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Ab initio modeling of quasielastic neutron scattering of hydrogen pipe diffusion in palladium
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A recent quasielastic neutron scattering (QENS) study of hydrogen in heavily deformed fcc palladium provided
the first direct measurement of hydrogen pipe diffusion, which has a significantly higher diffusivity and lower
activation barrier than in bulk. While ab initio estimates of hydrogen diffusion near a dislocation corroborated
the experimental values, open questions remain from the Chudley-Elliott analysis of the QENS spectra, including
significant nonmonotonic changes in jump distance with temperature. We calculate the spherically averaged
incoherent scattering function at different temperatures using our ab initio data for the network of site energies,
jump rates, and jump vectors to directly compare to experiment. Diffusivities and jump distances are sensitive
to how a single Lorentzian is fit to the scattering function. Using a logarithmic least squares fit over the range
of experimentally measured energies, our diffusivities and jump distances agree well with those measured by
experiment. However, these calculated quantities do not reflect barriers or distances in our dislocation geometry.
This computational approach allows for validation against experiment, along with a more detailed understanding
of the QENS results.
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I. INTRODUCTION

Dislocation pipe diffusion, which is accelerated diffusion
along a dislocation relative to diffusion in bulk, has been pro-
posed to explain accelerated diffusion in some deformed ma-
terials [1–3]. Volin et al. found direct evidence of dislocation
pipe diffusion using transmission electron microscopy (TEM),
which measured the size of voids connected to dislocations in
aluminum at different annealing stages and found accelerated
diffusion along the dislocation compared to diffusion into
the bulk [4]. Tang et al. used TEM to study dislocation
dipole annihilation in undoped and MgO-doped sapphire and
estimated pipe diffusion coefficients assuming that the oxygen
and aluminum point defects traveled along the dislocation to
create dislocation loops [5]. Legros et al. used TEM to measure
an accelerated dissolution rate of silicon precipitates connected
by a dislocation in an aluminum thin film and extracted a
pipe diffusion energy barrier [6]. However, dislocations do
not always lead to faster diffusion; one computational study
used an embedded-atom model potential and found reduced
hydrogen diffusion along both screw and edge dislocations
in Fe due to high diffusion barriers [7]. Previous studies of
hydrogen near a palladium dislocation found the formation of
hydrides in the dislocation core [8], which could block pipe
diffusion. Heuser et al. directly measured with quasielastic
neutron scattering (QENS) increased diffusivity and an energy
barrier for hydrogen pipe diffusion in deformed palladium
[9]. Spectra of the incoherent scattering function Sinc(Q,ω)
as a function of frequency ω from QENS experiments are
fit with a single Lorentzian, or sometimes a sum of two or
more Lorentzians, for a given magnitude of the wave vector
Q. The Lorentzian widths as a function of Q can be fit with
a Chudley-Elliott (CE) model [10] to extract jump distances
and mean residence times, which yield diffusivities. Using
this fitting approach, Heuser et al. found diffusion barriers
lower than those predicted by density functional theory (DFT)
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calculations. In addition, the jump distances were much larger
than bulk jump distances and nonmonotonic as a function of
temperature.

A number of studies have attempted to calculate the
incoherent scattering function and have show this to be
difficult. Li and Wahnström used molecular dynamics with
an embedded-atom method potential to calculate the inter-
mediate scattering function from the self-correlation function
for hydrogen in bulk palladium [11,12]. Comparison with
experimental results required a temporal Fourier transform of
the intermediate scattering function to produce the incoherent
scattering function. To transform the intermediate function,
the authors introduced a dampening factor with an adjustable
parameter to smooth out the intermediate scattering function.
To better match experimental results [13], these authors
introduced an adjustable parameter friction coefficient based
on first principles calculations of hydrogen in a homogeneous
electron gas [12]. Gillan used a similar approach for hydrogen
in palladium using a pair potential and also failed to find
agreement with experiment [14]. Björketun et al. used DFT-
informed kinetic Monte Carlo (KMC) simulations to calculate
incoherent scattering of a proton in a disordered perovskite
structure, but failed to recover a Q2 law for small Q [15]. Rowe
et al. developed an analytic solution for diffusion through a
network of energetically equivalent octahedral and tetrahedral
sites in a body centered cubic lattice [16]. Building upon
this method, Kehr et al. computed the incoherent scattering
function for one-dimensional lattices with inequivalent site
energies [17]. A generalized version of this method has been
developed to calculate the incoherent scattering function from
an arbitrary diffusion network [18–21], but this approach has
not been applied to study hydrogen diffusion near a dislocation.

