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Ab initio computational study on the lattice thermal conductivity of Zintl clathrates
[Si19P4]Cl4 and Na4[Al4Si19]
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The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4]Cl4 and
Na4[Al4Si19], is investigated by using an iterative solution of the linearized Boltzmann transport equation in
conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23,
[Si19P4]Cl4, and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively.
In the case of Na4[Al4Si19], the order-of-magnitude reduction in the lattice thermal conductivity was found
to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4]Cl4. The difference
in the relaxation times and group velocities arises primarily due to the phonon spectrum at low frequencies,
resulting eventually from the differences in the second-order interatomic force constants (IFCs). The obtained
third-order IFCs were rather similar for all materials considered here. The present findings are similar to those
obtained earlier for some skutterudites. The predicted lattice thermal conductivity of Na4[Al4Si19] is in line with
the experimentally measured thermal conductivity of recently synthesized type-I Zintl clathrate Na8[Al8Si38]
(polycrystalline samples).
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I. INTRODUCTION

The minimization of the lattice thermal conductivity is
usually a desired feature when higher thermoelectric efficiency
is pursued [1,2]. Zintl clathrates, also known as semicon-
ducting clathrates, are examples of promising materials for
thermoelectric applications [3–8]. Consequently, the lattice
thermal conductivity of the Zintl clathrates has been studied
rather intensively in the past two decades [9–30]. Several
mechanisms have been proposed to explain the reduced
lattice thermal conductivity values in the Zintl clathrates.
In particular, lattice thermal conductivity values as low as
∼1 W/m K at 150 K have been obtained experimentally
for some silicon clathrates [7,16] (single-crystal samples).
Recent experimental and computational studies have given
rise to different points of view for the reasons behind the
reduction of the lattice thermal conductivity in various Zintl
clathrates [25,27]. In Ref. [25] it was concluded that the
reduction of the lattice thermal conductivity of Ba8Si46 is
mostly due to harmonic phonon spectrum, while in Ref. [27]
focusing on Ba8Ga16Ge30, the reduction was suggested to
arise mainly from rather short relaxation times (RTs). This
work brings further perspectives on these issues by using
computational techniques applied to two different types of
Zintl clathrates.

Yet another class of crystalline solids studied as promising
thermoelectric materials are the so-called skutterudites [31–
36]. Recently, some skutterudites have been studied by using
the same methodology as in the present work [37,38]. The
results obtained here are compared with those obtained
earlier for skutterudites [37,38] and it seems that in some
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skutterudites, the reduction of the lattice thermal conductivity
appears to be due to similar reasons as in some Zintl clathrates.
Thus, in addition to elucidating some of the mechanisms
behind the reduced lattice thermal conductivity in some Zintl
clathrates, the present work confirms in part that related
mechanisms may be valid for a larger class of crystalline solids.

In this work, we study the lattice thermal conductivity of the
silicon clathrate framework Si23 (sometimes denoted as VIII
or Si46-VIII) and two hypothetical Zintl clathrate structures
[Si19P4]Cl4 and Na4[Al4Si19]. The Zintl clathrates have been
obtained by adding guest atoms and framework heteroatoms
in the Si23 structure. All the considered structures possess the
same space group symmetry. This facilitates the comparative
analysis of these materials because some quantities for them
are identical due to symmetry reasons. Type-I Zintl clathrates
A8[Al8Si38] (A = Na, K, Rb, Cs) and A8[Ga8Si38] (A =
K, Rb, Cs) have been recently synthesized [39–41]. The
thermoelectric properties of the synthesized silicon clathrates
have also been investigated and they show rather low thermal
conductivity (about 2 W/(m K) for Na8[Al8Si38] and below
0.5 W/(m K) for K8[Ga8Si38] at T = 300 K, polycrystalline
samples). The low thermal conductivity is promising con-
sidering thermoelectric applications, but further optimization
of the composition (doping) is required to improve their
thermoelectric properties.

We apply Boltzmann transport equation (BTE) approach
implemented in the open source program package SHENGBTE.
The harmonic phonon eigenvalues and eigenvectors used in
the lattice thermal conductivity calculations are obtained by
using density functional perturbation theory as implemented in
the QUANTUM ESPRESSO (QE) program package. In particular,
third-order interatomic force constants (IFCs) and quantities
within the harmonic approximation are analyzed in order
to understand their role in the reduction of lattice thermal
conductivity. The results indicate that in the studied structures,
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the increased anharmonicity can be mostly explained by
harmonic quantities. Hence, the rather low lattice thermal
conductivity values do not necessarily indicate exceptionally
strong third-order IFCs. In this work, a quantity is discussed
as anharmonic if it is calculated by using third- or higher-order
interatomic force constants (IFCs) included in the anharmonic
Hamiltonian [see Eq. (3)].

