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Exact steady states for quantum quenches in integrable Heisenberg spin chains
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The study of quantum quenches in integrable systems has significantly advanced with the introduction of
the quench action method, a versatile analytical approach to nonequilibrium dynamics. However, its application
is limited to those cases where the overlaps between the initial state and the eigenstates of the Hamiltonian
governing the time evolution are known exactly. Conversely, in this work we consider physically interesting
initial states for which such overlaps are still unknown. In particular, we focus on different classes of product
states in spin-1/2 and spin-1 integrable chains, such as tilted ferromagnets and antiferromagnets. We get around
the missing overlaps by following a recent approach based on the knowledge of complete sets of quasilocal
charges. This allows us to provide a closed-form analytical characterization of the effective stationary state
reached at long times after the quench, through the Bethe ansatz distributions of particles and holes. We compute
the asymptotic value of local correlations and check our predictions against numerical data.
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I. INTRODUCTION

The complexity in the study of the nonequilibrium dynam-
ics in isolated many-body quantum systems is at first sight
overwhelming. At the same time, many interesting questions
naturally arise when a system is brought out of equilibrium,
for example regarding the nature of quantum decoherence or
relaxation processes. In the past decade, these issues have been
at the center of a fruitful theoretical research activity, partially
motivated by the experimental achievements in the physics
of ultracold atoms, such as the possibility to realize highly
isolated and controlled many-body quantum systems with
reduced effective dimensionality [1–3]. In particular, due to the
exact solvability of several one-dimensional quantum systems,
they represent an ideal framework where exact theoretical
results can be compared with experimental data. Many studies
have already shown that integrable one-dimensional many-
body Hamiltonians can be experimentally engineered and their
nonequilibrium dynamics probed in exquisite detail [4–13].

Arguably, the simplest protocol to bring a system out of
equilibrium is that of a quantum quench [14]: a well-defined
initial state (usually the ground state of some Hamiltonian H0)
is prepared at time t = 0 and subsequently time evolved with
some Hamiltonian H . After the quench, it is expected that an
extended system should act as an infinite thermal bath on its
own finite subsystems and, accordingly, local properties should
relax to stationary values described by a Gibbs ensemble. For
a generic (i.e., nonintegrable) model, this picture turns out to
be correct and the time-dependent local correlations indeed
approach thermal stationary values [15–18].

A different behavior is observed in integrable systems. In
this case, local correlations still approach stationary values but
these are not in general given by a thermal ensemble. The
reason lies in the existence of an infinite set of conservation
laws which constrain the dynamics at all times. The thermal
Gibbs ensemble then has to be replaced by a generalized Gibbs
ensemble (GGE), which is built taking into account all the local
and quasilocal conserved operators (or charges) of the system
[19–21]. The importance of a notion of locality for the charges
was not realized immediately and it was first pointed out in
Refs. [22,23]. The GGE has been first considered for integrable

models admitting a free particles representation [22–32] and
only after for genuinely interacting integrable models (see the
volume [33] as a collection of reviews on the subject).

The efforts to better understand the range of validity
of the GGE for interacting integrable models has already
produced important conceptual and technical advances in our
understanding of nonequilibrium physics in isolated quantum
systems. In particular, one promising development is the
so-called quench action method [34], which is an integrability
based analytical approach to study the time evolution following
a quench. One of its main results is that the effective long-
times stationary state can be represented by a highly excited
eigenstate of the postquench Hamiltonian. This description is
complementary to the GGE and it is analogous to the one em-
ployed in the standard treatment of the thermodynamic Bethe
ansatz. Indeed, in the latter it is well known that the thermal
Gibbs ensemble can be effectively replaced by a maximal
entropy representative eigenstate [35–37]. While integrable
models are by definition special, they can be engineered to
a great level of accuracy in cold atomic systems (as, e.g., in
Refs. [4,6,9,10,12,13]) and furthermore understanding their
quench dynamics leads to remarkable insights also for the
dynamics of more generic systems [38–44].

The quench action method has proven to be extremely
versatile, with applications to quantum quenches in various
models ranging from spin chains [45–49] to Bose gases
[50–54] and integrable quantum field theories [55,56]; see
Ref. [57] for a recent review. It is, however, limited to those
initial states for which the overlaps with the eigenstates of the
postquench Hamiltonian are known exactly. These quantities
are in general extremely difficult to compute and so far no
general scheme has been developed to tackle this problem
which has been solved only in a few cases [58–68].

In the quantum quench literature, the XXZ spin-1/2
Heisenberg chain has served as the simplest interacting many-
body quantum system where analytical predictions could
be tested with high precision against numerical methods
[45–48,69–78]. Even in this prototypical model, the quench
dynamics from simple families of product states cannot in
general be analyzed by means of the quench action approach
because the overlaps with the eigenstates are still missing.
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Physically interesting examples of such states can be found
among those considered in Ref. [75], where it was investigated
how symmetries that are initially broken can be restored at late
times after a quench.

The Heisenberg spin chain has also been the prototypical
example which allowed us to understand that the known
(ultra)local charges in integrable models are in general not
complete and independent families of quasilocal conserved
operators exist. These were introduced in the context of trans-
port problems [79,80], where their consequences have been
explored in great detail [79–86]; see [87] for a recent review.
It was only later understood that quasilocal conservation laws
have to be taken into account in the GGE construction [87–90].
It is worth mentioning that independent works have also shown
the existence and physical relevance of conservation laws with
a generalized notion of locality in free XY spin chains [91–93]
and quantum field theories [94–97].

It has been explicitly shown that the quasilocal charges
in the XXZ Heisenberg chain form a complete set of
conservation laws [90]: fixing their expectation value uniquely
determines a single excited state of the Hamiltonian in the
thermodynamic limit. This result has a natural application
in the study of quantum quenches. Indeed, assuming the
existence of a postquench representative eigenstate, this can
be completely fixed by imposing that the expectation values of
the quasilocal conserved charges are equal to those computed
in the initial state. For those cases for which the overlaps
were known, it was shown [90] that this approach leads
to the same results obtained by applying the quench action
method. In particular, in the XXZ spin-1/2 chain a full
analytical characterization of the postquench stationary state
was recovered for two particular initial states, namely the Néel
and the Majumdar-Ghosh state, as derived in Refs. [45–48].

In this work we consider simple families of physically
relevant product states in spin-1/2 and spin-1 integrable
chains, both in the gapped regime and at the isotropic point.
Our study include the states considered in Ref. [75] for which
the overlaps are not known. By applying the techniques of
Ref. [90], we show that even in these cases a closed-form
analytical characterization of the postquench stationary state
can be explicitly exhibited. Using these results, we compute
the asymptotic value of the time-dependent local correlations
after the quench and test our predictions against the tDMRG
and iTEBD data of Ref. [75].

One of the main physical motivations for our work is to
explore the features of postquench steady states when initial
states other than spin-1/2 Néel and dimer states are considered.
As we will see, qualitative different properties emerge for
ferromagnets and antiferromagnets, such as different bound-
state compositions. In turn these might be experimentally
probed, for example by observing light-cones spreading of
local perturbations on the postquench steady state [10,98].

The organization of the rest of this paper is as follows. In
Sec. II we introduce the models that we consider and briefly
review their Bethe ansatz description. We then provide an
overview of some of the ideas developed recently within the
quench action approach, such as the possibility of characteriz-
ing the postquench steady state in terms of a representative
eigenstate. For the sake of exposition, a summary of our
results is given in Sec. III, where we exhibit the analytical

characterization of the postquench steady state for the families
of initial states studied in this work. The derivation of our
results is then reported in Sec. IV, while Sec. V is devoted
to the comparison with the numerical data of Ref. [75] for
the whole time evolution of local correlators. In Sec. VI more
general initial states are discussed, while our conclusions are
presented in Sec. VII.

II. MODELS AND GENERAL FRAMEWORK

A. X X Z spin-1/2 Hamiltonian

The first model that we consider is the XXZ spin-1/2
Heisenberg chain. It is defined on the Hilbert space H(1/2)

N =
h

(1/2)
1 ⊗ · · · ⊗ h

(1/2)
N , where h

(1/2)
j is the local space associated

with site j , dim[h(1/2)
j ] = 2. The Hamiltonian reads

H
(1/2)
XXZ =

N∑
j=1

[
sx
j sx

j+1 + s
y

j s
y

j+1 + cosh (η)

(
sz
j s

z
j+1 − 1

4

)]
,

(1)

where periodic boundary conditions are assumed, sα
N+1 = sα

1 .
Here, sα

j are local spin operators which are related to the Pauli
matrices by 2sα

j = σα
j . In this work we restrict to the regime

η ∈ R and we introduce the parameters

� = cosh(η), (2)

q = eη. (3)

We further employ the following notation for q-deformed
numbers:

[z]q = qz − q−z

q − q−1
= sinh ηz

sinh η
. (4)

The Hamiltonian (1) can be diagonalized by Bethe ansatz, as
will be reviewed in Sec. II C.

