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An atomic interaction is identified in all perovskite compounds, such as ABO3 oxides, that can potentially
result in unconventional structures. The term is harmonic in nature and couples the motions of the A cations
with the rotations of the oxygen octahedra in the perovskite lattice. When strong enough, this coupling leads
to hybrid normal modes that present both (anti)polar and rotational characters, which are keys to understand a
variety of exotic phases. For example, we show that not only does this new coupling explain the long-period soft
phonons characterizing prototype antiferroelectric PbZrO3, but it also provides us with an unified description of
the complex antipolar structures of a variety of perovskites, including the possible occurrence of incommensurate
phases. This coupling is further demonstrated to result, in the continuum limit, in an energy invariant adopting
an analytical form that has been previously overlooked, to the best of our knowledge.
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I. INTRODUCTION

Antiferroelectrics (AFEs) form a class of important ma-
terials that are currently receiving a lot of attention, mainly
because they are promising candidates for obtaining high-
density energy storage [1–5]. They are also fundamentally
challenging and interesting, as, e.g., demonstrated by recent
activities aimed at understanding the unusual ground state of
the prototype compound PbZrO3 (PZO) [6–12].

PZO’s ground state displays the Pbam symmetry and is
mostly characterized by two strongly unstable soft phonon
modes [6–9,12]. The first of these modes is labeled R+

4
according to its symmetry, and is rather simple: it features the
typical antiphase tilting of the O6 octahedra in the perovskite
lattice. This mode is therefore associated with the zone
boundary 2π/alat (1/2, 1/2, 1/2) k point of the cubic first
Brillouin zone, where alat is the lattice constant of the five-atom
cubic perovskite cell. The second mode is more complex,
as evidenced by the unusual pattern of lead and oxygen
displacements shown in Figs. 1(a) and 1(b). It is labeled �2

and is associated with the 2π/alat (1/4, 1/4, 0) k point. The
anti-polar Pb motions in Fig. 1(a) are usually mentioned as
the essential feature characterizing the PZO’s antiferroelectric
phase. (Here we use the terms antipolar and antiferroelectric
indifferently. As regards the definition of antiferroelectrics,
we adopt the one proposed in Ref. [13].) Finally, the Pbam

ground state also presents a relatively small distortion inherent
to a third, weaker soft mode; this final mode has S4 symmetry
and is associated with the 2π/alat (1/4, 1/4, 1/2) wave vector
[see Figs. 1(d)–1(f)].

Recent works [6–8] suggest that a trilinear coupling
between the predominant R+

4 , �2, and the weaker S4 modes
plays an important role to stabilize PZO’s Pbam ground
state. More precisely, first-principles calculations [6] show
that, while the contribution of the trilinear term to the energy
is relatively small—27 meV per formula unit (fu) out of the
392 meV/fu energy gain of the ground state with respect to
the cubic high-symmetry phase—it is nevertheless critical for
the AFE phase to prevail over competing polymorphs. Now,

while valuable, the existing theories have not addressed a
critical, necessary ingredient for the preeminence of the Pbam

phase, namely, the strongly unstable character of the exotic �2

mode, which accounts for about 250 meV/fu of the energy
reduction. In this work, we reveal the atomistic couplings
responsible for the occurrence of such an unusual structural
instability.

Interestingly, such atomistic couplings exist in all per-
ovskite compounds, and involve (anti)polar displacements of
the A cations in the perovskite lattice (Pb in PZO’s case) and ro-
tations of the O6 octahedra. Remarkably, they can also explain
and hold the key to understand many other nontrivial antipolar
states (see, e.g., Refs. [14–16] and references therein) and
even incommensurate phases [17,18] in various perovskites
possessing a structural complexity that has acted as a major
deterrent of detailed studies. In other words, the presently
discovered couplings also provide an unified description of
many antiferroelectric and incommensurate perovskites.

The manuscript is organized as follows. Section II describes
these atomistic couplings, while Sec. III demonstrates their
relevance to antiferroelectrics and incommensurate crystals.
Section IV provides a further discussion that establishes, and
compares with previous works, the analytical form that these
atomistic couplings take in the continuum limit. Finally, Sec. V
concludes this article.