We use DFT to compute site energies and energy barriers
of hydrogen in a palladium edge dislocation geometry from
which we calculate the incoherent scattering function using the
generalized analytic method mentioned above. We consider
only an edge dislocation, as it has the strongest binding with
hydrogen, and hence at low concentrations and temperatures
produce the dominant signal. The analysis allows for direct
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comparison with QENS data [9]. We also follow the same
fitting procedures as a typical QENS experiment [22] by fitting
the incoherent scattering function versus energy to a single
Lorentzian, extracting the half width at half maximum, and
fitting these widths as a function of Q to a CE model. We
try several fitting schemes that each produce different values
for diffusivities and jump distances. We find that the typical
fitting procedure introduces unphysical jump distances and
underestimates the diffusion barrier along the dislocation.

II. EVALUATING THE INCOHERENT SCATTERING
FUNCTION

A. Site energies, jump vectors, and jump rates

We perform DFT calculations using the plane-wave basis
code VASP [23,24]. We use projector augmented wave (PAW)
potentials [25] generated by Kresse [26] with s valence for H,
s and d valence electronic configurations for Pd, and the local
density approximation for the exchange-correlation energy.
For the dislocation geometry, we use a plane-wave energy
cutoff of 250 eV, a 1 × 1 × 8 k-point grid, a Methfessel-Paxton
smearing width of 0.25 eV, and a force convergence of
5 meV/Å. These settings are identical to those chosen by
Lawler and Trinkle [27] and Trinkle et al. [8] for simulating
H near a Pd edge dislocation. For hydrogen in bulk palladium,
we use a 6 × 6 × 6 k-point grid and an energy cutoff of
300 eV for our supercell containing 256 Pd atoms and one
H interstitial. We calculate the equilibrium lattice parameter
to be 3.852 Å, which is slightly smaller than the experimental
value of 3.872 Å at 4.2 K [28]. Previous DFT studies [29]
found that hydrogen in bulk palladium diffuses from a ground
state octahedral site to a tetrahedral site into another octahedral
site. We perform climbing image nudged elastic band [30]
calculations with a single image to compute the configurations
and energies of the transition states. Our DFT calculated
activation energy EOT = 0.277 eV for a hydrogen interstitial
to transition from an octahedral site to a tetrahedral site
in bulk palladium agrees well with the experimental value
0.230 eV [31].

An edge dislocation volumetrically strains interstitial sites
near the dislocation core, which leads to lower diffusion
barriers between expanded sites in palladium. We use a
382-atom palladium edge dislocation geometry with a [1̄1̄0]
Burgers vector that is periodic along the [11̄2] threading
direction. The palladium edge dislocation geometry is the same
as in Refs. [8,27]. We define the site energies of the interstitial
sites in the dislocation relative to bulk as

Einterstitial = Edisl+H − Edisl − (Ebulk+H − Ebulk), (1)

where Edisl+H is the energy of hydrogen in an interstitial site in
the dislocation geometry, Edisl is the energy of the dislocation
without hydrogen, Ebulk+H is the energy of hydrogen in a bulk
interstitial site, and Ebulk is the energy of bulk palladium
without hydrogen. The ground state of hydrogen in the
dislocation geometry is an octahedral site directly below the
partial core, which has a site energy of −0.125 eV relative to
an octahedral site in bulk [9]. We expect lowered barriers and
thus accelerated diffusion in expanded sites below the partial
core. While we do find a pathway with lower barriers below the
partial core, the barrier to diffuse along this path, 0.151 eV, is
higher than observed in experiment [9], 0.083 ± 0.005 eV for a
hydrogen concentration of 1.13 × 10−3 and 0.042 ± 0.012 eV
for a hydrogen concentration of 0.52 × 10−3. We find a
pathway inside the partial core (cf. Fig. 1) with a lower barrier
of 0.111 eV. However, this barrier is still higher than those
measured by experiment.