B. Spin-1 integrable chain

The generalization of the XXZ Heisenberg chain to the
spin-1 case leads to the so-called Zamolodchikov-Fateev
model [99]. It is defined on the Hilbert space H(1)

N = h
(1)
1 ⊗

· · · ⊗ h
(1)
N , where h

(1)
j is the local space associated with site j

and dim[h(1)
j ] = 3. The Hamiltonian reads

H
(1)
ZF = −4N cosh2(η)

+
N∑

j=1

⎧⎨⎩[
sx
j sx

j+1 + s
y

j s
y

j+1 + cosh (2η)sz
j s

z
j+1

]
+ 2

[(
sx
j

)2 + (
s
y

j

)2 + cosh(2η)
(
sz
j

)2]
−
∑
a,b

Aab(η)sa
j sb

j s
a
j+1s

b
j+1

}
, (5)

where the indices a,b in the second sum take the values x, y, z
and where periodic boundary conditions are assumed, sα

N+1 =
sα

1 . The coefficients Aab are defined by Aab(η) = Aba(η)
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and

Axx = Ayy = 1, Azz = cosh (2η),

Axy = 1, Axz = Ayz = 2 cosh η − 1, (6)

while η plays the role of the anisotropy parameter along the z

direction. Here, with a slight abuse of notations, we employed
the symbols sα

j , already used for the spin-1/2 case in (1), for
the spin-1 operators. In the spin-1 case they are defined as

sx = 1√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠, sy = 1√
2

⎛⎝0 −i 0
i 0 −i

0 i 0

⎞⎠,

sz =
⎛⎝1 0 0

0 0 0
0 0 −1

⎞⎠. (7)

Finally, we also define for future reference the local spin-1
basis as

|⇑〉 =
⎛⎝1

0
0

⎞⎠, |0〉 =
⎛⎝0

1
0

⎞⎠, |⇓〉 =
⎛⎝0

0
1

⎞⎠. (8)

Note that the Hamiltonian obtained from (1) by a straight-
forward substitution of the spin-1/2 with the spin-1 operators
results in a nonintegrable model. While the Zamolodchikov-
Fateev model is not the only spin-1 integrable chain, it
is arguably the simplest. In particular, the form of the
Hamiltonian greatly simplifies at the isotropic point η = 0,
where it coincides with the well-known Babujian-Takhtajan
Hamiltonian [100,101]

H
(1)
BT =

N∑
j=1

[sj · sj+1 − (sj · sj+1)2], (9)

where sj denotes the vector (sx
j ,s

y

j ,sz
j ). In this work we will

consider both the gapped regime of the Hamiltonian (5)
(namely η ∈ R, η > 0), and the gapless isotropic Hamiltonian
(9).

C. Thermodynamic Bethe ansatz

In this section we sketch the aspects of the Bethe ansatz
formalism that will be used in this work, focusing in particular
on the thermodynamic limit. We refer the reader to the
specialized literature for a more systematic treatment [35,37].

For a Bethe ansatz integrable model, the energy eigen-
states are parametrized by complex quasimomenta {λj }Mj=1,
satisfying a set of nonlinear quantization conditions, namely
the so-called Bethe equations. In the gapped regime of the
Hamiltonians (1) and (5), namely for η > 0, they can be written
in a compact form as [102][

sin(λj + iηS)

sin(λj − iηS)

]N

=
M∏

k = 1
k �= j

sin(λj − λk + iη)

sin(λj − λk − iη)
, (10)

where S = 1/2, S = 1 for spin-1/2 and spin-1 respectively.
Here, M is the number of flipped-spins with respect to the
ferromagnetic state with all the spins up. Up to an overall global
additive constant, the energy associated with an eigenstate

corresponding to the rapidities {λj }Mj=1 is simply given by

e
[{λj }Mj=1

] = −(2S)
M∑

j=1

sinh2(2Sη)

cosh(2Sη) − cos(2λj )
. (11)

The solutions of (10) organize themselves into mutually dis-
joint patterns in the complex plane called “strings.” Intuitively,
a m-string solution corresponds to a bound state of m magnons,
i.e., spin flips with respect to the ferromagnetic reference state.
The rapidities within a m string are parametrized as

λ(j,m)
α = λ(m)

α + iη

(
j − m + 1

2

)
+ δ(j,m)

α , j = 1, . . . ,m.

(12)

Here λ(m)
α is a real number called the string center, satisfying

λ(m)
α ∈

[
−π

2
,
π

2

]
. (13)

The numbers δ
(j,m)
α are deviations from a perfect string

which are in general vanishing in the thermodynamic limit.
In particular, for the spin-1/2 case they are exponentially
vanishing with the system size, while it is known that in the
spin-1 case they exhibit a slower power-law decay [103–105].
Within the so-called string hypothesis, all these deviations are
neglected. In some cases, solutions of (10) that do not satisfy
(12) are known [106–110], however it is widely believed that
their contributions to the computation of physical quantities
is vanishing in the thermodynamic limit. The validity of the
string hypothesis will always be assumed in this work.

Substituting (12) into (10), we obtain the following set of
Bethe-Takahashi equations:

2πI (m)
α = N	(S)

m (λ(m)
α ) −

∑
n

∑
β

�m,n

(
λ(m)

α − λ
(n)
β

)
, (14)

where as before we used the index S to distinguish between
the spin-1/2 and spin-1 case. Here we used the following
definitions:

	(1/2)
m (λ) = θm(λ) , (15)

	(1)
m (λ) = θm−1(λ) + θm+1(λ), (16)

�m,n(λ) = (1 − δnm)θ|n−m|(λ) + 2θ|n−m|(λ) + · · ·
+ 2θn+m−2(λ) + θn+m(λ), (17)

where

θn(λ) = 2 arctan

[
tan(λ) coth

(
ηn

2

)]
, n � 1, (18)

and θ0(λ) ≡ 0. In the thermodynamic limit

N → ∞, (19)

M → ∞, (20)

M

N
= D, (21)

the number of rapidities for a given eigenstate grows to infinity.
The n-string centers then form a dense set in the interval
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[−π/2,π/2] and can be described by smooth distribution func-
tions ρn(λ). One also needs to introduce the hole distribution
functions ρh,n(λ): they are a generalization to the interacting
case of the hole distributions of an ideal Fermi gas at finite
temperature [35–37]. Following the well-known steps of the
standard treatment of Bethe ansatz [37], the thermodynamic
limit of Eqs. (14) is readily obtained and reads

ρ(S)
m (λ) + ρ

(S)
h,m(λ) = b(S)

m (λ) −
∞∑

n=1

(
amn ∗ ρ(S)

n

)
(λ). (22)

Here we have once again introduced the index S to distinguish
between spin-1/2 and spin-1 and we have defined

amn(λ) = (1 − δmn)a|m−n|(λ) + 2a|m−n|(λ)

+ · · · + 2am+n−2(λ) + am+n(λ), (23)

where

an(λ) = 1

2π

∂

∂λ
θn(λ) = 1

π

sinh(nη)

cosh(nη) − cos(2λ)
, (24)

and

b(1/2)
n (λ) = 1

2π

∂

∂λ
	(1/2)

n (λ) = 1

π

sinh(nη)

cosh(nη) − cos(2λ)
, (25)

b(1)
n (λ) = 1

2π

∂

∂λ
	(1)

n (λ) = 1

π

(
sinh[(n + 1)η]

cosh[(n + 1)η] − cos(2λ)

+ sinh[(n − 1)η]

cosh[(n − 1)η] − cos(2λ)

)
. (26)

We furthermore used the following notation for the convolution
of two functions:

(f ∗ g)(λ) =
∫ π/2

−π/2
dμf (λ − μ)g(μ). (27)

The Bethe equations (22) characterize the eigenstates of the
model in the thermodynamic limit. Given a particular solution
corresponding to the set {ρn(λ)}∞n=1, the density of quasiparticle
(magnons) D(S) and the energy per unit length e(S) can be
directly computed as

D(S) =
∞∑

n=1

∫ π/2

−π/2
dλ nρ(S)

n (λ), (28)

e(S) =
∞∑

n=1

∫ π/2

−π/2
dλ ρ(S)

n (λ)ε(S)
n (λ), (29)

where

ε(S)
n (λ) = −(2S) sinh(2Sη)

