
PHYSICAL REVIEW B 94, 054108 (2016)

Effects of strain on the stability of tetragonal ZrO2
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The tetragonal form of ZrO2 is used in a wide range of technologies. In this study, we systematically explore the
effect of strain on the relative stability of symmetrically equivalent tetragonal variants of ZrO2 using first-principles
density functional theory. We focus, in particular, on the role that strain plays in altering metastability and causing
dynamical instabilities as these properties affect the mechanisms of ferroelastic switching. We also discover the
emergence of a dynamical instability in tetragonal ZrO2 at its high temperature equilibrium volume. This indicates
that the high-temperature thermodynamic properties of tetragonal ZrO2 have important anharmonic vibrational
contributions that cannot be captured with the quasiharmonic approximation. Finally, we determine that the
instability of tetragonal ZrO2 at large volumes leads to a new orthorhombic phase having a P 212121 space group.
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I. INTRODUCTION

Zirconia (ZrO2) and its alloys are used in a wide variety
of applications. As a pure oxide, it has much in common with
HfO2 and can serve as a high-k dielectric material in dynamic
random access memory devices (DRAM) [1,2]. When alloyed
with Y2O3, the resulting yttria-stabilized zirconia exhibits high
oxygen conductivities making it an ideal solid electrolyte in
oxygen fuel cells [3,4]. Yttria-stabilized zirconia is also used
as a thermal barrier coating on jet engine turbine blades due in
part to its low thermal conductivity and high toughness [5–8].

ZrO2 is one of the many oxides that can form in the Zr-O
binary [9–13] and can exist in one of three polymorphs under
normal pressures depending on its temperature [14]. As a
bulk phase, ZrO2 is stable in a monoclinic crystal structure
at low temperature, transforming to a tetragonal form above
1478 K [9]. At temperatures above 2500 K, ZrO2 adopts
cubic symmetry [9,10,15]. Several orthorhombic polymorphs
become stable at high pressures [16–18].

It is well known that cubic ZrO2 is dynamically unstable at
zero degree Kelvin with respect to a cooperative oxygen shuffle
that takes it to the tetragonal form [19–24]. The emergence
of cubic ZrO2 at high temperatures has been attributed to
large anharmonic vibrational fluctuations that on average
impart the crystal with cubic symmetry [21,25]. In contrast,
various approximations to density functional theory (DFT)
predict lower-temperature tetragonal and monoclinic variants
of ZrO2 to be dynamically stable at their zero degree Kelvin
equilibrium volumes [22–24].

Tetragonal ZrO2 is especially important from a techno-
logical perspective. ZrO2 adopts the tetragonal form when
grown as a thin film for dielectric applications, maintaining
tetragonal symmetry down to room temperature [26–28].
In thermal barrier coatings, the twinned microstructures of
tetragonal ZrO2 are exploited to increase toughness as the
growth of favorably aligned tetragonal domains, mediated
by twin boundary motion, can relieve stresses at crack tips
[29,30].

Strain plays an important role in many applications where
tetragonal ZrO2 and its alloys are used. Epitaxial films are
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invariably subjected to anisotropic strain boundary conditions.
The complex twinned and partially transformed microstruc-
tures of ZrO2 in high-temperature applications also exhibit
strong variations in local strain. Large strains are present
along coherent twin boundaries separating differently oriented
tetragonal variants of ZrO2. The effect of strain on the relative
stability of the various polymorphs of ZrO2 remains mostly
unexplored and poorly understood.

Here we investigate the coupling between strain and
oxygen-shuffle degrees of freedom in tetragonal ZrO2. This
coupling determines the mechanisms of ferroelastic switching
in twinned microstructures of tetragonal ZrO2. We intro-
duce shuffle order parameters that conveniently describe all
symmetrically equivalent tetragonal variants in terms of a
minimal set of variables. Using density functional theory, we
calculate the energy as a function of strain and shuffle order
parameters and construct a phase diagram that maps phase
stability and the onset of dynamical instabilities as a function of
deviatoric strain. We also show that tetragonal ZrO2 becomes
dynamically unstable at zero degree Kelvin at volumes typical
of its high-temperature equilibrium volume. The unstable
phonon modes take tetragonal ZrO2 to an orthorhombic phase
that has not been reported previously. The emergence of
dynamical instability with increasing volume has important
implications for the applicability of the quasiharmonic approx-
imation and raises fundamental questions about the nature of
thermodynamic and mechanical properties in tetragonal ZrO2

at high temperature.

II. METHODOLOGY

Energies were calculated with the PBE parametrization
[31] of the generalized gradient approximation to density
functional theory as implemented in the Vienna ab initio
simulation package (VASP) [32,33]. Projector augmented wave
[33,34] pseudopotentials with valence-electron configurations
of 4s2,4p6,5s1,4d3 and 2s2,2p4 for Zr and O, respectively,
were used. The plane-wave basis energy cutoff was set to
600 eV. A 7 × 7 × 7 Monkhorst-Pack k-point mesh [35] was
used for the 12-atom conventional cells of ZrO2.

The calculated conventional cubic ZrO2 lattice parame-
ter was a = 5.14 Å. The calculated lattice parameters for
tetragonal ZrO2 were a = 5.15 and c = 5.30 Å. Previously
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calculated lattice parameters for the cubic phase have ranges
between 5.034–5.151 Å [22,23,25,36]. Calculated tetragonal
lattice parameters vary between a = 5.029–5.161 Å and c =
5.100–5.383 Å [22,23,25,36]. The variation in calculated
lattice parameters can likely be attributed to a variety of
pseudopotentials being used. Experimental lattice parameters
have been reported to be a = 5.090 Å for the cubic phase and
a = 5.050,c = 5.182 for the tetragonal phase [37].

