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Time-dependent spin and transport properties of a single-molecule magnet in a tunnel junction
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In single-molecule magnets, the exchange between a localized spin moment and the electronic background
provides a suitable laboratory for studies of dynamical aspects of both local spin and transport properties.
Here we address the time evolution of a localized spin moment coupled to an electronic level in a molecular
quantum dot embedded in a tunnel junction between metallic leads. The interactions between the localized
spin moment and the electronic level generate an effective interaction between the spin moment at different
instances in time. Therefore, we show that, despite being a single-spin system, there are effective contributions
of isotropic Heisenberg and anisotropic Ising and Dzyaloshinski-Moriya character acting on the spin moment.
The interactions can be controlled by gate voltage, voltage bias, the spin polarization in the leads, in addition to
external magnetic fields. Signatures of the spin dynamics are found in the transport properties of the tunneling
system, and we demonstrate that measurements of the spin current may be used for readout of the local spin
moment orientation.
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I. INTRODUCTION

Single-molecule magnets provide interesting workbench
opportunities to study quantum phenomena related to their
individual properties as well as a promising potential for
quantum-information technology and quantum computation
based on spintronics devices. Easy control of single magnetic
moments paved the way for a deeper exploration of, e.g.,
magnetic anisotropies and exchange interaction, as well as
new routes for significantly less energy-consuming active
electronics devices and information storage.

Molecular magnets offer a platform for studies of magnetic
properties on a fundamental level due to their intrinsic
discreteness. Experimentally, this has paved the way for
electronic control and detection of the magnetization of
individual molecules [1–3], magnetic anisotropy, and ex-
change interaction of single atoms such as, e.g., Co and Mn on a
surface [4–8], and tuning of the magnetic anisotropy in molec-
ular magnets [9]. Furthermore, spatial anisotropies have been
observed for the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [10] as well as signatures of superexchange interac-
tion and the long-range Kondo effect between single magnetic
molecules [11–13]. These advances in experimental tech-
niques have led to realizations of magnetically stable atomic-
scale configurations [14–16] that are important steps toward
the creation of stable magnetic memory devices at the atomic
scale. Magnetic molecules containing transition-metal atoms,
e.g., M-phthalocyanine and M-porphyrins, where M denotes
a transition-metal element (Cr, Mn, Fe, Co, Ni, Cu) [17–21], as
well as single molecules comprising complexes of transition-
metal elements [22,23] and antiferromagnetic rings [24–29],
have been explored in many different contexts.

For technological applications, on the other hand, the
potential of molecular magnets and magnetic materials is
unlimited. A range of different spintronics devices have been
proposed, both using spin currents [30] or spin torque [31].
Such devices include molecular spin-transistors, molecular
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spin-valves, molecular multidot devices [32], etc. These can
potentially be used both as building blocks of quantum
computers [33] and as quantum simulators [34]. There
are already several experimental realizations of these kinds
of devices, including magnetic memories and spin qubits
[35–38].

On the theoretical side, we have witnessed great progress
over the course of the past decade in developments of the theory
for, e.g., single molecular magnets and magnetization dynam-
ics. There have been several studies of magnetic exchange
interaction and the possibilities for electrical control of the
interaction and spin transport [39–44]. Under nonequilibrium
conditions, magnetic molecules show signatures of intrinsic
anisotropic exchange interactions that can be used to control
molecular spin [41,45], something that may lead to read-and-
write capabilities with currents in spintronics devices [46–48].
Nonequilibrium studies of transport properties have, moreover,
suggested that vibrations coupled to the spin degrees of free-
dom may induce electrical currents that can provide interesting
properties for, e.g., mechanical control of single magnetic
molecules [49,50]. Superconducting spintronics also paves
the way toward enhancing the central effects of spintronics
devices [51–54].

The majority of the reported theoretical progress, however,
has been limited to stationary, or Markovian, processes.
Although this is an important regime, both for fundamental
studies as well as for technological applications, it is nonethe-
less crucial to control also transient properties induced by
sudden onsets and variation of the external conditions applied
to the system. Regarding spin dynamics, the Landau-Lifshitz-
Gilbert (LLG) equation is often postulated as the platform for
theoretical studies, despite the fact that the (exchange and
damping) parameters for this equation are typically taken
on phenomenological grounds or from experiments. These
parameters are, in addition, assumed to have a negligible time
dependence, something that cannot be taken for granted in
nanoscale systems. Previous derivations of the LLG equa-
tion [39,55] clearly illustrate that the electronically mediated
exchange interactions depend strongly on the magnetization
dynamics and are, hence, intrinsically dynamical quantities as
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well. The nonlinearity of the dynamical equations indicates,
moreover, that it is nontrivial to decide whenever the time
dependence of the interaction parameters can be neglected.

To begin to depart from the ad hoc treatments of the
dynamics of spins coupled to electron currents, in this paper
we perform time-dependent studies and analyses beyond the
Markovian and adiabatic approximations for both the spin
dynamics and the tunneling current. In addition, we include
the interdependence between the current through the molecule
and the localized magnetic moment by considering both action
and backaction in the description. This can be regarded as the
first loop in a self-consistent calculation, however we do not
perform our calculations to full self-consistency.

The model system, onto which we apply our developed
method, is comprised of a magnetic molecule that is embedded
in the tunnel junction between metallic leads. The leads
themselves may support spin-polarized currents. Here, the
magnetic molecule consists of two components, namely a
quantum dot (QD) level and a localized magnetic moment, that
interact via exchange. The QD level is tunnel-coupled to the
leads. Hence, the current flowing through the metal-QD-metal
complex is expected to probe the presence of the localized
magnetic moment, and, vice versa, the localized magnetic
moment is expected to depend on the current. Taking this
observation as an initial condition for our studies, we construct
a calculation scheme in which the dynamics of the localized
magnetic moment is described by a generalized version of the
Landau-Lifshitz-Gilbert equation [39,42,55,56]. The effective
spin-spin interactions are mediated by the tunneling current
flowing across the junction. The current, on the other hand,
depends directly on the presence and dynamics of the localized
magnetic moment. We include this dependence by feeding the
time evolution of the spin dynamics into the current, which
causes the current-dependent temporal spin fluctuations to
generate signatures back into the current.

The effective spin model derived in Sec. II depends only
on the parameters included in our microscopical model—there
are no ad hoc contributions in the description in addition to
the basic model. However, within the realms of the model,
there is a current-mediated spin-spin interaction generated
in the effective spin model, which describes interactions
between the spin at time t and time t ′. Hence, although there
is only one spin in the system, it is still justified to introduce
the concept of spin-spin interaction since the spin at different
times can be regarded as different spins.

Separation of the magnetic molecule into a QD level
and a localized magnetic moment is justified for, e.g., M-
phthalocyanines and M-porphyrins. In these compounds,
the transition-metal d-levels, which are deeply localized,
constitute the localized magnetic moment. The s and p orbitals
in the ligands, on the other hand, generate the spectral intensity
at the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) levels, which may be
considered as the QD level(s) in our model.

Previously, Bode et al. [57] performed a similar theoretical
treatment of this problem using a nonequilibrium Born-
Oppenheimer approximation. Here, however, we go beyond
the adiabatic limit and extend the model to the non-Markovian
regime in order to treat memory effects and its impact on
the exchange interaction. Hence, the interaction fields in the

spin equation of motion are not only time-dependent but also
dependent on their time evolutions. A major difference with
this formulation is that all retardation effects are included in
the time integration of the interaction fields, and it is therefore
not meaningful to discuss quantities such as Gilbert damping
since such parameters are defined in the adiabatic limit.

