured the
magnetoelastic coupling coefficient as a function of applied
field [15,16]. Their results suggest some correlation between
the magnetostrictive strains and the rotation of the layer spins,
where strain levels change as the relative thickness of the layers
change. In a somewhat different setting, Pertsev and Kohlstedt
have shown that in ferromagnetic multilayers on a ferroelectric
substrate, elastic energy can be used to trigger the switching
of magnetic moments under moderate electric fields [20].
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In this paper, we study the magnetic response of a ferro-
magnetic bilayer with antiferromagnetic coupling, where the
layers experience magnetostrictive strains as well as epitaxial
misfit strains. Our goal is to identify how and where elasticity
can alter magnetic hysteresis curves of such systems, and to
characterize the parameter space where such effects can be
observed.

We accomplish this by computing the magnetic and elastic
energies as functions of the layer spin rotations and material
parameters. The magnetic energy of the multilayer system is
taken following Dantas et al. [21]; see also [6,10,22–30]. The
elastic energy of the system is found by using a model similar
to that of Hsueh et al. [31], although in our case strains arise
from a magnetostrictive response to an external magnetic field,
rather than from a change in temperature. We use a numerical
minimization algorithm to find the layer spin rotations that
minimize the magnetic plus elastic energy, which allows us
to study the effects of magnetic, mechanical, and system
properties on the magnetic response. Specifically, we compute
hysteresis loops for different values of system parameters. The
hysteresis curves without elastic coupling are in qualitative
agreement with previous results; see [5,6,11,12,15]. The
elastic contribution affects the transitions at the corners of
the hysteresis curves as well as the coercive field of the main
loop.

In the following, we detail the magnetic and elastic energies
used in the model. We briefly describe the computation of the
magnetic response, and we present and discuss the results.

II. MODEL DEVELOPMENT

A two-layer ferromagnetic film with antiferromagnetic
coupling is studied; see Fig. 1. Following Dantas et al. [21,32]
(see also [22–25,27–29]), we consider two ferromagnetic
layers, each with a single spin in the plane of the film (the
x-y plane). Both layers have uniaxial symmetry, with the easy
axis of magnetization coinciding with the x axis. The external
magnetic field H is applied along the x axis. The layers have
thicknesses t1 and t2 so that the thickness ratio

β = t1

t2
. (1)
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FIG. 1. Multilayer system schematic. Magnetization M and
applied field H position with respect to the easy axis.

We take t1 � t2 so that 0 < β � 1.
The magnetic energy per unit area of the system is taken as

Emag = −HMsβcos(θ1) − HMscos(θ2)

+j2:1βcos(θ2 − θ1) − k1

2
β2cos2(θ1) − k2

2
cos2(θ2).

(2)

Here, θ1 and θ2 are the angles that the in-plane magne-
tization vector M makes with respect to the easy axis (EA)
(see Fig. 1). Also, Ms is the constant saturation magnetization,
taken to be the same in both layers. Hence, Mscos(θ ) gives the
component of the magnetization in the x direction. The values
k1 and k2 are the anisotropy constants of the layers, and j2:1 is
the negative of the exchange integral, as discussed below.

The first two terms in Eq. (2) describe the Zeeman energy
of the layers [33–35]. The Zeeman energy favors the magne-
tization in the direction of the applied field. The third term
is the exchange energy between layers, which favors either
parallel (ferromagnetic) or antiparallel (antiferromagnetic)
coupling of the spins. The difference between the two cases
depends on the sign of the exchange integral, J = −j2:1. The
exchange integral is negative for antiferromagnetic coupling
[21,33] (hence our j2:1 is positive) and so favors antiparallel
spins. We define a positive exchange coefficient in order to
simplify normalization of the energy. The last two terms of
Eq. (2) are the anisotropy energy contributions of the system,
where the anisotropy factors k1 and k2 determine the energy
cost of moving the magnetization away from the easy axis.
Equation (2) is valid for single-domain ferromagnetic layers,
which are reversing their magnetization coherently.

The elastic energy of the bilayer system results from the fact
that when an external field is applied parallel (or antiparallel)
to the easy axis, the individual layers will want to expand
or contract depending on their magnetostrictive properties.
In general, and assuming the layers are well bonded, any
differential expansion/contraction will cause the multilayered
system to expand/contract and bend. This leads to residual
stresses in the individual layers, and hence to an elastic energy.