II. THEORY, COMPUTATIONAL METHODS, AND
STUDIED STRUCTURES

A. Lattice dynamics

The theory of lattice dynamics discussed in this section has
been considered, for instance, in Refs. [42–44]. The notation
used here is the same as in Ref. [45]. In the present approach,
one assumes that the lattice Hamiltonian is of the form

Ĥ = Ĥ0 + ĤA, (1)

where the harmonic Hamiltonian operator Ĥ0 may be written
as

Ĥ0 =
∑

λ

�ωλ

(
1

2
+ â

†
λâλ

)
, λ ≡ qj, (2)

and the anharmonic Hamiltonian operator ĤA can be written
as

ĤA =
∑

λ

V (λ)Âλ +
∑
n=3

∑
λ1

· · ·
∑
λn

×V (λ1; . . . ; λn)Âλ1 · · · Âλn
, λi ≡ qiji . (3)

In Eq. (3)

Âλ = âλ + â
†
−λ, − λ ≡ −qj, (4)

and [42]

V (λ1; . . . ; λn)

= 1

n!Nn

(
�

2

)n/2
�(q1 + · · · + qn)[

ωλ1 · · · ωλn

]1/2

×
∑
κ1,α1

∑
l2,κ2,α2

· · ·
∑

ln,κn,αn

�α1···αn
(0κ1; l2κ2; . . . ; l′nκ

′
n)

× eα1 (κ1|λ1)

M
1/2
κ1

· · · eαn
(κn|λn)

M
1/2
κn

ei[q2·x(l2)+···+qn·x(ln)]. (5)

In Eq. (5)

�α1···αn
(l1κ1; . . . ; lnκn)

≡ ∂n�

∂x ′
α1

(l1κ1) · · · ∂x ′
αn

(lnκn)

∣∣∣∣∣
{x ′(li κi )=x(li κi )}

, (6)

are so-called nth-order atomic force constants or interatomic
force constants (IFCs), which are derivatives of the potential
energy �, {αi} are Cartesian indices, {qi} phonon wave
vectors (the wave vector times 2π ), {ji} phonon mode indices,
{e(κi |λi)} phonon eigenvectors, {ωλi

} phonon eigenvalues,
{Mκi

} atomic masses of atoms {κi}, and x(lκ) = x(l) + x(κ),
where x(l) is the lattice translational vector and x(κ) the
position vector of atom κ within the unit cell. Furthermore,

â
†
λ and âλ are so-called creation and annihilation operators for

phonons, respectively.
Diagonalization of the Hamiltonian was obtained with the

following expansions for displacement and momentum

ûα(lκ) =
(

�

2N2Mκ

)1/2 ∑
λ

ω
−1/2
λ eiq·x(l)eα(κ|λ)Âλ, (7)

p̂α(lκ) = −i

(
�Mκ

2N2

)1/2 ∑
λ

ω
1/2
λ eiq·x(l)eα(κ|λ)B̂λ, (8)

where N is the number of q points in the q mesh and

B̂λ = âλ − â
†
−λ. (9)

The phonon eigenvectors and eigenvalues can be obtained from
the eigenvalue equation

ω2
j (q)eα(κ|qj ) =

∑
κ ′,β

Dαβ(κκ ′|q)eβ(κ ′|qj ), (10)

with

Dαβ(κκ ′|q) ≡
∑

l

�αβ(lκ; 0κ ′)√
MκMκ ′

e−iq·x(l). (11)

The components of the eigenvector e(κ|qj ) are usually chosen
to satisfy the orthonormality and closure conditions [42]. A
physical interpretation of the harmonic phonon eigenvectors
and phase factors eiq·x(l) is given in Ref. [46] and one may
interpret e(κ|qj )eiq·x(l) as the probability amplitude and

|e(κ|qj )eiq·x(l)|2 = |e(κ|qj )|2, (12)

as the probability that the atom lκ vibrates in the phonon mode
qj , which is independent of the cell index l.

B. Thermal conductivity

By using the BTE approach [47,48], one may write for the
lattice thermal conductivity [49–52]

καβ = �

kBT V

∑
λ

ωλvα(λ)n̄λ(n̄λ + 1)Fβ,λ, (13)

where V is the volume of the unit cell, kB is the Boltzmann
constant, v(λ) is the phonon group velocity, and n̄λ the
equilibrium distribution function for the state λ. The unknown
term Fβ,λ is obtained by solving the iterative equation

Fα,λ = 1

Xλ

∑
λ′

∑
λ′′

[
�λ′′

λλ′(Fα,λ′′ − Fα,λ′ )

+�λ′λ′′
λ (Fα,λ′ + Fα,λ′′ )

]

+ �ωλvα(λ)

T Xλ

n̄λ(n̄λ + 1), (14)

where (when only three-phonon scattering is included)

Xλ ≡
∑
λ′

∑
λ′′

(
�λ′′

λλ′ + �λ′λ′′
λ

)
. (15)

In Eqs. (14) and (15), �λ′λ′′
λ is the scattering rate for processes in

which a phonon λ vanishes and two phonons λ′,λ′′ are created.
Accordingly, �λ′′

λλ′ is the scattering rate for the opposite process.
The scattering rates �λ′′

λλ′ ,�
λ′λ′′
λ can be obtained, for instance,
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from the golden rule or from the phonon self energy [52,53].
For example, one may write (here β = 1/kBT )