×
n∑

l=1

sinh [η(n + 1 + 2S − 2l)]

cosh [η(n + 1 + 2S − 2l)] − cos(2λ)
. (30)

In the following, it will also be useful to define the density
and energy of the quasiparticles forming n strings (namely
n-particle bound states) as

D(S)
n = n

∫ π/2

−π/2
dλρn(λ), (31)

e(S)
n =

∫ π/2

−π/2
dλρn(λ)ε(S)

n (λ). (32)

At the isotropic point, namely for η → 0, the picture outlined
so far requires slight modifications. In particular, the support
of the distribution functions ρn(λ), ρh,n(λ) extends in this case
to the whole real line. Furthermore, it can be seen that all the
results concerning the thermodynamic limit of the isotropic
spin chains can be obtained from the corresponding anisotropic
regimes by the scaling

η → 0, (33)

λ → ηλ′, (34)

ηρn(λ) → ρn(λ′), (35)

ηρh,n(λ) → ρh,n(λ′). (36)

The Bethe equations (22) are then still valid, provided that
an(λ) and b(S)

n (λ) in (24)–(26) are substituted with the rational
functions

an(λ) = 2

π

n

n2 + 4λ2
, (37)

b(1/2)
n (λ) = 2

π

n

n2 + 4λ2
, (38)

b(1)
n (λ) = 2

π

[
n − 1

(n − 1)2 + 4λ2
+ n + 1

(n + 1)2 + 4λ2

]
. (39)

Analogously, the energy per unit length in the isotropic case
is given by

ε(S)
n (λ) = −(8S2)

n∑
l=1

(n + 1 + 2S − 2l)

(n + 1 + 2S − 2l)2 + (2λ)2
. (40)

We conclude this section with two standard definitions,
which we report here for future reference. They read

ρ
(S)
t,n (λ) = ρ(S)

n (λ) + ρ
(S)
h,n(λ), (41)

η(S)
n (λ) = ρ

(S)
h,n(λ)

ρ
(S)
n (λ)

. (42)

D. Representative eigenstate for the postquench stationary state

As we have already mentioned, a promising analytical
approach, the quench action method, has been recently
introduced in Ref. [34] and successfully applied in the study
of quantum quenches in many integrable models [57]. One
of its main achievements has been to show the existence of
a representative eigenstate which effectively captures, in the
thermodynamic limit, the local properties of the system at
long times after a quench. More specifically, given an initial
state |�0〉 and under mild assumptions, it was shown in [34]
that there exists an excited eigenstate |	〉 of the postquench
Hamiltonian such that for any local observable O

lim
t→∞

〈�0|O(t)|�0〉
〈�0|�0〉 = 〈	|O|	〉

〈	|	〉 , (43)

where we employed the standard notation O(t) for time
evolved operators in the Heisenberg picture. Note that |	〉
depends on |�0〉 but not on O.

Given |�0〉, the quench action approach provides a pre-
scription on how to determine the representative eigenstate
|	〉. An essential role is played by the computation of the
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overlaps between |�0〉 and the eigenstates of the postquench
Hamiltonian (or more precisely, their thermodynamically
leading part). Once the representative eigenstate is known,
the asymptotic values of the time-dependent local correlation
functions can be in principle computed from (43).

In general, the computation of the overlaps remains very
hard and so far has been only performed in a few special
instances [58–68]. When these are not known, the prescriptions
of the quench action method cannot be applied. However, the
nature of the limitations arising in these cases is believed to
be purely technical and one still expects the existence of a
representative eigenstate satisfying Eq. (43).

In this work we employ a method originally developed
in Refs. [89,90] to determine the postquench representative
eigenstate which can also be applied when the overlaps are
not known. This approach is based on the knowledge of a
complete set of quasilocal charges and will be explained in
detail in Sec. IV. It is important to stress that it is at the
moment limited to those integrable spin chains for which these
quasilocal charges are known.

From the discussions of the previous sections, it follows that
in the models considered here the characterization of an excited
state in the thermodynamic limit is equivalent to providing
a set of rapidity distribution functions {ρn(λ)}n. The goal is

then to write down these functions for the postquench steady
state from a given initial state. In the next section we present
an explicit closed-form solution of this problem for simple
families of physically interesting initial states.

III. SUMMARY OF CLOSED-FORM
ANALYTICAL RESULTS

A. Spin-1/2 Hamiltonian

1. Tilted ferromagnet state

The first family of initial states that we considered is that
of the tilted ferromagnet. It is defined as

|ϑ ; ↗〉 =
[

cos

(
ϑ

2

)
|↑〉 + i sin

(
ϑ

2

)
|↓〉

]⊗N

. (44)

The angle ϑ is chosen to be

0 < ϑ � π/2, (45)

which corresponds to restricting to the sector of states with 0 <

D � 1/2, where D = M/N is the density of magnons. The
analytical expressions for η1(λ) and ρh,1(λ) of the postquench
steady state are

η1(λ) = −1 + T1
(
λ + i

η

2

)
φ
(
λ + i

η

2

) T1
(
λ − i

η

2

)
φ̄
(
λ − i

η

2

) , (46)

ρh,1(λ) = sinh η

π

(
1

cosh(η) − cos(2λ)
− 2 sin2(θ )(2 sin2(θ ) + cosh(η){[cos(2θ ) + 3] cos(2λ) + 4})

sinh2(η)[cos(2θ ) + 3]2 sin2(2λ) + (2 sin2(θ ) + cosh(η){[cos(2θ ) + 3] cos(2λ) + 4})2

)
,

(47)

where

T1(λ) = cos(λ)[4 cosh(η) − 2 cos(2θ ) sin2 λ + 3 cos(2λ) + 1],

(48)

φ(λ) = 2 sin2 θ sin λ cos
(
λ + i

η

2

)
sin

(
λ − i

η

2

)
, (49)

φ̄(λ) = 2 sin2 θ sin λ cos
(
λ − i

η

2

)
sin

(
λ + i

η

2

)
. (50)

The functions ηn(λ) and ρh,n(λ) for n � 2 are directly related
to η1(λ) and ρh,1(λ) through the analytical relations

ηn(λ) = ηn−1(λ + iη/2)ηn−1(λ − iη/2)

ηn−2(λ) + 1
− 1, (51)

ρh,n(λ) = ρh,n−1(λ + iη/2)
[
1 + η−1

n−1(λ + iη/2)
]

+ ρh,n−1(λ − iη/2)
[
1 + η−1

n−1(λ − iη/2)
]

− ρh,n−2(λ), (52)

where we used the conventions η0(λ) ≡ 0, ρh,0(λ) ≡ 0. Fi-
nally, the functions ρn(λ) are trivially obtained by ρn(λ) =
ρh,n(λ)/ηn(λ).

Plots for the rapidity distribution functions ρn(λ) are
reported in Fig. 1. Interestingly, we observe that they are
peaked around λ = π/2, which can be heuristically understood

as follows. In the gapped regime � > 1, the ground state
of the Hamiltonian (1) displays antiferromagnetic order, as
opposed to the tilted ferromagnet state. Then, one might think
to obtain the latter from the ground state by adding an infinite
number of spin-wave excitations of minimum wavelength,
which corresponds to the maximum allowed rapidity λ = π/2.
Note that for the representative eigenstate of the Néel state,
which instead exhibit antiferromagnetic order, the rapidity
distribution function ρ1(λ) is peaked around λ = 0 as expected
(cf. Sec. III A 2).

In Fig. 2 the (normalized) densities Dn for the tilted
ferromagnet state [as defined in (31)] are displayed for different
values of the angle ϑ and the anisotropy �. In general we
see that n strings with n � 2 are not negligible and indeed
the values of � and ϑ can be tuned in such a way that
the largest contribution to the density is given by n strings
with n � 2. A similar picture was found in the context of
quantum quenches to the attractive Lieb-Liniger Bose gas from
a noninteracting condensate [51,52]. There, different values of
the final interaction parameter yielded different compositions
of the postquench steady state in terms of n-particle bound
states. Note that in the case studied here, the densities of
bound states in the postquench steady state can be also varied
by tuning the parameter ϑ of the initial state, and not only
the value of the final interaction �. As we will discuss in
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FIG. 1. Rapidity distribution functions ρn(λ) for the tilted ferromagnet state (44) for n = 1,2,3. The plots correspond to � = 1.2 and
(a): ϑ = π/5, (b): ϑ = π/3. The functions are shown for λ > 0 being symmetric with respect to λ = 0.

Sec. V the large densities of n strings have consequences on
the asymptotic values of local correlation functions after the
quench.