Figure 1 compares hydrogen diffusion paths along the [11̄2]
threading direction directly below [Fig. 1(c)] and inside the
dislocation partial core [Fig. 1(d)] to a diffusion path along
the same direction in bulk palladium [Figs. 1(a) and 1(b)]. The
path below the partial core is expanded but still looks bulklike.
The highly distorted pathway inside the partial cores looks
significantly different than the bulk pathway. The two a

6 〈211〉
partial cores separate the face centered cubic structure outside
the core region from the hexagonal close packed structure in
the stacking fault. This transition between structures creates
sheared sites in the partial cores that are neither octahedral
nor tetrahedral. While some sites in the core become unstable

FIG. 1. Geometries of hydrogen diffusion pathways. (a) The network for hydrogen diffusion between two octahedral interstitial sites
(orange) along the [11̄2] direction in fcc Pd includes two additional nearest neighbor octahedral interstitial sites along [110]-type directions and
six tetrahedral interstitial sites (blue). (b) The bulk network reoriented with the threading direction and slip plane normal of the edge dislocation
shown. (c) The (partial) dislocation maintains periodicity along the [11̄2] threading direction. The network connecting two nearest neighbor
octahedral sites along the [11̄2] direction of the dislocation supercell in the expanded region directly below the partial core looks similar to
the bulk network. The green slip plane is (11̄1̄). (d) The lowest energy pathway through the periodic direction of the dislocation lies in the
core of the partial dislocation. Here the distinction between octahedral and tetrahedral sites becomes blurred. The orange sites have low site
energies—similar to octahedral sites—and the blue sites have high site energies—similar to tetrahedral sites.
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FIG. 2. Volumetric strain of (a) octahedral interstitial and (b) tetrahedral interstitial sites in an a

2 [110] edge dislocation that has split into
partials. The extra half plane is located on the top half of the figure, and the Burgers vector points along [110]. The black boxes outline the
palladium atoms and interstitial sites included in Figs. 1(c) and 1(d). The dislocation geometry is periodic along the [11̄2] threading direction,
pointing out of the page [in contrast to Figs. 1(c) and 1(d), in which the threading direction points to the right]. This dislocation has split into
two partials in the (11̄1̄) slip plane. The sites with the largest tensile strain are located beneath the partial cores.

or have high site energies, most of the sites have energies
∼0.03–0.06 eV above the ground state. Diffusion pathways
through these sites along the threading direction do not pass
through higher energy tetrahedral sites as they do in the bulk.
The barriers to diffuse from the expanded region below the
core into the core are low, as small as 0.048 eV, while the
barrier out of the core is 0.041 eV.

Figure 2 compares the distributions of volumetric strain due
to the dislocation for octahedral and tetrahedral interstitial sites
that lead to inhomogeneous changes in the relative site energies
and energy barrier between the differently strained sites. To
evaluate the volumetric strain, we first identify the six (four) Pd
atoms that define the octahedral (tetrahedral) “cage”; then, we
take the center of mass of the cage as the interstitial site, and use
the vectors from this site to the neighbors to find the volumetric
strain [32]. The extra half plane creates compressive strain
above the slip plane and tensile strain below the slip plane
for both octahedral and tetrahedral sites. Sites near the partial
cores have the largest volumetric strain, with the strain falling
off more quickly for the tetrahedral sites than for the octahedral
sites. There are only two site energies (EO and ET) and two
barriers in bulk (EOT and ETO), but the dislocation breaks
the symmetry, leading to spatially dependent site energies and
barriers. We use DFT to calculate the energetics of hydrogen
in highly distorted sites inside the stacking fault, inside the
dislocation partial cores, and below the partial cores. However,
calculating each site energy and site energy barrier in the
dislocation geometry with DFT is computationally expensive,
so we develop an approximation for the site energies and
energy barriers for sites outside of the partial cores.

Figure 3 shows the linear relationships between energy and
small volumetric strains in bulk that we use to model site
energies and energy barriers around the dislocation geometry.
We calculate site energies of hydrogen in unstrained and ±2%
strained bulk using DFT. The linear change in the site energy
difference and energy barrier with respect to strain, in the
small strain limit (±2%) in bulk, is consistent with previous
studies [33]. We compare the site energies calculated with
DFT and the approximated site energies for the outermost

sites of the expanded region and find good agreement to within
25 meV, which justifies our use of this simple approximation.
The transition state—located in a {111} face—is two-thirds
along the line from octahedral to tetrahedral site. If we consider
octahedral and tetrahedral sites that have different strains, we
model the energy barriers as
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FIG. 3. Strain dependence of bulk octahedral to tetrahedral
energy barrier, tetrahedral to octahedral energy barrier, and octahedral
and tetrahedral site energy difference. For small strains, site energies
and energy barriers computed with DFT vary linearly with respect to
strain. The individual site energy differences also vary linearly with
respect to strain. We use these simple linear strain dependencies to
approximate the site energies and energy barriers for all sites in the
dislocation geometry, excluding the highly distorted sites and barriers
inside the partial cores and in the stacking fault.
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and

Ehetero
TO (εO,εT) = −1
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)
, (3)

where we use the average of the volumetric strain of the
octahedral site εO and the volumetric strain of the tetrahedral
site εT as the strain of the transition state. To compute the jump
rate νmn = ν0 exp(−Emn/kBT ) from site m to site n, we use a
constant prefactor ν0 = 1013 s−1.