Phonon dispersion curves for cubic and tetragonal ZrO2

were calculated using a finite-difference approach with the
PBEsol parametrization [38]. The forces arising from single-
atom finite displacements were calculated with VASP. The
forces at surrounding ions are linearly related to the dis-
placement via the interatomic force constants, which were
obtained from a least-squares fit to the calculations. These
force constants were used to calculate the dynamical matrix.
DFT calculations for the cubic ZrO2 dispersion curve utilized
0.03-Å displacements in a 3 × 3 × 3 supercell of the primitive
cell and a 3 × 3 × 3 Monkhorst-Pack k-point mesh. The VASP

implementation [39] of the linear response approximation [40]
was used to calculate the Born effective charges and dielectric
tensors used in the nonanalytical correction to the dynamical
matrix. The corrections accounting for long-range dipole-
dipole interactions were calculated using the interpolation
scheme by Parlinski et al. [41].

For tetragonal ZrO2, harmonic phonon calculations were
performed at volumes ranging between −2% to +10% at
increments of +2%. The c/a ratio of the primitive cells was
optimized manually at each volume, while allowing the ions
to relax. A 15 × 15 × 10 Monkhorst-Pack mesh was used
for tetragonal ZrO2. Perturbations of 0.037 and 0.048 Å were
imposed on the Zr and O atoms, respectively, to extract force
constants in a 3 × 3 × 2 supercell of the 6-atom tetragonal unit
cell using a 5 × 5 × 5 Monkhorst-Pack k-point mesh.

III. RESULTS

The crystal structures of the cubic, tetragonal and mon-
oclinic polymorphs of ZrO2 are shown in Fig. 1. The Zr
atoms in cubic ZrO2 form a FCC sublattice while oxygen
fills the tetrahedrally coordinated interstitial sites, which form
a simple-cubic sublattice [Fig. 1(a)]. Both tetragonal and
monoclinic ZrO2 can be derived from cubic ZrO2 by the
combined application of lattice strains and internal atomic
shuffles. We first focus on the internal shuffles that connect
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FIG. 2. Cubic ZrO2 dispersion curve showing an instability at the
Brillouin zone boundary X point.

cubic and tetragonal ZrO2. This is conveniently achieved
with symmetry-adapted order parameters expressed in terms
of phonon mode amplitudes. We then explore pathways that
connect symmetrically equivalent tetragonal variants with each
other and the cubic form and determine the role of strain in
altering relative stabilities and causing dynamical instabilities.

A. Shuffle order parameters

1. Cubic to tetragonal atomic shuffles

Figure 2 shows the calculated phonon dispersion curves
for cubic ZrO2 along high-symmetry directions in the recip-
rocal lattice of the primitive unit cell of cubic ZrO2. The
dispersion curves incorporate contributions from long-range
dipole-dipole interactions, which leads to the splitting of
the longitudinal- and transverse-optical modes in the vicinity
of � [42]. Consistent with past group theoretical [19] and
first-principles [20,43] lattice dynamical studies, the cubic
form of ZrO2 is predicted to be dynamically unstable. This
is manifested by the imaginary frequencies (represented in
Fig. 2 as negative frequencies) in the calculated dispersion
curves at the X wave vector.

There are three symmetrically equivalent X points in the
Brillouin zone of cubic ZrO2, excluding translationally equiv-
alent points. The 12-atom cubic unit cell shown in Fig. 1(a)
accommodates all phonon modes at the three symmetrically

FIG. 1. ZrO2 crystal structures. An internal oxygen shuffle applied to the cubic form (a) resulting in the tetragonal phase (b). Application
of shear strain results in the monoclinic phase (c).
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FIG. 3. Calculated energy variation with amplitude δz of the z

tetragonal shuffle mode.

equivalent X points. The unstable phonon modes at each X

point correspond to longitudinal shuffles of oxygen atoms
along the cubic axes. The unstable phonon mode leading to
oxygen shuffles along the z axis, for example, is shown in
Fig. 1(b). It can be described as an up and down shuffle of
oxygen residing in alternating (110) planes of the cubic unit
cell. We will refer to this shuffle as the ẑ shuffle. Symmetrically
equivalent oxygen shuffles can occur along the [100] direction
and along the [010] direction. We will refer to these shuffles
as x̂ and ŷ shuffles, respectively.

Displacements along the unstable mode at each X point
break the cubic symmetry and, when coupled with lattice
strains, connect the cubic and tetragonal forms of ZrO2

[19,20,43]. The amplitudes of the unstable phonon modes
at X can therefore serve as order parameters describing the
group/subgroup relationship between cubic and tetragonal
ZrO2 [21]. Following Fabris et al. [21], we denote the
amplitudes for the x̂, ŷ, and ẑ shuffles with δx , δy and δz

respectively. Here we scale the amplitudes such that they
measure the distance in Angstroms with which any oxygen
deviates from its ideal cubic position in the unstrained cubic
reference crystal. Figure 3 shows the calculated energy of ZrO2

as a function of δz while maintaining fixed cubic lattice vectors.
Cubic ZrO2 coincides with the origin in Fig. 3 (δz = 0). As
the amplitude δz increases, the oxygen ions shuffle along
the z axis. A negative amplitude describes a shuffle in the
opposite direction along the z axis and yields a ẑ shuffle
that is equivalent to the positive amplitude ẑ shuffle by a
translation of the cubic ZrO2 lattice. The energy curve in Fig. 3
clearly exhibits negative curvature at δz = 0, consistent with
the imaginary vibrational frequency predicted for this phonon
mode. The energy exhibits two minima at finite amplitudes of
δz corresponding to oxygen displacements of approximately
0.27 Å. Due to the cubic symmetry of the unit cell, identical
energy curves exist as a function of amplitudes δx and δy

for x̂ and ŷ tetragonal shuffles. These results are qualitatively
consistent with the first-principles calculations of Fabris et al.
[21] and Carbogno et al. [25].

