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The exact description of the time evolution of open correlated quantum systems remains one of the major
challenges of condensed matter theory, especially for asymptotic long times where most numerical methods fail.
Here, the post-quench dynamics of the N -component Bose-Anderson impurity model is studied in the N → ∞
limit. The equilibrium phase diagram is similar to that of the Bose-Hubbard model in that it contains local
versions of Mott and Bose phases. Using a numerically exact procedure, we are able to study the real-time
evolution including asymptotic long-time regimes. The formation of long-lived transient phases is observed for
quench paths crossing foreign phases. For quenches inside the local Bose condensed phase, a dynamical phase
transition is reported that separates the evolution towards a new equilibrium state and a regime characterized at
large times by a persistent phase rotation of the order parameter. We explain how such nondecaying modes can
exist in the presence of a dissipative bath. We discuss the extension of our results to the experimental relevant
finite-N case and their implication for the existence of nondecaying modes in generic quantum systems in the
presence of a bath.
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I. INTRODUCTION

The study of out-of-equilibrium processes in correlated
quantum systems is a rapidly growing field. Progress has
been driven by experimental advances in solid state and
ultracold atomic setups that made possible the preparation,
manipulation, and probing of quantum many-body states in
real time. On the theory side, the study of correlated systems far
from equilibrium gives rise to a set of new concepts, including
transient order-enhanced phases [1], prethermalized transient
states [2–5], prethermalization at a quantum critical point [6],
and ordered current-carrying steady states [7–9].

A particularly interesting phenomenon arising in au-
tonomous quantum systems, but yet poorly understood for
open ones [10–12], is the occurrence of dynamical phase
transitions. A dynamical transition is a singular point in
the space of the couplings that parametrizes the quenching
protocol where an infinitesimal difference in parameters yields
a qualitative difference for the asymptotic long-time state.
First reported for quenches of integrable Bardeen-Cooper-
Schrieffer model [13–16], dynamical transitions were ob-
served on a number of autonomous systems and studied using
different methods [17–22]. For open systems, the fundamental
question of whether a dynamical transition can arise in the
presence of an environment remains unanswered. The coupling
to a thermostat induces relaxation in the dynamics and subse-
quent decay to the equilibrium state. This process is expected to
destroy the qualitative difference between the phases separated
by the transition, thus broadening it to a crossover.

In this paper, we show that impurity models may be
excited to a set of states that are completely decoupled
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from the environment, therefore avoiding relaxation and
ensuring the existence of a dynamical transition. Figure 1
illustrates the long-time post-quench evolution of the order

FIG. 1. Post-quench time dependence of the Husimi function
of the generalized Bose-Anderson model: W = |〈α|�(t)〉|2/〈α|α〉;
|α〉 = eαa†−α∗a|0〉. The system was quenched between two points
within the local Bose-Einstein condensed phase (D series in the
Fig. 3). Dependent on the value of the quench, the system evolves
either to the new equilibrium state (lower panel) or to the stable
excited state exhibiting a persistent phase rotation of the order
parameter (upper panel).
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parameter. It shows the Husimi function of a localized
interacting bosonic mode coupled to a reservoir. The lower
panel depicts the expected relaxation to the equilibrium state.
One can observe that in the relaxational regime the phase of
the order parameter stops rotating for long times. The upper
panel shows how the broken-symmetry phase develops when
the magnitude of the quench is large. It is worth observing
that in the latter case the phase of the order parameter remains
rotating for long times. In our work, we show that the system
indeed exhibits frictionless rotation of the order parameter
and that a decoupling from the thermostat is realized for a
particular direction of the rotation (counterclockwise). We will
demonstrate that the post-quench evolution yields one of these
two situations: either the equilibrium state or the state with
persistent phase oscillations, and that these two regimes are
separated by a dynamical transition.

We address these questions by considering a particu-
lar example, the Bose-Anderson single-impurity model (B-
SIAM) [23–25], describing a correlated impurity coupled to
an infinite number of noninteracting bosonic lattice modes.
Albeit their apparent simplicity, the physics of impurity
models is extremely rich. Perhaps the most paradigmatic
example of an impurity system is the celebrated Kondo
model [26] that has permitted to explain the resistance
minimum of certain metallic compounds. Some impurity
systems undergo so-called impurity phase transitions [27–29]
where local response and correlation functions become singu-
lar and can be characterized by a set of critical exponents.
At these zero-temperature transitions, only a nonextensive
term in the free energy becomes singular. Examples of
widely studied quantum critical models are the pseudogap
Kondo [30], the spin-boson [31], or the two-impurity Kondo
model [30].

Quenched dynamics in impurity models has been consid-
ered in the context of electronic transport on quantum dots
[32–36] and impurities in the quantum gases [37–39]. For
systems with impurity phase transitions, quenches have been
studied for the pseudogap Kondo model [40,41] and for the
spin-boson problem [42,43]. However, whether dynamical
transitions are to be seen in impurity models is an open
question. If present, they have to be of a different nature of
their extended counterparts. In the same way, the existence of
transient long-lived phases is a possibility not yet explored for
impurity systems.

The B-SIAM, addressed in this work, is of particular interest
as it possesses a rich phase diagram with a set of impurity
phase transition lines. Recent progress in the manipulation
of ultracold atomic gases rendered the controlled realization
of this model at experimental reach using optical lattices
with single-site resolution [44]. This technique allows to
manipulate localized potentials in real time. Creating local
correlated defects allows for the possibility of studying bosonic
impuritylike systems, analogous to magnetic impurities or
quantum dots in solid-state devices, with the crucial advantage
of being able to probe the dynamics in real time.

Equilibrium studies of the B-SIAM, by numerical renor-
malization group [23,24] and exact diagonalization [25],
revealed a zero-temperature phase diagram containing high-
symmetry phases, where number of excitations in the local
node is an integer, and a broken-symmetry phase. As these

phases are local counterparts of the Mott and superfluid phases,
observed for example in the Bose-Hubbard model on a lattice
[45,46], they are dubbed local Mott insulator (lMI) and local
Bose-Einstein condensate (lBEC) in the following. The local
spectral function was shown to behave in a power-law fashion
near zero frequency, with a negative exponent in the lBEC and
a positive one in the lMI [24] that depend on the density of
states of the bosonic environment. To our knowledge, there
were no previous attempts to study this model away from
equilibrium.

A number of works consider interaction quenches in
extended systems featuring Mott and superfluid phases such
as the Bose-Hubbard lattice model [3,47–54]. Here, as the
energy injected into the system is extensive, the relaxation
to the new ground state is forbidden by energy conservation.
Instead, the system was found to approach either a thermalized
or a nonthermalized state depending on the quench magnitude
[3], with a dynamical transition separating the two regimes.
Here, again, the presence of a thermostat is expected to
dramatically change this picture since it induces relaxation of
both thermal and nonthermal states eventually transforming
the dynamical transition to a crossover. Numerically resolving
between a dynamical transition and crossover regime in
quantum many-body systems might be a challenging task.
This problem is particularly difficult as it requires numerically
exact methods to achieve long times. For example, real-time
quantum Monte Carlo solvers suffer from the sign (phase)
problem [34], whereas density matrix renormalization group
(DMRG) [55] and exact diagonalization [56] are limited by
the dimension of the basis of wave functions used. Moreover,
approximate schemes approaches such as noncrossing
approximation impurity solver [54] also suffer from memory
issues raising at the long-time scale.