We derive this elastic energy as follows [31]. Noting that
the z axis is normal to the layers, we set z = 0 at the junction
between the layers. The strain distribution of the system owing

to expansion/contraction and bending is taken to be linear in z,

ε0(z) = εc + tb − z

r
, (3)

where εc defines the uniform part of the strain and tb−z

r

describes the bending, with tb and r−1 as the bending axis
and radius of curvature, respectively. The bending direction of
the film (concave or convex) depends on the sign of the radius
of curvature r−1.

The residual stress in each layer is proportional to an
“elastic” strain, given by the difference between the total strain
from Eq. (3) and the “stress-free” or misfit strain of each layer.
We take the misfit strain to be the sum of an epitaxial strain
and a magnetostrictive strain, where the epitaxial strain arises
from the different lattice parameters of the two layers in the
absence of a magnetic field. That is, the elastic strain in each
layer is given by

ε1(z) = ε0(z) − εT1 − λ1cos2(θ1) (4)

and

ε2(z) = ε0(z) − εT2 − λ2cos2(θ2). (5)

Here, εT1 and εT2 are the stress-free strains of the two
layers relative to some common reference state and in the
absence of any magnetostriction. We take εT = εT1 − εT2 as
the epitaxial strain between the two layers; this is equivalent
to taking the common reference state to be the unstrained
lattice of layer 2. The coefficients λ1 and λ2 are magnetic
expansion coefficients and give the magnetostrictive strain
when the magnetic moment is aligned along the easy axis,
so θ is 0 or π . Hence the projections of the magnetic moment
onto the easy axis is proportional to cos(θi) (i = 1,2) (see
Fig. 1). We use cos2(θ ) in Eqs. (4) and (5) to reflect that the
magnetostrictive strain is the same for magnetization angles
θ = 0 and π .

Assuming the layers are linear elastic, the stresses in the
two layers are simply proportional to the elastic strain, so

σ1(z) = Y1ε1(z) for − t1 � z � 0, (6)

and

σ2(z) = Y2ε2(z) for 0 � z � t2, (7)

where Y1 and Y2 denote the Young’s modulus of each layer.
In order to obtain the unknown parameters εc, tb, and r−1,

we specify that the resultant forces and moments on the bilayer
system must vanish. We set the resultant force in the system
owing to uniform strain and bending to zero,

Y1[εc − εT − λ1cos2(θ1)]t1 + Y2[εc − λ2cos2(θ2)]t2 = 0

(8)

and ∫ 0

−t1

Y1(z − tb)

r
dz +

∫ t2

0

Y2(z − tb)

r
dz = 0. (9)

We also set the resultant moment on the bilayer about z = tb
to zero,

∫ 0

−t1

σ1(z − tb)dz +
∫ t2

0
σ2(z − tb)dz = 0. (10)
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Solving Eqs. (8)–(10) yields

εc = βεT + βλ1cos2(θ1) + λ2cos2(θ2)

1 + β
, (11)

1

r
= − 1

t2(1 + β)3
× 3β{2εT + (λ1 − λ2)

+ [λ1cos(2θ1) − λ2cos(2θ2)]} (12)

and

tb = t2(1 − β)

2
, (13)

where the thickness ratio β is defined in Eq. (1). Note that the
uniform strain εc and the bending curvature r−1 depend on the
directions of the magnetic moments through θ1 and θ2, while
the bending axis tb depends only on the layer thicknesses.

In our subsequent analysis, we simplify these results by
taking the elastic moduli to be equal, so Y1 = Y2 = Y . We
compute the elastic energy per unit area as [36]

Eelas = 1

2

∫ 0

−t1

(σ1ε1)dz + 1

2

∫ t2

0
(σ2ε2)dz. (14)

After some algebra, we find that the elastic energy of the
bilayer system is

Eelas = 1
8Y t2ψ{2εT + (λ1 − λ2)

+ [λ1cos(2θ1) − λ2cos(2θ2)]}2, (15)

where ψ = β[1 + β(β − 1)]/(1 + β)3 is a constant that de-
pends on the thickness ratio β.