2. Tilted Néel state

The second family of initial states that we consider is that
of the tilted Néel state. It is defined as

|ϑ ; ↗↙〉 =
{[

cos

(
ϑ

2

)
|↑〉 + i sin

(
ϑ

2

)
|↓〉

]

⊗
[

sin

(
ϑ

2

)
|↑〉 − i cos

(
ϑ

2

)
|↓〉

]}⊗N/2

.

(53)

The analytical expressions for η1(λ) and ρh,1(λ) are

η1(λ) = −1 + T1
(
λ + i

η

2

)
φ
(
λ + i

η

2

) T1
(
λ − i

η

2

)
φ̄
(
λ − i

η

2

) , (54)

ρh,1(λ) = sinh(η)

π [cosh(η) − cos(2λ)]

−X1

(
λ + i

η

2

)
− X1

(
λ − i

η

2

)
, (55)

(56)

where

T1(λ) = − 1
8 cot(λ){8 cosh(η) sin2(ϑ) sin2(λ) − 4 cosh(2η)

+ [cos(2ϑ) + 3][2 cos(2λ) − 1] + 2 sin2(ϑ) cos(4λ)},
(57)

φ(λ) = 1
8 sin(2λ + iη)[2 sin2(ϑ) cos(2λ − iη) + cos(2ϑ) + 3],

(58)

φ̄(λ) = 1
8 sin(2λ − iη)[2 sin2(ϑ) cos(2λ + iη) + cos(2ϑ) + 3],

(59)
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FIG. 2. Normalized densities Dn of the quasiparticles forming n strings [as defined in (31)] for the tilted ferromagnet state (44). Plot (a)
corresponds to � = 1.3 and shows the dependence on the angle ϑ , while plot (b) corresponds to ϑ = π/3 and shows the dependence on the
anisotropy parameter �.
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FIG. 3. Rapidity distribution functions ρ1(λ), ρ2(λ) for the tilted Néel state (53) for different values of ϑ . The plots correspond to � = 2.
The functions are shown for λ > 0 being symmetric with respect to λ = 0.

and

X1(λ) = − 4 sinh(η) sin2(ϑ) cos(2λ) + sinh(2η)(cos(2ϑ) + 3)

2π{8 cosh(η) sin2(ϑ) sin2(λ) − 4 cosh(2η) + [cos(2ϑ) + 3][2 cos(2λ) − 1] + 2 sin2(ϑ) cos(4λ)} . (60)

As for the tilted ferromagnet states, the functions ηn(λ), ρh,n(λ)
with n � 2 are explicitly obtained by Eqs. (51) and (52). Note
that for ϑ = 0, we recover the known analytical results for the
Néel state [47,48].

The rapidity distribution functions ρn(λ) are displayed in
Fig. 3 while we report in Fig. 4 the (normalized) densities Dn

as defined in (31). We see that the postquench steady state
for tilted Néel state maintains the qualitative features of the
one corresponding to the Néel state (which is obtained for
ϑ = 0). In particular, for all the values of ϑ the majority of
the quasiparticles remains unbound while n strings provide
smaller contributions to the total density. This is a very impor-
tant physical difference between quenches starting from tilted
ferromagnets and antiferromagnets which also strongly affects
the expectation values of observables in the stationary state.
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FIG. 4. Normalized densities Dn of the quasiparticles forming n strings [as defined in (31)] for the tilted Néel state (53). Plot (a) corresponds
to � = 2 and shows the dependence on the angle ϑ , while plot (b) corresponds to ϑ = π/4 and shows the dependence on the anisotropy
parameter �.

B. Spin-1 Hamiltonian

1. Zero-magnetization product state

The simplest initial state to be considered in the spin-
1 integrable chain (5) is the following zero-magnetization
product state:

|0N 〉 = |0〉⊗N . (61)

The analytical expressions for η1(λ) and ρh,1(λ) are

η1(λ) = cot2(λ)[cosh(2η) − 3 cos(2λ) + 2]

cosh(2η) + cos(2λ)
, (62)

ρh,1(λ) = 8 sinh3(η) cosh(η) cos2(λ)

π [cosh(2η) − cos(2λ)][cosh(4η) − cos(2λ)]
.

(63)
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FIG. 5. Rapidity distribution functions ρ1(λ), ρ2(λ) for the spin-1 zero-magnetization product state (61) for different values of η. The
functions are shown for λ > 0 being symmetric with respect to λ = 0.

The functions ηn(λ), ρh,n(λ) with n � 2 are analytically
obtained by the recursive relations (51) and (52).

The rapidity distribution functions ρ1(λ), ρ2(λ) are dis-
played in Fig. 5 for different values of the anisotropy parameter
η, while the densities Dn defined in (31) are reported in
Fig. 6. We see that the composition of the postquench steady
state is dominated by two strings, as it is also the case for
the spin-1 Néel state discussed in the next section. This
can be easily understood as follows. In the limit η → ∞,
the eigenspace with lowest energy of the Hamiltonian (5) is
threefold degenerate; it is generated by the state |0N 〉 and
the two realizations of the spin-1 Néel state (64) (which are
obtained one from the other by a one-site shift translation).
Then, for large values of η the string content of the postquench
steady states for |0N 〉 and the spin-1 Néel state will be similar
to that of the ground state of the Hamiltonian (5). In turn,
this is composed solely of two strings [102]. The physical

interpretation of this lies in the antiferromagnetic order of the
ground state: in the spin-1 case, antiparallel ordering of the
spins can be heuristically thought of as bound states of two
down spins every other site. As expected, we also see from
Fig. 6 that decreasing the value of the anisotropy parameter
η, the density of two strings in the postquench steady state
decreases, even though it remains dominant.

2. Spin-1 Néel state

The second initial state that we consider in the spin-1
integrable chain (5) is a straightforward generalization of the
spin-1/2 Néel state. It is defined as

|⇑⇓〉 = (|⇑〉 ⊗ |⇓〉)⊗N/2. (64)

The analytical expressions for η1(λ) and ρh,1(λ) are simply

η1(λ) = sin2(2λ){−4[cosh(2η) + cosh(4η) + 1] cos(2λ) + 3 cosh(2η) + 2 cosh(4η) + cosh(6η) + 3 cos(4λ) + 3}
2[cosh(2η) − cos(2λ)]3[cosh(2η) + cos(2λ)]

, (65)

ρh,1(λ) = 4 sinh3(η) cosh(η) sin2(2λ)

π [cosh(2η) − cos(2λ)]( cosh(2η){2 cosh2(η)[cosh(2η) − 2 cos(2λ)] + 1} + cos(4λ))
. (66)
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FIG. 6. Normalized densities Dn of the quasiparticles forming n strings [as defined in (31)] for (a): the spin-1 zero magnetization product
state (61), (b): the spin-1 Néel state (64).
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FIG. 7. Rapidity distribution functions ρ1(λ), ρ2(λ) for the spin-1 Néel state (64) for different values of η. The functions are shown for
λ > 0 being symmetric with respect to λ = 0.

The functions ηn(λ), ρh,n(λ) with n � 2 are obtained by the
recursive relations (51) and (52).

The rapidity distribution functions ρ1(λ), ρ2(λ) are dis-
played in Fig. 7 for different values of the anisotropy parameter
η, while the densities Dn defined in (31) are reported in
Fig. 6. We refer the reader to the previous subsection for
a discussion of the features displayed by the postquench
steady-state rapidity distributions.

3. Isotropic limit

We now focus on the isotropic limit η → 0 of (5), namely
the Babujian-Takhtajan Hamiltonian (9). In this regime, the
zero-magnetization product state (61) becomes an eigenstate
of the Hamiltonian and has therefore no quench dynamics. This
is not the case for the spin-1 Néel state (64). The corresponding
analytical expressions for η1(λ) and ρh,1(λ) are

η1(λ) = λ2(3λ4 + 10λ2 + 4)

(λ2 + 1)3
, (67)

ρh,1(λ) = λ2

π [λ2(λ2 + 2)2 + 1]
. (68)

The functions ηn(λ), ρh,n(λ) with n � 2 are now analytically
obtained as

ηn(λ) = ηn−1(λ + i/2)ηn−1(λ − i/2)

ηn−2(λ) + 1
− 1, (69)

ρh,n(λ) = ρh,n−1(λ + i/2)
[
1 + η−1

n−1(λ + i/2)
]

+ ρh,n−1(λ − i/2)
[
1 + η−1

n−1(λ − i/2)
]

− ρh,n−2(λ), (70)

where η0(λ) ≡ 0, ρh,0(λ) ≡ 0. Once again, the rapidity dis-
tribution functions are then trivially obtained as ρn(λ) =
ρh,n(λ)/ηn(λ).