We use these jump rates along with the site energies and
jump vectors as the input for KMC calculations. We run
trajectories with 104 transitions unless the hydrogen atom
jumps outside of the dislocation geometry, at which point we
consider it to have escaped. For each temperature, we average
3000 KMC trajectories and calculate diffusivity from the long
time limit of the mean squared displacement divided by time.
From the computed diffusivities (Fig. 9) over the temperature
range 100–500 K, we extract an effective activation barrier for
diffusion of Ea = 0.125 eV; this is larger than the experimen-
tally modeled activation barrier of 0.042–0.083 eV, extracted
from a Chudley-Elliot analysis of incoherent scattering [9].
The deviation from linearity at higher temperatures in the
Arrhenius plot indicates changes in the diffusion mechanism as
pipe diffusion becomes less dominant at higher temperatures.
In addition, KMC simulations do not predict unusual changes
in average jump distance with temperature, as the Chudley-
Elliot analysis suggests; to explain these discrepancies, we
compute the incoherent scattering function.

B. Incoherent scattering function

We construct the incoherent scattering function from site
energies, jump rates, and jump vectors of the diffusion
network to compare with quasielastic neutron experiments.
A generalized expression for incoherent scattering is derived
in Ref. [19]; we outline this derivation below. The jump matrix
� in reciprocal space is

�mn(Q) = νmn exp(iQ · snm) − δmn

∑
l �=n

νnl, (4)

where νmn is the jump rate from site m to n, Q is the
wave vector, δmn is the Kronecker delta, and snm is the
jump vector from site n to site m. The neutron will transfer
momentum to the hydrogen atom, corresponding to Q. With
the site probabilities ρn = exp(−βEn)/

∑
m exp(−βEm), we

construct a Hermitian jump matrix,

�̃(Q) = ρ− 1
2 �(Q)ρ

1
2 , (5)

where ρ
1
2 is a diagonal matrix of the square root of site

probabilities. The jump matrix is negative definite, and its
eigenvalues are negative. The incoherent scattering function is
a sum of Lorentzians whose widths and weights are given by
the eigenvalues λ̃i(Q) and eigenvectors ẽi(Q) of the Hermitian
jump matrix �̃(Q),

Sinc(Q,ω) = 1

π

Nsites∑
i=1

wi(Q)
−�λ̃i(Q)

[�λ̃i(Q)]2 + (�ω)2
, (6)

where the weights wi(Q) are

wi(Q) =
Nsites∑

l

Nsites∑
n

ρ
1
2
l ẽin(Q)ẽ∗

il(Q)ρ
1
2
n =

∣∣∣∣∣
Nsites∑

l

ρ
1
2
l ẽil(Q)

∣∣∣∣∣
2

. (7)

The curvature of the incoherent scattering function Sinc(Q,ω)
gives the diffusivity at the small Q limit. When the diffusion
occurs on a Bravais lattice, Eq. (6) simplifies to a single
Lorentzian with a width λ̃(Q). Equation (6) captures the full
anisotropy of the scattering function; however, experiments
on polycrystalline samples produce a spherically averaged
Sinc(Q,ω),

Sinc(Q,ω) =
∫∫

4π

d2Q̂
4π

Sinc(QQ̂,ω). (8)

The Appendix describes the numerical procedure for evaluat-
ing the spherical average. The final result is an incoherent
scattering function that can be written as an integral of
Lorentzians,

Sinc(Q,ω) =
∫ ∞

0
dλ W (Q; λ)

1

π

�λ

(�λ)2 + (�ω)2
, (9)

for a normalized “density of rates” W (Q; λ). If our scattering
function were represented by a Lorentzian with one width,
W would be a delta function; however, we find a nontrivial
distribution of rates that can only be approximated by a simple
Lorentzian fit.