As mentioned in Sec. I, antiferromagnetic coupling is often
achieved by using a thin nonmagnetic layer separating the
ferromagnetic layers. While it is straightforward to include
extra layers in the elasticity calculation, we do not. Our primary
reason for this is that including the nonmagnetic layer adds to
the parameter space and makes it more difficult to interpret the
results. Moreover, the calculations we have done (albeit not in
the full parameter space) indicate that the nonmagnetic layer
does not significantly affect the results until its thickness is
roughly the same order as the ferromagnetic layers.

We have also considered a magnetoelastic energy that arises
from the dependence of the magnetization on elastic strains
[37–39]. However, because the strains in our case arise from
magnetostriction, this additional energy is small compared to
the elastic energy from the residual layer stresses owing to
magnetostriction, and so we do not include it here.

Total energy and normalization

The total energy of the system is the sum of the magnetic
and elastic energies from Eqs. (2) and (15). For consistency,
and following [21], we normalize both the magnetic and
elastic energies using the exchange energy j2:1. This yields

a normalized total energy,

Etotal =β

2
cos(θ2 − θ1) − β2 α1

2
cos2(θ1)

− α2

2
cos2(θ2) − hβcos(θ1) − hcos(θ2)

+ 1

16
Ymodψ{2εT + (λ1 − λ2)

+ [λ1cos(2θ1) − λ2cos(2θ2)]}2,

(16)

where α1 = k1/(2j2:1) and α2 = k2/(2j2:1) are the normalized
anisotropies, HE = (2j2:1)/Ms is the exchange field, h =
H/HE is the normalized applied field, and Ymod = Y/j2:1 is
the normalized modulus of elasticity.

We use magnetic hysteresis loops as an observable for the
different mechanical effects on the magnetic response. In order
to find the M vs h curves, the average magnetization of the
system in the direction of the easy axis is defined as

M = t1M1 + t2M2

t1 + t2
, (17)

where M(1,2) = Mscos(θ(1,2)). Hence,

M

Ms

= βcos[θ1(h)] + cos[θ2(h)]

1 + β
. (18)

In the following analysis, we set the material properties of
the two layers through the parameters α1, α2, Ymod, εT , λ1,
and λ2. We set the geometry through the thickness ratio β.
Once these properties are specified, the energy (16) may be
considered as a function of the magnetization angles θ1 and
θ2, parameterized by the applied magnetic field h. We study
the magnetic behavior of the system by finding the critical
angles θc1 and θc2 that minimize the energy for a given set
of parameters and as a function of the normalized applied
field h. These critical angles are then used to construct the
magnetization curves via Eq. (18).

The critical angles are found by using an energy-
minimizing algorithm. This algorithm was developed by com-
bining a pseudo-arc-length algorithm and a steepest descent
energy minima tracking technique [40,41]. The pseudo-arc-
length algorithm tracks equilibrium points of the energy that
are not necessarily stable, in which case the steepest descent is
activated and finds the closest stable point in the neighborhood
of the unstable equilibrium point. See the Supplemental
Material [42] for details.

III. RESULTS

All results are generated by using material parameters
consistent with the experimental values shown in Table I. We
first consider the magnetic response in the absence of elastic
energy by considering two different pairs of anisotropies at
several different thickness ratios. These results are analogous
to those of Dantas et al. for a two-layer system [21]. We
then consider how elasticity affects the baseline magnetization
curves by choosing a range of values for the epitaxial strain
εT and the magnetic expansion coefficients λ1 and λ2.
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TABLE I. List of parameters involved in calculations.

Parameter Symbol Magnitude

Magnetizationa Ms ∼106 A m−1

Magnetic fieldb H ∼1 T
Exchangec j ∼106 J m−3

Anisotropyd k ∼105 J m−3

Stresse σ [Pa]
Young’s modulusf Y ∼200 GPa
Straing ε ∼10−3

Thickness ratioh β 0.2 to 1
Normalized modulus Ymod 30 000
Magnetoelastic coefficienti λ ∼10−3

Normalized anisotropyj α 0.15 and 0.3
Normalized field h −1 to 1

aConsistent with [12].
bField required for saturation depends on the sample.
cConsistent with [10,11,23].
dConsistent with [5,11].
eVaries with strain and Young’s modulus.
fRoughly that of metals such as Fe and Ni.
gTypical value for epitaxial strain.
hAs in [21].
iConsistent with [13,15,16].
jConsistent with [12,21,43].