In this paper, we address the existence of dynamical
transitions by studying the dynamics after a quench of
the Bose-Anderson single-impurity model generalized to N

components. The number of components N controls lattice
quantum fluctuations and ensues an exact solution in the
N → ∞ limit [57], therefore allowing for the study of
the full nonequilibrium dynamics of the system with a
small numerical effort. We observe a variety of after-quench
dynamical patterns, including relaxation to the equilibrium
state, intermediate states qualitatively different from the initial
and final ones, the formation of so-called transient phases, and
stable recurrent states. We provide numerical evidence and
physical argumentation that these recurrent states are indeed
completely decoupled from the lattice thermostat. Hence, a
dynamical transition is found, that separates the evolution
from asymptotically reaching the equilibrium or leading to
stable recurrent states. Finally, we argue that most of these
effects hold for finite values of N , rendering our findings of
immediate experimental relevance.

The structure of the paper is as follows. We present the
model and methods in Sec. II. In Sec. III, we expose our
results, including the equilibrium phase diagram and the
qualitative different quench types. We present an integrated
discussion of the results and develop some analytic arguments
in Sec. IV. We conclude in Sec. V. The Appendix is devoted
to the formal proof of the exactness of our method for
large N .
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FIG. 2. Sketch of the generalized Bose-Anderson model. N

impurities are coupled to the lattice at the same point with the same
coupling constant V√

N
. The onsite interaction U

2 n(n − 1) occurs only
at the impurities.

II. MODEL AND METHOD

We consider an impurity with N components, connected
to a bosonic lattice on a single site, as shown in Fig. 2. This
model is described by the generalized multicomponent Bose-
Anderson Hamiltonian:

H =
∑

j

HSI[a
†
j aj ] −

∑
j,k

Vk√
N

(a†
j bk + H.c.) +

∑
k

εkb
†
kbk,

(1)
where

HSI[a
†a] = ε0a

†a + U

2
a†a†aa (2)

is the Hamiltonian of a single component. The operator a
†
j , with

j = 1, . . . ,N , creates a j -component boson at the impurity
site, ε0 is the depth of the impurity onsite potential, and U

is the local interaction strength. The operator b
†
k creates a

boson in mode k, εk is the lattice dispersion, and Vk/
√

N

is the hopping amplitude between the bath and the impurity.
In this paper, we define the energy scale by the condition
� = 1. We assume that εk has a single minimum near εk=0 = 0.
The mode with k = 0 is excluded from the calculations to
get rid of the effects, related to bulk BEC [25]. In the
following, we consider that the dispersion relation of the
bosonic bath is taken to be that of a three-dimensional cubic
lattice εk = 2h(3 − cos kx − cos ky − cos kz), where h is the
hopping matrix element. We set h = 1, U = 1. As the impurity
is coupled to a single lattice site Vk = V is independent of k.
The considered quench parameters are either the onsite energy
ε0(t) = θ (−t)ε0(0) + θ (t)ε0 or the impurity-bath coupling
V (t) = θ (−t)V (0) + θ (t)V . In the limit N = 1, this model
becomes the single-impurity Bose-Anderson model [23–25].
The rescaling in the hopping amplitudes is introduced in order
to obtain a well-defined large-N limit.

In the following, we give a derivation of the equations ruling
the dynamics of the model in the large-N limit, assuming
an equilibrium zero-temperature initial state. An alternative
derivation, using nonequilibrium Green’s functions, valid also
at finite T is given in the Appendix. For the T = 0 case, we
consider the separable ansatz for the wave function

|�〉 = |�bath〉 ⊗ |�imp〉, (3)

derive the equations of motion for both |�bath〉 and |�imp〉, and
show this treatment becomes exact for N → ∞. For finite N ,
this ansatz can be seen as mean-field-like approximation.

With the factorized wave function (3), two effective Hamil-
tonians H eff

imp ≡ 〈�bath|H |�bath〉 and H eff
bath ≡ 〈�imp|H |�imp〉

can be defined for the impurity and the bath, respectively. The
effective dynamics is given by the two Schrödinger equations

i∂t |�imp〉 = H eff
imp|�imp〉,

i∂t |�bath〉 = H eff
bath|�bath〉

coupled through the dependence of the effective Hamiltonians
on the instantaneous mean values of the bath or impurity
observables.

The impurity effective Hamiltonian H eff
imp =∑

j H eff
SI [a†

j aj ], factorizes into a sum over independent
components

H eff
SI [a†a] = ε0a

†a + U

2
a†a†aa − λa† − λ∗a, (4)

where we have introduced the parameter

λ =
∑

k

Vk√
N

βk, (5)

with βk = 〈bk〉.
The bath effective Hamiltonian is given by

H eff
bath =

∑
k

εkb
†
kbk −

∑
k,j

Vk√
N

(b†k〈aj 〉 + 〈a†
j 〉bk). (6)

Note that, since all the components interact equally with the
bath and we assume a component-symmetric initial condition,
all 〈aj 〉 are the same and thus

∑
j 〈aj 〉 = N〈a〉. Similarly,

other componentwise averages are independent of the com-
ponent index: 〈nj 〉 ≡ 〈a†

j aj 〉 = 〈n〉, 〈n2
j 〉 − 〈nj 〉2 = 
2n, etc.

Thus, further in the text we will appeal to the averages per
component 〈a〉,〈n〉.

The equation for the mean value of bk then reads as

− i
dβk

dt
= 〈[

H eff
bath,bk

]〉 = −εkβk + Vk

√
N〈a〉, (7)

which in its integral form yields

βk(t) = βk(0)e−iεk t + iVk

√
N

∫ t

0
〈a(t ′)〉e−iεk (t−t ′)dt ′. (8)

With this expression, the value of λ in Eq. (5) becomes

λ(t) =
∑

k

V 2
k

e−iεk t

εk

〈a(0)〉 + i
∑

k

V 2
k

∫ t

0
〈a(t ′)〉e−iεk (t−t ′)dt ′.

(9)
Equation (4) together with (9) form a closed set of equations
describing the effective dynamics of the multicomponent
Bose-Anderson Hamiltonian after a quench. The initial con-
dition is assumed to be the equilibrium solution before the
quench is performed. λ(0) is computed solving the self-
consistent condition obtained from Eqs. (4) and (9) at t = 0.

Note that the considered ansatz wave function amounts, for
this model, to consider the bath in the coherent state:

|�bath〉 = �ke
βkb

†
k−β∗

k bk |0〉. (10)

Let us now argue on physical grounds why this ansatz
becomes exact in the limit of infinite N . According to Eqs. (7)
and (10), the displacement of lattice modes scales as 〈bk〉 ∝
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√
N . For large N , this means that the lattice oscillators are in

the classical regime and thus become c numbers in the limit of
infinite N . Each lattice mode is thus described by a single value
〈bk〉, which obeys the classical equation of motion (7). The
evolution of the impurity can be found assuming a factorized
form for the wave function |�imp〉 = |�SI〉1 ⊗ . . . ⊗ |�SI〉N
that is exact once the bath modes are c numbers. The
wave function |�SI〉 obeys the Schrödinger equation with
the single-component Hamiltonian (4). Equation (4) describes
a single-bosonic mode, it is thus amenable to be treated
numerically. The formal proof that the separable ansatz is
exact in the limit N → ∞ is given the Appendix.