2. Relationship between symmetrically equivalent
tetragonal variants

The cubic phase is a convenient reference state for the pur-
pose of relating the three symmetrically equivalent tetragonal
variants to each other. Symmetrically equivalent tetragonal
variants of ZrO2 are frequently observed to coexist within
twinned microstructures in which coherent twin boundaries
separate one tetragonal variant from the other [30,44]. Since
the cubic phase is dynamically unstable with respect to the x̂, ŷ,
and ẑ shuffles, it will also be dynamically unstable with respect
to any displacement field that arises from a superposition
of the three shuffles. The properties of the crystal at the
macroscopic level are determined by the shuffle amplitude
and orientation, but are not affected by the sign of the shuffle
amplitude, which only distinguishes translational variants.
This motivates the introduction of order parameters defined
as linear combinations of the squares of the shuffle amplitudes
δ2
x , δ2

y , and δ2
z according to

η1 = δ2
x + δ2

y + δ2
z , (1)

η2 =
√

3
(
δ2
x − δ2

y

)
/2, (2)

η3 = (
2δ2

z − δ2
y − δ2

x

)
/2. (3)

The definition of these order parameters is guided by how they
transform under symmetry operations of the high symmetry
cubic reference crystal.

The first-order parameter η1 is invariant to any symmetry
operation of the cubic reference crystal. It can be shown that
η1 is equal to the square of the distance of each oxygen from
the center of its tetrahedral site, independent of displacement
direction, for structures generated as a linear superposition of
x̂, ŷ, and ẑ shuffles. The parameters η2 and η3 describe shuffle
orientation and depend on the relative magnitudes of the shuffle
amplitudes δx , δy , and δz. Different combinations of δx , δy , and
δz shuffle amplitudes can be visualized in the η2-η3 plane when
holding η1 constant. By keeping η1 constant, we restrict δx , δy ,
and δz to the surface of a sphere of radius

√
η1, as illustrated

in Fig. 4(a). To enumerate unique combinations of δx , δy , and
δz that affect macroscopic properties, we need only consider
one octant of the sphere, such as the one corresponding to
only positive values of δx , δy , and δz, highlighted in blue
in Fig. 4(a). The other octants describe equivalent shuffle
orderings, differing only by a translation vector of the cubic
ZrO2 primitive cell. Each point on an octant of the sphere can
be mapped to a point in a triangle in η2-η3 space as illustrated
in Fig. 4(b) for the octant corresponding to positive δx , δy , and
δz. Points outside the triangle cannot be realized by physical
shuffles when η1 is held constant.

An η2-η3 plot at constant η1 is roughly analogous to a pole
projection of the positive octant of the sphere in Fig. 4(a). The
corners in Fig. 4(b) are the pure x̂, ŷ, or ẑ shuffles, which we
denote as [100], [010], and [001]. These shuffle orderings
are shown pictorially in Figs. 5(a)–5(c). The midpoints
between pure shuffles along the perimeter of the triangle in
η2-η3 space are shuffles made up of equal contributions of two
pure shuffles and are referred to as [011], [101], and [011]
shuffles. As an example, the oxygen displacements for the
[110] shuffle consisting of equal contributions of a x̂ and ŷ
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FIG. 4. (a) Sphere in δx-δy-δz space. (b) Pole map in η2-η3 space
at a fixed η1, showing the relationship between the symmetry-adapted
shuffle orientation parameters ηs to shuffle directions [δxδyδz]. The
green triangle bounds the region of allowed values when η1 is held
constant.

shuffle is shown in Fig. 5(d). The origin of the η2-η3 plane
corresponds to an equal superposition of all three shuffles,
denoted by [111]. The pattern of this shuffle is shown in
Fig. 5(e).

3. Energy surfaces between tetragonal variants

The shuffle order parameters enable a visualization of
pathways that connect all three symmetrically equivalent
tetragonal variants to each other in a two-dimensional space.
Figure 6 shows the calculated energy of cubic ZrO2 as a
function of η2 and η3 for fixed η1. The value of η1 was set
equal to the oxygen displacement distance that minimizes the
energy of the pure ẑ shuffle (Fig. 3). The energy surface in
Fig. 6 shows minima at the corners of the triangle in η2-η3 space
corresponding to the pure x̂, ŷ, and ẑ shuffles. An equal mixture
of all three shuffles at the origin of η2-η3 space coincides with
a maximum in energy, while the minimum-energy pathway
between any pair of pure shuffles passes through a shuffle
consisting of an equal superposition of the end state shuffles.
For example, the minimum energy path between [100] and
[001] shuffles passes through [101].

The energy surface of Fig. 6 is restricted to constant η1.
While the chosen value for η1 in Fig. 6 minimizes the energy
of pure x̂, ŷ, and ẑ shuffles, it may not correspond to the optimal
value when combinations of oxygen shuffles are imposed.

[100] [010]

[110]

[001]

[111]

x

y

z

(a) (b) (c)

(d) (e)

FIG. 5. Oxygen displacements associated with the (a) [100], (b)
[010], (c) [001], (d) [110], and (e) [111] directions represented in the
conventional cubic cell. The light green Zr atoms are in a plane above
the red O atoms, while the dark green Zr atoms are in a plane below
the O atoms.

Figure 7 shows the variation of the energy as a function of
√

η1

for the [001], [011], and [111] shuffle orderings. The energy
minimum along η1 for the [001] pure ẑ shuffle is lower than
for the [011] and [111] shuffle orderings and occurs at a larger
magnitude of η1. The [011] shuffle ordering, consisting of an
equal mixture of ŷ and ẑ shuffles, has a slightly higher energy
minimum than [001] that occurs at a smaller magnitude of η1.
The energy minimum for the [111] shuffle ordering occurs at
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FIG. 6. A calculated energy surface of shuffles parameterized by
η2-η3 applied to a cubic lattice. There are three equivalent energy
wells due to cubic symmetry.
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FIG. 7. Variation of
√

η1 in the [001], [011], and [111] directions
in a cubic unit cell at the equilibrium tetragonal volume.

a value of η1 similar to that of the [011] shuffle ordering, but
is even higher in energy. Although the energy of the different
shuffle orderings is sensitive to the value of η1, the qualitative
shape of the energy surface in the η2–η3 plane (Fig. 6) is
unaffected by the value of η1. Calculated energy contours at
three different η1 values are shown in Fig. S1 in Ref. [45]. The
minima remain at the vertices corresponding to the pure x̂, ŷ,
and ẑ shuffles, independent of whether η1 is larger or smaller
than the equilibrium η1 value for a particular shuffle ordering.