A. No elasticity, α1 = 0.15 and α2 = 0.3

When α1 = 0.15 and α2 = 0.3, layer 1 has a smaller
magnetic anisotropy energy than layer 2. Moreover, since
β = t1/t2 � 1, layer 1 is the thinner layer. Hence both the
anisotropy and thickness ratio have values such that it should be
easier to rotate the magnetization of layer 1 compared to layer
2. Figure 2 shows the magnetic hysteresis loop for different
values of β. In all hysteresis curves, increasing field is shown
as a solid line, while decreasing field is shown as a dashed line.
Regions with identical response to increasing and decreasing
fields are also seen as a solid line.
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FIG. 2. Magnetic hysteresis curves are shown for different values
of the layer thickness ratio β when α1 = 0.15 and α2 = 0.3.

−4

−3

−2

−1

0
β = 0.2

 

 

θ1
θ2

−1 −0.   5 0 0.  5

2

3

4

5

h

θ 1 , 
θ 2

   
   

  π
)

d

 

 

d

   1

FIG. 3. The spin angles θ1 and θ2 are shown for the case
corresponding to β = 0.2, α1 = 0.15, and α2 = 0.3. The top figure
shows the angles on increasing the external magnetic field from −1,
while the lower curve shows the angles on decreasing the field from
+1. The actual results from the minimization algorithm are shown,
though θ1 and θ2 are 2π periodic.

Consider the case β = 0.2 in Fig. 2(a). The spin rotations
θ1 and θ2 associated with this hysteresis curve are shown in
Fig. 3, and determine the magnetic response through Eq. (18).
Also, while we show the actual results from the minimization
algorithm in Fig. 3, we report values of θ1 and θ2 between 0
and 2π as the energy of Eq. (16) is 2π periodic in θ1 and θ2.

When the applied field h = −1, the system is fully saturated
(θ1 = θ2 = π ). Upon increasing the field, the system stays
saturated until h ≈ −0.54, at which point layer 1 rotates to
θ1 = 0. This behavior is known as a spin floplike transition
and typically occurs for a ferromagnetic to antiferromagnetic
(and vice versa) transition [21,33]. This antiferromagnetically
coupled state persists until h ≈ 0.35, when the direction of
moments reverse so that θ1 = π and θ2 = 0. As h increases
further, θ1 eventually rotates to zero so both magnetizations are
oriented in the direction of the applied field, i.e., the system
saturates at θ1 = θ2 = 0. As h decreases from 1, the reverse
process occurs, as shown by the decreasing field plot in Fig. 3.

The normalized remanent magnetization when β = 0.2 is
0.667. Since the remanent magnetization is measured as the
half height between states (θ1,θ2) = (0,π ) and (π,0), it is easily
found to be

Mr

Ms

= (1 − β)

(1 + β)
(19)

from Eq. (18).
As β increases, the width of the hysteresis curve (i.e.,

the coercive field) increases and the remanent magnetization
decreases, consistent with Eq. (19). When β = 0.4 [Fig. 2(b)],
the spin behavior is much like the β = 0.2 case. However, the
initial rotation of the layer 1 spin as h increases from −1 (or
decreases from 1) occurs more gradually, as expected from the
fact that the relative thickness of layer 1 increases with β. At
the same time, there is some corresponding rotation of the layer
2 spin. This trend continues as β increases, eventually leading
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FIG. 4. Magnetic hysteresis curves are shown for different values
of the layer thickness ratio β when α1 = 0.3 and α2 = 0.15.

to a double-loop shape. At β = 1, the main hysteresis loop
vanishes as expected from Eq. (19). This has been reported
as the typical behavior of an antiferromagnetically coupled
system [21,32] and should correspond to a first-order transition
of the spin floplike state. On increasing field at h = 0, the
system remains unmagnetized until h ≈ 0.6, at which point the
spins rotate towards saturation, which is achieved at h ≈ 0.8.

B. No elasticity, α1 = 0.3 and α2 = 0.15

We now switch the magnetic anisotropies, so α1 = 0.3 and
α2 = 0.15. Hence we expect a tradeoff between the anisotropy,
which favors rotation of layer 2, and the thickness, which, since
t1 � t2, favors rotation of layer 1.