IV. REPRESENTATIVE EIGENSTATE FROM
QUASILOCAL CHARGES

The method employed to derive the analytical results
presented in the previous section was introduced in the recent
works [89,90]. There, it was also shown that it leads to the

same results as the quench action approach in the cases where
the overlaps are known and the latter can be applied.

Assuming the existence of a postquench representative
eigenstate (cf. Sec. II D), the idea is that the latter can
be uniquely fixed by the constraints resulting from all the
conservation laws of the model. A crucial requirement is
that the conserved operators that are considered must form
a complete set. As we already discussed in the Introduction,
the known local charges for Bethe ansatz integrable models
are not complete and quasilocal conserved operators have to
be taken into account.

In this section we briefly review the construction of
quasilocal charges and how their expectation values can be
exploited to directly obtain the rapidity distributions ρn(λ)
of the postquench representative eigenstate. We then discuss
the closed form analytical formulas presented in the previous
section and comment on the possibility of extending these
results for more general states.

A. Quasilocal charges

The logic behind the construction of quasilocal conserved
operators is similar to that underlying the well-known deriva-
tion of local charges. The central object is the so-called
Lax operator L, acting on the tensor product of two local
Hilbert spaces h ⊗ h̃. The space h is the local physical
space associated with a single spin in the chain, while h̃ is
the auxiliary space. In the standard algebraic Bethe ansatz
construction, h and h̃ are isomorphic and this defines the
fundamental L operator. Conversely, in the construction of
quasilocal conserved charges one allows for more general
auxiliary spaces resulting in a nonfundamental L operator.

In the integrable spin-1/2 and spin-1 chains considered
here, the generic L operator can be directly written down in
a compact form. In the spin-1/2 case, in the local spin basis
{|↑〉,|↓〉} of the physical space h, the Lax operator is written
as

L(1/2,j )(λ) =
([−iλ/η + S

j
z

]
q

S
j
−

S
j
+

[−iλ/η − S
j
z

]
q

)
, (71)
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where we employed the notation in (4). Analogously, in the
spin-1 case, the Lax operator L(1,j )(λ) can be written as a
3 × 3 matrix in the local spin basis {|⇑〉,|0〉,|⇓〉}, whose entries
L

(1,j )
ij (λ) are operators acting on the auxiliary space. They are

given by

L
(1,j )
11 (λ) = [−iλ/η + 1/2 + Sj

z

]
q

[−iλ/η − 1/2 + Sj
z

]
q
,

(72)

L
(1,j )
12 (λ) = [2]1/2

q S
j
−
[−iλ/η − 1/2 + Sj

z

]
q
, (73)

L
(1,j )
13 (λ) = (Sj

−)2, (74)

L
(1,j )
21 (λ) = [2]1/2

q S
j
+
[−iλ/η + 1/2 + Sj

z

]
q
, (75)

L
(1,j )
22 (λ) = S

j
+S

j
− + [−iλ/η + 1/2 + Sj

z

]
q

× [−iλ/η − 1/2 − Sz]q, (76)

L
(1,j )
23 (λ) = [2]1/2

q S
j
−
[−iλ/η + 1/2 − Sj

z

]
q
, (77)

L
(1,j )
31 (λ) = (Sj

+)2, (78)

L
(1,j )
32 (λ) = [2]1/2

q S
j
+
[−iλ/η − 1/2 − Sj

z

]
q
, (79)

L
(1,j )
33 (λ) = [−iλ/η + 1/2 − Sj

z

]
q

[−iλ/η − 1/2 − Sj
z

]
q
.

(80)

The Lax operator L(1,j )(λ) defined above for the spin-1 case
can be obtained from (71) using the so-called fusion procedure
as explained for example in [86]. The operators S

j
α [not to

be confused with the spin operators of the Hamiltonians (1),
(5)] act on the auxiliary space h̃j which for the purposes of
this work has to be chosen as a unitary representation of the
quantum group Uq(sl2) [87,111]. In particular, one considers
the space h̃j generated by the vectors {|m〉}m, with

m = −j

2
, . . . ,

j

2
, (81)

and

dim[h̃j ] = j + 1. (82)

Here j labels the different representations corresponding to
the auxiliary space and has to be chosen as a positive integer,
j = 1,2,3 . . .. The operators S

j
α then act on the basis vectors

|m〉 as

Sj
z |m〉 = m|m〉, (83)

S
j
+|m〉 =

√[
j

2
+ 1 + m

]
q

[
j

2
− m

]
q

|m + 1〉, (84)

S
j
−|m〉 =

√[
j

2
+ 1 − m

]
q

[
j

2
+ m

]
q

|m − 1〉. (85)

In the following we will also make use of the following
compact notation:

L(S,j )(λ) =
∑
a,b

L
(S,j )
ab (λ)Eab, (86)

where as usual S is the spin label, while a and b take the values
1,2, . . . 2S + 1. In the above expression Eab are (2S + 1) ×
(2S + 1) matrices acting on the local physical space and are
defined by

(Eab)cd = δacδbd . (87)

The construction of quasilocal charges proceeds by introduc-
ing the transfer matrix corresponding to the Lax operators
defined above, namely

T
(S)
j (λ) = tr

{
L(S,j )

0N (λ) . . .L(S,j )
01 (λ)

}
=

∑
{ai },{bi }

tr
{
L

(S,j )
aNbN

(λ) . . . L
(S,j )
a1b1

(λ)
} N∏

i=1

E
ai,bi

i . (88)

Here the trace is over the auxiliary space h̃j while the sum
appearing in the right-hand side is over all the sequences
{aj }Nj=1, {bj }Nj=1 with aj ,bj = 1, . . . (2S + 1). Notice that for
j = 1 one recovers the known transfer matrix used in the
standard algebraic Bethe ansatz construction [37]. Further, it
can be seen that [

T
(S)
j (λ),T (S)

k (μ)
] = 0. (89)

The quasilocal conserved charges can then be defined as

X
(S)
j (λ) = 1

2πi
∂λln

T
(S)
j (λ + iη/2)

T
(S)

0 [λ + i(j + 1)η/2]
, (90)

where we used

T
(1/2)

0 (λ) =
[
− iλ

η

]N

q

, (91)

T
(1)

0 (λ) =
[
− iλ

η
− 1

2

]N

q

[
− iλ

η
+ 1

2

]N

q

. (92)

Due to Eq. (89), the operators X
(S)
j (λ) commute with the

Hamiltonian of the model and are thus conserved. They are
not local in the sense that they cannot be written as a sum over
the chain of finitely supported operator densities. However,
they are quasilocal in the domain

− η

2
< Im(λ) <

η

2
. (93)

In this work, we do not enter into the issue of providing
a precise definition of quasilocality. The only property that
will be important for our purposes is that the charges (90)
are extensive. More precisely, their expectation value on
eigenstates grows linearly with the system size, analogously
to the case of previously known local charges. In particular,
the expectation value of the charges (90) on Bethe states was
explicitly computed in Ref. [90] for the spin-1/2 case, and it
is straightforwardly generalized to the spin-1 case. The final
result is expressed as follows:

lim
N→∞

N 〈{ρn}n|X(S)
j (λ)|{ρn}n〉N
N

=
∞∑

m=1

∫ π/2

−π/2
dμρ(S)

m (μ)Gj,m(λ − μ), (94)
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where

Gj,m(λ) =
min(j,m)∑

k=1

a|j−m|−1+2k(λ), (95)

and where an(λ) is defined in (24). Here we indicated with
|{ρn}n〉N an eigenstate of the finite system of length N

which, in the thermodynamic limit, corresponds to the rapidity
distribution functions ρn(λ).

Remarkably, it was shown in [90] that relation (94) can
be inverted. In particular, from the expectation values of
the quasilocal charges Xj (λ) one can directly determine the
corresponding rapidity distribution functions ρn(λ). Explicitly,
one has

ρ
(S)
j (λ) = X

(S)
j

(
λ + i

η

2

)
+ X

(S)
j

(
λ − i

η

2

)
−X

(S)
j+1(λ) − X

(S)
j−1(λ). (96)

The hole rapidity distribution functions can also be explicitly
written as

ρ
(S)
h,j (λ) = b

(S)
j (λ) − X

(S)
j

(
λ + i

η

2

)
− X

(S)
j

(
λ − i

η

2

)
,

(97)

where b
(S)
j (λ) is defined in (25), (26) for S = 1/2 and S = 1

respectively. In Eqs. (96) and (97) we used with a slight abuse
of notation the same symbols for the operators X

(S)
j (λ) and

their expectation values.
Equations (96) and (97) are a key result of the method

developed in [90]. They state that the rapidity and hole
distribution functions of the representative eigenstate are
explicitly obtained in terms of the expectation values
of the quasilocal charges. In the next section we review the
procedure to compute these expectation values on simple
initial product states.