In general, there also exist stochastic fields acting on the
localized spin as a result of its interaction with the surrounding
electrons. Here, we have chosen to omit the action of these
fields, despite their importance for a full description of the
physics [58]. However, since we consider the physics in the
wide band limit, these electronically induced stochastic fields
are of Gaussian white noise character with no voltage bias
dependence; see Appendix A. The stochastic field in this limit
will, therefore, merely play the role of a structureless thermal
noise field. As the main focus of our work is on the dynamics of
the localized magnetic moment and the exchange interactions,
we notice that our results are valid whenever the energies
of the interactions are larger than the corresponding energies
of these thermal noise fields. Adding a Langevin term, which
arises from the quantum fluctuation in the spin action [55], into
the spin equation of motion could be an interesting extension
of the model used in this work, which would be the objective
for a separate study.

The paper is organized as follows. In Sec. II we discuss
the basic setup of the formalism we employ in this study.
After defining the model for the magnetic molecular QD, we
derive the equations for the spin moment and the tunneling
current. Numerical results from these equations are presented
in Sec. III, and we summarize and conclude the paper in
Sec. IV.

II. METHOD

To be specific, we consider a magnetic molecule embedded
in a tunnel junction between metallic leads that may support
spin-polarized currents; see Fig. 1 for reference. The magnetic
molecule comprises a localized magnetic moment S coupled
via exchange to the highest occupied molecular orbital
(HOMO) or lowest unoccupied molecular orbital (LUMO)
level, henceforth referred to as the QD level. We define our

FIG. 1. The system studied in this work, consisting of a local
magnetic moment coupled to a QD in a tunnel junction between
ferro- and nonmagnetic leads.
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system Hamiltonian as

H = Hχ + HT + HQD + HS. (1)

Here, Hχ = ∑
k∈χ,σ (εkχσ − μχ )c†kχσ ckχσ is the Hamiltonian

for the lead χ = L/R, where c
†
kχσ (ckχσ ) creates (annihilates)

an electron in the lead with energy εkχσ , momentum k, and
spin σ =↑ , ↓. We have introduced the chemical potential
μχ for the leads and the voltage bias across the junction
defined as V = μL − μR . Tunneling between the leads and the
QD level is described by HT = HT L + HT R , where HT χ =
Tχ

∑
kσ∈χ c

†
kχσ dσ + H.c. The single-level QD is represented

by HQD = ∑
σ εσ d†

σ dσ , where d†
σ (dσ ) creates (annihilates)

an electron in the QD with energy εσ = ε0 + gμBBσz
σσ /2

and spin σ . We include the Zeeman split due to the external
magnetic field B = B ẑ, where g is the gyromagnetic ratio and
μB is the Bohr magneton. The local spin is described by HS =
−gμBS · B − vs · S, where v is the interacting rate between
the local spin and the electron spin s = ∑

σσ ′ d†
σ σ σσ ′ dσ ′/2,

whereas σ σσ ′ is the vector of Pauli matrices.

A. Equation of motion of the local magnetic moment

Using the methods in, e.g., Refs. [39,42,44,55,56] and
Appendix A, we derive an effective spin model for the localized
magnetic moment S(t) from which we obtain the equation of
motion

Ṡ(t) = −gμBS(t) × Beff(t) + 1

e
S(t) ×

∫
J(t,t ′) · S(t ′)dt ′.

(2)

Here, in order to arrive at this result, we have neglected
longitudinal spin fluctuations (∂t |S| = 0) and rapid quantum
fluctuations. The effective magnetic field is defined as

Beff(t) = B + 1

egμB

∫
εj(t,t ′)dt ′, (3)

where B is the external magnetic field while the second term
provides the internal magnetic field due to the electron flow,
where

εj(t,t ′) = ieεvθ (t − t ′)〈[s(0)(t),s(t ′)]〉. (4)

Here, ε = diag{ε↑ ε↓} and the charge s(0) =∑
σσ ′ d†

σ σ 0
σσ ′dσ ′/2, where σ 0 is the identity matrix. This

two-electron Green function (GF) is approximated by a
decoupling into single-electron GFs according to

εj(t,t ′) ≈ ievθ (t − t ′)spε[G<(t ′,t)σG>(t,t ′)

− G>(t ′,t)σG<(t,t ′)], (5)

where G</>(t ′,t) is the lesser/greater matrix GF of the
QD defined by G<(t,t ′) = {i〈c†σ ′ (t ′)cσ (t)〉}σσ ′ and G>(t,t ′) =
{(−i)〈cσ (t)c†σ ′(t ′)〉}σσ ′ . In Eq. (5), sp denotes the trace over
spin-1/2 space.

The current J(t,t ′) = i2ev2θ (t − t ′)〈[s(t),s(t ′)]〉 is the elec-
tron spin-spin correlation function, which mediates the inter-
actions between the localized magnetic moment at times t

and t ′. As with the internal magnetic field, we decouple this

two-electron GF according to

J(t,t ′) ≈ ie

2
v2θ (t − t ′)spσ (G<(t ′,t)σG>(t,t ′)

− G>(t ′,t)σG<(t,t ′)). (6)

This current mediated interaction can be decomposed into
an isotropic Heisenberg, JH , interaction and the anisotropic
Dzyaloshinsky-Moriya (DM), D, and Ising, I, interactions.
This can be seen from the product S · J · S, which is the
corresponding contribution in the effective spin model [44] to
S(t) × J(t,t ′) · S(t ′) in the spin equation of motion. Using the
general partitioning G = G0σ

0 + G1 · σ , where G0 and G1

describe the electronic charge and spin, it is straightforward to
see that

spS · σGσG · S

= spS · σ (G0σ
0 + G1 · σ )σ (G0σ

0 + G1 · σ ) · S

= sp(S · G1 + [SG0 + iS × G1] · σ )(G1 · S

+ [G0S − iG1 × S] · σ ), (7)

where we have used the identity (A · σ )(B · σ ) = A · B +
i[A × B] · σ . As the Pauli matrices are traceless, the above
expression reduces to

2(S · (G1G1) · S + [SG0 + iS × G1] · [G0S − iG1 × S]).

(8)

After a little more algebra, we obtain the Heisenberg (JH ),
anisotropic Ising (I), and anisotropic Dzyaloshinsky-Moriya
(D) interactions,

JH (t,t ′) = iev2θ (t − t ′)[G<
0 (t ′,t)G>

0 (t,t ′)

−G>
0 (t ′,t)G<

0 (t,t ′) − G<
1 (t ′,t) · G>

1 (t,t ′)

+ G>
1 (t ′,t) · G<

1 (t,t ′)], (9a)

I(t,t ′) = iev2θ (t − t ′)(G<
1 (t ′,t)G>

1 (t,t ′)

− G>
1 (t ′,t)G<

1 (t,t ′) + [G<
1 (t ′,t)G>

1 (t,t ′)

− G>
1 (t ′,t)G<

1 (t,t ′)]t ), (9b)

D(t,t ′) = −ev2θ (t − t ′)[G<
0 (t ′,t)G>

1 (t,t ′)

−G>
0 (t ′,t)G<

1 (t,t ′) − G<
1 (t ′,t)G>

0 (t,t ′)

+ G>
1 (t ′,t)G<

0 (t,t ′)]. (9c)

This means that we can partition the current mediated spin-spin
interaction in the spin equation of motion into

S(t) × J(t,t ′) · S(t ′) = JH (t,t ′)S(t) × S(t ′)

+ S(t) × I(t,t ′) · S(t ′)

− S(t) × D(t,t ′) × S(t ′). (10)

In the absence of a spin dependence in the QD GF, that
is, for G1 = 0, it is clear that only the Heisenberg interaction
JH remains, since both I and D explicitly depend on G1.
There are different sources that generate a finite G1, e.g., spin
injection from the leads, the Zeeman split QD level, but also
the interaction with the localized magnetic moment gives an
essential contribution. In this paper, we include effects from
all three sources.
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FIG. 2. Sketch of the system without (a) and with (b) a local
magnetic moment and coupled to the leads. In the latter case, the
interactions with the spin moment induce an effective Zeeman split.