III. ANALYZING THE INCOHERENT SCATTERING
FUNCTION

Figure 4 shows that the CE model does not capture
the behavior of spherically averaged incoherent scattering
function Sinc(Q,ω) even for hydrogen in bulk palladium.
The spherically averaged Sinc(Q,ω) converges with a coarse
10 × 10 mesh of points on the sphere, but for the purpose
of plotting the density of rates of Sinc(Q,ω) we use a finer
100 × 100 mesh. We compare the density of rates of Sinc(Q,ω)
to the CE model, which assumes an isotropic jump distance
and a single jump rate (or inverse mean residency time). The
octahedral sites make up a Bravais lattice, but the network
of octahedral and tetrahedral sites is not a Bravais lattice.
The corresponding CE model uses the jump distance between
octahedral sites and jump rate between octahedral sites, which
is 3/4 the jump rate between an octahedral and a tetrahedral site
when the tetrahedral site has a short residency time. At small
Q, the density of rates of Sinc(Q,ω) is well represented by the
CE curve, which is why CE gives accurate diffusivity for bulk.
However, at large Q the CE curve cannot capture the spread
in the density of rates of Sinc(Q,ω). We compare the density
of rates of Sinc(Q,ω) with analytic solutions for Sinc(Q,ω)
along particular directions. The spread in the density of rates
of Sinc(Q,ω) is bounded below by scattering along [111]-
type directions, which connects neighboring octahedral and
tetrahedral sites. Lorentzian terms corresponding to scattering
along [110]-type directions, which connects nearest neighbor
octahedral sites, have large weights. The dark band above
the CE curve does not correspond to scattering along a
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FIG. 4. Density of rates W (Q; λ) of Sinc(Q,ω) for H in bulk Pd
at 100 K. The gray scale indicates the weight of Lorentzian terms of
widths (rates) λ̃ within a histogram bin; the sum of all weights for
each Q is normalized to one. The widths are reported relative to the
mean residency time in bulk, τoct. At small Q, a single width has a
weight close to one because Sinc(Q,ω) is the same along all directions.
At larger Q, the Q-directional dependence of Sinc(Q,ω) produces a
range of rates with non-negligible weights. The Chudley-Elliott (CE)
model cannot fully capture this spread in the density of rates of the
spherically averaged scattering function Sinc(Q,ω). Scattering with Q
along [111], which connects octahedral and tetrahedral sites, gives the
lower bound of the distribution. Scattering with Q along [110], which
connects nearest neighbor octahedral sites, corresponds to relatively
high weights.

single direction but has contributions from several different
directions.

We fit Sinc(Q,ω) with a single Lorentzian and use the CE
model to investigate the validity of the experimentally mea-
sured jump distances and diffusivities. We try four different
fitting approaches. Since the weights sum to one, the most
straightforward approach is fitting a single Lorentzian with
a width equal to the weighted average of the widths of the
Lorentzians that make up Sinc(Q,ω),

λ̄ =
∑

i

wiλi . (10)

This fit matches exactly for ω → ∞. The second approach
is fitting a single Lorentzian of width � that minimizes
the difference between the exact Sinc(Q,ω) and the single
Lorentzian, i.e., that minimizes

χ2
[0,∞] =

∫ ∞

0

(
Sinc(Q,ω) − �

π (�2 + ω2)

)2

dω. (11)

We denote the width that minimizes this error as �[0,∞]. This
fit favors smaller widths than the weighted average. Weighting
the integrand by ω2 gives

χ2
ω2,[0,∞] =

∫ ∞

0
ω2 ·

(
Sinc(Q,ω) − �

π (�2 + ω2)

)2

dω, (12)

where terms corresponding to higher frequency contribute
more to the error being minimized. We denote the width
that minimizes this error as �ω2,[0,∞]. Compared to the

weighted average fit, the fits obtained from χ2
[0,∞] and χ2

ω2,[0,∞]
both favor terms with smaller widths. These three different
fits have similar forms if we rewrite the equation for λ̄

as

1 =
∑

i

wi

2λi

2λ̄
, (13)

the equation for �[0,∞] as

1 =
∑

i

wi

(
2�[0,∞]

λi + �[0,∞]

)2

, (14)

and the equation for �ω2,[0,∞] as

1 =
∑

i

wi

(
2λi

λi + �ω2,[0,∞]

)2

. (15)

A single Lorentzian would give identical widths for all fitting
procedures, but a distribution of Lorentzians produces different
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FIG. 5. Single Lorentzian fits of the analytic Sinc(Q,ω) as a

function of neutron energy �ω for Q = 0.9 Å
−1

at 100, 150, 200, and
350 K for the dislocation geometry. The range of �ω plotted reflects
the experimental window ±100 μeV, and the gray shading denotes
energies smaller than the experimental resolution of ±3.4 μeV.
The fit to λ̄ is exact for �ω → ∞, and well represents Sinc(Q,ω)
at 100 K, where the majority of the weight is distributed among
terms with widths smaller than the experimental resolution. At
higher temperatures, λ̄ becomes a worse fit of Sinc(Q,ω) within the
experimental window. The fit that minimizes χ2