∑
λ′

∑
λ′′

�λ′λ′′
λ = 18

βπ

�

∑
λ′

∑
λ′′

|V (λ; λ′; λ′′)|2

× (n̄λ′ + n̄λ′′ + 1)δ[ωλ − ωλ′ − ωλ′′], (16)

and in a similar way for the scattering rates �λ′′
λλ′ [52,53]. In

Eq. (16), the coefficients |V (λ; λ′; λ′′)|2 are given by Eq. (5). By
Eq. (5), the decrease of the mass of the atoms κ,κ ′,κ ′′ relative to
the third-order IFCs �αα′α′′ (0κ; l′κ ′; . . . ; l′′κ ′′) results in larger
transition rates and shorter relaxation times (RTs) in general.
Also, the decrease of the phonon eigenvalues ωλ,ωλ′ ,ωλ′′ has
the same effect when other factors are fixed. These effects
within the studied structures are considered in Sec. III B. The
quantity Fα,λ is related to the RT as [51]

τα(λ) = T Fα,λ

�ωλvα(λ)
, (17)

thus Eq. (13) can be written as

καβ = 1

V

∑
λ

vα(λ)vβ(λ)cv(λ)τβ(λ), (18)

where the heat capacity at constant volume for the phonon
state λ may be written as

cv(λ) = kBβ2
�

2ω2
λn̄λ(n̄λ + 1). (19)

The shortcomings of the method used to calculate the lattice
thermal conductivity in this work are discussed in Ref. [45].
Recently, computational studies for real materials, where the
temperature dependence of the IFCs is taken into account
have been carried out [54,55]. This effect is neglected in the
present approach and it may have some effect on the present
results.

C. Studied structures and computational details

The space group of all studied structures is I 4̄3m(217).
The silicon clathrate framework Si23 has 23 atoms in the
primitive unit cell, while the Zintl clathrates [Si19P4]Cl4 and
Na4[Al4Si19] have 27 atoms in the primitive unit cell. The
crystallographic body-centered cubic unit cell of [Si19P4]Cl4
and Na4[Al4Si19] with 54 atoms is illustrated in Fig. 1.

The parent silicon framework can be considered to be
composed of fused polyhedral cages (cavities), where the
vertices correspond to four-coordinated silicon atoms. The
framework heteroatoms Al/P occupy the 8c Wyckoff position
within the Si framework, while the Na/Cl guest atoms are
located inside the polyhedral cages (Wyckoff position 8c) [6].
The Na4[Al4Si19] and [Si19P4]Cl4 structures can be classified
as anionic and cationic clathrates, respectively [57]. In the
so-called anionic Zintl clathrates such as Na4[Al4Si19], there
is a charge transfer from the less electronegative guest atoms
(Na) to the framework atoms (Si-Al). In the so-called cationic
Zintl clathrates such as [Si19P4]Cl4, there is a charge transfer
from the less electronegative framework atoms (Si-P) to the
guest atoms (Cl). The bonding within the framework can
be considered to be covalent, while the framework-guest
interactions are of ionic nature [58].

FIG. 1. The crystallographic body-centered cubic unit cell of the
Zintl clathrates [Si19P4]Cl4 and Na4[Al4Si19]. The figure was prepared
using the VESTA visualization program [56].

The ab initio density functional calculations to optimize the
crystal structures and to calculate the phonon eigenvalues and
eigenvectors were carried out with the QUANTUM ESPRESSO

program package (QE, version 5.0.3) [59]. Atoms were
described using ultrasoft pseudopotentials and plane-wave
basis set [60]. The generalized gradient approximation (GGA)
was applied by using the PBE exchange-correlation energy
functionals [61]. If not otherwise mentioned, the applied com-
putational parameters and methods were similar to those used
in Ref. [45]. The results for the clathrate framework Si23, used
here for comparative analysis of the Zintl clathrates, were taken
from Ref. [45]. A (6,6,6) mesh was used for the electronic k
sampling, while (4,4,4) and (10,10,10) q meshes were used for
phonon and lattice thermal conductivity calculations, respec-
tively. The chosen q mesh (10,10,10) is a compromise between
accuracy and computational requirements. For instance, for the
clathrate framework Si23 at 300 K, increasing the q mesh from
(8,8,8) to (10,10,10) changes the lattice thermal conductivity
by about 7.5%, whereas further increase from (10,10,10) to
(11,11,11) changes the lattice thermal conductivity by about
1.4%. Both the lattice constants and the atomic positions of
the studied structures were optimized by forcing the space
group I 4̄3m. The optimized lattice constants were 10.10 Å,
10.00 Å, and 10.37 Å for Si23, [Si19P4]Cl4, and Na4[Al4Si19],
respectively. The nonanalytic corrections to dynamical ma-
trices in the limit q → 0 were taken into account in the QE
and SHENGBTE calculations. The version 1.0.2 of SHENGBTE

was used (the weighted phase space was calculated using
version 1.1.0). In the lattice thermal conductivity calculations,
three-phonon and isotopic scattering were included. In order
to calculate the δ functions appearing, for example, in Eq. (16),
some approximate representation is needed. In SHENGBTE, a
Gaussian function is used to approximate the Dirac δ function
and a constant called scalebroad is a proportional coefficient
for the variance [52,62]. The constant scalebroad was set
to 0.5 in all SHENGBTE calculations. For all structures, the
third-order IFCs were calculated up to sixth-nearest neighbors
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using the program THIRDORDER.PY included in the SHENGBTE

distribution [63]. A (3,3,3) supercell was used to calculate the
third-order IFCs with THIRDORDER.PY in all cases.