B. Expectation value on initial product states

Given an initial state |�0〉, it is now evident from Eqs. (96)
and (97) that the problem of determining the postquench steady
state is reduced to the computation of the expectation value of
the quasilocal charges. We now focus on the families of initial
states considered in this work. They are product states of the
form

|�0〉 = |ψ0〉⊗(N/Np), (98)

where |ψ0〉 is a vector in the tensor product of local Hilbert
spaces h1 ⊗ · · · ⊗ hNp

. For these states, the computation of the
expectation values of the charges was performed in [89,90]
using the methods previously applied in [74,75]. We now
briefly review this computation, which is straightforwardly
generalized also to the spin-1 case.

First, it is convenient to introduce the operators

X̂
(S)
j (λ) = 1

2πi

1[
ε

(S)
j (λ)

]N
×
[
T

(S)
j

(
λ − i

η

2

)
∂λT

(S)
j

(
λ + i

η

2

)]
, (99)

where

ε
(1/2)
j (λ) =

[
−iλ/η + j + 1

2

]
q

[
−iλ/η − j + 1

2

]
q

,

ε
(1)
j (λ) =

[
−iλ/η + j + 2

2

]
q

[
−iλ/η + j + 2

2

]
q

×
[
−iλ/η + j

2

]
q

[
−iλ/η − j

2

]
q

, (100)

and where we used the notation (4). In the large-N limit X̂(S)
j (λ)

can be related to X
(S)
j (λ) through the so-called inversion

relation [74,90,112,113]

T
(S)
j (λ − iη/2)

T
(S)

0 [λ − i(j + 1)η/2]

T
(S)
j (λ + iη/2)

T
(S)

0 [λ + i(j + 1)η/2]
� 1, (101)

which can be established by showing that for N → ∞∣∣∣∣∣∣∣∣ T
(S)
j (λ − iη/2)

T
(S)

0 [λ − i(j + 1)η/2]

T
(S)
j (λ + iη/2)

T
(S)

0 [λ + i(j + 1)η/2]
− 1

∣∣∣∣∣∣∣∣
HS

∼ e−ξN → 0. (102)

Here ξ is a positive constant while || . . . ||HS denotes the
Hilbert-Schmidt norm; for a generic operator A acting on the
Hilbert space H the latter is defined as

||A||2HS = 1

D trH{A†A}, (103)

where the trace is taken over the whole Hilbert space H
and where D = dim[H]. Equation (102) can be derived with
calculations analogous to those presented in [83,84,86,88]
for the spin-1/2 and spin-1 cases. Using (101) it is now
straightforward to obtain the following relation which holds in
the large N limit:

X
(S)
j (λ)

N
� X̂

(S)
j (λ)

N
− 1

2πi
∂λln

[
τ

(S)
0 (λ)

]
, (104)

where

τ
(1/2)
0 (λ) =

[
−iλ/η + j + 1

2

]
q

, (105)

τ
(1)
0 (λ) =

[
−iλ/η + j

2

]
q

[
−iλ/η + j + 2

2

]
q

. (106)

The expectation value of X̂
(S)
j (λ) can now be performed using

standard techniques [74,75,89,90]. In particular, for the state
(98) one can easily derive

〈�0|X̂(S)
j (λ)|�0〉 = 1

2πi

1[
ε

(S)
j (λ)

]Np

∂

∂x

∣∣∣∣
x=0

× trj⊗j

{
T(S)

j (λ−,λ+ + x)
}N/Np

, (107)

where we introduced the notation

λ± = λ ± i
η

2
, (108)
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and where the matrix T(S)
j (λ,μ) acts on the tensor product

h̃j ⊗ h̃j of two auxiliary representations. It is defined as

T(S)
j (λ,μ) =

∑
{a�},{b�},{c�}

⎛⎝ Np∏
�=1

L
(S)
a�b�

(λ) ⊗ L
(S)
b�c�

(μ)

⎞⎠
×〈ψ0|Ea1c1

1 . . . E
aNp cNp

Np
|ψ0〉, (109)

where the sum is over the sequences {aj }Np

j=1, {bj }Np

j=1, {cj }Np

j=1
with aj ,bj ,cj = 1, . . . ,(2S + 1). At large values of N , the

trace in the right-hand side of (107) is dominated by the
eigenvalue ofT(S)

j (λ−,λ+) with the largest absolute value. This
observation leads to the possibility of an explicit expression in
the limit N → ∞. In Refs. [75,90] this was explicitly obtained
in terms of the so-called Jacobi formula. Here we simply report
the final result, which reads

〈�0|X̂(S)
j (λ)|�0〉
N

−→
N→∞

1

2πi

1

Np

[
ε

(S)
j (λ)

]Np
�j (λ), (110)

where

�j (λ) = tr
{
Adj

[[
ε

(S)
j (λ)

]Np − T(S)
j (λ−,λ+)

] · ∂x

∣∣
x=0T

(S)
j (λ−,λ+ + x)

}
tr
{
Adj

[[
ε

(S)
j (λ)

]Np − T(S)
j (λ−,λ+)

]} , (111)

and where we employed notation (108). Here we defined

Adj[M]ij = (−1)i+j min[M]ji , (112)

where min[M]lm is the determinant of the matrix obtained
from M by removing line l and column m.

Putting everything together, Eqs. (104), (110), and (111)
explicitly yield the expectation values of the charges X

(S)
j (λ)

on the initial state (98) in the thermodynamic limit.

C. Closed-form analytical solution

From the results of Secs. IV A and IV B, one can obtain,
at least numerically, all the distribution functions ρn(λ) and
ρh,n(λ) of the postquench steady state for a given initial state of
the form (98). However, even for simple product states the use
of Jacobi formula (111) becomes increasingly time consuming
for large n. This represents a non-negligible technical issue
if one is interested in the local correlation functions on
the postquench steady state. Indeed, the computation of the
latter to sufficient numerical precision typically requires the
knowledge of the functions ηn(λ) = ρh,n(λ)/ρn(λ) for large
values of n.

The quench from the Néel state was first analyzed by means
of the quench action method [45–48]. Using the latter, an
additional analytical relation was established for the functions
ηn(λ) characterizing the postquench steady state [47,48]. It
reads

ηn(λ) = ηn−1(λ + iη/2)ηn−1(λ − iη/2)

ηn−2(λ) + 1
− 1, (113)

where one sets η0(λ) ≡ 0. This relation allows one to obtain
directly the functions ηn(λ) from the single function η1(λ). It
corresponds to the so-called Y system, which is a ubiquitous
structure in integrable models [114].

Using the quench action approach, the recursive relation
(113) was found to be valid also for the Majumdar-Ghosh
state and its q-deformed version [45,46,90]. Interestingly, the
same relation was also derived for the steady state in the quench
from a noninteracting initial state to the attractive Lieb-Liniger
model [51,52]. It is then natural to conjecture that such a
relation can be verified for more general classes of initial states.
This idea was stated in Ref [90].

For the states of interest in this work, we verified numeri-
cally the validity of Eq. (113). In particular, we first computed
numerically ηn(λ) with the procedure outlined in the previous
section up to n = 7. We then compared each ηn(λ) with the
function obtained by exploiting Eq. (113), finding perfect
agreement.

Once the functions ηn(λ) are known, the Bethe equations
(22) can be used to obtain an expression for the rapidity and
hole distribution functions ρn(λ) and ρh,n(λ). In particular, the
Bethe equations (22) can be cast in the partially decoupled
form [35]

ρ(S)
n

(
1 + η(S)

n

) = δn,(2S)σ + σ ∗ (
η

(S)
n−1ρ

(S)
n−1 + η

(S)
n+1ρ

(S)
n+1

)
,

(114)

where η0(λ)ρ0(λ) ≡ 0 and

σ (λ) = 1

2π

(
1 + 2

∞∑
k=1

cos(2kλ)

cosh(kη)

)
. (115)

Equation (114) can now be rewritten in the functional form
[48]

ρh,n(λ) = ρh,n−1(λ + iη/2)
[
1 + η−1

n−1(λ + iη/2)
]

+ ρh,n−1(λ − iη/2)
[
1 + η−1

n−1(λ − iη/2)
]

− ρh,n−2(λ), (116)

where we dropped the index S and where we set ρ0(λ) ≡ 0.
Given the knowledge of η1(λ) and ρh,1(λ), Eqs. (113) and
(116) completely determine all the functions ηn(λ) and ρh,n(λ)
for n � 2. In turn, η1(λ) and ρh,1(λ) can be obtained from
the method reviewed in the last section. For the simple states
considered in this work, the evaluation of the Jacobi formula
(111) for j = 1,2 can be performed analytically using the
program Mathematica. Making finally use of (96) and (97)
one obtains the analytical expressions presented in Sec. III.