II. INTERATOMIC COUPLINGS

Let us start by adopting the convention that the B cations
of the ABO3 perovskite compounds are at the corners of the
reference five-atom cell, the A cations being at the cell center.
Let us denote by ui the vector representing the off-centering
displacement of the A cation at cell i with respect to its ideal
position in the cubic reference structure. For instance, the
pattern of ui’s associated with the Pb displacements in the �2

mode of the AFE ground state of PZO is shown in Fig. 1(a). In
that case, these ui vectors are either parallel or antiparallel to
the pseudocubic [1̄10] direction. Figure 1(a) further indicates
that the ui’s in the �2 mode follow a “+ + −−” pattern when
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the �2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the �2

mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s �2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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Here, we set up to identify the simplest O(uω) couplings
that may potentially lead to hybrid phonons as PZO’s �2 and
S4 modes. The simplest (in the sense that it involves relatively
close neighbors) interaction that we found has the form:

�E = K
∑

i

∑

l,m,n=0,1

∑

α,β,γ = x,y,z

× εαβγ ui,αωilmn,β (−1)(lx+my+nz)γ , (1)

where K is a material-dependent constant that characterizes
the strength of this coupling. The sum over i runs over all
the five-atom cells of the perovskite structure, and the x,
y, and z subscripts denote the Cartesian components of the
ui vectors and ωi pseudovectors—with the x, y, and z axes
being chosen along the pseudocubic [100], [010], and [001]
directions, respectively. ωilmn (with l,m,n = 0 or 1) represents
the rotation of the O6 group in the cell that is reached from i by
following the lattice vector Rlmn = alat(lx + my + nz). (lx +
my + nz)γ is the γ component of the vector in parenthesis.
Finally, εαβγ is the Levi-Civita symbol, i.e., it equals 1 when
the ordered triad αβγ forms a right-handed system, −1 when
left-handed, and 0 when there are repeated indexes. Figure 2
schematizes coupling terms inherent to Eq. (1).

Let us now consider distortions given by

ui,α = Aα{exp[i(kα · Ri + φα)] + c.c.},
(2)

ωi,α = A′
α{exp[i(k′

α · Ri + φ′
α)] + c.c.},

where Ri is the lattice vector corresponding to cell i and
α = x,y,z. The kα wave vectors characterize the spatial
modulation of each of the components of the ui vectors.
Similarly, the k′

α vectors define, in direction and length, the
modulated distortions of the Cartesian components of the ωi

pseudovectors. The Aα and A′
α scalars quantify the magnitude

of the u and ω distortions, respectively, and are taken to be
real. The φα and φ′

α angles are phases characterizing specific
u and ω patterns, respectively.

FIG. 2. Sketch of representative coupling terms in �E of Eq. (1).
Only the couplings involving ui,z are schematized here, since the
remaining terms can be straightforwardly derived from the ones
shown by applying the symmetry elements of the cubic Pm3̄m

space group. The blue arrow on the central A cation stands for
the ui,z displacement. The green and red arrows on the corner B

cations represent the x and y components, respectively, of the ω

pseudovectors.

By inserting Eqs. (2) into Eq. (1), we can identify which
combinations of kα and k′

α wave vectors result in an interaction
via this new coupling. Hence the expression for the energy can
be rewritten as

�E

K =
∑

α,β=x,y,z

AαA′
β

∑

G

[fαβδ(G − kα − k′
β)

+ f ∗
αβδ(G + kα + k′

β)

+ gαβδ(G + kα − k′
β) + g∗

αβδ(G − kα + k′
β)], (3)

where δ is the Dirac delta function and G runs over the
reciprocal lattice vectors corresponding to the five-atom cubic
perovskite structure. The fαβ and gαβ coefficients are given by

fαβ = exp [i(φα + φ′
β)]aαβ (4)

and

gαβ = exp [i(−φα + φ′
β)]aαβ, (5)

where

aαβ =
∑

η=x,y,z

εαβη

∏

γ=x,y,z

[1 + (−1)δγ η exp (ik′
β,γ alat)] (6)

with δγη being the Kronecker δ and k′
β,γ the γ component of

the k′
β vector.