The validity of the present computational approach was
assessed in Ref. [45], for instance, by comparing the calculated
lattice thermal conductivity values to the experimental ones in
the case of the silicon diamond structure (d-Si). The difference
between the calculated and experimental values was about
4–13 % within the temperature range 125–300 K (higher
temperatures showed the smallest differences).

III. RESULTS AND DISCUSSION

A. Phonon spectrum

The calculated phonon eigenvalues (dispersion relations)
along high symmetry paths for the structures Si23, [Si19P4]Cl4
and Na4[Al4Si19] are shown in Fig. 2. The phonon dispersions
are rather similar for all structures within the frequency range
200–500 cm−1. For frequencies below 100 cm−1, Si23, and
[Si19P4]Cl4 show rather similar spectrum while the spectrum
for Na4[Al4Si19] appears to be different. The differences
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FIG. 2. Phonon eigenvalues as a function of wave vector (disper-
sion relations) along high symmetry paths in the first Brillouin zone
for Si23, [Si19P4]Cl4, and Na4[Al4Si19]. The dispersion relations for
the acoustic modes are drawn in red.

between Si23 and [Si19P4]Cl4 are mostly due to the Cl guest
atoms within the frequency range 100–200 cm−1 (this can
be seen from the atom projected phonon density of states
considered later in this section). The maximum frequencies
of acoustic modes for Na4[Al4Si19] are about half that of
the corresponding values in the case of Si23 and [Si19P4]Cl4.
Furthermore, the acoustic and lowest-energy optical modes
of the structure Na4[Al4Si19] show oscillatory behavior, for
example, along the high symmetry paths �–P and �–PA,
while in the case of Si23 and [Si19P4]Cl4 this behavior seems
to be absent.

According to Eq. (10) and since both structures with
guest atoms have the same exponential factors, e−iq·x(l),
difference of the dynamical matrix elements {Dαβ(κκ ′|q)} is
due to the second-order IFCs divided by the atomic masses
Dαβ(lκ; 0κ ′) = �αβ(lκ; 0κ ′)/

√
MκMκ ′ [Eq. (11)]. After one

fixes the dynamical matrix, the eigenvectors can be calculated
numerically: with this and the preceding in mind one may infer
that the differences in the dispersion relations for frequencies
below 100 cm−1 indicate differences in {Dαβ (lκ; 0κ ′)} between
the considered structures.

In Fig. 3, the so-called atom projected density of states
ρκ (ω) = 1/N

∑
λ |e(κ|λ)|2δ(ω − ωλ) and the participation ra-

tio (PR) defined as [25,27,64,65]

PR =
[∑

κ |e(κ|λ)|2M−1
κ

]2

Na

∑
κ |e(κ|λ)|4M−2

κ

(20)

are shown to further analyze the differences in the phonon
spectrum of the studied structures.

Na is the number of atoms within the unit cell. If one
considers |e(κ|λ)|2 as the probability distribution (Sec. II A),
then ρκ (ω) may be considered as the expected value of the
phonon density of states (PDOS) for each κ . It can be seen from
Fig. 3 that the contribution of the framework heteroatoms (Al
and P) to ρκ (ω) is rather similar to that of the Si framework
atoms, when comparing all three structures. However, some
differences can be identified, for instance, at the frequencies
3–6 THz. The guest atoms Cl and Na mainly contribute to
the phonon modes at the frequencies below 5 THz. Further,
for Na4[Al4Si19], there is a relatively large contribution of Na
guest atoms at 2 THz, while an analogous contribution from
the Cl guest atoms is absent in the case of [Si19P4]Cl4.

The PR can be used to study the localization of the phonon
modes [64]. The modes with rather local characteristics are
expected to have PR values near N−1

a (only few atoms are
displaced in the mode), while PR values of about 1 indicate
the opposite. In Si23 and [Si19P4]Cl4, the PR values for the
acoustic modes are approximately between 1 and 0.5, while
for Na4[Al4Si19] PR values as low as 0.1 are obtained and
most of the PR values for the acoustic modes are clustered
between 0.1 and 0.2. This indicates that the acoustic modes of
Na4[Al4Si19] seem to have more local characteristics than the
acoustic modes in the other two structures.