The spin equation of motion derived here goes far beyond
the LLG equation as it includes all retardation effects under
the time integration, something that is essentially missing
in the LLG equation except for the static exchange interaction
and Gilbert damping. Starting from Eq. (2) and restricting to
the adiabatic limit, it is possible to derive the conventional
LLG equation; see Ref. [39]. For clarity, this is also done
in Appendix B. This also implies that Eq. (2) includes
the important Gilbert damping and spin-transfer torque, as
discussed in Refs. [57–59]. Higher-order retardation effects
(dissipation, moment of inertia, etc.) are included in the
time-integral

∫
J(t,t ′) · S(t ′)dt ′.

B. Quantum dot GF

1. Bare quantum dot Green function

Next, we derive the GF for the QD, which is defined as
G(t,t ′) = {(−i)〈Tc

†
σ ′(t ′)cσ (t)〉}σσ ′ , where T is the contour-

ordering operator. We introduce a bare GF gσ (t,t ′) as the
solution to the equation

(i∂t − εσ )gσ (t,t ′) =δ(t − t ′) +
∫

�σ (t,τ )gσ (τ,t ′)dτ. (11)

The bare GF then describes the electronic structure of the QD
when coupled to the leads through the self-energy �σ (t,t ′) =∑

χ

∑
k∈χ |Tχ |2gkσ (t,t ′), however without any coupling to the

local spin moment, as illustrated in Fig. 2(a). Here,

gkσ (t,t ′) =(−i)T e−i
∫ t

t ′ εkσ (τ )dτ (12)

is the GF for the lead χ , including the time dependence
imposed by the voltage bias.

The self-energy � = diag{�↑ �↓} is treated in the wide-
band limit (WBL), which for the retarded/advanced and
lesser/greater forms is given by

�r/a
σ (t,t ′) = (∓i)δ(t − t ′)
σ/2, (13a)

�</>
σ (t,t ′) = (±i)

∑
χ


χ
σ K</>

χ (t,t ′), (13b)

where 
σ = ∑
χ 
χ

σ and 
χ
σ = 2|Tχ |2 ∑

k∈χ δ(ω − εkσ ),
whereas

K</>
χ (t,t ′) =

∫
fχ (±ω)e−iω(t−t ′)+i

∫ t

t ′ μχ (τ )dτ dω

2π
. (14)

Here, f (±ω) is the Fermi function. The WBL allows us to
write the retarded/advanced zero GF as

gr/a
σ (t,t ′) = (±i)θ (±t ∓ t ′)e−i(εσ ∓i
σ /2)(t−t ′). (15)

By defining the coupling parameters 

χ

0 = ∑
σ 
χ

σ and
�

χ

1 = ∑
σ σ z

σσ
χ
σ ẑ and introducing the spin polarization in the

leads pχ ∈ [−1,1], such that 
χ
σ = 


χ

0 (1 + σ z
σσpχ )/2, we can

write �
χ

1 = pχ

χ

0 ẑ. With this notation, we can introduce the
coupling matrix � = 
0σ

0 + �1 · σ , where 
0 = ∑
χ 


χ

0 and
�1 = ∑

χ �
χ

1 . Analogously, we write the retarded/advanced

and lesser/greater self-energies as �r/a = �
r/a

0 σ 0 + �
r/a

1 · σ

and �</>(t,t ′) = �
</>

0 σ 0 + �
</>

1 · σ , where

�
r/a

0 (t,t ′) = (±i)δ(t − t ′)
0/2, (16a)

�
r/a

1 (t,t ′) = (±i)δ(t − t ′)�1/2, (16b)

�
</>

0 (t,t ′) = (±i)
∑

χ



χ

0 K</>
χ (t,t ′), (16c)

�
</>

1 (t,t ′) = (±i)
∑

χ

�
χ

1 K</>
χ (t,t ′). (16d)

Using this notation, we partition the bare GF in terms of
its charge and magnetic components according to g = g0σ

0 +
σ · g1. The retarded/advanced form of g can then be written

g
r/a

0 (t,t ′) = (±i)θ (±t ∓ t ′)
∑

σ

e−i(εσ ∓i
σ /2)(t−t ′)/2, (17a)

gr/a

1 (t,t ′) = (±i)θ (±t ∓ t ′)
∑

σ

σ z
σσ e−i(εσ ∓i
σ /2)(t−t ′)ẑ/2.

(17b)

Analogously, the lesser/greater forms of g are given by

g</>(t,t ′) ≡
∫

gr (t,τ )�</>(τ,τ ′)ga(τ ′,t ′)dτ dτ ′

= g
</>

0 (t,t ′)σ0 + σ · g</>

1 (t,t ′), (18)

where (the time dependence of the propagators in the inte-
grands is suppressed)

g
</>

0 (t,t ′) =
∫ (

gr
0�

</>

0 ga
0 + gr

1�
</>

0 · ga
1

+ gr
0�

</>

1 · ga
1 + gr

1 · �
</>

1 ga
0

)
dτ dτ ′, (19a)

g</>

1 (t,t ′) =
∫ (

gr
0�

</>

1 ga
0 + gr

1 · �
</>

1 ga
1

+ gr
0�

</>

0 ga
1 + gr

1�
</>

0 ga
0

)
dτ dτ ′. (19b)

2. Dressed quantum dot Green function

The next step is to include the interactions with the local
magnetic moment in the description. We achieve this goal by
defining the dressed QD GF as the first-order expansion in
terms of the local moment, that is,

G(t,t ′) = g(t,t ′) + δG(t,t ′)

= g(t,t ′) − v

∮
C

g(t,τ )〈S(τ )〉·σg(τ,t ′)dτ, (20)

where g is the bare GF and δG is the correction from
the interactions with the local magnetic moment. As
above, we write G = G0σ

0 + σ · G1, where G0 = g0 + δG0

and G1 = g1 + δG1, whereas the corrections are given
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by

δG0(t,t ′) = −v

∮
C

(
g0〈S〉 · g1

+ g1 · 〈S〉g0 + i[g1 × 〈S〉] · g1
)
dτ, (21a)

δG1(t,t ′) = −v

∮
C

(
g0〈S〉g0 + i[g1 × 〈S〉]g0

+ ig0[〈S〉 × g1] + i[g1 × 〈S〉] × g1
)
dτ. (21b)

We refer to Appendix C for details about the lesser/greater
forms of the charge and magnetic components of δG.

It should be noted that the presence of the local spin
moment gives rise to a spin polarization of the QD level
due to the local exchange interaction; see Fig. 2(b) for an
illustration. The effect is particularly strong whenever there is
an intrinsic spin-polarization in either the leads and/or the QD,
in which case g1 �= 0. Then, the local spin moment affects the
properties of both the charge and magnetic structure of the QD.
Nevertheless, even for spin-degenerate leads and QDs, that is,
for g1 ≡ 0, the QD level acquires a finite spin-dependence.
This is legible in the expression for δG1, where the first term
only depends on the magnetic properties of the local spin
moment and the charge density in the QD. Thus, calculating
the electronic structure in the QD as a function of the local
spin moment paves the way for tracing signatures of the local
spin dynamics in the properties of the QD.