A nontrivial numerical check of our results is available: the
density of magnons and the energy per unit length computed
in the postquench representative eigenstate from (28) and (29)
have to be equal to the corresponding quantities of the initial
state. Note that the calculations for the initial states can be
done straightforwardly due to their simple product form, while
the evaluation of the right-hand side of (28) and (29) can be
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easily performed by numerical integration. In all cases, we
verified that the two calculations yield the same result within
the expected numerical error.

We conclude this section by anticipating that the recursive
relation (113) does not hold for arbitrary initial states, as we
will discuss in Sec. VI. The next section is instead devoted to
the computation of local correlations in the postquench steady
state.

V. CORRELATION FUNCTIONS

The set of rapidity distribution functions {ρn(λ)}∞n=1 com-
pletely characterize the local properties of the corresponding
state in the thermodynamic limit. The results of Sec. III
combined with Eq. (43), then allow us in principle to compute
the asymptotic value of all the local correlation functions at
long times after the quench.

In practice, even in the presence of integrability, the
computation of correlation functions is notoriously hard. In
the XXZ spin-1/2 model, many remarkable results have been
obtained during the past decades for thermal and ground
states [115–122]. However, only in the past few years this
problem has started to receive attention for generic excited
states, mainly because of its interest in the study of quantum
quenches.

In particular, to this end, integral formulas were recently
presented in Ref. [123]. They were conjectured on the basis
of a formal analogy between the results for nearest-neighbor
correlators from the Bethe ansatz method and the transfer-
matrix approach [124]. Although a rigorous proof is still
missing, their validity has been numerically tested to high
precision in Ref. [123] and already applied to the study of
quantum quenches in Refs. [45–48], where they were always
found to be in excellent agreement with independent numerical
methods.

For completeness, the integral formulas of [123] are
reported in the Appendix. We applied the latter to provide
predictions for the asymptotic values at long times after the

quench of the local correlators,〈
σα

j σ α
j+k

〉
, k = 1,2,3, α = x,y,z, (117)

where σα
j are the Pauli matrices. We compared our results

with the numerical data of Ref. [75], which were obtained us-
ing the time-dependent density-matrix renormalization group
(tDRMG) [125–127] and the infinite time-evolving block-
decimation (iTEBD) [128] algorithms.

In Ref. [75] the numerical data for the time evolution of
the correlators (117) were compared with the predictions of
the GGE constructed using only the local charges of the
system. In what follows, we shall refer to the latter as the
ultralocal GGE. We stress here that the existence of quasilocal
charges relevant for relaxation processes after a quench was
not known at the time. Even though very good agreement
was generally found for the states considered, in some cases
deviations from the ultralocal GGE predictions were observed.
It is now clear that such deviations are due to the missing
contributions of quasilocal charges, as it was established in a
series of subsequent works [45–48,88–90,129,130].

The largest deviations from the ultralocal GGE predictions
were observed for the tilted ferromagnetic state (44). In Figs. 8
and 9 we show the numerical data of Ref. [75] together with
our predictions for the long-time limit using the results of
Sec. III and the integral formulas of Ref. [123]. Our results are
found to be in excellent agreement with the numerical data.
Also, our predictions are significantly different to the values
obtained using the ultralocal GGE (which are also displayed
in the figures).

The large deviations of the GGE predictions can in this
case be understood in terms of high densities of n strings with
n � 2 for the tilted ferromagnet state, cf. Fig. 2. Indeed, it
was shown in Refs. [47,48] that fixing the value of ultralocal
charges uniquely determines the hole distribution function
ρh,1(λ). If the rapidity distribution functions ρn(λ) with n � 2
are suppressed, then the Bethe equations (22) also yield ρ1(λ)
if ρh,1(λ) is known. In this case it is reasonable to expect
that the ultralocal GGE provides a good approximation for
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FIG. 8. Longitudinal correlators for the quench from the tilted ferromagnetic state (44) with (a) ϑ = π/6, (b) ϑ = π/3. The value of the
anisotropy parameter is � = 4. The solid lines represent the iTEBD data of Ref. [75]. The exact results for the asymptotic stationary values
computed using the method described in the text (dashed lines) are displayed together with the ultralocal GGE predictions computed in Ref. [75]
(symbols). Different colors are used to distinguish different correlators.
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FIG. 9. Transverse correlators for the quench from the tilted ferromagnetic state (44) with ϑ = π/3. The value of the anisotropy parameter
is � = 4. The iTEBD results of Ref. [75] (solid lines) are shown together with the exact results for the asymptotic stationary values (dashed
lines) and the ultralocal GGE predictions computed in Ref. [75] (symbols).

the asymptotic values of time-dependent local correlation
functions. While for the Néel state at large � higher strings

are indeed suppressed, cf. Fig. 4, this is by no means true for
the tilted ferromagnet, cf. Fig. 2.
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FIG. 10. Transverse correlators for the quench from the tilted Néel state (53) with (a) ϑ = π/18, (b) ϑ = π/6. The value of the anisotropy
parameter is � = 8. The solid lines correspond to the tDMRG data of Ref. [75], which were computed for a chain of L = 64 sites. They are
displayed together with the exact results for the asymptotic stationary values (blue dotted lines) and the ultralocal GGE predictions computed
in Ref. [75] (red dashed lines).

054313-14



EXACT STEADY STATES FOR QUANTUM QUENCHES IN . . . PHYSICAL REVIEW B 94, 054313 (2016)

Note further that the tilted ferromagnet state breaks U (1)
invariance. On the other hand, the representative eigenstate is
an eigenstate of the U (1) symmetry, since the Hamiltonian
is left invariant under rotation along the z axis. Hence,
the transverse correlators 〈σx

j σ x
j+k〉 and 〈σy

j σ
y

j+k〉 are equal
when computed on the representative eigenstate, namely the
postquench steady state. Accordingly, as in Ref. [75] we
predict that transverse correlators should approach the same
values at large times after the quench. This is displayed in
Fig. 9: we observe that at the times accessible to the iTEBD
algorithm U (1) invariance is not completely restored, even
though transverse correlators are clearly oscillating around the
same value.

For the quench from the Néel state, it was shown in
Refs. [47,48] that the predictions of the ultralocal GGE and the
quench action method coincide at least up to the second order
in 1/�. In the gapped regime then the difference between
the two is very small and tDMRG data cannot in general
be used to test the validity of one and not the other, as
it was also observed in Refs. [45,46]. In Fig. 10, instead,
we show that for the tilted Néel state (53) the difference
between the two predictions becomes significant when the
tilting angle ϑ increases. Already in the time interval accessible
to the tDMRG computations of Ref. [75], our results seem
to be in better agreement with the latter when compared
with the ultralocal GGE values. Here we mention that also
for the Majumdar-Ghosh state, studied in Refs. [45,46] using
the quench action method, a significant discrepancy between
the predictions of the latter and the ultralocal GGE was
observed. In particular, it was found that tDMRG data were
compatible with the quench action method predictions but not
with those of the GGE.

For the spin-1 Hamiltonians (5) and (9), no result is avail-
able at present for the computation of correlation functions for
arbitrary excited states. In the isotropic chain (9) integrable
formulas were recently obtained within the quantum transfer-
matrix formalism for thermal states in Refs. [131–133].
Accordingly, it is possible that the conjecture of Ref. [123]
could be generalized to the spin-1 case. The results of
Sec. III would then have an immediate application to provide
predictions for the asymptotic value of local correlators. This
issue goes however beyond the scope of this work, and remains
an interesting subject for future investigations.

VI. MORE GENERAL INITIAL STATES

In the work [75], an additional family of initial states was
considered. Namely, the domain-wall states defined on a chain
of N = kp sites (with k, p positive integers) as

|DW,p〉 = | ↑ . . . ↑︸ ︷︷ ︸
p

↓ . . . ↓︸ ︷︷ ︸
p

. . . ↑ . . . ↑︸ ︷︷ ︸
p

↓ . . . ↓︸ ︷︷ ︸
p

〉 . (118)

For p = 1 we recover the Néel state, while for large p this
family might be of interest in the study of geometric quenches
[59,134].

Note that this state is of the form (98). Hence, all the
distribution functions ρn(λ), ρh,n(λ) can be in principle
numerically obtained using the procedure described in Sec. IV.