To estimate the difference in the harmonic interactions (the
wave vector dependence is the same in all cases), the dynamical
matrix at q = 0 is considered

Dαα′(κκ ′|0) ≡ D(ςς ′|0), ς ≡ ακ, ς ′ ≡ α′κ ′. (21)
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FIG. 3. Atom projected density of states ρκ (ω) and participation
ratio for each structure. (a) Si23, (b) [Si19P4]Cl4, and (c) Na4[Al4Si19].
The participation ratio values for the acoustic modes are drawn in red.

The phonon eigenvalues can be estimated by using the
method of Gerschgorin circles [66] applied on D(ςς ′|0). The
Gerschgorin theorem states that the eigenvalues ω of D(ςς ′|0)
are contained in the following union

rς1 ∪ rς2 ∪ · · · ∪ rς3n
, (22)

with

|ω2 − D(ςς |0)| � rς , rς =
3n∑

ς ′=1,ς �=ς ′
D(ςς ′|0). (23)

Here, only the Zintl clathrates are considered. All the diagonal
elements D(ςς |0) in the case of the structure [Si19P4]Cl4 are
larger than those for Na4[Al4Si19]. The ratio of the diagonal el-
ements is within the interval [1.21,1.49]. Moreover, the length
of the intervals, {rς }, are larger for the clathrate [Si19P4]Cl4
and the ratio is within the interval [1.16,2.50], the largest
values being obtained for the guest atoms Na/Cl. Both of these
observations probably favor the smaller phonon eigenvalues
to be obtained for the clathrate Na4[Al4Si19]. In particular,
the lengths rςg

centered at D(ςgςg|0) have such values that

there is no overlap between the diagonal elements D(ςf ςf |0)
and the intervals rςg

. In the preceding, the subscripts g and
f refer to the guest (Na/Cl) and framework atoms (P/Al/Si),
respectively. The overlap of these intervals is still obtained
since the lengths rςf

centered at D(ςf ςf |0) overlap with the
diagonal elements D(ςgςg|0). Thus, the bounds imposed by
the Gerschgorin theorem on these dynamical matrices are not
strict enough to the conclusion that there are certainly phonon
eigenvalues at these lower frequencies. One may say, however,
that in order to minimize the energy of the lowest phonon states
it is probably favorable to minimize the diagonal elements
D(ςς |q) and maybe the length of the intervals rς as well.

To summarize, the framework heteroatoms and the Si
framework atoms seem to have rather similar effect on the
phonon spectrum in all the studied structures. Furthermore,
the Na and Cl guest atoms appear to have a rather large effect
on the phonon spectrum at the frequencies below 5 THz. The
Na guest atoms seem to flatten the acoustic phonon dispersion
relations in a more distinct manner in comparison to the Cl
guest atoms.

B. Results for lattice thermal conductivity
and related quantities

The calculated thermal conductivity values as a function of
temperature for all studied structures are shown in Fig. 4. The
lattice thermal conductivities for Si23 and [Si19P4]Cl4 within
the temperature range 100–300 K are 282–43 W/(m K) and
122–25 W/(m K), respectively. Within the same temperature
range, the lattice thermal conductivities for Na4[Al4Si19]
are approximately 6–2 W/(m K). Thus, the present results
indicate that the lattice thermal conductivity of Na4[Al4Si19]
is reduced by a factor of about 20 in comparison to Si23 and
by a factor of about 10 in comparison to [Si19P4]Cl4. The
predicted lattice thermal conductivity of Na4[Al4Si19] is in
line with the experimentally measured thermal conductivity of
recently synthesized type-I Zintl clathrate Na8[Al8Si38] [40].
The experimental thermal conductivity of Na8[Al8Si38] was
measured to be about 2 W/(m K) at 300 K (laser flash
method, hot pressed pellet of polycrystalline sample). For
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FIG. 4. Calculated lattice thermal conductivity values for the
structures Si23, [Si19P4]Cl4, and Na4[Al4Si19].
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a better comparison, the experimental values for the lattice
thermal conductivity of single-crystal samples are needed.
The electronic contribution to the thermal conductivity was
estimated to be significantly less than 1% of the total thermal
conductivity at all temperatures.

In Refs. [29,30], the lattice thermal conductivities obtained
for Si23 (or Si46-VIII) were smaller by a factor of about three
at 300 K in comparison to the present work (the results were
obtained by using more approximate models for the lattice
conductivity in comparison to the linearized BTE used here).
Furthermore, the lattice thermal conductivity obtained for
Ba8Al16Si30 and Ba8Cu6Si40 clathrates at 300 K in Ref. [30]
were smaller by a factor of about four in comparison to
Na4[Al4Si19] studied here. As discussed in Ref. [45], the lattice

thermal conductivity values at relatively low temperatures have
a rather poor convergence. However, the values obtained at low
temperatures are included in Fig. 4 to show that the present
method provides the expected form for the lattice thermal
conductivity for single crystals as a function of temperature.

The lattice thermal conductivity values for each state
λ in conjunction with the RTs τ (λ), phonon phase space
P3(λ) [52,67], and quantities ξ (λ) are shown in Fig. 5. It should
be noted that κ(λ) = ξ (λ)τ (λ).