C. Current

The properties of the QD are probed by means of the
electron currents flowing through the system. In this way,
the goal is to pick up signatures of the spin dynamics in the
transport properties, as these should influence the electronic
structure of the QD. The electron currents can be decomposed
into charge and spin currents, IC and I S , respectively. Here,
we calculate the currents flowing through the left interface
between the leads and the QD. Accordingly, we define

IC
L (t) = −e∂t

∑
kσ∈L

〈nkσ 〉 = iesp∂t

∑
k

G<
k (t,t), (22a)

I S
L (t) = −e∂t

∑
kσσ ′∈L

〈c†kσ σ σσ ′ckσ ′ 〉 = iespσ∂t

∑
k

G<
k (t,t).

(22b)

Using standard methods, we can write the charge current as

IC
L (t) = −2e

�
sp Im �L

∫ t

−∞
(K>

L (t,t ′)G<(t ′,t)

+K<
L (t,t ′)G>(t ′,t))dt ′. (23)

Following the same route as initiated above, we partition
the current into a spin-independent and spin-dependent part
according to IC

L (t) = IC
0 (t) + IC

1 (t), where

IC
0 (t) = 4e

�

L

0 Im
∫ t

−∞
(K>

L G<
0 + K<

L G>
0 )dt ′, (24a)

IC
1 (t) = −4e

�
�L

1 · Im
∫ t

−∞
(K>

L G<
1 + K<

L G>
1 )dt ′. (24b)

Analogously to the charge current, we write the spin current
as

IS
L(t) = −2e

�
sp Im σ�L

∫ t

−∞
(K>

L (t,t ′)G<(t ′,t)

+K<
L (t,t ′)G>(t ′,t))dt ′, (25)

where IS
L(t) = IS

0(t) + IS
1(t) and

IS
0(t) = −4e

�

L

0 Im
∫ t

−∞
(K>

L G<
1 + K<

L G>
1 )dt ′, (26a)

IS
1(t) = −4e

�
Im

∫ t

−∞

[
K>

L

(
�L

1 G<
0 + i�L

1 × G<
1

)

+K<
L

(
�L

1 G>
0 + i�L

1 × G>
1

)]
dt ′. (26b)

These expressions for the charge and spin currents suggest
that any local dynamics that is picked up by the electronic
structure of the QD should provide signatures in its transport
properties. Next, we analyze the impact of the local dynamics
on the transport properties.

III. RESULTS

A. Stationary limit

Before embarking on the full time-dependent properties of
the system, we review some of the expected results for the
stationary regime in order to provide a benchmark for our
calculations. In the stationary limit, all the time dependences
induced from the onset of the applied voltage bias have
decayed, which leads to the bare QD GF becoming time-local,
and we can therefore study the energetic properties of the QD.
Then, the local magnetic moment, 〈S〉, can be regarded as a
constant spin-polarization and a source for coupling between
the spin states, in agreement with Ref. [43]. The Fourier
transform of the bare QD GF is, therefore, written in the form

g
r/a

0 (ω) = 1

2

∑
σ

gr/a
σ (ω), (27a)

gr/a

1 (ω) = 1

2

∑
σ

σ z
σσ gr/a

σ (ω),ẑ, (27b)

where

gr/a
σ (ω) = 1

ω − ε0 ± i
σ /2
, (28)

and the self-energies become

�
</>

0 (ω) = (±i)
∑

χ



χ

0 fχ (±ω), (29a)

�
</>

1 (ω) = (±i)
∑

χ

�
χ

1 fχ (±ω), (29b)

since K
</>
χ (ω) = f (±ω) in the stationary limit. In the station-

ary limit, the interaction parameters, moreover, simplify in the
limit ε → 0 to

J (H ) = −v2
∫

1

ω + ε − ω′ [G
<
0 (ω)G>

0 (ω′) − G>
0 (ω)G<

0 (ω′)

− G<
1 (ω) · G>

1 (ω′) + G>
1 (ω) · G<

1 (ω′)]
dω

2π

dω′

2π
, (30a)
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FIG. 3. Charge and spin current for a static local magnetic
moment in a tunnel junction. (a) Charge current IC as a function of ε0

and (b) spin current IS as a function of ε0. Here, we used 
0 = v = 1
meV, T = 1 K, B = 1 T, pL = pL = 0, and V = 2 mV such that
VL = V/2 and VR = −V/2.

I = −v2
∫

1

ω + ε − ω′ (G
<
1 (ω)G>

1 (ω′) − G>
1 (ω)G<

1 (ω′)

+ [G<
1 (ω)G>

1 (ω′) − G>
1 (ω)G<

1 (ω′)]t )
dω

2π

dω′

2π
, (30b)

D = v2

2
Re

∫
[G<

0 (ω + ε)G>
1 (ω) − G>

0 (ω + ε)G<
1 (ω)

− G<
1 (ω + ε)G>

0 (ω) + G>
1 (ω + ε)G<

0 (ω)]
dω

2π
. (30c)

Considering a symmetric and spin-independent back-
ground, i.e., nonmagnetic contacts pχ = 0, and a constant local
magnetic moment, S, the local spin polarization gives rise to
finite spin currents IS in the system; see Eqs. (25) and (26)
(note �S = 0). In Fig. 3 we plot the calculated (a) charge (IC)
and (b) spin current (IS) as a function of the gate voltage, V ,
for a QD with a bare level at ε0 = 0. While the charge current
behaves as expected for a single-level QD, given by

IC
L = e

4π�

2

0

∫
fL(ω) − fR(ω)

(ω − ε0)2 + (
0/4)2
dω, (31)

the features in the spin current for gate voltages near zero
give a clear indication of the induced spin-polarization from
the local spin moment. Due to the local spin moment induced
effective Zeeman split in the QD, as shown in Fig. 2(b), the
spin current is strongly peaked at μχ = ε0. As can be seen
in Fig. 2, either one of the spin-up or -down channels will be
more favorable for the tunneling electrons, thus causing a net
spin current in either direction depending on the configuration
of the electron level of the leads. This is an important feature
as it can be used in order to read out the state of the local spin
moment from the spin current.

Regarding the Heisenberg interaction, recalling that, e.g.,
Gr

0(ω) = gr
0(ω) = 1/(ω − ε0 + i
0/4) for nonmagnetic leads,

it can be readily seen that the charge contribution to the
Heisenberg exchange is given by

2v2

π

∑
χ



χ

0

∫
fχ (ω)

ω − ε0

[(ω − ε0)2 + (
0/4)2]2
dω. (32)

This suggests a spin-spin interaction that is strongly peaked
around μχ = ε0. Similarly, the contribution from the local

FIG. 4. Heisenberg interaction JH of a static local magnetic
moment in a tunnel junction in the z direction, S = Szẑ. Part (a)
shows the Heisenberg interaction for nonmagnetic leads, pχ = 0, as
a function of bias voltage V . Here, the gate voltage is set to ε0 = 0
and 1 meV and the plots shifted for clarity (scale is the same). Part
(b) shows the Heisenberg interaction for antiferromagnetic leads,
pL = −pR = 0.5, as a function of bias voltage V . Here, we used

0 = v = 0.1 meV, T = 1 K, B = 0 T and V = 2 mV.

spin-polarization, G1 = −vg0〈S〉g0, acquires the form

−4v4

π
|〈S〉|2

∑
χ



χ

0

∫
fχ (ω)(ω − ε0)