The energy surfaces of Figs. 6 and 7 neglect the role of
additional phonon modes that may be activated to further
lower the energy of the crystal as the oxygen shuffle deviates
from a pure x̂, ŷ, or ẑ shuffle. We explored the importance of
additional phonon modes by performing nudged elastic band
(NEB) calculations between a x̂ shuffle and a ẑ shuffle within
the 12 atom cubic ZrO2 unit cell. The minimum energy path
between these two shuffles is shown by the red circles in
Fig. 8(a). Although the NEB calculations indicate that the
maximum energy along this path is dominated by a mixed
[101] shuffle ordering, additional phonon modes are also
activated along the path. Furthermore, η1 does not remain
constant along the path, but adopts a slightly smaller value
compared to its equilibrium value in the pure x̂ and ẑ shuffles.
This is shown in Fig. 8(b) where the value of η1 and the
norm of the residual displacements (per atom) (after projecting
out the pure x̂ and ẑ shuffle components) are plotted along
the NEB minimum energy path. Figure S2(a) in Ref. [45]
shows the decomposition of the NEB displacements into a
contribution of solely x̂ and ẑ shuffles, while Fig. S2(b) shows
the residual displacements. The residual displacements cause
the oxygen atoms to oscillate in unison towards each other
along the y axis, then away. This anisotropic breathing mode
is not to be mistaken for the ŷ shuffle in which the oxygens in
alternating (110) planes shuffle in opposite directions. In terms
of magnitudes, the NEB displacements are dominated by the
x̂ and ẑ modes, where the maximum displacement distance
is 0.27 Å. In contrast, the maximum value of the residual
displacements is only 0.034 Å along the path.

Although the residual displacements are small in magni-
tude, their impact on the energy barrier between the x̂ and
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(b)

(a)

FIG. 8. (a) Comparison of energy barriers between the x̂ and
ẑ shuffle along the path obtained from nudged elastic band (red
circles) and along a path obtained involving only x̂ and ẑ modes
(green squares). (b) The RMS shuffle magnitude

√
η1 along the NEB

path from the x̂ to ẑ shuffle (green squares) as well as the RMS
magnitude of residual displacements activated along the path that are
not attributable to the x̂, ŷ, and ẑ shuffle modes (red circles).

ẑ shuffles is significant. The energy barrier for a pathway
involving only x̂ and ẑ modes, shown in green squares in
Fig. 8(a), is twice as high as that calculated along the NEB
path. This suggests that Fig. 6, while qualitatively capturing the
variation of the energy landscape between the various shuffle
modes, should be viewed as an upper-bound estimate to the
true minimum-energy path.

B. Strain

While the cubic, tetragonal, and monoclinic forms of ZrO2

can be distinguished from each other on the basis of their
atomic displacements within a common 12-atom unit cell, in
their fully relaxed equilibrium states (at constant pressure),
they also adopt different lattice vectors. Strain metrics can be
used to track variations in lattice parameters and angles.

Various metrics of finite deformation, such as the Lagrange,
Euler, and Hencky strains, can be defined in terms of the de-
formation gradient tensor F . For homogeneous deformations,
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F relates a deformed lattice to a reference lattice according to

L′ = FL,

where L refers to a 3 × 3 matrix containing the lattice vectors
of the reference crystal as columns

L = [�a �b �c],

and where L′ is defined similarly for the deformed crystal.
The deformation gradient tensor can be uniquely decomposed
into a product of a rotation matrix R and a symmetric stretch
matrix U as

F = RU.

In this study, we use the Hencky strain metric, which is defined
in terms of the stretch tensor as

H = ln U.

Evaluation of the natural logarithm is possible using the
eigendecomposition of the stretch matrix, resulting in a
Hencky strain tensor of the form

H =
⎛
⎝

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠.

As with the symmetric stretch matrix U , the Hencky strain
tensor is also symmetric.

Instead of relying on the Cartesian components of the
Hencky strain tensor, it is more convenient to use strain order
parameters defined as symmetry-adapted linear combinations
of the components of the Hencky strain tensor. Useful strain
order parameters (SOPs) can be defined when measuring strain
relative to the cubic reference lattice according to

e1 = εxx + εyy + εzz√
3

, (4)

e2 = εxx − εyy√
2

, (5)

e3 = 2εzz − εxx − εyy√
6

, (6)

e4 =
√

2εyz, (7)

e5 =
√

2εxz, (8)

e6 =
√

2εxy, (9)

where the Cartesian axes are aligned with the cubic axes.
These SOPs are especially useful to distinguish between

the cubic, tetragonal, and monoclinic forms of ZrO2 as well
as all symmetrically equivalent tetragonal and monoclinic
variants that can be derived from a single cubic form. The
first SOP, e1, represents a dilatational strain and is invariant
to cubic symmetry operations. An advantage of the Hencky
strain metric (compared to more common strain metrics such
as Lagrange and Euler) is that any deformation at constant
e1 occurs at constant volume [46]. The e2 and e3 SOPs
describe all deformations that take the reference cubic crystal
at e2 = e3 = 0 to tetragonal or orthorhombic symmetry. This is
illustrated in Fig. 9. Increasing e3 while keeping e2 = 0 results
in a tetragonal distortion of the cubic reference crystal, with

−0.10 −0.05 0.00 0.05 0.10
e2

−0.10

−0.05

0.00

0.05

0.10

e 3

x

z

y

FIG. 9. An e2-e3 strain map showing how deviatoric strains
along the dashed axes transform a cubic cell into tetragonal cells
with different orientations. The pink, yellow, and blue regions
show the regions where the ẑ, x̂, and ŷ shuffles, respectively,
are energetically favorable. Cubic (white circle), tetragonal (blue
diamonds), and monoclinic (green squares) strains relative to the
cubic phase projected onto e2-e3 space.

an elongation of the lattice vector parallel to the z axis and a
contraction of the two lattice vectors in the x–y plane. Negative
values of e3 describe a contraction along the z axis coupled
with an isotropic expansion in the x–y plane. Symmetrically
equivalent tetragonal distortions along the x and y axis occur
along the dashed lines in the e2-e3 plane that are rotated by
120◦ from the e3 axis. The regions between dashed lines in
Fig. 9 describe strains that result in orthorhombic symmetry.
The SOPs e4, e5, and e6 describe shear strains.