For Na4[Al4Si19], the largest lattice thermal conductivity
contributions of acoustic modes are rather systematically
smaller in comparison to Si23 or [Si19P4]Cl4. A similar
difference can be seen between the structures Si23 and
[Si19P4]Cl4. Si23 and [Si19P4]Cl4 show rather similar values for
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FIG. 5. Calculated values for each state λ as a function of phonon frequency for the structures Si23, [Si19P4]Cl4 and Na4[Al4Si19] at 300 K.
(a) Lattice thermal conductivity κ(λ) = καα(λ) = 1/3

∑
α καα(λ) (negative values are not shown), (b) quantities ξ (λ) ≡ 1/(3V )

∑
α v2

α(λ)cv(λ),
(c) relaxation times τ (λ) ≡ ∑

α τα(λ) (negative values are not shown), and (d) phonon phase space P3(λ). For all quantities, the acoustic modes
are drawn in red and the optical modes in black. The reported P3(λ) values are unitless relative values obtained from P3(λ)/ max {P3(λ)|Si23

}.
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the quantity ξ (λ). As in the case of lattice thermal conductivity,
Na4[Al4Si19] also has a rather different distribution of values
of the quantity ξ (λ), the values for acoustic modes being
mostly smaller in comparison to Si23 or [Si19P4]Cl4. This is
not that surprising because the harmonic phonon spectrum
for the acoustic modes of Na4[Al4Si19] is rather different in
comparison to the other two structures (Fig. 2). The flattening
of the acoustic modes as a function of q means that ω(λ)
have smaller values for acoustic modes. This has, for example,
the following effects on ξ (λ) at fixed temperature T0: smaller
values of ω(λ) increase n̄λ and thus cv(λ). The flattening
decreases the group velocity v(λ), thus the flattening has
opposite effect on v(λ) and cv(λ). In the case of Na4[Al4Si19],
the change in the harmonic phonon spectrum seems to favor
the reduced group velocities more than the increase of cv(λ),
resulting in the smaller values of ξ (λ) for acoustic modes.

The RTs, shown in Fig. 5, reveal some differences between
Si23 and [Si19P4]Cl4. Si23 has larger maximum values of τ (λ),
in particular for acoustic modes. This seems to be the main
reason for the different values of lattice thermal conductivity
obtained for [Si19P4]Cl4 and Si23. The RTs for Na4[Al4Si19]
are in general smaller than those obtained for [Si19P4]Cl4 and
Si23. Compared with [Si19P4]Cl4, the maximum values for
the acoustic modes of Na4[Al4Si19] are smaller by a factor
of about 10. For [Si19P4]Cl4 and Na4[Al4Si19], it appears that
the third-order coefficients V (λ; λ′; λ′′) may have larger values
than in the case of Si23.

The distribution of phonon phase space values P3(λ) ∝
τ−1(λ), also shown in Fig. 5, are rather different for all
structures despite the rather similar phonon spectra for the
structures Si23 and [Si19P4]Cl4. The maximum values are,
perhaps surprisingly, largest for Si23. For example, Si23 has
larger P3(λ) values for acoustic modes than d-Si [45], which
probably is one of the reasons behind the smaller lattice
thermal conductivity of Si23 in comparison to d-Si. The
maximum values of P3(λ) are rather similar for [Si19P4]Cl4
and Na4[Al4Si19]. However, for Na4[Al4Si19], the P3 values for
acoustic modes are more clustered than for the other structures
and there are practically no values below 0.6, while for other
structures there are rather many states with values smaller
than this. Thus, it seems that the P3 values, which are in part
differing due to flattening of the acoustic modes, are one of
the reasons behind the smaller RTs obtained for Na4[Al4Si19].

In Fig. 6, the third-order IFCs as a function of distance are
shown. The following quantities are used in Fig. 6

d(0κ1; l2κ2; l3κ3)

≡ |x(κ1) − x(l2κ2)| + |x(κ1) − x(l3κ3)|, (24)

�3 ≡ 1

27

∑
α1,α2,α3

∣∣�α1α2α3 (0κ1; l2κ2; l3κ3)
∣∣. (25)

As can be seen, the third-order IFCs of the three studied
structures do not show such large differences that could have
been expected based on the differences in the calculated
RTs. Therefore, it seems that the different RTs are mostly
due to the harmonic quantities included in the anharmonic
Hamiltonian and some possible reasons for the different RTs
of Na4[Al4Si19] are discussed next. As mentioned in Sec. II B,
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FIG. 6. Calculated third-order IFCs for Si23, [Si19P4]Cl4 and
Na4[Al4Si19]. Here, d(0κ1; l2κ2; l3κ3) and �3 are given by Eqs. (24)
and (25).

the decrease of mass of the atoms and the term ωλωλ′ωλ′

in general decreases the value of the RTs. Also, as ωλ′ and
ωλ′′ have smaller values, the following term (n̄λ′ + n̄λ′′ + 1)
in Eq. (16) further decreases the value of the RTs (see also
Fig. 7). Since the PR values for the acoustic modes in the case
of Na4[Al4Si19] are rather small (only few atoms vibrate in a
particular state), the probabilities |e(κ|λ)|2 and thus the phonon
eigenvectors e(κ|λ) for the acoustic modes are expected to
be rather large, which in turn decreases the RTs of these
modes through the coefficients |V (λ; λ′; λ′′)|2. The exponential
factors, eiqi ·x(li ), are identical in all structures. Together with the
differing P3 and smaller group velocity values of the acoustic
modes, these mentioned factors may in part explain the smaller
RT and lattice thermal conductivity values of Na4[Al4Si19].