× (ω − ε0)2 − (
0/4)2

[(ω − ε0)2 + (
0/4)2]4
dω, (33)

which is also strongly peaked at μχ = ε0. However, as the
integrand of this component changes sign at ω = ε0,ε0 ±

0/4, the contribution from the QD spin polarization goes
through local minima at ε0 ± 
0/4 and a local maxima at ε0,
as a function of the chemical potential μχ . We therefore expect
a competition between the charge and magnetic components,
which may lead to a change of sign in the Heisenberg
interaction, depending both on the properties of the system
as well as on the external conditions. This is illustrated by
the computed Heisenberg exchange plotted in Fig. 4(a) as a
function of the voltage bias for different gate voltages, showing
the changing character from negative to positive interaction
as the chemical potential μχ approaches the QD level. For
ferromagnetic leads aligned antiferromagnetically in Fig. 4(b),
pL = −pR = 0.5, we notice an anisotropic behavior as the
sign of the interaction switches with respect to the polarity of
the voltage bias. This is in agreement with previous studies

FIG. 5. Ising interaction I of a static local magnetic moment in
a tunnel junction in the z direction, S = Szẑ. Part (a) shows the
Ising interaction for nonmagnetic leads, pχ = 0, as a function of
bias voltage V . Here, the gate voltage is set to ε0 = 0 and 1 meV
and the plots shifted for clarity (scale is the same). Part (b) shows the
Ising interaction for antiferromagnetic leads, pL = −pR = 0.5, as a
function of bias voltage V . Other parameters are as in Fig. 4.
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FIG. 6. DM interaction D of a static local magnetic moment in a
tunnel junction in the z direction, S = Szẑ, for antiferromagnetic
leads, pL = −pR = 0.5. Part (a) shows the DM interaction as a
function bias voltage V , where the gate voltage is set to ε0 = 0 and
1 meV. Part (b) shows the DM interaction different gate voltage ε0.
Other parameters are as in Fig. 4.

of antiferromagnetically aligned leads coupled to molecular
spins [45].

The Ising interaction I essentially behaves in a similar
manner, however this contribution requires a finite spin polar-
ization (G1 �= 0) to become nonvanishing. For nonmagnetic
leads, pχ = 0, this spin polarization is provided by the local
spin moment, and we find that the Ising interaction acquires
the form given in Eq. (33), up to multiplying constants. This
is also verified by the numerically computed Ising interaction,
shown in Fig. 5(a) as a function of the voltage bias for different
gating conditions. Again, for ferromagnetic leads in antiferro-
magnetic alignment, pL = −pR = 0.5, there is a switching
behavior with respect to the polarity of the voltage bias.

A similar switching behavior appears in the DM interaction
D, which is only considered for ferromagnetic leads aligned
antiferromagnetically [see Fig. 6(a)], where the DM interaction
is plotted as a function of the voltage bias and for different
gating conditions. Varying the gate voltage, it can be seen that
there is a finite DM interaction only whenever the QD electron
level, ε0, lies in the window between the chemical potentials in
the leads spanned by the voltage bias. This is understood since
the DM interaction results from net current flow interacting
with the local spin moment, as it requires simultaneous
breaking of time-reversal and inversion symmetries to be finite.

We comment finally on the relevance for calculating the
interaction parameters in the stationary limit. This question is
justified since the effective spin Hamiltonian in the stationary
limit would assume the form

Heff
S = − J (H )S · S − D · S × S − S · I · S. (34)

Here, one can notice that S · S = |S|2, which is a constant
of motion, whereas S × S ≡ 0. Both of these identities
relies on the fact that the spin S is time-independent in
the stationary limit. Actually, only the Ising interaction is
physically motivated, providing an anisotropy field on the spin.
For collinear spin polarization in the surrounding system, this
contribution reduces to the form IzzS

2
z , which is the ordinary

Ising Hamiltonian.
We justify the calculations and analysis of the stationary

limit interaction parameters because we can understand and
interpret much of the time-dependent features, discussed in
the remainder of this paper, from the results obtained in the
stationary limit. In addition, our results also demonstrate that
despite the fact that the dynamics may be trivial, the fields that
mediate the interactions between the dynamical object need
not be trivial.

B. Time-dependent exchange interaction

As we are interested in the transient dynamics, we study
the effect of an abrupt onset of the voltage bias applied as a
steplike function Vχθ (t − t0) symmetrically over the junction
such that VL/R = ±V/2. Before the onset of the voltage bias,
the local spin is subject to the static external magnetic field
B = B ẑ, giving Sx = Sxy sin ωLt , Sy = Sxy cos ωLt , and Sz =
Sz, where S2

xy = S2
x + S2

y , whereas |S|2 = S2
xy + S2

z and ωL =
gμB |B|, and we assume an initial polar angle of π/4.

The time dependence of the interaction parameters, cf.
Eq. (9), has to be calculated as a function of the gate
voltage and voltage bias at each time step. In Fig. 7 we
plot the time evolution of the Heisenberg, Ising, and DM
interaction parameters as a function of the gate voltage, where
we integrated over all t ′, hence showing JH (t), Izz(t), and
Dz(t). Considered in this fashion, the plots illustrate the time
evolution of the exchange interaction that would be expected
in the adiabatic approximation, that is,

∫
J(t,t ′) · S(t ′)dt ′ ≈

FIG. 7. Time-dependent evolution of the exchange interaction parameters as a function of gate voltage ε0 after an onset of a steplike finite
bias voltage of V = 2 mV. Part (a) shows the strength of the Heisenberg interaction, (b) shows the Izz part of the Ising interaction, and (c)
shows the z component of the DM interaction. Here we used the parameters 
0 = v = 0.1 meV, T = 1 K, B = 1 T, and pL = pL = 0.
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FIG. 8. Contribution to the local magnetic moment equation of motion for different exchange interaction parameters as a function of gate
voltage ε0. Part (a) shows the change Ṡz(εj) in the z direction depending on the induced internal magnetic field due to the charge flow. In
(b)–(d), the change in the z direction depending on the Heisenberg, Ising, and DM interaction is shown, respectively. Other parameters are as
in Fig. 7.

∫
J(t,t ′)dt ′ · S(t) + · · · . In the transient regime, the interaction

parameters changes continuously, both due to the changing
characteristics of the system and the feedback through the
system from the changing local magnetic moment. In the
long-time limit, it may be noticed that the interaction strength
peaks for all three types of interactions when the QD electron
level ε0 is resonant with one of the chemical potentials of the
leads, μχ = eVχ . We hence retain the properties of the system
in the stationary regime.

When going beyond the adiabatic approximation, one
cannot strictly separate the interaction parameters from the
time evolution of the spin; see, for instance, Eq. (2). It is
then more comprehensible to directly study and analyze each
component of the equation of motion. Accordingly, in Fig. 8
we plot the rates of change in the respective panels:

(a) Ṡz(t ; εj) = −S(t) × ∫
[εj(t,t ′)]zdt ′/e,

(b) Ṡz(t ; J (H )) = −S(t) × ∫
J (H )(t,t ′)Sz(t ′)dt ′/e,

(c) Ṡz(t) = −S(t) × ∫
Izz(t,t ′)Sz(t ′)dt ′/e,

(d) Ṡz(t) = −S(t) × ∫
Dz(t,t ′)Sz(t ′)dt ′/e.