III. APPLICATIONS OF THE INTERATOMIC COUPLINGS

Having introduced the basic equations for this new coupling
energy, let us inspect what the implications are as regards the
possible occurrence of AFE and other complex instabilities in
perovskite lattices. More precisely, we will consider a number
of complex distortion patterns and show that they lead to
reduction of the energy of the cubic perovskite phase via the
new interaction term.

A. The �2 antiferroelectric mode

Let us first consider the case of kx = ky = π
2alat

(x + y).
The Dirac functions of the type δ(G − kα − k′

β) in Eq. (3)
imply that for k′

β = −kx = −ky , we can, in principle, have
interactions contributing to �E

K . Now, it is immediate to see
from Eq. (6) that axy = ayx = 0 for this choice of wave vectors.
(We also trivially have axx = ayy = 0.) Nevertheless, we do
have a nonvanishing result when we consider k′

z = −kx =
−ky . For such a k′ point we can prove that axz and ayz are
finite and Eq. (3) becomes

�E(�2)

K = −8AxA
′
z cos(φx + φ′

z) + 8AyA
′
z cos(φy + φ′

z).

(7)
Further, it is clear from Eq. (7) that the interaction is maximized
in specific cases; for example, when both φx + φ′

z and φy + φ′
z

take values of the form πn, with n ∈ Z, provided Ax and Ay

have opposite signs.
For instance, we get a maximum coupling for φx = φy =

− 3π
4 and φ′

z = −π
4 . In that case, the A-cation displacements

are out-of-phase with respect to the AFD distortions by 90◦
(since φ′

z − φx = π
2 ), and the resulting patterns for the u and

ω distortions are exactly those shown in Figs. 1(a) and 1(c),
respectively, which correspond to the soft �2 phonon mode
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in PZO, i.e. they are of the form “+ + −−”. Therefore the
coupling in Eq. (1) naturally explains the exotic character of
the AFE order in PZO and other materials that share similar
features (e.g., PbHfO3 or PHO [12,28]).

It is also interesting to realize that maximizing the in-
teraction in Eq. (7) can also lead to solutions that are not
those associated with PZO’s AFE pattern. For example, if
we choose φx = φy = φ′

z = −π
2 , we have a second solution

that has exactly the same energy, K(8AxA
′
z − 8AyA

′
z), as the

first case discussed above. However, this alternative choice
yields a rather different pattern for the A-cation displacements
and oxygen octahedral tiltings. More specifically, Eqs. (2)
correspond to “0 + 0−” modulations in which positive and
negative values of the u and ω vectors intercalate with null
distortions as we move along any of the three Cartesian
axis. Note that these two “+ + −−” and “0 + 0−” cases are
indistinguishable (i.e., perfectly degenerate) at the harmonic
level. The fact that materials like PZO and PHO adopt
the former pattern over the latter is, in fact, related to
anharmonic couplings involving local dipoles and tiltings, and
in particular to energies of the form αu

∑
i(u

2
i,x + u2

i,y + u2
i,z)

2

and αω

∑
i(ω

2
i,x + ω2

i,y + ω2
i,z)

2, where αu and αω are positive
constants and where i runs over all the sites. As a matter of fact,
such energies are higher in the “0 + 0−” pattern than in the
“+ + −−” case because the “+” and “−” displacements in the
“0 + 0−” modulation are larger by a factor of

√
2 in magnitude

than the “+” and “−” displacements in the “+ + −−” pattern
(when the “+ + −−” and “0 + 0−” waves of Eq. (2) have the
same Aα and A′

α amplitudes).

B. The S4 antiferroelectric mode

Let us now consider the case of the S4 mode, which is
also known to contribute to the Pbam ground state of PZO
and PHO [6–9,12]. The corresponding patterns for the u’s,
oxygen atomic motions and ω’s are shown in Figs. 1(d), 1(e),
and 1(f), respectively. For such mode, we choose kx = ky =

π
2alat

(x + y) + π
alat

z in Eq. (2). Then, it can be checked that in
this case we have nonvanishing interactions for k′

x = k′
y =

−kx = −ky via the δ(G − kα − k′
β) in Eq. (3). The resulting

�E/K solely involves the axy and ayx terms defined in Eq. (6)
and becomes

�E(S4)

K = 8AxA
′
y sin(φx + φ′

y) − 8AyA
′
x sin(φy + φ′

x).