III. RESULTS

In this section, first we present the equilibrium phase
diagram of the system and describe the distinct phases. In the
following subsection, we discuss the numerical results for the
evolution of the system after quenches of the system parameter.
The initial state is always taken to be the ground state of the
starting phase. In all further calculations, we consider time t

in units of inverse hopping energy h−1.

A. Equilibrium

The equilibrium phase diagram of the generalized Bose-
Anderson model is shown in the Fig. 3. The results were
obtained solving the self-consistent condition of Eqs. (4) and
(9) at equilibrium [that is, assuming all time derivatives in
Eq. (7) are equal to zero]. The phase diagram encompasses
two phases: a set of lMI lobes with a vanishing order
parameter 〈a〉, and a lBEC phase where 〈a〉 �= 0. In the lBEC,
a finite value of 〈a〉 implies nonvanishing fluctuations of
the number of particles at impurity site 
2n > 0. Moreover,
the number of particles 〈n〉 is not restricted to be an integer. The
number of particles on the lattice is given by the expression∑

k 〈b†kbk〉 = N
∑

k V 2
k

|〈a〉|2
ε2
k

. For a d-dimensional lattice with

d < 4 at Vk = V , the sum diverges in the thermodynamic limit
whenever 〈a〉 �= 0, thus indicating the formation of a BEC.

FIG. 3. Equilibrium phase diagram of generalized Bose-
Anderson model at U = 1, h = 1. Different lobes correspond to
a local Mott insulator phase with a different number of bosons
per mode. The local Bose-Einstein condensate is characterized by
nonvanishing values of the order parameter. The blue arrows depict
the set of initial and final conditions characterizing the quench
protocols considered in the paper.

Note that the bulk of the lattice lacks the BEC mode k = 0
since for convenience it is not considered here, therefore,∑

k 〈b†kbk〉 → ∞ signals the formation of the BEC cloud in
the vicinity of the impurity. The lMI phase is characterized by
an integer number of bosons at the impurity site, i.e., 〈n〉 ∈ N+

0
and 
2n = 0. Since 〈a〉 = 0, lattice modes are not populated
in this phase.

The phase diagram is qualitatively similar to the single-
impurity Bose-Anderson model as obtained by numerical
renormalization group approach [23,24] and by the exact
diagonalization method [25]. The nomenclature of the phases
is reminiscent of the Bose-Hubbard model [45,46] equilibrium
phase diagrams.

In the following subsections, we consider the dynamics
of the system after the instantaneous change of the chemical
potential on the impurity site. Figure 3 depicts the set of
different quenches under consideration. Quench protocols
are characterized by the initial and final conditions. For
each quench, we study the time evolution of the local order
parameter 〈a〉 and of the number of particles per mode at the
impurity site.

B. Quenches to the lMI phase

lBEC-lMI quench. First of all let, us consider the evolution
of the system in the lBEC phase after the instantaneous change
of the local energy on the impurity site. We choose the final
value of the local chemical potential such as the final state
corresponds to the lMI phase at the equilibrium phase diagram.
In Fig. 4, the evolution of the local order parameter is shown
after the quench, which is schematically depicted with arrow
A on the equilibrium phase diagram in Fig. 3. Evolution of
the order parameter shows fast oscillations which decay in
the long-time limit. The evolution of the average number of

FIG. 4. Time evolution of the local order parameter 〈a(t)〉, real
and imaginary parts, after the quench of the local energy on the
impurity site from the lBEC to the lMI phase with 〈n〉 = 1. Parameters
of the quench are ε0(t = 0) = −1 and ε0(t > 0) = −0.5 at fixed
coupling V = 0.447 (this quench protocol is schematically depicted
with the arrow A in Fig. 3). Dashed line shows the envelope calculated
analytically in the weak-coupling limit using Eq. (16). Time evolution
of the average number of particles per mode at the impurity site 〈n(t)〉
for the same quench parameters is shown in the inset.
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particles at the impurity 〈n(t)〉 is shown in the inset in Fig. 4.
The average number of particles decays to the expectation
value defined by the final Hamiltonian.

The fast oscillatory behavior of the order parameter is
related to the internal impurity dynamics. The impurity
Hamiltonian (2) after the quench of the local energy on the
impurity site to the value ε0 = −0.5 has an energy gap between
the ground state and the first excited state equal to E1,0 = 0.5.
The period of the fast oscillations of the order parameter
roughly corresponds to 2π/E10 ≈ 12.6. The slight variation
of the period of oscillations can be attributed to the effect of
the lattice degrees of freedom on the impurity dynamics. The
fast oscillations of the order parameter appear for all quenches
when the coupling parameter is small, V 2/(Uh) � 0.4.

The time scale associated with the slow decay is calculated
analytically in the limit of the weak coupling and is shown in
Fig. 4. It shows good qualitative agreement and its derivation
is shown in Sec. IV A.

lMI-lMI quench. The evolution of the local order parameter
after the quench between two lMI phases (quench protocol
B) with different number of particles at the impurity site is
considered. In the initial lMI state, the equilibrium value of
the order parameter is zero, 〈a(t = 0)〉 = 0. Such a state is a
fixed point of Eqs. (4), (7), and (9). To allow the nontrivial
dynamics of the order parameter 〈a(t)〉 starting from the
lMI phase a small deviation of the order parameter from its
vanishing equilibrium value is assumed, 〈a(t = 0)〉 = δa. We
call the value δa as a seed noise. The presence of symmetry-
breaking fluctuations slightly shifts the system away from its
unstable fixed point and allows for the transition between two
symmetric phases.

Figure 5 shows the post-quench evolution of the local
order parameter. After the quench, the order parameter grows

FIG. 5. Time evolution of the real part of the local order parameter
〈a(t)〉 after the quench of the local energy on the impurity site from
lMI phase with 〈n〉 = 2 to lMI phase with 〈n〉 = 1 is shown for
different values of the initial seed noise 〈a(0)〉. Parameters of the
quench are ε0(t = 0) = −1.5 and ε0(t > 0) = −0.5 with V = 0.447
(this quench protocol is schematically depicted with the arrow B in
Fig. 3). The lifetime of the intermediate phase is τ0. Dashed line shows
the envelope calculated analytically in the weak-coupling limit using
Eq. (16). The inset shows the dependence of the response time t0 on
the initial seed noise amplitude 〈a(0)〉.

from its initial value defined by the seed noise δa. Similar
to the lBEC-lMI transition, the period of fast oscillations
of the order parameter is determined by energy differences
of the isolated impurity Hamiltonian. At certain time t0 the
amplitude of oscillations reaches its maximum. This time
decreases with the amplitude of the seed noise as t0 ∝ −ln(δa);
the numerical result is shown in the inset in Fig. 5. After the
maximal amplitude is reached, the oscillations decay. Finally,
the new ground state is approached and the average number of
particles saturates at the value defined by the phase of the final
Hamiltonian. In this way, the system undergoes a transition
between lMI lobes with different number of particles through
a transient lBEC phase.