The rate of change caused by the current-induced magnetic
field, Ṡz(t,εj), shown in Fig. 8(a), initially provides a large
contribution to the spin dynamics while it tends to zero in the
long-time limit. This is to be expected since the time variations
of the charge current are largest immediately after the onset
of the voltage bias. Far beyond the transient regime initiated
by this onset, the temporal variations in the charge current are

FIG. 9. Time-dependent evolution of the field from the
anisotropic DM interaction in x and y directions as a function of
gate voltage ε0 after an onset of a steplike finite bias voltage of
V = 2 mV. Other parameters as in Fig. 7.

much smaller, which, therefore, also leads to a smaller induced
magnetic field.

Similar behavior appears for the Heisenberg, Ising, and
DM interactions, shown in Figs. 8(b)–8(d), where they
initially provide a large contribution to the spin dynamics
in the transient regime. Resulting from the time-dependent
interaction parameters, there is a finite contribution to the
spin dynamics for large time scales in the stationary limit, in

FIG. 10. Charge current as a function of time, IC(t), for different
steplike bias voltages V . In (a) a contour of the time evolution of the
charge current as a function of bias voltage V is shown. In (b) the cuts
in (a) are shown for different bias voltage V . Here 
0 = v/2 = 0.1
meV, T = 1 K, B = 1 T, pL = pL = 0, and ε0 = 0 meV.

054311-8



TIME-DEPENDENT SPIN AND TRANSPORT PROPERTIES . . . PHYSICAL REVIEW B 94, 054311 (2016)

agreement with the time-independent solution. The difference,
however, is that there is a finite contribution in the stationary
limit of the DM interaction, something not observed in the
time-independent solution for nonmagnetic leads. The reason
of this effect is the time-dependent feature of the DM fields.
In Fig. 9, the effective field from the DM interaction is
shown in the x and y components of the vector defined by
(D · S)(t) = ∫

D(t,t ′) · S(t ′)dt ′. The fields for the Heisenberg
and Ising contribution, i.e.,

∫
JH (t,t ′)S(t ′)dt ′ and

∫
I(t,t ′) ×

S(t ′)dt ′, are similar to the basic parameters shown in Fig. 7,∫
JH (t,t ′)dt ′ and

∫
I(t,t ′)dt ′.

C. Nonmagnetic leads

Next, we study the time-dependent solution of the charge
and spin currents and the evolution of the local spin moment for
nonmagnetic leads, pχ = 0. Here, we use 
0 = v = 0.1 meV,
T = 1 K, B = 1 T, pL = pL = 0, ε0 = 0 meV, and V = 2
mV. Our computed charge current IC is shown in Fig. 10 for
steplike voltage biases V with different amplitudes, turned
on at time t = 0. The contour in Fig. 10(a) shows the time
evolution of IC(t) as a function of V , while the plots in
Fig. 10(b) correspond to the traces indicated in panel (a).
The current acts as a response function to the steplike voltage
bias according to a well-known and expected scheme, and
eventually it reaches the stationary regime. A direct influence
of the amplitude of the voltage bias is the increasing frequency
of the current oscillations as the voltage bias grows, as well
as the increasing decay time. For nonmagnetic leads, the
influence of the local magnetic moment S(t) on the current
is negligible. Hence, the essential time-dependent properties
of the charge current are captured by results provided in
Refs. [60,61].

In the case of nonmagnetic leads, both �1 = 0 and g1 = 0,
thus the only contribution to the spin-dependent dressed GF
comes from −vg0〈S〉g0. With no applied gate voltage, this will
lead to zero spin currents in the stationary limit, cf. Fig. 3(b).
This can be seen in Figs. 11(a)–11(c), where we show the
spin currents in the x, y, and z directions for different bias
voltages. The local spin moment, initially at a polar angle
π/4, will align in the z direction due to the damping effect of
the charge background; see Figs. 11(d) and 11(e). The process
will be slower for a finite bias voltage than for zero voltage,
as there are anisotropic effects in the system. The backaction
via the current in the junction causes this slower dynamics
as it counteracts the motion in Fig. 8 (notice that we have
zero gate voltage). Here, the induced internal magnetic field
and DM interaction cause the spin to align in the positive z

direction, whereas the Heisenberg and Ising interactions cause
it to flip in the negative z direction. Similar to this, the transient
effects in the spin currents in Figs. 11(a)–11(c) are due to
both the presence of the local spin moment and the current
through the system, as it depends on G1 = −vg0〈S〉g0. As the
dynamics of the local spin moment has a small dependence of
the voltage bias, the time- and voltage-dependent changes of
the spin current are thus mainly due to the electron flow in the
system, given by g0.

If there is no exchange coupling between the QD and the
local spin moment, i.e., v = 0, the spin moment would just
continue to rotate in the magnetic field and there would not
be any induced spin currents in the system. This can be seen
in Figs. 12(b) and 12(c) for a finite charge current through
the system in Fig. 12(a). The interaction between the current
through the QD and the local spin moment increases as we turn
on the exchange coupling, thus changing the direction of the
spin. The scaling behavior depends on the interaction between

FIG. 11. Spin currents IS(t) as a function of time for different steplike bias voltage (a) I S
Lx , (b) I S

Ly , and (c) I S
Lz. Normalized local magnetic

moment S(t) as a function of time for different steplike bias voltage (d) Sx , (e) Sy , and (f) Sz. Here the same values as in Fig. 10 are used.
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FIG. 12. Evolution of the currents and local magnetic moment when adjusting different parameters. For different exchange coupling, v,
the figures show (a) the charge current IC , (b) the spin current I S

z , and (c) the local magnetic moment in the z direction, Sz. For different gate
voltage, ε0, the figures show (d) the charge current IC , (e) the spin current I S

z , and (f) the local magnetic moment in the z direction, Sz. For
different tunneling coupling, 
0, the figures show (g) the charge current IC , (h) the spin current I S

z , and (i) the local magnetic moment in the z

direction, Sz. Here the same values as in Fig. 7 are used.

the QD and the local spin moment. The internal magnetic field
scales linearly with the exchange coupling, εj ∝ v, and the
current-mediated interaction scales quadratically, J ∝ v2. In
turn, these equations depend on the backaction from the spin
moment through the GF, defined as G1 = −vg0〈S〉g0. The
scaling of the exchange coupling is thus v4, and in Fig. 12(c)
we can observe a 16 times faster process for every doubling
of the exchange coupling. The spin current Fig. 12(b) scales
linearly with exchange coupling, due to G1 = −vg0〈S〉g0,
and the charge current Fig. 12(a) is independent of the
exchange coupling as it only depends on g0 for nonmagnetic
leads.

The QD electron level ε0 is adjusted by the gate voltage V .
In the stationary limit, the charge current peaks when the QD
electron level lies between the chemical potential of the leads,
and it quickly diminishes for higher and lower gate voltage.
Because of the effective Zeeman split in the QD, there will
be finite spin currents that are strongly peaked at μχ = ε0.