The e2 and e3 SOPs conveniently map the three sym-
metrically equivalent tetragonal distortions in the same two-
dimensional space. This is shown in Fig. 9. The white
circle at the origin represents the cubic phase, while the
blue diamonds represent the three symmetrically equivalent
tetragonal phases. There are twelve symmetrically equivalent
monoclinic strains that can be derived from cubic ZrO2. Each
monoclinic distortion can be obtained by first straining the
cubic crystal to have orthorhombic symmetry followed by a
shear. The green squares in Fig. 9 represent the deviatoric
strains of the different monoclinic phases. Each green square
in Fig. 9 represents two monoclinic variants, where the two
variants are further distinguished by a shear strain.

1. Effect of e2 and e3 strains on tetragonal ZrO2

Figure 6 shows that the x̂, ŷ, and ẑ shuffles all have the
same energy within a cubic unit cell. Any symmetry-breaking
strain of the cubic lattice, however, will break the degeneracy
among the three shuffles. In this section, we explore how strain
modifies the relative stability among the different shuffles.

Figure 10(a) shows a calculated energy surface for ZrO2 as
a function of η2 and η3 for a unit cell distorted tetragonally
along the e3 axis, corresponding to a stretch along the z axis
and an isotropic compression in the x–y plane. The applied
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FIG. 10. η2-η3 energy landscapes for lattices with strains represented by the blue diamond on the e3 axis (a), red triangle (b), and red
pentagon (c) markers in the pink trisection in Fig. 9. The global minimum ẑ shuffle in (a) is 56 meV/f.u. lower in energy than the x̂ and ŷ

shuffles.

deviatoric strain is indicated by the blue diamond along the
positive e3 axis in Fig. 9. Figure 10(a) shows that for this
strain, the energy well for the ẑ shuffle is a global minimum
while those for the x̂ and ŷ shuffles are only local minima.
Hence, a tetragonal elongation of the cubic axis parallel to the
z axis favors a ẑ shuffle. Nevertheless, since the energy surface
also has local minima for the x̂ and ŷ shuffles, it is possible to
realize a metastable x̂ or ŷ shuffle in a cell that has a tetragonal
distortion along the z axis. We found that these metastable
minima only exist for moderate z-oriented tetragonal strains.
Above a threshold value of e3 the two metastable minima for
the x̂ or ŷ shuffles disappear, and only a ẑ shuffle is stable.

Figure 10(b) shows an energy surface when a compressive
tetragonal distortion is applied to the cubic unit cell along
the y axis (red triangle marker in Fig. 9). It corresponds to a
strain in e2-e3 space between that of a tetragonally elongated
crystal along z and a tetragonally elongated crystal along x.
For this strain, there are two minima coinciding with x̂ and
ẑ shuffles. The ŷ shuffle, however, is not stable at this strain.
The tetragonal symmetry of the strain ensures that the x̂ and
ẑ shuffles are degenerate. All degeneracies among x̂, ŷ, and
ẑ shuffles are lifted when the symmetry is broken further by
a strain that produces orthorhombic symmetry. The energy
surface in Fig. 10(c), for example, is for an orthorhombic
distortion (red pentagon marker in Fig. 9) such that the lattice
is longer in the z direction than the x direction, which is in turn
longer than the y direction. This energy surface shows that the
well for the ẑ shuffle is deeper than that for the x̂ shuffle, while
the ŷ shuffle is unstable.

The effect of the deviatoric strains, e2 and e3, on the relative
stability of x̂, ŷ, and ẑ shuffles is summarized in the phase
diagram of Fig. 11. The contour plot shows the energy of the
deepest well in η2-η3 order-parameter space at each value of
e2 and e3. The ẑ shuffle is globally stable for any combinations
of e2 and e3 strains in the red domain (at constant e1 and zero
shears). Likewise, the ŷ (x̂) shuffle is stable for any strain in
the blue (beige) domain. The phase diagram of Fig. 11 was
calculated at the minimum-energy volume of tetragonal ZrO2.
The cusps at the origin and along the lines of compressive
tetragonal strains (outlined in red) arise due to degeneracies
among two or more wells as in the examples of Figs. 6, 10(a),
and 10(b).

The dashed lines in Fig. 11 signify when local minima
appear or disappear. These correspond to shuffle spinodals
(at zero degree Kelvin) where an initially metastable shuffle
becomes unstable. In the center region, all three shuffles

have local minima. Only one shuffle is stable for large
positive tetragonal distortions, while two local minima exist
for compressive tetragonal distortions. The shuffle spinodals
were determined by relaxing x̂, ŷ, and ẑ shuffles that were
slightly perturbed to determine whether they relax back to a
pure shuffle, or relax to an adjacent shuffle. Additional η2-η3

energy landscapes, similar to those shown in Fig. 10, were
calculated at various strains in the e2-e3 and used to inform the
topology of the shuffle spinodals (dashed lines) delineating the
presence of various local minima. These energy landscapes are
available in Fig. S3 in Ref. [45].