In Sec. IV A, we show that the observed relaxation to
the lMI state can be described analytically assuming a weak
coupling between the impurity and the lattice. Such an
approach provides a good estimation for the envelopes of the
time dependence of the order parameter. Their “slow” time
scale τ0 is determined by the coupling constant and the density
of the lattice states.

C. Quenches to lBEC phase

lMI-lBEC quench. We now consider a quench from the
lMI phase to the lBEC phase. Time evolution of the order
parameter after the quench of the local energy is presented in
Fig. 6. Parameters of this quench are schematically depicted
with arrow C on the equilibrium phase diagram in Fig. 3.
As in the case for lMI-lMI quench, the initial state is an
unstable stationary point of the equations of motion of the
order parameter. A small seed noise has been introduced into
the initial conditions to allow a nontrivial dynamics of the order
parameter with possible transition between the two phases. At
short times, there is a rapid increase of the amplitude of the

FIG. 6. Evolution of the local order parameter 〈a(t)〉 (its real and
imaginary parts, as well as its absolute value) after the quench of the
local energy on the impurity site from the lMI phase with 〈n〉 = 2 to
the lBEC phase is shown. Parameters of the quench are ε0(t = 0) =
−1.5 and ε0(t > 0) = −1 with V = 0.447 (this quench protocol is
schematically depicted with the arrow C in Fig. 3). Expectation value
of the order parameter in the ground state of the final Hamiltonian is
shown with the dashed line. Inset shows the evolution of the average
number of particles at the impurity site 〈n(t)〉.
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order-parameter oscillations. The amplitude saturates after a
time period dependent on the initial seed noise amplitude,
similar to lMI to lMI quench considered above. For longer
times, the phase of the order parameter rotates persistently and
the order parameter never reaches its steady state. The number
of particles at the impurity site decreases from the quantized
initial value and saturates to the new equilibrium state (see
inset in Fig. 6). Calculations for various initial values of the
seed noise show that the persistent oscillations of the order
parameter are the robust feature of the system, although the
period of the oscillations varies with the particular choice of
the seed noise.

The phase of the order parameter shows nontrivial features
in its dynamics. The order-parameter vector rotates on the
complex plane clockwise up to certain moment when the
direction of the rotation changes to the counterclockwise one.
This means that the rotation frequency interpolates between a
positive value for short times and negative constant value for
asymptotically large times. For the dynamics shown in Fig. 6,
the transition between the two regimes takes place around
t � 750.

lBEC-lBEC quench. We consider the quenches of the
local energy when the parameters of the initial and final
Hamiltonians are chosen to correspond to the system in the
lBEC phase. On the equilibrium phase diagram we depict these
quenches as D, E, and F (see Fig. 3). There are two distinct
cases: (i) quenches within the lBEC phase without crossing
any lMI lobe (e.g., quenches D in Fig. 3) and (ii) quenches
that cross at least one lMI lobe, e.g., quenches E and F in
Fig. 3 cross one lMI lobe or two lMI lobes correspondingly.

First, let us consider the quenches that do not cross any lMI
lobe. We fix the final value of the local energy ε0(t > 0) and
vary the quench amplitudes 
ε0 = −[ε0(t = 0) − ε0(t > 0)]
by setting the initial condition. As an example, we consider a
set of quenches depicted with D arrows in Fig. 3. The post-
quench time evolution of the real part of the order parameter is
shown in Fig. 7. For small values of the quench amplitude

ε0, the order parameter approaches the new equilibrium
value defined by the expectation value in the ground state
of the final Hamiltonian. As 
ε0 increases, the long-time
evolution of the order parameter changes qualitatively from
the relaxation to an oscillatory regime. A critical value of the
quenching amplitude 
εcrit

0 � 0.8719 separates these two very
distinct regimes. At this singular point, the solution is neither
oscillating nor reaching its static equilibrium value. As small
deviations to this value lead to different asymptotic dynamical
phases, we will refer to this singular point as a dynamical
phase transition. Our numerical calculations show that the
different asymptotic behavior is observed within the very
small range of the quenching amplitudes close to the critical
quench value, namely, for 
ε0 = 
εcrit

0 ± 10−4. This gives an
evidence that we observe a true dynamical transition. Note that
in the oscillatory regime both the amplitude and the frequency
of the oscillations depend on 
ε0. As 
ε0 tends to the critical
value, the amplitude approaches the equilibrium static value
and the frequency vanishes. For different final points of ε0(t >

0), our results (not shown) also demonstrate the presence of a
dynamical transition. However, the critical value of the quench
amplitude 
ε0 is different and the critical amplitude increases
with −ε0(t > 0) and V . Indeed, the dynamical transition

FIG. 7. Time evolution of the real part of order parameter for
quenches within the lBEC phase for different quench amplitudes

ε0 = −[ε0(t = 0) − ε0(t > 0)] for the same final value of the local
energy ε0(t > 0) = −1 when interaction strength is fixed V = 0.89
(these quenches are depicted with arrows D in Fig. 3). There are two
distinct behaviors in the long-time regime: (i) an equilibrated static
steady state for small values of 
ε0 and (ii) an oscillatory regime
with frequency and amplitude that depend on 
ε0. Expectation value
of the order parameter in the ground state of the final Hamiltonian is
shown with the dashed line.

can most easily be observed near the lMI-to-lBEC transition
line.

Finally, we consider quenches within the lBEC phase that
cross one or more lMI lobes, depicted with the arrows E1 and
F in Fig. 3. To highlight features of lMI lobe crossing observed
in the evolution of the order parameter, we compare case E1
with the quenches with the same initial and final values of
the local energy and different value of the coupling strength
V such that no lobe is crossed (cases E2 and E3 in Fig. 3).
Figure 8 shows the time evolution of the real part of the order
parameter and the average number of particles 〈n(t)〉 for the
three values of coupling strength V . For the lobe crossing
case, V = 0.316, there is a plateau in the time evolution of the
number of particles which corresponds to 〈n〉 � 2; this is the
value of 〈n〉 of the lMI lobe crossed. In the long-time limit,
the new equilibrium value is reached, defined by the final
Hamiltonian. When the interaction strength V is large and
no lMI lobe is crossed, there are two effects: first, the long-
lived transient phase is lost, and second, for sufficiently large
interactions V , a dynamical phase transition to an oscillatory
phase takes place. The latter behavior is similar to the one
shown in Fig. 7.

The existence of a plateau with 〈n〉 � 2 suggests that
the long-lived transient phase acquires characteristic features
of the crossed lMI phase. The phenomenon of the locking
of the particle number at an integer value whenever the
corresponding lMI lobe is crossed is ubiquitous for this model.
Figure 9 shows evolution of the number of particles and of the
order parameter after a quench crossing two lMI lobes. Two
long-lived plateaus are observed in 〈n〉(t) around 〈n〉 � 2 and 1
before the final relaxation to the local equilibrium value occurs.
Within each plateau the amplitude of the oscillations of 〈a〉 is
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FIG. 8. Time evolution of the real part of the order parameter
(upper panel) and number of particles on the impurity site 〈n〉(t)
(middle panel) for fixed initial and final values of the local en-
ergy ε0(t = 0) = −2 and ε0(t > 0) = −1 correspondingly and three
values of the coupling strength: V = 0.316, 0.592, and 0.9. These
quenches are depicted with arrows E1–E3 in Fig. 3. Dotted lines
correspond to the expectation values 〈a〉 and 〈n〉 calculated in the
ground state of the final Hamiltonian. A plateau can be observed in
the time evolution of the 〈n〉 corresponding to 〈n〉 = 2 in the case
when lMI phases crossed during the quench. The long-time behavior
of the order parameter and number of particles for the quench with
V = 0.316 is shown in the lower panel.

small. In this way, the system seems to mimic a vanishing
order parameter during these long-lived transient phases.