Figure 4 shows the magnetic response for four different
values of β. As it is now easier to rotate the magnetization of the
thicker layer (layer 2), the coercive field of the main hysteresis
loop is smaller than in the previous case. For example, when
β = 0.8 and as h increases [Fig. 4(c)], the spin rotations flip
from (θ1,θ2) = (0,π ) to (π,0) at h ≈ 0.34. This occurs because
of the relatively low cost of rotating the spin of layer 2, while
keeping the antiferromagnetic coupling between the layers.
This is seen on the magnetization curve as a jump from the
lower plateau to the upper plateau between h ≈ 0.34 and h ≈
0.53, at which point θ1 rotates toward zero. In contrast, in
the β = 0.8 case shown in Fig. 2(c), there is no transition
from the lower plateau to the upper plateau as h increases;
(θ1,θ2) stays at (0,π ) until the field is strong enough to rotate
θ2 towards zero. Finally, when β = 1, the two layers have
the same thickness, and so the cases α1 = 0.3, α2 = 0.15 and
α1 = 0.15, α2 = 0.3 are identical.

C. Elastic effects

We now consider how elastic energy affects the magnetic
response. As seen in Eq. (15), elastic energy depends on the
magnetoelastic coefficients λ1 and λ2, the epitaxial strain εT ,
the normalized elastic modulus Ymod, the thickness ratio β, and
the magnetic rotations θ1 and θ2.
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FIG. 5. Magnetic hysteresis curves are shown for different values
of magnetostrictive strains λ1 and λ2, with epitaxial misfit εT = 0
and thickness ratio β = 0.4. The magnetic anisotropies α1 = 0.15
and α2 = 0.3.

As before, we determine the magnetic response of the
bilayer by finding the angles θ1 and θ2 that minimize the total
energy in Eq. (16). Elasticity affects these minimizing values
of θ1 and θ2 because of the residual stresses generated by
unequal magnetostriction of the layers as the magnetizations
rotate. Elasticity has no effect on the remanent magnetization,
as this is measured between fixed values of (θ1,θ2). However,
elasticity can have a strong effect on the corner behavior and
coercivity, as corners represent regions in which θ1 and θ2

change.
Figure 5 shows hysteresis loops for different values of λ1

and λ2 when the epitaxial strain εT = 0, Ymod = 30 000, β =
0.4, α1 = 0.15, and α2 = 0.3. In the absence of elasticity (λ1 =
λ2 = 0), this corresponds to Fig. 2(b) above. Also, because
εT = 0, results for (λ1,λ2) and (−λ1,−λ2) are identical, as
seen by Eq. (15).

We observe that elasticity changes the shape of the
transitions and decreases the coercive field, i.e., narrows the
hysteresis loop. The details depend strongly on the particular
values of λ1 and λ2. When λ1 = 0.003 and λ2 = 0.001,
elasticity has almost no effect on the coercivity and only a
small effect on the transitions, while when λ1 = −0.001 and
λ2 = 0.003, the coercive field decreases by about 25%.

The influence of elasticity is more apparent when α1 = 0.3
and α2 = 0.15. Figures 6(a) to 6(d) shows hysteresis loops
in this case, for εT = 0 and Ymod = 30 000 [Fig. 4(b) shows
the results without elasticity]. As above, elasticity alters both
transitions and the coercive field. When λ1 = 0.003 and
λ2 = 0.001, elasticity smooths the corners but has negligible
effect on the coercive field. When λ1 = 0.001 and λ2 = 0.003,
elasticity increases the width of the corner loops and leads
to a small (<20%) decrease in the coercive field. When
λ1 = −0.003 and λ2 = 0.001, elasticity acts to close the corner
loops and reduce the coercive field by close to 40%.

We next include epitaxial misfit εT . Because the misfit
εT generates residual stress independent of magnetic field,
it only affects the magnetic response in conjunction with

054425-5



JUAN J. VALENCIA-CARDONA AND PERRY H. LEO PHYSICAL REVIEW B 94, 054425 (2016)

−0.5
0

0.5

−0.5
0

0.5

−0.5
0

0.5

−0.5
0

0.5

M
/M

s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

h

(a) 

(b) 

(c) 

(d) 

λ1 = 0.001, λ2 = 0.003

λ1 = 0.003, λ2 = 0.001

λ1 = -0.001,λ2 = 0.003

λ1 =-0.003, λ2 = 0.001

FIG. 6. Magnetic hysteresis curves are shown for different values
of magnetostrictive strains λ1 and λ2, with epitaxial misfit εT = 0
and thickness ratio β = 0.4. The magnetic anisotropies α1 = 0.3 and
α2 = 0.15.

the magnetostrictive coefficients λ1 and λ2. Figure 7 shows
hysteresis curves for different values of λ1 and λ2 when
εT = 0.002, while Fig. 8 shows the same curves when εT =
−0.002. In both figures, the magnetic anisotropies α1 = 0.3
and α2 = 0.15.