The effect of the phase space together with the factors
ωλωλ′ωλ′ and (n̄λ′ + n̄λ′′ + 1) can be assessed by considering
so-called weighted phase space [37] given as WT

3 (λ) =
W+

3 (λ) + W−
3 (λ), where [see Eqs. (5) and (16)]

W−
3 (λ) =

∑
λ′

∑
λ′′

(n̄λ′ + n̄λ′′ + 1)

ωλωλ′ωλ′
δ[ωλ − ωλ′ − ωλ′′], (26)

and

W+
3 (λ) =

∑
λ′

∑
λ′′

(n̄λ′ − n̄λ′′ )

ωλωλ′ωλ′
δ[ωλ + ωλ′ − ωλ′′ ]. (27)
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The weighted phase spaces WT
3 (λ),W+

3 (λ), and W−
3 (λ) at

300 K are shown in Fig. 7.
The largest WT

3 (λ) values are obtained for the structure
Na4[Al4Si19] the values being about one order of magnitude
larger in comparison to the other two structures. The ratio
between WT

3 (λ) obtained for different structures is of the
same order as the difference in the lattice thermal conductivity
at 300 K. The results are in reasonable agreement with the
above analysis on the factors ωλωλ′ωλ′ and (n̄λ′ + n̄λ′′ + 1).
Moreover, the result obtained for the WT

3 (λ) further vali-
dates the similarity of the third-order IFCs discussed above.
To summarize, the stronger anharmonicity of the structure
Na4[Al4Si19] in comparison to Si23 and [Si19P4]Cl4 seems to
arise mostly from the differing harmonic quantities instead of
the third-order IFCs.

One way to measure the anharmonicity of a structure are
the so-called Grüneisen parameters. By using the perturbation
theory, it has been shown that the Grüneisen parameters can
be written as [68]

γμν(λ) = −
3n∑

j ′=4

12Vμν(0j ′)V (0j ′; λ; −λ)

�2ω0j ′ωλ

− 2Vμν(λ; −λ)

�ωλ

, (28)

where the first term on the right-hand side vanishes if the
position of every atom in the unit cell is determined by the
symmetry (no internal strain). In Eq. (28), the coefficients

such as V (λ; λ′; λ′′) are given by Eq. (5) and

Vμν(λ; λ′) = �

4

∑
κ,α

∑
l′,κ ′,α′

∑
l′′,κ ′′

�αα′μ(0κ; l′κ ′; l′′κ ′′)

× eα(κ|λ)eα′(κ ′|λ′)√
MκMκ ′ωλωλ′

eiq′ ·x(l′)xν(l′′κ ′′). (29)

The Grüneisen parameters can also be written as

γμν(λ) = − 1

ωλ

∂ωλ

∂ημν

, (30)

and furthermore, in the case of cubic crystals

1

3
γμμ(λ) = − V

ωλ

∂ωλ

∂V
≡ γ (λ). (31)

When the phonon-phonon interaction is approximated in
the so-called continuum theory, it has been shown that the
square of the (averaged) Grüneisen parameter is inversely
proportional to the mean-free path and thus the lifetime of
phonons [47].

The Grüneisen parameters are sometimes used to calculate
the thermal expansion of materials. There is some evidence
that, for instance, crystalline materials with negative thermal
expansion (NTE) over rather wide temperature ranges can
have relatively low lattice thermal conductivity values [69,70]
(measured for polycrystalline samples, however). This be-
havior of NTE materials would be rather logical since, as
mentioned, in the continuum theory τ ∝ γ −2 (τ and γ are
some average values) and within so-called quasiharmonic
approximation (QHA), the coefficient of thermal expansion
(CTE) can be written as (see, for example, Ref. [71]) αμ1ν1 =∑

μ2,ν2

∑
λ sT

μ1ν1μ2ν2
cv(λ)γμ1ν1 (λ), where sT

μ1ν1μ2ν2
is isothermal

second-order compliance tensor, inverse to isothermal second-
order elastic constant cT

μ1ν1μ2ν2
. That is, {γμν(λ)} are usually

expected to have relatively large absolute values for materials
that have rather large absolute value of the CTE. There is some
evidence that the silicon clathrate framework VII possesses
rather unusual NTE behavior, while Si23 (or VIII), for instance,
has CTE that is rather similar to d-Si [72].