However, we found that for p � 2 the additional relation
(113) does not hold. In particular, given η1(λ) the application
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FIG. 11. Rapidity distribution function ρ2(λ) for the domain-wall
state (118) for p = 2. The exact function computed using the method
of Secs. IV A and IV B is compared with the result obtained assuming
the Y system (113). The plot corresponds to � = 1.5.

of (113) leads to the wrong result for the functions ηn(λ) with
n � 2, both at quantitative and qualitative level. This is shown
in Fig. 11 where we report the case p = 2 as an example. In the
figure we compare the function ρ2(λ) as correctly computed
using the general method reviewed in Secs. IV A and IV B
with the result obtained assuming the validity of the Y system
(113) and it is evident that the two are very different.

The state (118) then provides a physically interesting
example for which the Y system (113) does not hold. As a
consequence, the computation of the distribution functions
ρn(λ), ρh,n(λ) necessarily becomes significantly time consum-
ing for large n, since they can only be obtained after application
of the Jacobi formula (111). Also, this example shows that
one cannot a priori expect the validity of the Y system (113)
for arbitrary initial states. At this stage it remains an open
problem to understand which physical property of the initial
states allows the additional analytical structure (113) to hold
(see also Ref. [90], were the existence of states not satisfying
the Y system was observed). The answer might be ultimately
related to the structure of the overlaps with the eigenstates of
the postquench Hamiltonian.

VII. CONCLUSIONS

We have considered quantum quenches in spin-1/2 and
spin-1 integrable chains from simple families of physically
interesting initial states. We focused on the cases for which the
overlaps with the eigenstates of the model are not known and
studied them using a recently developed approach based on the
knowledge of complete sets of quasilocal charges. Namely we
considered tilted ferromagnets, tilted antiferromagnets, and
domain-wall states for spin-1/2 chains and Néel and zero
magnetization product states for the spin-1 case. For all these
initial states (with the exception of the domain-wall states),
we provided a closed-form analytical characterization of the
postquench steady state which also allows for an efficient
numerical evaluation of its rapidity distribution functions. In
the spin-1/2 case, we computed the stationary value of local
correlation functions at long times after the quench and found
excellent agreement with the tDMRG and iTEBD calculations
of Ref. [75]. In some cases a significant deviation of our results
from the predictions of the ultralocal GGE was observed; this
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difference could be resolved by the tDMRG and iTEBD data
within the accessible time scales of these methods.

In the spin-1 case, no formula is yet available for the
computation of local correlation functions in arbitrary excited
states. We hope that the existence of explicit results for the
postquench steady state presented in this work might stimulate
investigations in this direction. In particular, given the integral
formulas for thermal correlators recently found in [132,133],
one might expect the possibility of generalizing the results
for the spin-1/2 Hamiltonian presented in [123] (see also the
very recent work [135]). Here we mention that it should now
be clear that the construction of unitary quasilocal charges
considered in this work (and developed in [88]), could be
extended also to higher spin generalization of the spin-1/2
and spin-1 integrable chains that we have studied. The main
technical obstacle in the investigation of quantum quenches
in these models then remains the computation of correlation
functions in the postquench steady state.

On a more technical level, it would be interesting to
understand for which states a closed-form analytical solution
of the quench problem, similar to those presented in Sec. III,
exists. As we have shown, this cannot be expected in general.
The answer might be related to the structure of the overlaps
between the initial state and the eigenstates of the model and
remains at present an open problem.

Finally, the efficiency of the method developed in [90] and
applied in this work should serve as a motivation to intensify
the search for quasilocal conservation laws in models defined
on the continuum. This could have important ramifications
in the study of quantum quenches in systems such as the
attractive Lieb-Liniger gas [51,52] or the sine-Gordon field
theory [55], where bound states exist. Indeed, it is at present
not known whether quasilocal conserved charges analogous
to those exploited here can be constructed in these models
[87].
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APPENDIX: LOCAL CORRELATION FUNCTIONS

In this Appendix we provide for completeness the integral
formulas for local correlation functions which were used in
our work, as reported in [123]. These formulas only require
as an input the functions ηn(λ) characterizing the postquench
steady state.

First, we introduce the set of auxiliary functions
{ρ(a)

n (λ)}∞n=1, {σ (a)
n (λ)}∞n=1 as the solution of the following

system of integral equations:

ρ(a)
n (λ) = −s(a)

n (λ) −
∞∑

m=1

(
ϕnm ∗ ρ(a)

m

1 + ηm

)
(λ), (A1)

σ (a)
n (λ) = s̃(a)

n (λ) +
∞∑

m=1

(
ϕ̃nm ∗ ρ(a)

m

1 + ηm

)
(λ)

−
∞∑

m=1

(
ϕnm ∗ σ (a)

m

1 + ηm

)
(λ), (A2)

where we employed the notation (27) for the convolution of
two functions and where

s(a)
n (λ) =

(
∂

∂λ

)a

s(0)
n (λ), (A3)

s̃(a)
n (λ) =

(
∂

∂λ

)a

s̃(0)
n (λ), (A4)

s(0)
n (λ) = 2 sinh(nη)

cos(2λ) − cosh(nη)
, (A5)

s̃(0)
n (λ) = − n sin(2λ)

cos(2λ) − cosh(nη)
, (A6)

and

ϕjk(λ) = −[
(1 − δjk)s(0)

|j−k|(λ) + 2s
(0)
|j−k|+2(λ)

+ · · · + 2s
(0)
j+k−2(λ) + s

(0)
j+k(λ)

]
, (A7)

ϕ̃jk(λ) = −[
(1 − δjk)s̃(0)

|j−k|(λ) + 2s̃
(0)
|j−k|+2(λ)

+ · · · + 2s̃
(0)
j+k−2(λ) + s̃

(0)
j+k(λ)

]
. (A8)

Next, one defines the parameters

�ab = −2
∞∑

n=1

s(b)
n · ρ(a)

n

1 + ηn

, (A9)

�ab = 2

( ∞∑
n=1

s̃(b)
n · ρ(a)

n

1 + ηn

+
∞∑

n=1

s(b)
n · σ (a)

n

1 + ηn

)
, (A10)

ωab = −(−1)(a+b)/2�ab − (−1)b
1

2

(
∂

∂λ

)a+b

K(λ)
∣∣
λ=0,

(A11)

Wab = −(−1)(a+b−1)/2�ab + (−1)b
1

2

(
∂

∂λ

)a+b

K̃(λ)
∣∣
λ=0,

(A12)

where we introduced the notation

f · g =
∫ π/2

−π/2
dμf (μ)g(μ), (A13)

and where

K(λ) = sinh(2η)

sinh(λ + η) sinh(λ − η)
, (A14)

K̃(λ) = sinh(2λ)

sinh(λ + η) sinh(λ − η)
. (A15)

Finally, local correlators are given in terms of algebraic
expressions involving the parameters ωab and Wab which are
identical to those of the thermal case [117,119]. For nearest
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and next-nearest neighbors, they read〈
σ z

1 σ z
2

〉 = coth(η)ω00 + W10, (A16)〈
σ z

1 σ z
3

〉 = 2 coth(2η)ω00 + W10 + 1

4
tanh(η)(ω20 − 2ω11)

− 1

4
sinh2(η)W21, (A17)〈

σx
1 σx

2

〉 = − ω00

2 sinh(η)
− cosh(η)

2
W10, (A18)〈

σx
1 σx

3

〉 = − ω00

sinh(2η)
− cosh(2η)

2
W10

− 1

8
tanh(η) cosh(2η)(ω20 − 2ω11)

+ 1

8
sinh2(η)W21. (A19)

The formulas for 〈σα
1 σα

4 〉 with α = x,z are analogous but
significantly longer and we do not report them here. They
are formally the same as in the thermal case, and can be
found in [117,119]. Note that these formulas involve sums
over an infinite number of strings, which have to be truncated
when numerically evaluated. In general the number of strings
required for high numerical precision might change drastically
from the different initial states and with the parameters of the
postquench Hamiltonian. For example, even at large values of
�, for the titled Néel state we found that an increasing number
of strings is required as the tilting angle ϑ grows; in particular,
the calculations corresponding to the results reported in Fig. 10
required us to consider ∼40 strings. In these cases where
large numbers of strings have to be kept, auxiliary functions
are most efficiently computed using the equivalent partially
decoupled form of (A1) and (A2) which can be found in
[46,48,123].
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Schollwöck, J. Eisert, and I. Bloch, Nat Phys. 8, 325 (2012).

[8] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J. Schmied-
mayer, Nat Phys. 9, 640 (2013).

[9] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann,
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and G. Takács, Phys. Rev. Lett. 113, 117203 (2014).

[46] M. Mestyán, B. Pozsgay, G. Takács, and M. A. Werner, J. Stat.
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