2. Minimum energy path between two tetragonal variants

To consider the simultaneous effects of both strain and
internal shuffles on the energetics during the x̂ to ẑ shuffle
transition, we employ the generalized solid-state nudged
elastic band (G-SSNEB) method as implemented in VASP

TRANSITION STATE TOOLS [47–49]. In contrast to the NEB
method used to to calculate the energy barrier shown in Fig. 8
where only internal atomic relaxations were performed within
a static cubic lattice, the SS-NEB method allows for relaxations

−0.1 0.0 0.1
e2

−0.1

0.0

0.1

e 3

z

xŷ

z+xz+ŷ

ŷ+x

x+y+z

FIG. 11. Contour plot of the energy landscape for tetragonal
internal shuffles at tetragonal e1. Dashed lines show the regions of
the e2-e3 plane where the x̂,ŷ, and ẑ shuffles are metastable. All three
shuffles coexist in the hexagonal-like region in the center, labeled
x̂ + ŷ + ẑ.
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Tetragonal Shuffle

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Δ

E
(e

V
/f.

u.
)

x̂ ẑ
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FIG. 12. (a) The energy barrier between the x̂ and ẑ tetragonal
variants calculated allowing for structural relaxations using the solid-
state nudged elastic band method. (b) The corresponding variation in
strain, which is projected in e2-e3 space as shown in (c).

of the unit cell vectors as well. The resulting energy barrier,
shown in Fig. 12(a), is slightly higher in energy than in Fig. 8(a)
because the end states are the true equilibrium tetragonal
variants having their equilibrium lattice.

The corresponding change in strain during this x̂ to ẑ shuffle
transition is shown in Fig. 12(b). The volume e1 at the x̂

shuffle state decreases towards the reference cubic volume
before increasing again as the structure becomes increasingly
ẑ shuffled. The variation of the deviatoric strains e2 and e3 are
projected in Fig. 12(c) as black circles. The initial strain is in
the center of the energy well belonging to the x̂ shuffle. As the
structure gradually becomes ẑ shuffled, the deviatoric lattice
strains veer towards the cubic reference at the origin. At the
peak of the transformation, while the strain is closest to cubic,
it remains tetragonally distorted, as represented by the black
circle position on the red high-symmetry line in Fig. 12(c).
The lattice is equally strained in both the x and z directions
before fully transitioning to the z oriented tetragonal lattice at
the ẑ energy well.

3. Effect of e1 strain on tetragonal ZrO2

The minima in the energy contour plot of Fig. 11 signify
the equilibrium tetragonal deformations for each of the three
symmetrically equivalent tetragonal shuffle variants at fixed e1.
Since we have used the Hencky strain, the e2-e3 plane describes
deviatoric strains at constant volume. Changing the volume by
varying e1 will shift the position of the global minima in e2

and e3 space, thereby making the degree of tetragonality a
function of volume. Thermodynamically, the volume can be
varied by modifying the temperature. In fact, tetragonal ZrO2

is a high-temperature phase and its equilibrium volume at
elevated temperature (and zero pressure) is larger than its zero
degree Kelvin volume as a result of thermal expansion. The
equilibrium volume at a particular temperature corresponds
to a minimum of the Helmholtz free energy with respect to
volume. For dynamically stable phases, these free energies
can be estimated with the quasiharmonic approximation.

We explored the volume dependence of the free energy
of tetragonal ZrO2 within the quasiharmonic approximation.
Temperature dependent free energies were calculated at fixed
volume within the harmonic approximation for a range of
volumes between 0 to +10% of the zero degree Kelvin volume.
The volume dependence of the Helmholtz free energy can
then be obtained by interpolation. While the dispersion curve
for tetragonal ZrO2 at its zero-Kelvin equilibrium volume,
shown in Fig. 13(a), indicates that this phase is dynamically
stable, we found that a dynamical instability emerges with
increasing volume. The discontinuities in Fig. 13 are a result
of the directional dependence of the nonanalytical correction
to the dynamical matrix. The correction is necessary to account
for dipole-dipole interactions in ionic crystals [41–43]. As the
volume of the tetragonal unit cell increased, corresponding
to an increase in e1, the acoustic modes at the Z wave
vector become increasingly unstable. The calculated phonon
dispersion curve for an 8% volume increase is shown in
Fig. 13(b). There is a clear doubly-degenerate instability at
the Z wave vector, indicating that displacements along this
unstable mode will lead to a lower-symmetry phase having
lower energy.

The atomic displacements associated with one of the
unstable modes at Z are illustrated in Fig. 14(a). A supercell
derived by doubling the primitive tetragonal cell along the
c axis is necessary to preserve the periodicity of phonon
modes at Z corresponding to �k = (0,0,0.5). The structure in
the middle of Fig. 14(a) shows the parent tetragonal ordering,
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FIG. 13. Dispersion curve of tetragonal ZrO2 (a) at equilibrium
volume and (b) at +8% larger than the equilibrium volume. An
instability at Z, corresponding to the point (0,0,0.5) in the irreducible
Brillouin zone, is present in (b).

FIG. 15. Energy landscape of displacements from the two unsta-
ble phonon modes at wave vector Z.

while the structures to the left and right show the displacements
for positive and negative amplitudes of one of the unstable
Z modes. The instabilities correspond to transverse phonon
modes with displacements restricted to the a-b plane of the
tetragonal super cell, which is perpendicular to the propagation
direction.

The tetragonal supercell can be deconstructed as four layers
of green Zr and red O atoms, as shown in Figs. 14(b) and 14(c).
In the phonon mode shown in Fig. 14(b), both Zr and O atoms
oscillate along the b axis, with the heavier Zr atoms displaced
by larger magnitudes than the O atoms. Pairs of layers of Zr
oscillate in the same direction. Every other layer of O atoms
move in opposite directions from one another. Displacements
of the degenerate phonon mode are shown in Fig. 14(c) and
oscillate perpendicularly along the a axis.

Figure 15 shows the calculated energy surface as a function
of the amplitudes of the unstable phonon modes, ζ1 and ζ2. The
local maximum at the origin corresponds to the ideal tetragonal
structure, which serves as the zero-energy reference. There are
four minima, each along either the ζ1 or ζ2 axis.

(b)

a

b

b

a

(c)

a

b

b

a

ζ1

ζ2

(a)

FIG. 14. (a) Illustration of the atoms displaced by the unstable phonon mode at wave vector Z in Fig. 13. The image in the middle is the
equilibrium tetragonal structure. Displacements of phonon modes (b) ζ1 and (c) ζ2 shown in the tetragonal primitive unit cell doubled in the c

axis direction.
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FIG. 16. Varying the magnitude of the unstable phonon mode at
Z at volumes incrementally larger than the equilibrium shows that
the instability appears around +3% of the equilibrium volume. The
energy wells that result from the instability deepen as the volume is
increased.