This can also be observed in the long-time limit for different
gate voltage, shown in Figs. 12(d) and 12(e). Due to the
asymmetry of the time-dependent solution of the bare GF,
where g0(t,t ′) is not the same as g0(t ′,t) around the onset of
bias voltage, the currents become asymmetric for small time
scales depending on the sign of the gate voltage. As this is a
short-term effect, the asymmetry vanishes as it reaches steady
state. The evolution of the local spin moment, shown in Fig. 8,
depends on the gate voltage as the strength of the interaction
strongly depends on the gate voltage; see Figs. 7 and 8. For
zero gate voltage, the local spin moment simply aligns with
the leads, as in Fig. 11(f). When a finite gate voltage is applied,
the QD level is not symmetrically in between the leads, which
gives both a spin-polarized current due to the Zeeman split and
in turn changes the action on the spin moment. This causes the
spin moment to reach different solutions in the steady state
depending on both the isotropic and anisotropic interactions
shown in Fig. 8.
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Recalling that the charge current for nonmagnetic leads is
given in the stationary limit by Eq. (31), we notice that it scales
with the tunneling coupling 
0 as a Lorentzian. This can be
seen in the steady-state limit in Fig. 12(g), where the charge
current is plotted against different tunneling coupling. The
dependence of 
0 in both the spin currents and the interaction
strength is as in Eqs. (32) and (33), where it is of the form

0/(1 + 
2

0)2, 
0/(1 + 
4
0)2, and 
3

0/(1 + 
4
0)2. This will give

a high contribution for a narrow range, and it can be seen in
Figs. 12(h) and 12(i), where the spin current and evolution of
the local spin moment are plotted against different tunneling
coupling.

D. Ferromagnetic leads

We now study the system for different magnetization of
the leads. In Fig. 13, the different columns show different spin
polarization of the leads. To enhance the effects, the simulation
was run with T = 1 μK and B = 1 μT. In Fig. 13(a), the
magnetization is changed for both leads, pL = pR = p, in a
ferromagnetic alignment. As can be seen in the stationary
limit, the spin current is then net positive or net negative
due to the spin polarization of the leads, as expected. The
charge current decreases some for strongly polarized leads
as one of the spin species diminishes, thus only tunneling
through either the spin-up or -down channel [see Fig. 2(b)
for illustration]. If the drain lead is kept nonmagnetic, i.e.,
pL = p,pR = 0, this behavior becomes clearer; see Fig. 13(b).

Here, a majority of spin-up or spin-down electrons enters
the QD, while both have equal probability to exit. The spin
current through the junction becomes less polarized because
only one of the leads is ferromagnetic while the other is
nonmagnetic. The changes in charge current are large because
of the noncollinear arrangement of the leads. Similar changes
in charge and spin currents appear when the source is kept
nonmagnetic, i.e., pL = 0,pR = p; see Fig. 13(d).

When the source or drain lead is kept ferromagnetic,
i.e., pχ = 0.5, the charge and spin current behavior changes
slightly; see Figs. 13(c) and 13(e). We get the highest charge
current when the leads are in a ferromagnetic configuration,
while it is the lowest in an antiferromagnetic configuration.
The same happens for the spin current, where it is the highest
in a ferromagnetic configuration and it goes to zero/negative
when the leads are in an antiferromagnetic configuration. This
is well expected and agrees with a simple model of a QD
between magnetic leads.

We notice that there is a slight difference between the spin
currents in Figs. 13(b) and 13(d) and the same for Figs. 13(c)
and 13(e). This is partly due to the asymmetry of the source and
drain leads, which causes an effect on small time scales when
the bias voltage is turned on, where a spin-up injection causes
a peak in the spin current, and a spin-down injection causes a
bottom. It is also due to the influence of the local spin moment
in the junction, which reaches different stationary solutions
(see the bottom row of Fig. 13), as the dressed GF depends on
the connection with the spin moment, as is given in Eq. (20).

FIG. 13. Evolution of the currents and local magnetic moment for different polarization p of the leads indicated by the arrows in the
second row, where the left arrow indicates the polarization of the left lead and the right arrow indicates the right lead. The first row shows the
charge current, IC , the second row the spin currents, I S

z , and the third row shows the local magnetic moment in the z direction, Sz. In (a), the
magnetization is changed for both leads, pL = pR = p. In (b), the right lead is nonmagnetic and the left lead is changed, pR = 0 and pL = p.
In (c), the right lead is ferromagnetic and the left lead is changed, pR = 0.5 and pL = p. In (d), the left lead is nonmagnetic and the right lead
is changed, pR = p and pL = 0. In (e), the left lead is ferromagnetic and the right lead is changed, pR = p and pL = 0.5. Here 
0 = 0.1 meV,
v = 0.25 meV, V = 2 mV, T = 1 μK, B = 1 μT, pL = pL = 0, and ε0 = 0 meV.
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FIG. 14. Difference in spin current normalized by charge cur-
rent in the stationary limit, [I S

z (pL = 0,pR = p) − I S
z (pL = p,pR =

0)]/IC , depending on the direction of current with one lead non-
magnetic and the other lead with different spin polarization. This
plot corresponds to the difference between columns (b) and (d) in the
second row of Fig. 13. The difference is due to the different directions
of the local spin moment.

The difference is shown in Fig. 14 for the case in which one lead
is kept nonmagnetic and the spin polarization of the other lead
is shifted. The plot shows the difference [I S

z (pL = 0,pR =
p) − I S

z (pL = p,pR = 0)]/IC . Hence, because of the given
polarity of the voltage bias, the system is not invariant with
respect to inversion symmetry, and the configurations pL =
0,pR = p and pL = p,pR = 0 are not equivalent under finite
voltage bias.

For ferromagnetic leads, the interaction between the QD
and the spin moment changes. This causes the local spin
moment to change direction for different spin-polarized con-
figurations of the leads. The evolution of the spin moment for
different configurations is shown in the bottom row in Fig. 13.
Due to the anisotropic interactions I and D, the local spin
moment antialigns with the source lead while it aligns with the
drain lead; see Figs. 13(b) and 13(c). The effect is stronger from
the source lead than the drain lead, as the source determines
the electron flow into the system. In the small-time scale, right
after the gate voltage is turned on, we can observe a dip in the
evolution of the spin moment before its reaches its stationary
solution. This we can describe energetically as a double-well
potential, where the spin moment needs enough energy in order
to pass a barrier and reach a spin-down solution. If it does not
have enough energy to pass the barrier, it stays in a spin-up
solution; see Fig. 15. In the present case, the spin is considered
classical and the transition will be continuous, while a quantum
spin would tunnel through the potential barrier for high enough
energies. As we see in Figs. 13(b) and 13(c), this configuration
favors a spin-up solution, while when the current is driven in
the opposite direction, shown in Figs. 13(d) and 13(e), it favors
a spin-down solution. This is illustrated by the different depths
of the potential wells in Fig. 15. Due to the anisotropies in
the system, the spin moment ends up differently depending
on the antiferromagnetic configurations of the leads. The
antiferromagnetic configuration is the opposite in the bottom of

FIG. 15. Double-well potential illustrating the possible solutions
for the local spin moment depending on starting position. As can be
seen in Fig. 13, the spin moment starts up and then tries to reach a
down solution. Depending on the strength of the anisotropies in the
system, it either passes the energy barrier or not.

the figures in (c) and (e) in the bottom row in Fig. 13, which will
cause different stationary solutions of the local spin moment.
Thus, depending on the direction of the current through the
dot, one can use the effective spin torque in order to control
the spin, which is in agreement with previous studies [45].

IV. SUMMARY AND CONCLUSION

In summary, we have studied the time evolution of a local
magnetic moment in a tunnel junction. We have shown that
one can control and read out the local magnetic moment using
gate voltage and using magnetic leads in an antiferromagnetic
setup. This is in agreement with previous works [45–47] and is
a promising feature in order to perform electrical control and
readout of magnetic molecules.

We have shown that nontrivial exchange interaction appears
in the time-dependent domain, especially for small time scales.
Anisotropic effects occur due to time dependency, which will
effect the direction of the magnetic moment. A large effective
magnetic field is a significant effect that occurs for small time
scales and adjusts the evolution of the local magnetic moment,
an effect not usually considered as it vanishes for the stationary
solution. Considering time-dependent exchange interaction is
thus important in small time-scale calculations and shows the
potential for a deeper understanding of the exchange inter-
action. This leads to further questions on how important the
time dependency is for large-scale spin-dynamics calculations,
something suitable for further investigation.