The calculated Grüneisen parameter values γ (λ) as a
function of frequency for each structure are shown in Fig. 8.
For acoustic modes, the distribution of γ (λ) values in the
case of Si23 and [Si19P4]Cl4 is rather similar, while for
Na4[Al4Si19] a fairly different result is obtained. Compared
with Na4[Al4Si19], the maximum values of γ (λ) are smaller
by a factor of about eight in the case of Si23 and [Si19P4]Cl4.
For Na4[Al4Si19], the lowest-energy optical modes have about
three times larger Grüneisen parameter values in comparison
to [Si19P4]Cl4. For Si23, the Grüneisen parameter results are
similar to those obtained in Refs. [72] and [29].

To study the relationship between the RTs and Grüneisen
parameters, these quantities are depicted in Fig. 9 for
Na4[Al4Si19]. For the acoustic modes, when γ (λ) � 2, the
maximum τ (λ) values are approximately 2 × 10−12 s, which
is about one order of magnitude smaller than the largest values
obtained. Thus, these modes have a rather small contribution
to the lattice thermal conductivity. The smallest τ (λ) values
for the acoustic modes are obtained when the Grüneisen
parameters have values between 3 and 4. The relationship
shown in Fig. 9 indicates that in some cases, there can be a
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connection between the relatively large absolute values of CTE
and rather low lattice thermal conductivities.

As already mentioned in Sec. I, several mechanisms have
been proposed to explain the rather small lattice thermal
conductivity of various Zintl clathrates. In Ref. [17], inelastic
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τ 
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FIG. 9. Calculated RTs versus the corresponding Grüneisen
parameter values for each state λ in Na4[Al4Si19]. The acoustic modes
are shown in red and the optical modes in black.

neutron scattering data for the Ba8Ga16Ge30 clathrate was
used to conclude that the reduction of the lattice thermal
conductivity is mostly due to the flattening of the phonon
dispersion relations caused by the guest atoms instead of
the shorter RTs of the phonons. In Ref. [25], inelastic x-ray
scattering and ab initio lattice dynamical studies on the Ba8Si46

clathrate resulted in the conclusion that the reduction of
the lattice thermal conductivity follows from the changes
in the harmonic spectrum induced by the guest-framework
interactions and that the reduced RTs have a rather small
significance. In contrast, in an ab initio lattice dynamical study
for the Ba8Ga16Ge30 clathrate [27], the largest reduction in the
lattice thermal conductivity was suggested to arise from the
smaller RT values, while the reduction of the phonon group
velocities was found to have a smaller effect (the BTE was not
solved iteratively, but within the single-mode relaxation time
approximation).

The present results show similarities with the results
obtained in Ref. [27] for the Ba8Ga16Ge30 clathrate and in
Ref. [38] for the YbFe4Sb12 skutterudite. In particular, the
present results are similar to those obtained earlier for the
BaCo4Sb12 skutterudite [37]. In the case of YbFe4Sb12 [38],
it was summarized that the increased phonon scattering is
due to the differing phonon phase space, third-order IFCs
having rather marginal effect on the reduction of the lattice
thermal conductivity. The results of the present work are in
line with the earlier work on the skutterudites [37] and show
that for materials with relatively similar third-order IFCs, there
can be rather significant changes in anharmonicity and in the
lattice thermal conductivity values, which essentially follow
from the differing second-order IFCs. To sum up some central
findings of the present work: in the case of Na4[Al4Si19], the
second-order IFCs seem to produce the harmonic phonon
spectrum such that three-phonon phase space favors the
phonon scattering and the phonon eigenvectors e(κ|λ) have
rather large values for phonons of smallest frequencies
(localization). These effects facilitate the reduction of RTs and
phonon group velocities, which in turn leads to the reduced
lattice thermal conductivity values. The hypothetical structures
studied here possess rather high symmetry (symmetry is forced
in the calculation) and it is probable that possible structural
disorder decreases the lattice thermal conductivity even further
[73,74].

IV. CONCLUSIONS

The lattice thermal conductivity of the silicon clathrate
framework Si23 and two Zintl clathrates, [Si19P4]Cl4 and
Na4[Al4Si19], was investigated by using ab initio lattice
dynamics together with an iterative solution of the lin-
earized BTE. The lattice thermal conductivity of the structure
Na4[Al4Si19] was found to be about one order of magnitude
lower at 300 K in comparison to the other two materials studied
here. The lower lattice thermal conductivity of Na4[Al4Si19]
is mostly due to lower relaxation times and phonon group
velocities, which differ from Si23 and [Si19P4]Cl4 largely
due second-order IFCs. Furthermore, it appears that the
anharmonicity of two similar crystalline materials can be
rather different from one another mostly because of differing
second-order IFCs. Considering the results obtained here
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and the earlier results on skutterudites, there is increasing
evidence that the preceding may be valid rather generally
for various crystal structures. To further reduce the lattice
thermal conductivity, one may ask how to modify the harmonic
phonon spectrum towards further reductions and at the same
time, how to increase the anharmonicity through the third-
and higher-order IFCs. The present results may shed light on
the understanding about the lattice thermal conductivity of
materials such as clathrates and skutterudites, for example,

which can give further guidance for the discovery of more
efficient thermoelectric materials.
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