For the values of λ1 and λ2 shown, positive εT has less
effect than negative εT . However, as results are identical for
the triplets (λ1,λ2,ε

T ) and (−λ1, − λ2, − εT ) [see Eq. (15)],
this reflects the relative signs of λ1, λ2, and εT rather than their
absolute signs. For the combinations of λ1, λ2, and εT shown
in Fig. 7, elasticity has little influence on the hysteresis curves.
For example, when λ1 = 0.001, λ2 = 0.003, and εT = 0.002,
elasticity does not affect the magnetic hysteresis [compare
Fig. 7(a) to Fig. 4(b)]. Interestingly, in this case adding the
misfit actually decreases the elastic effect compared to the
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FIG. 7. Magnetic hysteresis curves are shown for different values
of magnetostrictive strains λ1 and λ2, with epitaxial misfit εT = 0.002
and thickness ratio β = 0.4. The magnetic anisotropies α1 = 0.3 and
α2 = 0.15.
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FIG. 8. Magnetic hysteresis curves are shown for different values
of magnetostrictive strains λ1 and λ2, with epitaxial misfit εT =
−0.002 and thickness ratio β = 0.4. The magnetic anisotropies
α1 = 0.3 and α2 = 0.15.

εT = 0 case shown in Fig. 6(a). In fact, considering all the
cases shown in Fig. 7, we observe that when εT = 0.002,
elasticity has a limited role in the shape of the transitions from
the saturated states to the hysteresis loop, and has relatively
little effect (<20%) on the coercive field.

In contrast, when we change the relative signs of λ1, λ2,
and εT , as shown in Fig. 8, the role of elasticity on magnetic
response is much more significant. When λ1 = 0.001 and
λ2 = 0.003 [Fig. 8(a)], elasticity reduces the coercive field
by about 30%, and also widens the corner loops. When
λ1 = −0.001 and λ2 = 0.003 [Fig. 8(c)], elasticity decreases
the coercive field by over 50% and closes the corner loops
completely. There is a similar decrease in coercive field when
λ1 = −0.003 and λ2 = 0.001 [Fig. 8(d)], where elasticity also
forces a slow and smooth transition in the spin rotation angles
away from the saturated states. We note that in the two cases
shown in Figs. 8(c) and 8(d), if one increases the elastic energy
by increasing Ymod, the hysteresis loop continues to collapse,
though the minimization algorithm fails before this occurs.

IV. DISCUSSION

Elastic energy owing to residual stresses in a magnetic
bilayer can influence the magnetic response of the bilayer.
We have shown that the elastic response impacts both the
transitional behavior and the coercive field of the magnetic
hysteresis loops of the bilayer. The transition regions are
associated with changes in the magnetization angles θ1 and
θ2, and so the addition of elastic energy to the magnetic energy
changes the angles that minimize the total system energy.
Because the energy is a complex function of the magnetization
angles and the external magnetic field, even small changes to
the energy can engender significant changes to values of θ1

and θ2 that minimize energy.
The main quantitative effect of elastic energy is on the

coercive field. Figure 9 shows a plot of coercive field versus εT

for the four different cases in the figures above: (a) λ1 = 0.001,
λ2 = −0.003; (b) λ1 = 0.003, λ2 = 0.001; (c) λ1 = −0.001,
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FIG. 9. Central loop coercive field hc vs epitaxial strain εT for
different magnetic expansion coefficients. The magnetic anisotropies
α1 = 0.3 and α2 = 0.15.

λ2 = 0.003; and (d) λ1 = −0.003, λ2 = 0.001. The horizontal
line just above hc = 0.46 gives the coercive field in the absence
of elasticity. Elastic energy can decrease the coercive field by
over a factor of two. In all the cases we have considered, we
have not found any in which elasticity increases the coercive
field.