FIG. 9. Time evolution of the real part of order parameter (down)
and of number of particles (up) for the quench, depicted with arrow
F, which crosses two Mott lobes: ε0(t = 0) = −2, ε0(t > 0) = 0 at
V = 0.316.

D. Inverse quenches

For all the quenches shown in Fig. 3 and described above
the number of particles at the impurity site decreases with
time with respect to its initial value. This process is always
possible since there is an infinite number of bath modes to
which particles can be emitted. We also considered quenches
for which the equilibrium state of the final phase contains a
larger number of particles at the impurity than the initial state
does. It corresponds to the inversion of the direction of arrows
in Fig. 3. Local equilibration is in this case never achieved
as the bath effectively decouples. Indeed, the Hamiltonian
(1) conserves total number of particles in the system. Bulk
of the lattice contains no particles at the initial state of the
system, therefore, the bath is not able to provide extra particles
for the impurity to achieve its local equilibrium state. For
completeness, we provide a description of the time evolution
in this case. When starting from lMI the system seems to
be locked in its initial phase: the order-parameter amplitude
undergoes an oscillatory motion with an amplitude that never
exceeds the initially introduced seed noise. Thus, contrarily to
the previous case, the initial state is stable and the system never
leaves the initial lMI phase. When starting from lBEC phase,
the long-time behavior is always oscillatory even for very
small quench amplitudes. We have also verified numerically
that quenches with zero amplitude do not change a state of the
system, even in the presence of the seed noise.

IV. DISCUSSION

A. Transient phases

An interesting and striking feature of the post-quench dy-
namics is the appearance of long-lived transient regimes, when
an equilibrium phase is crossed, with the same characteristics
of an underlying phase. We dubbed such regime a transient
phase.

A transient lBEC phase can be observed during the
transition regime between lMI lobes in the lMI to lMI quenches
of Fig. 5. During this regime, the order parameter becomes
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finite and the number of particles fluctuates. The phenomenon
is even more striking in lBEC to lBEC quenches that cross
one of more lMI lobes. The long plateaus observed at integer
values in the dynamics of 〈n〉(t) (see Fig. 8) can be interpreted
as the formation of transient lMI phases.

A simple physical picture capturing the main features of lMI
to lMI quenches can be obtained in the limit of small V . This
regime is usually considered in quantum optics, where atoms
in excited states are coupled to the electromagnetic continuum
[58]. Here, we adapt the standard argument for the calculation
of the super-radiance intensity to our system. For clarity, we
consider only lMI to lMI transitions between phases with n + 1
and n particles. The weak coupling formally corresponds to a
small value of V and, consequently, of λ. We thus consider a
perturbative series in this parameter.

At zeroth order, the bath is in its vacuum state |0bath〉, and
the wave function of an impurity is considered to be in a
symmetric state with each mode in a superposition of n and
n + 1 particles:

|�(0)〉 = |0bath〉 ⊗N
j=1 (φn|n〉j + φn+1|n + 1〉j ). (11)

After a time T the first-order correction, corresponding to the
irradiation of a particle to the bath, is given by the formula

|�(1)〉 =
∑
jk

b
†
kãj

∫ T

0
e−i(εk−εn+1+εn)t dt |�(0)〉. (12)

Here, ã = PaP is the annihilation operator projected into the
considered subspace with P = |n + 1〉〈n + 1| + |n〉〈n| and εn

is the energy of the impurity Hamiltonian with n particles.
The overall transition rate equals W = ∂T 〈�(1)|�(1)〉. Taking
the T → ∞ limit we can write W = limT →∞ T −1〈�(1)|�(1)〉.
Calculating the averages

〈�(0)|ã†
j ãj |�(0)〉 = (n + 1)|φn+1|2,

〈�(0)|ã†
j ãj ′ |�(0)〉 = (n + 1)|φnφn+1|2, j ′ �= j (13)

we obtain

W = 2π (n + 1)V 2Aεn+1−εn
(|φn+1|2 + (N − 1)|φnφn+1|2),

(14)

where Aεn+1−εn
is the normalized density of lattice states at the

transition energy. The first term in the parentheses describes
the spontaneous emission yielding Fermi’s golden rule. In the
large-N limit, the contribution of this term is small. The second
term describes the super-radiance of synchronized impurity
modes.

The quantity W can be interpreted as a decay rate of the
population of the state |n + 1〉. In the large-N limit, we can
thus write W = N

d|φn+1|2
dt

, which yields the detailed balance
equation

d|φn+1|2
dt

∣∣∣∣
N→∞

= −|φn+1|2(1 − |φn+1|2)

τ0
. (15)

Here, we introduced the time scale τ−1
0 =

2π (n + 1)V 2Aεn+1−εn
and took into account the normalization

condition |φn|2 + |φn+1|2 = 1. Solving the differential
equation (15), we obtain the envelope of the order parameter

in the weak-coupling limit:

|〈a〉|(t) =
√

n + 1

2 + 2ch(t − t0)/τ0
, (16)

where t0 is fixed by the initial condition. The instant-onlike
envelope functions obtained in this way are depicted in Fig. 5
and are in good agreement with the numerical results. The
logarithmic dependence of t0 on δa, shown in the inset of
Fig. 5, also arises from Eq. (16).

A similar argument could be made for lBEC to lBEC
quenchs at small V , shown in Fig. 8. Since three states
|n − 1〉,|n〉,|n + 1〉 are involved in the process, a simple
analytical solution could not be found. Nonetheless, we can use
the previous case to argue that this process can be seen as two
half-instantonlike solutions. After the quench, the impurities
relax from the mixed state φ3|3〉 + φ2|2〉 with approximately
equal φ2,3. This stage of the evolution at t ≈ 100 yields
almost a pure lMI n = 2 state; the value of order parameter
is decreased considerably. However, this transient lMI phase
is not stable and decays to lBEC. The period of the long-time
oscillations of the order parameter seems to vary with time,
suggesting an intricate interplay of degrees of freedom in the
course of the evolution.