ω2,[0,∞]
favors smaller

widths, which makes the fit poor in the range of experimentally
accessible values at low temperatures. At high temperatures, both
�ω2,[0,∞] and λ̄ appear to be too large in this range. The range of
�ω values over which Sinc(Q,ω) is plotted determines which of
these two fits appears to be a better fit. For all temperatures, the
fit that minimizes χ 2

log ,[3.4,100], which is fit to only experimentally
accessible �ω values, appears to best describe Sinc(Q,ω) within the
fixed experimental window.
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FIG. 6. Density of rates W (Q; λ) of Sinc(Q,ω) for the dislocation
geometry at 100 K. The gray scale indicates the weight of Lorentzian
terms of widths (rates) λ̃ within a histogram bin; the sum of all weights
for each Q is normalized to one. The widths are reported relative to
the mean residency time in bulk, τoct. Left: The symbols correspond
to the fit widths �log ,[3.4,100] and the curve is the CE model fit to
those widths as a function of Q. Right: The curve is the CE model
using the distance between bulk nearest neighbor octahedral sites as
the jump distance and diffusivity from KMC simulations, so that the
curvature matches the diffusivity; note the vertical scale is two orders
of magnitude smaller. Unlike the bulk case in Fig. 4, there is no single
width that represents the distribution of weights even at small Q. The
majority of the weight for each Q is distributed among eigenvalues
that are much smaller than �log ,[3.4,100].

widths for the different fits. If we consider a uniform distri-
bution of eigenvalues that extends over a range that is twice
the mean width, then λ̄ equals the mean width, �[0,∞] is 2

3 λ̄,
and �ω2,[0,∞] is 0.9307λ̄. Thus, �[0,∞] < �ω2,[0,∞] < λ̄. The
distribution of eigenvalues and weights from the dislocation
geometry is more complicated than a uniform distribution, so
we also consider an experimentlike fit over a fixed range of
energies.

Experiment cannot probe Sinc(Q,ω) for arbitrarily small or
large energies or Q magnitudes. The experimental resolution,
±3.4 μeV, and the experimental window, ±100 μeV [9],
limit the range of energies accessible in QENS experiments.
Therefore, we also try a least squares fit over a fixed range. The
Sinc(Q,ω) spectra are sums of Lorentzians that span multiple
orders of magnitude. To avoid having just a few sharply peaked
terms in Sinc(Q,ω) dominate the fit, we use a logarithmic least

squares fit to Sinc(Q,ω),

χ2
log ,[3.4,100] =

∫ 100 μeV/�

3.4 μeV/�

dω

[
log[Sinc(Q,ω)]

− log

(
�

π (�2 + ω2)

)]2

, (16)

over the same range as experimental measurements. As there
is no closed-form analytic expression, we evaluate the integral
using a quadrature with Nω equally spaced ω values over the
interval [3.4,100]. We denote the width that minimizes this
error as �log ,[3.4,100], and it is the fit that best represents the
experimental analysis.

Figure 5 shows that a Lorentzian of width �log ,[3.4,100] is the
best fit to Sinc(Q,ω) in the range of experimentally accessible
energies. At low temperatures, λ̄ performs better than �ω2,[0,∞],
because many of the terms with large weights have widths
that are smaller than the experimental resolution. Since
Sinc(Q,ω) is sharply peaked at low temperatures, the range
of experimentally accessible energies approaches the large �ω

limit where λ̄ is exact. As temperature increases, Sinc(Q,ω)
becomes less sharply peaked. At intermediate temperatures,
�ω2,[0,∞] becomes a better representation of the part of the
function that falls within the experimentally observable range.
Neither �ω2,[0,∞] nor λ̄ is a good fit within the experimentally
observable range of �ω for the entire range of temperatures.