The impact of volumetric strain, e1, on the stability of one
of the phonon modes of Figs. 14(b) and 14(c) is illustrated
in Fig. 16. For each volume, we calculated the energy as
a function of amplitude ζ1 of the phonon mode illustrated
in Fig. 14(b). The horizontal axis in Fig. 16 measures the
displacement of the Zr atoms relative to their tetragonal
equilibrium positions. The energies of Fig. 16 were calculated
at volumes ranging from +0% to +10% of the equilibrium
volume. At the zero degree Kelvin equilibrium volume of
+0%, the energy is still fairly parabolic, but as the volume
increases to +4%, the energy well flattens and becomes
increasingly anharmonic. Starting at about +6%, two minima
appear at positive and negative displacement amplitudes. The
depth of the two energy wells increases with increasing
volume. Each curve in Fig. 16 was calculated at the minimum-
energy c/a ratio for a given volume.

Examining the structures at the minima of the energy wells
in Fig. 16 reveals that they possess orthorhombic symmetry.
Allowing for a full structural relaxation, we found a previously
unidentified ZrO2 orthorhomic phase, shown in Fig. 17. The
space group was identified as P 212121 (space group No. 19)
using the FINDSYM module of the ISOTROPY software suite

FIG. 17. The orthorhombic P 212121 structure resulting from the
displacement mode illustrated in Fig. 14.

TABLE I. Wyckoff positions of orthorhombic P 212121.

Atom Site Position

O 4a (0.2512,0.4611, − 0.0387)
O 4a (0.2505, − 0.3409,0.2185)
Zr 4a (−0.2488,0.3312, − 0.1346)

[50]. This orthorhombic structure has lattice parameters of
a = 3.485 Å, b = 3.861 Å, and c = 10.577 Å. There are three
Wyckoff positions, which are shown in Table I. The distortions
leading to the orthorhombic phase opens up tunnels running
parallel to the b axis.

IV. DISCUSSION

In this study, we investigated the dependence of stable and
metastable tetragonal oxygen shuffles on lattice strain. This
dependence is summarized in the phase diagram of Fig. 11,
which not only shows the globally stable shuffle orientation as
a function of deviatoric strains e2 and e3, but also delineates
regions where more than one shuffle orientation is locally
stable. The phase diagram clearly shows that there are large
regions in e2 and e3 space where multiple shuffle orientations
are locally stable. In fact, the global energy minima for the
three shuffle orientations reside within a domain in e2 and e3

space where all three shuffle orientations are locally stable.
At sufficiently low temperatures where thermal excitations
are less important, it is therefore possible that a metastable
x̂ shuffle, for example, exists when the crystal is tetragonally
distorted along the z axis (positive e3 with e2 = 0), where
the ẑ shuffle is globally stable. Reorientation of the shuffle
from x̂ to ẑ then requires a nucleation and growth mechanism
due to the local stability of the metastable x̂ orientation. The
boundaries between regions where different numbers of shuffle
orientations are locally stable, as delineated by the dashed lines
in Fig. 11, can be viewed as shuffle spinodals, as they are the
locus of strains where a shuffle orientation that is locally stable
on one side of the line becomes dynamically unstable on the
other side. A shuffle reorientation upon application of a strain
that takes the ZrO2 crystal across a shuffle spinodal will occur
uniformly and without a nucleation and growth mechanism
in a manner that is similar to spinodal decomposition or
spinodal ordering (albeit on vibrational time scales as opposed
to diffusional time scales).

The interplay between shuffle order parameters and strain,
as codified in the phase diagram of Fig. 11, has implica-
tions for the mechanisms of ferroelastic switching at low
temperatures. Ferroelastic switching under an applied load
can occur when coherent twin boundaries (Fig. 18) separating
domains of differently oriented tetragonal variants migrate,
thereby enlarging the tetragonal domains that have their c axis
more favorably aligned with the imposed stress field at the
expense of the domains that are not as favorably oriented.
The equilibrium strain (relative to the cubic reference crystal)
in the interior of each domain will adopt values close to
their global energy minima in Fig. 11. The twin boundaries
and their immediate surroundings, in contrast, localize the
variation in strain needed to go from one global minimum

054108-10



EFFECTS OF STRAIN ON THE STABILITY OF . . . PHYSICAL REVIEW B 94, 054108 (2016)

FIG. 18. A twin boundary between two tetragonal variants, which
are each represented by blue and yellow regions. The gradation in
color illustrates the continuous variation in strain.

in Fig. 11 to another. As a first approximation, the strain
may vary continuously between two global minima as shown
in Fig. 12(c) with much of the strain variation concentrated
at the twin boundary. The halfway point between the x̂

and the ẑ global minima, for example, corresponds to a
compressed tetragonal distortion along the y axis where the
x̂ and ẑ shuffles are degenerate in energy. The η2-η3 energy
surface of Fig. 10(b) shows that at this intermediate strain,
there is an additional barrier to reorient a x̂ shuffle to a ẑ

shuffle. Hence, the twin boundary may migrate, leaving a
new tetragonal strain in its wake, without a reorientation of
the oxygen shuffle. This barrier to reshuffle should introduce
a resistance to twin boundary migration that will be rate
dependent: slow twin boundary migration gives sufficient
time for nucleation and growth of reoriented shuffle domains,
while fast boundary migration will trap high-energy metastable
shuffle orientations. At high temperatures, thermal fluctuations
are likely to modify this picture. Effective Hamiltonians can be
used to predict the equivalent finite-temperature free energy
surface as a function of shuffle and strain order parameters
[51–54]. The dynamics of twin boundary migration can be
explored at the continuum level with appropriate phase-field
models that rely on homogeneous free energies as a function of
shuffle and strain order parameters as well as gradient energy
terms [55–59].