In this paper, we limit our study to the N → ∞ case.
Nonetheless, possible realizations of the generalized multi-
component Bose-Anderson Hamiltonian forcefully feature a
finite number of modes. Thus, we now discuss experimentally
relevant finite-N effects. Qualitatively, two relaxation mecha-
nisms are possible, as can be seen from Eq. (14): the collective
super-radiance, discussed above, and a set of independent
spontaneous emission processes. The latter are characterized
by the single-particle lifetime tsp = τ0N , that is N times larger
than the lifetime due to super-radiant processes. Consequently,
the relative impact of spontaneous emission processes can be
roughly estimated as 2|ln(δa)|/N . This allows a lower bound
on N (given the seed noise value δa) above which spontaneous
emission processes can be ignored. On the other hand, given
the number of components N , this estimation allows to put a
lower bound for the seed noise value. Therefore, it is as if a
certain amount of quantum noise is intrinsically present in the
system. External sources of noise, such as interactions with
the surroundings, finite temperature, etc., can only increase
this value. Note that this is indeed a rough estimation since
Eq. (14) is obtained by perturbative arguments.

For adiabatic processes, the state of the systems under
evolution follows the instantaneous ground state. Therefore,
if changes to the Hamiltonian are performed adiabatically, say
along the arrows E1 or F, the appearance of a transient phase
during the crossing of a foreigner equilibrium phase is to be
expected. In contrast, for the sudden quenches we address
here, the parameters of the Hamiltonian are instantaneously
switched from the start to the end point of the arrows in
Fig. 3, never taking values belonging to the equilibrium phase
along the way. These facts render even more surprising the
appearance of the long-lived transients observed here for
which the quenched dynamics qualitatively resembles the
adiabatic one. Note, however, that whereas the adiabatic state
of the system is fully characterized by its wave function, the
dynamical equations (4), (7), and (9) have a memory kernel.
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Thus, an instantaneous state of the system during its evolution
is characterized by its wave function as well as by the previous
time dependence of the order parameter 〈a(t)〉.

B. Dynamical phase transition

Another remarkable feature of the post-quench dynamics
is the dynamical phase transition, arising for quenches deep
in the lBEC phase. As described in Sec. III C, a critical value
of the quench amplitude 
ε0 could be found that separates a
fully relaxed long-time state from a regime where the system
remains with an excited state. The latter case is characterized
by a persistent phase rotation of 〈a〉, whereas its modulus
approaches a constant value, and is observed for a quench
amplitude larger than the threshold amplitude. We did not
observe any damping for the time scales available in our
calculations, including for quenches very close to 
εcrit

0 . The
presence of a well-defined critical quench amplitude 
εcrit

0
where the behavior of the system changes qualitatively is a
strong evidence of a dynamical phase transition. Mathemati-
cally, it corresponds to a nonanalytical dependence of the final
asymptotic state on the quench strength.

To explain the nature of the frictionless phase rotation, let
us consider the possible relaxation mechanisms. According
to Eq. (7), energy and, therefore, particles transfer from the
impurity to the lattice mode k whenever 〈a(t)〉 contains a
nonzero Fourier component at frequency εk . Assuming, for the
sake of the argument, that 〈a〉 = a0e

−iεk t , the solution of Eq. (7)
reads as βk(t) = [Vk

√
Na0t + βk(0)]e−iεk t , corresponding to

a linear-in-time increase of the amplitude of the k mode.
This argument is only valid for short times before nonlinear
effects ensue. Nonetheless, it provides a physical picture for
the energy transfer between the impurity and the lattice with
depletion of the Fourier component ω = εk in the oscillatory
behavior of 〈a(t)〉. Since lattice oscillators form a continuum
spectrum for ω > 0, the only possibility for a frictionless
dynamics is the existence of some spectral weight of 〈a(t)〉
in the negative frequencies. In this case, the order parameter
effectively decouples from the continuum of single-particle
lattice excitations. This simple picture is confirmed by our
observations. Figure 6 shows that the order parameter 〈a〉
rotates clockwise on the complex plane at the initial stages
of evolution, and afterwards the rotation suddenly changes to
counterclockwise direction. In this case, most of the spectral
weight belongs to the negative frequencies. A small part
contributing positive frequencies reveals itself in the amplitude
oscillations of the order parameter. The latter are dissipative,
so that finally a pure phase rotation 〈a〉 = a0e

iωt with ω > 0
is observed. The same counterclockwise rotation occurs after
the quenches within lBEC phase as it can be seen from Fig. 7
and from the Husimi function plot of the same data, presented
in Fig. 1.

The negative part of the spectrum appears to correspond
to states with less particles than the equilibrium one. A
simple explanation can be given as follows. Consider a
single-impurity Hamiltonian (2) with some ε0 < 0, U > 0.
It has a nonmonotonous spectrum: the energy En decreases
with the number of particles n until n reaches the equilibrium
value n0 ≈ − ε0

U
− 1

2 . The counterclockwise phase rotation
is realized for a superposition state |�〉 = αe−iEnt |n〉 +

e−iEn+1tβ|n + 1〉 if En < En+1, that corresponds to n,n + 1
being less than the equilibrium number of particles n0.

The asymptotic long-time dynamics of the impurity model
(1) is determined by the number of bosons N∞ contributing the
lBEC at t → ∞. In N∞ we count the particles on the impurity
itself, as well as in the lBEC cloud located near the impurity
and interacting with it. However, N∞ does not include all the
particles of the system. As we discussed above, the relaxation
processes take place at the initial stages of evolution, and the
relaxation is associated with the emission of particles from
the lBEC cloud, the particles of which run away from the
impurity and cannot be absorbed back to the cloud. A partial
runaway of bosons is obvious for the quench between the lMI
phases with 〈n〉 = 2 and 1 (remind that the lattice modes are
not polarized in the lMI phase, so that N∞ has contributions
only from bosons on the impurity). We conclude that the
phase-rotating states obey a smaller N∞ than the equilibrium
one. As the collective lBEC state contains a large amount
of bosons, a gradual change of N∞ gives rise to a continuous
spectrum of the rotation frequency: smaller number of particles
corresponds to faster rotation.

While the total number of particles in the system is
conserved, the value of N∞ particularly depends on the
emission dynamics. A dynamical phase transition separating
the evolution towards the new equilibrium and the permanent
phase-rotating state provides an evidence that emission of
particles during the after-quench evolution is essentially
nonadiabatic. After the quench with a large amplitude, the
system emits more particles than it is required to reach the
new equilibrium state. Since the emitted particles cannot be
absorbed back to the lBEC, such an “overshooting” results in
persistent phase rotation, as Fig. 10 illustrates. The smaller the
quench amplitude is, the larger number of particles remains
in the system and the faster phase oscillations are. Below the
critical quench amplitude, the “overshooting” is absent.

FIG. 10. The illustration of how the persistent oscillating phase
appears. The transition I corresponds to the quench within the lBEC
phase with large quench amplitude (D series in the Fig. 3). During
the nonadiabatic evolution I, the impurity loses more particles than
it is required to reach the ground state. Once the state with the
minimal energy is “overshot”, it cannot be reached because emitted
particles never return to the impurity (that is, the transition II is
forbidden). Transition III corresponds to the D series quench with an
amplitude below the critical value. In this case, the evolution is more
adiabaticlike, and the system relaxes to the ground state.
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The existence of a persistent rotating phase can also be
seen as a symmetry-broken ground state of a Hamiltonian in a
convenient rotating frame. The change of frame corresponds
to the gauge transformation ã = aeiωt , b̃k = bke

iωt , so that
〈ã〉 becomes time independent for asymptotically long times.
The gauge transformation introduces an effective chemical
potential:

Hω =
∑

j

(ε0 + ω)a†
j aj + U

2

∑
j

a
†
j a

†
j ajaj

−
∑
j,k

Vk√
N

(a†
j bk + H.c.) +

∑
k

(εk + ω)b†kbk. (17)

For this Hamiltonian, the existence of a symmetry-broken
ground state with nonvanishing 〈ã〉 corresponds to a persistent
phase rotation in the original frame. These considerations
imply that a finite gap in the bath spectrum εk , as well
as a shift in ε0, would only shift the value of ω for
which the symmetry-broken phase starts to appear. Therefore,
the undamped oscillatory phase is expected generically for
quenches within lBEC phase.