Figures 6 and 7 show that neither �log ,[3.4,100] nor CE fits
to �log ,[3.4,100] capture physical rates that dominate Sinc(Q,ω),
but �log ,[3.4,100] matches well with the widths from experiment
for deformed palladium. The spread of the density of rates of
Sinc(Q,ω) for hydrogen in the dislocation cannot be captured
by a single Lorentzian width even at small Q. At 100 K,
�log ,[3.4,100] is over an order of magnitude larger than the
highest weighted widths. This corroborates with Fig. 5 that at
low temperatures the widths with the largest weight are smaller
than the experimental resolution and are not represented by
�log ,[3.4,100]. The CE model parametrized with the diffusivity
from KMC and the distance between nearest neighboring
octahedral sites in bulk spans a smaller range of widths that
falls closer to the higher weighted widths. However, Fig. 6
shows that the spread in the density of rates of Sinc(Q,ω) cannot
be described as a single width. The density of rates of Sinc(Q,ω)
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FIG. 7. Chudley-Elliott fit to the widths of Sinc(Q,ω) for the dislocation geometry. Left: The symbols correspond to �log ,[3.4,100] and the
lines are CE fits to those widths for each temperature. The CE model captures the trend of the fitted widths as a function of Q. The widths from
the least squares fit of log[Sinc(Q,ω)] vary across the same orders of magnitude for increasing temperatures as seen in experiment [9] (right).
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FIG. 8. Jump distance as a function of temperature. The com-
puted jump distances from CE fits to �log ,[3.4,100] vary nonmono-
tonically and span the same range as found in experiment [9].
For comparison, the distance between two octahedral sites in bulk
≈2.724 Å, and the distance between an octahedral site and a
tetrahedral site ≈1.668 Å.

features large gaps between eigenvalues with large weights,
because the spectrum of rates is not continuous. In bulk, there
are only two rates νOT and νTO, while the dislocation produces
a range of rates. As temperature increases, the relative size of
these gaps decreases. The trend of �log ,[3.4,100] is well described
by the CE model for all temperatures in Fig. 7(a). Even though
�log ,[3.4,100] is a poor representation of Sinc(Q,ω), we find
good agreement between �log ,[3.4,100] and the experimental
widths in Fig. 7(b) by using the same fitting approach. As
with experiment, we can extract a mean residence time and
an average jump distance for each temperature from these fits
to the Chudley-Elliott model, and make a model of diffusivity
that we can compare with the direct KMC diffusivity values.

Figure 8 shows that the jump distances extracted from
the CE fits to �log ,[3.4,100] are nonmonotonic as a function
of temperature and larger than distances in our dislocation
geometry at higher temperatures, similar to those found
by experiment. Jump distances between nearest neighbor
octahedrals in the expanded region below the core, ∼2.74 Å,
are less than 1% larger than the nearest neighbor octahedral
distance in bulk. In the core, the interstitial sites are sheared,
and it is difficult to classify these sites as octahedral or
tetrahedral sites. However, the jump distances between every
other site are similar to the nearest neighbor octahedral site
distances below the core. The distance between each site in
the core alternates between ∼1.43 and ∼1.62 Å. Distances
between sites in the core that connect to sites in the expanded
region below the core are either ∼0.95 or ∼1.59 Å. None of
these distances account for the large jump distances extracted
from the CE model and χ2

log ,[3.4,100]. Rather, it suggests the
behavior is an artifact of the fitting procedure.

Figure 9 shows that the experimentlike fit χ2
log ,[3.4,100] yields

a diffusion barrier that is lower than the KMC diffusion barrier.
From our KMC simulations we find an effective diffusion
barrier of Ea = 0.125 eV. The diffusion barrier obtained from
a CE fit to �log ,[3.4,100] is Ea = 0.068 eV, which matches the
experimentally observed diffusion barrier [9]. Depending on
temperature, different Lorentzian terms dominate Sinc(Q,ω)
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FIG. 9. Diffusivities extracted from CE fits compared to diffu-
sivity extracted from kinetic Monte Carlo simulations. The error
bars of the KMC data points are smaller than the symbol sizes.
A linear least squares fit over experimentally accessible energies
χ 2

[3.4,100] underpredicts diffusivity and is noisy due to widths as
a function of Q that are not well described by the CE model.
Increasing the experimental window χ 2

[3.4,200] and decreasing the
experimental resolution χ 2

[1,100] predict slightly different diffusivities,
but neither leads to better agreement with KMC. The diffusion barrier
from the experimentlike fit χ 2

log,[3.4,100] is smaller than the diffusion
barrier from KMC simulations, because χ 2

log,[3.4,100] overpredicts
diffusivity at low temperature but underpredicts diffusivity at high
temperature. A smaller experimental resolution χ 2

log,[1,100] has no
effect on the extracted diffusivity. A larger experimental window
χ 2

log,[3.4,1600] predicts slightly different diffusivity but still does not
improve agreement with the diffusivity obtained from KMC.