This work and previous studies have found that there is
rich physics within this framework, and that it is important
on the quantum scale to take time-dependent nonequilibrium
effects into consideration when analyzing time-dependent phe-
nomena. Anisotropic exchange interactions play an important
role when studying time-dependent phenomena. With recent
experimental advances, we believe it to be possible to verify
our findings with state-of-the-art experiments.
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APPENDIX A: EFFECTIVE ACTION
AND STOCHASTIC FIELDS

We use the closed time-path Green function (CTPGF)
formalism [62] and thus calculate the partition function (with
closed path contour ordering operator TC),

Z[Sn(t)] = tr TC exp [iS], (A1)

S =SWZWN +
∮

C

H dt. (A2)

Here, SWZWN = ∫
Sq(t) · [Sc(t) × ∂tSc(t)]dt/|S|2 is the Wess-

Zumino-Witten-Novikov (WZWN) term describing the Berry
phase accumulated by the local spins. The trace is taken over
the conduction electrons in the two leads in order to provide an
effective spin action, which in the present situation represents
the interaction of the magnetic spins with a nonequilibrium
environment.

As the model is defined on the Keldysh contour, which is
necessary for general nonequilibrium conditions, we have to
keep track of whether a spin operator is defined for times on the
upper (lower) part of the contour. We do this by assigning the
superscripts u (l). Then, it is convenient to define the new spin
operators Sc = (Su + Sl)/2 and Sq = Su − Sl , and following
the procedure in Ref. [55], we find that the effective action can
be written as

S = SWZWN + gμB

∫
B(t) · Sq(t)dt + 1

e

∫
εj(t) · Sq(t)dt

+ 1

e

∫
Sq(t) · J(t,t ′) · Sc(t ′)dtdt ′

+ 1

e

∫
Sq(t) · JK (t,t ′) · Sq(t ′)dtdt ′. (A3)

Here, the fields εj(t) and J(t,t ′) are given in the main text,
whereas JK (t,t ′) = iev2〈{s(t),s(t ′)}〉 defines the electronically
mediated interactions between the spin operators Sq(t) and
Sq(t ′). This coupling between Sq(t) and Sq(t ′) provides a
contribution to the model that is of a different nature from
the one between Sq(t) and Sc(t ′).

The operators Sc and Sq can be considered as slow and fast
variables, and the resulting equation of motion presented in
this paper concerns the dynamics of the slow variable. The
equation of motion is obtained from the saddle-point solution
of the functional derivative of S with respect to Sq , that is,
by differentiating out the rapid dynamics from the discussion.
Concerning the first four terms in the action, this leaves a
model that is linear in the slow variable Sc, and by finally
cross-multiplying from the left by Sc under the assumption
that ∂t |Sc|2 = 0, we retain the equation of motion given in
Eq. (2).

Regarding the last contribution to the action, however, the
functional differentiation results in a term that is linear in Sq . To
handle this complication, there are at least two routes to solving
the problem. First, one can also consider an equation of motion
for the rapid dynamics, which results in a coupled system of
equations for the slow and fast variables. The second route
would be to perform a Hubbard-Stratonovich transformation
of the term in the action that is bilinear in Sq . By this procedure,
the problem is linearized at the price of introducing a stochastic

field, represented by the Gaussian random variables ξ (t). These
random fields provide a quantum fluctuation description of the
spin correlations.

The second route leads to the fact that Eq. (2) also contains a
contribution of the form γ S(t) × ξ (t), which can be interpreted
as a random magnetic field acting on the spin. It can be
shown that the random variable ξ is defined by the electronic
correlations through (gμB)2〈ξ (t)ξ (t ′)〉 = −i2JK (t,t ′)/e [55].
In the wide band limit for the electronic states, it is easy to show
that the spin-spin correlation function JK (t,t ′) ∝ δ(t − t ′),
which shows that the stochastic field is of Gaussian white
noise character in our setup.

APPENDIX B: DERIVATION OF THE
LANDAU-LIFSHITZ-GILBERT EQUATION

The Landau-Lifshitz-Gilbert (LLG) equation is usually
defined as

Ṡ = S × (−γ B + ĜṠ), (B1)

where B is the effective magnetic field acting on the spin, and
Ĝ is the Gilbert damping. Starting from the spin equation of
motion used in this work, defined in Eq. (2), and restriction to
the adiabatic limit, we can retain the LLG equation [39]. In
this limit, one can assume that the spin is slowly varying with
time, which allows us to Taylor-expand according to t ′, i.e.,
S(t ′) = S(t) − (t − t ′)Ṡ(t) + O[S̈(t)]. From this, we obtain

∫
J(t,t ′) · S(t ′)dt ′ ≈

∫
J(t,t ′)dt ′S(t)

−
∫

J(t,t ′)(t − t ′)dt ′Ṡ(t). (B2)

Here, the first term corresponds to the internal magnetic field
due to the spin background, whereas the second term is related
to the Gilbert damping. The equation of motion then simplifies
to

Ṡ(t) = S(t)[−gμBBeff(t) + ĜṠ(t)], (B3)

where the first term represents the total effective magnetic field

Beff(t) = B + 1

egμB

∫
εj(t,t ′)dt ′ − 1

egμB

∫
J(t,t ′)dt ′S(t),

(B4)

whereas the Gilbert damping is given by

Ĝ = −1

e

∫
J(t,t ′)(t − t ′)dt ′. (B5)

APPENDIX C: LESSER/GREATER DRESSED
QUANTUM GREEN FUNCTION

The lesser/greater forms of the correction to the dressed GF
become

δG</>(t,t ′) = −v

∫
[gr (t,τ )〈S(τ )〉 · σg</>(τ,t ′)

+ g</>(t,τ )〈S(τ )〉 · σga(τ,t ′)]dτ, (C1)
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and decomposing into the charge and magnetic components, we have

δG
</>

0 (t,t ′) = −v

∫ (
gr

0(t,τ )〈S(τ )〉·g</>

1 (τ,t ′)s + g
</>

0 (t,τ )〈S(τ )〉·ga
1(τ,t ′)+gr

1(t,τ ) · 〈S(τ )〉g</>

0 (τ,t ′)

+ g</>

1 (t,τ ) · 〈S(τ )〉ga
0 (τ,t ′) + i

[
gr

1(t,τ ) × 〈S(τ )〉]·g</>

1 (τ,t ′) + i[g</>

1 (t,τ ) × 〈S(τ )〉]·ga
1(τ,t ′)

)
dτ, (C2a)

G</>

1 (t,t ′) = −v

∫ (
gr

0(t,τ )〈S(τ )〉g</>

0 (τ,t ′) + g
</>

0 (t,τ )〈S(τ )〉ga
0 (τ,t ′) + i

[
gr

1(t,τ ) × 〈S(τ )〉]g</>

0 (τ,t ′)

+ i[g</>

1 (t,τ ) × 〈S(τ )〉]ga
0 (τ,t ′) + igr

0(t,τ )[〈S(τ )〉 × g</>

1 (τ,t ′)] + ig
</>

0 (t,τ )
[〈S(τ )〉 × ga

1(τ,t ′)
]

+ i
[
gr

1(t,τ ) × 〈S(τ )〉]×g</>

1 (τ,t ′) + i[g</>

1 (t,τ ) × 〈S(τ )〉]×ga
1(τ,t ′)

)
dτ. (C2b)
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