An analysis of the Hamiltonian (17) also gives more insight
about the nature on the dynamic transition. The remarkable
consequence of the energy gap appeared in (17) is that
expression for the number of particles in the lattice cloud∑

k 〈b†kbk〉 = N
∑

k V 2
k

|〈a〉|2
(εk+ω)2 is not divergent at small k for

ω > 0, in contrast to the case of the gapless reservoir in (1).
Therefore, the number of particles in the persistent rotating
phase is not just quantitatively smaller than for lBEC; the
difference is qualitative. We also conclude that the observed
scenario of the dynamic transition cannot be realized (or at
least requires a major modification) for higher dimensions
d > 4 since in that case, the sum converges for a gapless
reservoir as well.

Let us discuss the nature of the lBEC phase, in view of these
findings. Strictly speaking, calling this phase a superfluid is not
well justified, as there is no evidence of superfluid dynamics
in the Bose-Anderson impurity model. Even the persistent
rotating phase also does not imply a flow of particles. Here, a
continuous spectrum of frictionless excitations can be seen as
reminiscent of the superfluidity in a zero-dimensional system.

Now, we address the consequences of our findings for
the existence of a frictionless phase-rotation regime in the
finite-N case. We concluded that for N → ∞ the dynamical
transition separates the lBEC phase and persistent rotating
phase, respectively, containing an infinite and a finite number
of particles in the cloud. An infinite number of particles in
the lBEC mode was also found for the single-component
Bose-Anderson impurity model [24]. Moreover, a narrow
peak at negative frequencies has been observed in the
equilibrium local spectral function of the zero-temperature
single-component Bose-Anderson impurity model [24]. Both
N = 1 and N → ∞ cases share this feature, with a major
part of the spectral weight belonging to the positive semiaxis.
We interpret this peak as evidence that N = 1 model has the
excitations analogous to the rotating-phase state. Of course,
the presented argumentation does not prove that the dynamic
transition we found for N → ∞ also shows up for a finite N .
There can be at least two other possibilities. First, it might

happen that a critical quench value vanishes for a finite N , so
that the system can never relax to the new equilibrium state.
In this case, no dynamic transition will be realized. Second,
it is not clear if the symmetry-broken state is stable for a
finite ω, or the rotating state will decay to 〈a〉 = 0 because of
quantum fluctuations in a finite-N system. In the latter case, the
dynamic transition will take the place, but its properties will
be different from the N = ∞ system. Solving these questions
will be a subject of the future work.

Finally, let us address the differences and similarities of
the persistent rotation phase found here with that found in
the dynamics of the superconducting order parameter in the
BCS model [14]. Depending on the initial quench, the BCS
system can also show a relaxation to the new steady state
or persistent oscillations of the order parameter. There are,
however, remarkable differences from the case studied here: (i)
In the B-SIAM, interactions and quenches are local, therefore,
the energy injected to the system is not extensive and, as a
consequence, the relaxation to the new equilibrium ground
state is to be expected. On the contrary, in the BCS case
the system never relaxes to the ground state but rather to a
finite-energy state. (ii) The analysis of the BCS model [14]
is based on its mapping to a classical dynamical system
within Anderson pseudospin representation. Furthermore,
integrability is exploited. In our case, the impurity part of
the Hamiltonian is treated exactly and the integrals of motion
can hardly be established. (iii) As a result of the mean-field
treatment in the BCS case, the system is effectively Gaussian.
In our case, local interactions are treated exactly and are highly
non-Gaussian. (iv) Finally, as discussed above, our system is
robust against 1/N corrections whereas in the BCS phase the
possible effect of anharmonic corrections terms is not clear.

V. CONCLUSIONS

We have studied quenches in the N -component Bose-
Anderson model, which in the N → ∞ limit allows a
numerically exact solution. Such treatment is possible because
the N → ∞ limit corresponds to the suppression of quantum
fluctuation of the bath degrees of freedom rendering exact
a mean-field-like treatment of the bath modes. As local
interaction effects are kept at the impurity level, our approach
is able to capture a set of interesting phenomena arising due to
quantum many-body correlations. The model exhibits a rich
set of dynamical regimes at different time scales as a result
of the interplay between local and bath degrees of freedom:
short times are related with the internal impurity degrees of
freedom, whereas the long-time dynamics is determined by
the collective modes.

The equilibrium zero-temperature phase diagram of the B-
SIAM consists of a set of lMI lobes and a lBEC phase. This
nontrivial phase diagram allows for lMI-lMI or lBEC-lBEC
quenches that cross the complementary phase. These quenches
are observed to give rise to long-lived transient phases. The
transient lBEC-like phase, formed while quenching between
the lMI states, is explained using analytic consideration valid
for a weak bath-impurity coupling. A parallel is drawn with
the super-radiant regime arising in the celebrated Dicke model
[59], which describes a large number of two-level systems
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interacting with a bosonic field. Long-lived lMI-like plateaus
are found for lBEC-to-lBEC quenches that cross Mott lobes.

A nondecaying mode is found throughout lBEC phase.
This negative frequency excitation is well separated from
the spectral continuum located at positive energies. The
existence of such long-lived mode ensures the possibility of
observing persistent phase rotations of the order parameter for
quenches with a large enough amplitude. As its characteristic
frequency is negative, the phase of the order parameter rotates
counterclockwise, whereas all clockwise rotating, i.e., positive
energy, modes are damped due to the interaction with the bath
degrees of freedom. The nondecaying mode is unique and
corresponds to a well-defined frequency at each point of the
phase space of the model. The particular value of the frequency
depends on the total particle number. This fact, together with
the conservation of particle number throughout the evolution
that is fixed by the initial state, explains that quenches to the
same point in phase space give rise to persistent oscillations
with different frequencies.

A dynamical phase transition is found, as a function of the
quench amplitude, separating the regimes where the evolution
either attains the equilibrium lBEC phase or retains a persistent
oscillating phase. The high accuracy of the calculations has
allowed us to obtain strong numerical evidence that the
two regimes are separated by a singular line, so that a true
dynamical transition, rather than a crossover, occurs.

Our findings, regarding the existence of a persistent phase-
rotation mode, are robust to 1/N corrections and should be
present down to N = 1 since a resonance at negative energies
has already been reported in the spectral function of the
B-SIAM [24]. This phenomenon is generic and should be
observed ubiquitously in open quantum systems whenever
conservation laws permit the existence of isolated spectral
modes.