Close examination of the elastic energy gives some insight
as to how different elastic parameters led to different behaviors.
Consider the elastic energy as a function of θ1 when θ2 = π .
We make this choice to see how the elastic energy affects the
magnetic response as h increases from −1. In this case, the
elastic energy is minimized either when θ1 = 0 (or π ), or when
θ1 = π/2. Recall that the elastic energy is independent of h

because the constitutive equations (4) and (5) reflect that the
magnetostrictive strain is proportional to the component of the
magnetization in the direction of the easy axis.

When the elastic energy with θ2 = π has a minimum at θ1 =
0 (or π ) and a maximum at θ1 = π/2, it tends to lengthen the
transition from the saturated state (θ1,θ2) = (π,π ) to the lower
plateau of the hysteresis loop at (θ1,θ2) = (0,π ). However, the
elastic energy has relatively little effect on the coercive field;
that is, the magnetic field at which (θ1,θ2) = (0,π ) switches to
the upper plateau of the hysteresis loop at (θ1,θ2) = (π,0). In
contrast, when the elastic energy with θ2 = π has a maximum
at θ1 = 0,π and a minimum at θ1 = π/2, it tends to decrease
the value of the coercive field at which (θ1,θ2) = (0,π )
switches to (θ1,θ2) = (π,0). More, the decrease in the coercive
field is tied to the depth of the minima at θ1 = π/2. In this case,
it appears that the elastic energy helps nudge the system locally
away from (θ1,θ2) = (0,π ) as h increases, even though it does
not globally favor (θ1,θ2) = (π,0). On decreasing h, the elastic
energy has a similar role in pushing the system off the upper
plateau at (θ1,θ2) = (π,0).

The strength of the elastic effect depends in a complicated
way on the magnitudes and signs of the elastic parameters. The
values of the magnetic expansion coefficients λ1 and λ2 and the
epitaxial strain εT have been chosen in order to look at a variety

of cases, and with magnitudes consistent with linear elasticity.
The normalized modulus Ymod was chosen to be large enough
so that there is an observable elastic effect on the magnetic
hysteresis curves. Recalling that Ymod is the ratio of the
elastic modulus with the magnitude of the exchange coefficient
between layers, we note that Ymod = 30 000 is consistent with
a modulus of 200 GPa (roughly that of iron) and an exchange
coefficient of 6.7 × 106 J m−3, as used by Hernandez et al.
[23] (see Table I). For smaller Ymod, the exchange coupling
between layers dominates the behavior, while for larger Ymod,
elasticity becomes increasingly influential. We find that in
some cases, increasing Ymod beyond a certain critical value can
cause the minimization algorithm to fail before the hysteresis
loop is complete. Because of this, we have never seen complete
collapse of the hysteresis loop.

Our analysis can be extended to systems with more than
two layers. For example, the antiferromagnetic coupling we
consider is often achieved by introducing nonmagnetic layers
between ferromagnetic layers [5,6,11,12], so that the elasticity
problem involves at least three layers. The presence of the
nonmagnetic layer will affect not only the elastic energy, but
also the magnitude of the coupling coefficient j2:1 in Eq. (2).
Specifically, since the magnitude of the coupling decreases as
the distance between ferromagnetic layers increases [6,11], the
influence of elasticity would increase, as Ymod is normalized
by j2:1; see Eq. (16). We did not consider the role of the
nonmagnetic layer in this paper, primarily because we wanted
to gain some baseline understanding of the influence of
magnetostrictive-driven elasticity on the magnetic properties
of layered films.

V. CONCLUSION

An antiferromagnetically coupled bilayer composite media
is studied by constructing the system’s magnetic and elastic
energies as functions of the applied magnetic field and the
spin rotation angle of each layer. For a given set of magnetic
and elastic parameters, the spin angles that minimize the
normalized energy are found. These angles are used to
construct the magnetic hysteresis loops of the system. In the
absence of elastic energy, magnetic hysteresis loops depend on
the magnetic anisotropies of the layers as well as the thickness
ratio of the layers. Adding elasticity causes the layered system
to stretch and bend when the spin rotation angles change,
which is reflected in the spin transitions observed in the
hysteresis curves as well as in the coercive field required to
flip rotations as the magnetic field increases or decreases.
The details of the elastic effect depend in a complicated
way on the magnetostriction of the layers, the epitaxial strain
between the layers, the magnetic anisotropies, and the system
geometry.
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