in the fixed range of [3.4,100]. The lower diffusion barrier
is a result of the χ2

log ,[3.4,100] fit overpredicting diffusivity
at low temperatures and underpredicting diffusivity at high
temperatures. One might think that increasing the range of en-
ergies over which we fit Sinc(Q,ω) would improve the accuracy
of the extracted diffusivity. However, we find that including
lower energies in the fitting range [1,100] has little effect on
the diffusivity. As we extend the experimental window from
100 to 1600 μeV (χ2

log ,[3.4,100] to χ2
log ,[3.4,1600]), the extracted

diffusivity approaches the diffusivity from λ̄, which does not
agree with the diffusivity from KMC simulations. We also
compare these values to a linear least squares fit over the
range of experimentally accessible energies, which is more
sensitive to changes in the lower limit of the energy range.
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Using this linear least squares fit, the widths as a function of
Q are not well described by the CE model for any range of
energies, especially for high temperatures, which leads to poor
predictions of diffusivity.

IV. CONCLUSION

This work illustrates two major conclusions. First, DFT is
able to quantitatively predict pipe diffusion and is consistent
with experiment. We find low diffusion barriers from sites in
the expanded region below the partial core into the partial
core and a diffusion pathway inside the partial core with low
diffusion barriers. This pathway allows diffusing hydrogen
atoms to bypass other hydrogen atoms by moving from the
lowest energy states below the partial cores to slightly higher
energy states inside the partial cores. Second, traditional
analysis of QENS spectra, i.e., representing Sinc(Q,ω) as a
single Lorentzian and using a Chudley-Elliott model to extract
diffusivities, oversimplifies the data and leads to errors in the
diffusivity. Furthermore, these errors are difficult to detect
using experimental data alone. The Chudley-Elliott model
matches the trend of the experimental widths as a function
of Q and leads to an Arrhenius relationship between the
model diffusivity and temperature. Only the jump distance
as a function of temperature behaves unusually. Fixing the
jump distance to be the bulk distance between nearest neighbor
octahedral sites produces worse fits of the experimental widths
as a function of Q but has little effect on the model diffusivity.
The deviation between the diffusivity we calculate with KMC
and those we calculate using an experimentlike fit differs
by more than what could be accounted for by differences
between the fitted jump distances from experiment and bulk

jump distances. Experiments need to be compared to the
incoherent scattering function directly using a computational
model that can predict the incoherent scattering function and
diffusivity. This approach is general and could be applied to
other systems with anisotropic diffusion, such as diffusion near
grain boundaries and interfaces.
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APPENDIX: SPHERICAL AVERAGING

We evaluate Sinc(Q,ω) on a spherical grid of points to
compute the spherical average. We use uniformly spaced
points for φ from 0 to 2π . For θ , we use one-dimensional
Gauss quadrature, specifically, Gauss-Legendre nodes with
weights ci [35]. The Gauss-Legendre nodes span the interval
[−1,1]. We take the inverse cosine of the nodes to get θ points
that span 0 to π . Our expression for the approximate integral
is

Sinc(Q,ω) ≈ 1

Nφ

Nφ∑
j=1

Nθ∑
i=1

ci · Sinc[Q(θi,φj ),ω], (A1)

where Nθ and Nφ are the number of grid points.
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[5] X. Tang, K. P. D. Lagerlöf, and A. H. Heuer, J. Am. Ceram. Soc.

86, 1560 (2003).
[6] M. Legros, G. Dehm, E. Arzt, and T. J. Balk, Science 319, 1646

(2008).
[7] H. Kimizuka and S. Ogata, Phys. Rev. B 84, 024116

(2011).
[8] D. R. Trinkle, H. Ju, B. J. Heuser, and T. J. Udovic, Phys. Rev.

B 83, 174116 (2011).
[9] B. J. Heuser, D. R. Trinkle, N. Jalarvo, J. Serio, E. J. Schiavone,

E. Mamontov, and M. Tyagi, Phys. Rev. Lett. 113, 025504
(2014).

[10] C. T. Chudley and R. J. Elliott, Proc. Phys. Soc. 77, 353
(1961).

[11] Y. Li and G. Wahnström, Phys. Rev. Lett. 68, 3444 (1992).
[12] Y. Li and G. Wahnström, Phys. Rev. B 46, 14528 (1992).
[13] J. M. Rowe, J. J. Rush, L. A. deGraaf, and G. A. Ferguson, Phys.

Rev. Lett. 29, 1250 (1972).
[14] M. J. Gillan, J. Phys. C 19, 6169 (1986).

[15] M. E. Björketun, P. G. Sundell, G. Wahnström, and D. Engberg,
Solid State Ionics 176, 3035 (2005).
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