More general implication of the work will require a
consideration of the several impurities connected to the
different lattice sites. The main difference of these systems
from that considered in our work is that their finite size makes
the persistent (superfluid) current possible. Thus, they can be
considered as (quantum) memory cells and their relaxation
dynamics becomes of potential technological importance.
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APPENDIX: DYNAMICS IN THE LARGE-N LIMIT

1. Diagrammatics

Let us construct a formal 1/N expansion. The lattice
degrees of freedom can be integrated out of the initial

Hamiltonian (2), yielding the action

S =
∑

SSI[a
†
j aj ] +

∑
j

a
†
j t
t−t ′

∑
j ′

aj ′t ′ , (A1)

where SSI is the single-impurity action corresponding to
the Hamiltonian (2), and 
t = Vk√

N
(i∂t − εk)−1 Vk√

N
is the

hybridization function reflecting the hopping and lattice
dispersion properties; the integration over time arguments
is assumed. According to Eq. (9), λt = ∫


t−t ′ 〈at ′ 〉, and
therefore the action can be rewritten as

S =
∑

Seff
SI [a†

j aj ] +
∑

j

ã
†
j t
t−t ′

∑
j ′

ãj ′t ′ , (A2)

where Seff
SI corresponds to the effective impurity Hamiltonian

(4), and ãj = aj − 〈aj 〉 describes the displacement of the
impurity j from the mean value. Neglecting the hybridization
term in this formula, one restores the mean-field theory
presented above. The deviations from this result can be
estimated considering the serial expansion in 
. Let us
formally integrate out all the impurities, except a single one
labeled j0. In the zeroth order, the impurities are uncorrelated,
and the result of such an integration is just

S
(0)
SI [a†

j0
,aj0 ] = Seff

SI [a†
j0
,aj0 ]. (A3)

The first order is contributed only by the diagonal term

S
(1)
SI [a†

j0
,aj0 ] = ã

†
j0t


t−t ′ ãj0t ′ . (A4)

The value of 
 scales as 1/N , so the first-order correction
is also proportional to 1/N . The effect of mutual correlations
between the different impurities arises in the second order. The
second-order correction to the effective impurity action obeys
the form

S
(2)
SI [a†

j ,aj ] = ã
†
j t

⎛
⎝∑

j ′

t−t1〈ãj ′t1 ã

†
j ′t2〉
t2−t ′

⎞
⎠ãj t ′ . (A5)

Since the averages 〈ãj ′ ã
†
j ′′ 〉 for j ′ �= j ′′ are vanished in the

zeroth order, they carry an additional smallness and should
not be accounted in the right-hand side of (A5). The sum over
j ′ contains N equal terms, so the entire expression scales as
1/N . It is easy to see that higher expansion terms also carry
1/N prefactor. This concludes the proof that the mean-field
theory is exact in the limit of infinite number of impurities.

2. Path integral

In this section, we derive the 1/N expansion and show that
Eqs. (4) and (9) are exact in the large-N limit. We start by
writing the generating function for the Hamiltonian (1) on the
Keldysh contour γ :

Z[ξ ] =
∫ ∏

j

Daj

∏
k

Dbk e−i{∑j Sj [ξ ]+Sbath+Sint}, (A6)
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where ξ ’s are source fields and

Sloc,j [ξ ] = −
∫

dz dz′ ∑
j

aj (z)†G−1
0 (z,z′)aj (z′)

+ 1

2

∫
γ

dz
∑

j

U (z)a†
j (z)a†

j (z)aj (z)aj (z)

−
∫

γ

dz
∑

j

[ξ †(z)aj (z) + a
†
j (z)ξ (z)], (A7)

Sbath = −
∫

γ

dz
∑

k

b
†
k(z)g−1

k (z,z′)bk(z′), (A8)

Sint = −
∫

γ

dz
∑
k,j

Vk√
N

[b†k(z)aj (z) + a
†
j (z)bk(z)]

(A9)

are, respectively, the impurity, bath, and interaction terms in
the action. G0 and gk are the propagators of the impurity and of
the bath in the absence of coupling or interactions. Integrating
out the bosonic bath one obtains an action solely in terms of
the a fields

Z[ξ ] =
∫

Da e−i{∑j Sloc,j [ξ ]+ 1
N

∑
jj ′ a

†
j �

−1aj ′ }, (A10)

where

�−1(z,z′) =
∑

k

Vk(z)gk(z,z′)V̄k(z′) (A11)

with �† = �. We now introduce a Hubbard-Stratonovich field
λ to decouple the term in � which factorizes the impurity
action into independent components. Since the action is
symmetric with respect to component exchange, the total
action is N times the one of a single component. Therefore,
we obtain

Z[ξ ] =
∫

Dλ e−iNS[λ], (A12)

where

S[λ] = −
∫

γ

dz dz′λ†(z)�(z,z′)λ(z′) + F [λ], (A13)

F [ξ + λ] = i ln
∫

Da e−iSloc[ξ+λ]. (A14)

Note that the fact that the action, in Eq. (A12), is multiplied by
N makes the integral amenable to be treated by a saddle-point
approximation whenever N is large.

We now proceed to derive the saddle-point conditions
setting the sources ξ to zero. Varying the action in order to

λ† we obtain

δλ†(z)S[λ] = −
∫

γ

dz′�(z,z′)λ(z′) + δλ†(z)F [λ]. (A15)

From the definition in Eq. (A14) we can identify δλ†(z)F [λ] =
−〈a(z)〉, where the mean value 〈. . .〉 is taken with respect to
the Hamiltonian (4). Setting the variation of the action to zero
and inverting the kernel � thus we obtain

λ(z) = −
∫

γ

dz′ �−1(z,z′)〈a(z′)〉. (A16)

In order to obtain the equations in the main text, we have to
evaluate the former expression in the real-time branch of the
Keldysh contour:

λ(t) = i

∫ β

0
dτ �−1�(t,τ )〈a(τ )〉

−
∫ t

0
dt ′[�−1>(t,t ′) − �−1<(t,t ′)]〈a(t ′)〉. (A17)

Identifying the different components of �, assuming the bath
is at thermal equilibrium at t = 0 with inverse temperature β,
we get

�−1M (τ,τ ′) = −i
∑

k

Vk(0)V̄k(0)[nb(εk) + �(τ − τ ′)]

× e−εk (τ−τ ′), (A18)

�−1�(t,τ ′) = −i
∑

k

Vk(t)V̄k(0)nb(εk)e−iεk (t+iτ ), (A19)

�−1>(t,t ′) = −i
∑

k

Vk(t)V̄k(t ′)[nb(εk) + 1]e−iεk (t−t ′),

(A20)

�−1<(t,t ′) = −i
∑

k

Vk(t)V̄k(t ′)nb(εk)e−iεk (t−t ′) (A21)

with nb the Bose-Einstein distribution. With this assumptions,
and using that along the thermal branch 〈a(τ )〉 = 〈a(0)〉,
Eq. (A17) becomes

λ(t) =
∑

k

Vk(t)
e−itεk

εk

V̄k(0)〈a(0)〉

+ i
∑

k

∫ t

0
dt ′Vk(t)e−i(t−t ′)εk V̄k(t ′)〈a(t ′)〉, (A22)

which becomes Eq. (9) when Vk does not depend on time.
In the limit N → ∞, the saddle-point value of λ obtained by
Eq. (A22) becomes exact.
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