While it is now well established that cubic ZrO2 is dynam-
ically unstable with respect to a cooperative oxygen shuffle at
zero degree Kelvin [19,20,22,24,43,60–62], this work predicts
that tetragonal ZrO2 also becomes dynamically unstable at
volumes typical of its equilibrium volume at high temperature.
The stability of cubic ZrO2 at very high temperatures has been
attributed to large anharmonic vibrational excitations that, on
average, give the crystal cubic symmetry. Fabris et al. [21] ap-
plied molecular dynamics simulations to an LDA-based tight
binding Hamiltonian to study the tetragonal-to-cubic transition
of ZrO2. They interpreted their results in terms of a Landau
free energy description expressed as a function of shuffle
amplitudes and strains. Their analysis predicted a second-order
tetragonal-to-cubic transition of a displacive nature, whereby
the average value of the shuffle amplitude gradually decreases
to zero upon approaching the transition temperature from
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FIG. 19. Energy-volume relationships between the known ZrO2

polymorphs relative to monoclinic ZrO2. The black diamond marker
is the newly identified orthorhombic phase with a space group of
P212121.

below. Carbogno et al. [25] also investigated the tetragonal
and cubic forms of ZrO2 with molecular dynamics simulations
using PBEsol. They found that thermal excitations induce
spontaneous switching between tetragonal shuffle orientations
and concluded that the experimental cubic form of ZrO2

exists as a thermodynamic average of all three tetragonal
displacement orientations. Similar high-temperature stabi-
lization of phases that are dynamically unstable at zero
degree Kelvin has been predicted for perovskites [51,63,64]
and transition metal hydrides [52,53]. The presence of the
instabilities in tetragonal ZrO2 at larger volumes suggests that
large anharmonic vibrational excitations, similar to those that
stabilize cubic ZrO2, are responsible for the stability of the
tetragonal phase at high temperature.

The orthorhombic structure that tetragonal ZrO2 relaxes
into at large volumes where it becomes dynamically unstable
has the P 212121 space group. This new orthorhombic structure
joins a long list of known orthorhombic polymorphs, that
include orthorhombic phases having Pbc21 [65], Pnma,
and Pbca [18] space groups. Both Pbca and Pnma are
stable at elevated pressures, and phonon studies of these
phases at ambient pressures have shown them to be dy-
namically stable [66]. The Pbc21 phase was first found
in magnesium partially-stabilized-zirconia [65]. Figure 19
shows the calculated volume-energy relationships between all
known ZrO2 polymorphs, along with the new P 212121 phase,
represented by a black diamond. The calculated volume-
energy trend shown in Fig. 19 among cubic, tetragonal, and
monoclinic polymorphs is consistent with previous reports
[22,36]. There is a slight volume expansion associated with the
cubic-to-tetragonal transition. A larger volume expansion of
approximately 5% accompanies the transition from tetragonal
to monoclinic ZrO2. The P 212121 phase is larger in volume
than the tetragonal phase and has almost the same volume
as the monoclinic phase. The P 212121 phase, however, is
still approximately 60 meV/f.u. higher in energy than the
monoclinic. There is a general trend in Zr coordination number
and the energy of the crystal, where the energy increases
as Zr coordination increases. The P 212121, Pbca, Pbc21,
and monoclinic polymorphs have Zr atoms that are sevenfold
coordinated by oxygen, and these structures are lowest in
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energy. The Zr atoms in the tetragonal and cubic phases
are eightfold coordinated and are both higher in energy
than the sevenfold coordinated structures. Pnma, which is
under the most compression and has ninefold Zr coordination,
has the highest energy.

A consequence of the emergence of dynamical insta-
bilities in tetragonal ZrO2 with increasing volume is that
the quasiharmonic approximation can not be applied above
the volume at which the instability emerges. Rather, more
elaborate and involved models accounting for the anhar-
monicity [51,53,67–70] of the crystal are required. Our
quasiharmonic calculations suggest that the approximation
becomes invalid for tetragonal ZrO2 above 1500 K, when the
predicted equilibrium volume becomes larger than the volume
at which dynamical instabilities emerge. Recent work by Fultz
and co-workers has also suggested the inadequacy of the
quasiharmonic approximation in capturing anharmonicity in
rutile TiO2 and monoclinic ZrO2 at high temperatures [71,72].
Similar phonon-mode softening with increasing volume was
predicted for rutile TiO2, for example, which is not observed
experimentally [71]. In our study of tetragonal ZrO2, the
volume expansion leads to an actual instability of a phonon
mode that takes the tetragonal crystal to an orthorhombic form
of ZrO2. Given that the new orthorhombic phase is higher
in energy than the monoclinic phase, as well as the other
orthorhombic phases, it is unlikely that it will be observed
experimentally. Instead, the orthorhombic phase corresponds
to a metastable local minimum in the energy surface of
ZrO2 as a function of vibrational degrees of freedom that
can be accessed from tetragonal ZrO2 along a dynamically
unstable phonon mode at large volumes. The crystallography
of the new orthorhombic phase, while likely inaccessible
experimentally, is of importance in determining the nature of
anharmonic vibrational fluctuations that entropically stabilize
the high-temperature tetragonal form of ZrO2.

V. CONCLUSION

We studied the effect of strain on the stability of the oxygen
shuffles characterizing tetragonal ZrO2. Three symmetrically

equivalent tetragonal forms of ZrO2 can be derived from cubic
ZrO2. First-principles electronic structure calculations based
on density functional theory were performed to construct a
phase diagram showing the stability of the three symmetrically
equivalent tetragonal variants of ZrO2 as a function of devia-
toric strains measured relative to cubic ZrO2. The calculated
phase diagram, in addition to showing global stability, also
maps domains where more than one oxygen shuffle is locally
stable. The prediction that several tetragonal shuffles can be
locally stable at the same strain has consequences for mecha-
nisms of ferroelastic switching. We also explored the effect of
dilational strain (volume expansion) on the stability of tetrag-
onal ZrO2 and predict that a dynamical instability emerges at
its high-temperature equilibrium volume. This result indicates
that tetragonal ZrO2 belongs to a class of phases, that includes
rutile TiO2 [71] and monoclinic ZrO2 [72], in which an
increase in volume leads to large anharmonic vibrational
excitations that cannot be described within the quasiharmonic
approximation.
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