(8)
The magnitude of the interaction is thus maximized for φx +
φ′

y = φy + φ′
x = π

2 + πn, where n ∈ Z, if AxA
′
y and AyA

′
x

have opposite signs. One such solution is φx = φy = −π
4

and φ′
x = φ′

y = 3π
4 , which yields the patterns of f A-cation

displacements and tiltings shown in Figs. 1(d) and 1(f),
respectively. Hence, the coupling of Eq. (1) can also explain
the complex atomic distortion associated with the soft S4 mode
of PZO and PHO.

C. The �3 symmetry antiferroelectric mode

Let us now consider other complex atomic patterns as those
displayed in Fig. 3. Such patterns have been demonstrated to
contribute to a stable and complex antipolar Pnma structure
in BiFeO3 and BiFe1/2Sc1/2O3 [15,16], involving a cell that

FIG. 3. Same as Figs. 1(a)–1(c) but for the 3 modes of ABO3

perovskites.

is a
√

2 × 4 × 2
√

2 multiple of the five-atom perovskite unit,
and are associated with 3 modes. As shown in Fig. 3(a),
the x and y components of the A-cation displacements
can be described by ui,x = ui,y = A cos({k1x · Ri + φx}) +
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A cos({k2x · Ri + φx}), with φx = π
4 , k1x = π

2alat
(x + y + z),

and k2x = π
2alat

(x + y − z). In other words, and as consistent
with Ref. [16], two different k-vectors (related by symmetry,
but not by inversion) are needed to describe such waves.
Similarly, Fig. 3(a) further shows that ui,z = C cos({k1x ·
Ri + φz}) − C cos({k2x · Ri + φz}), with φz = − 3π

4 . Figure
3(c) also tells us that the x- and y-components of the
ω’s are activated in this mode, while the z component
is null; we thus have ωi,x = −ωi,y = A′ cos({−k1x · Ri +
φ′

1x}) + A′ cos({−k2x · Ri + φ′
2x}), with φ′

1x = 0 and φ′
2x =

π
2 . It is straightforward to generalize Eq. (2) to the case of
a superposition of two waves with different k vectors (using
these new A, C and A′ coefficients), and then insert it in Eq. (1),
to yield the following nonvanishing �E:

�E(3)

K = 8CA′[cos(φz + φ′
1x) + sin(φz + φ′

1x)

− cos(φz + φ′
2x) + sin(φz + φ′

2x)]

− 8AA′[cos(φx + φ′
1x) + sin(φx + φ′

1x)

− cos(φx + φ′
2x) + sin(φx + φ′

2x)]

= −16
√

2(CA′ + AA′). (9)

It is thus clear that the bi-linear coupling of Eq. (1) can
also explain the occurrence of the atomic patterns displayed
in Fig. 3.

D. Modes along the � line

Let us now consider the case in which kx = ky correspond
to a wave vector along the � line that connects the center of
the first Brillouin zone with the boundary M-point given by
π/alat(x + y). We thus have kx = ky = λπ/alat(x + y), where
λ is a real number between 0 and 1. We find that in this case
case Eq. (3) reduces to

�E(�)

K = 8 sin(λπ )[AxA
′
z sin(φx + φ′

z − λπ )

−AyA
′
z sin(φy + φ′

z − λπ )]. (10)

Several important conclusions can be drawn from this result.
First, the sin(πλ) function in Eq. (10) automatically implies
that the effect of our new coupling is null at the � (λ = 0)
and M (λ = 1) points. In contrast, the modes associated with
intermediate k points along the � line are affected by the
new coupling. Note that such a coupling could thus explain
modulations of the O6 rotations as those discussed in Ref. [30]
in Li-doped NdTiO3, provided that they are accompanied by A-
cation displacements. Second, for any selected k point in the �

line, the magnitude of the coupling is maximum when φx + φ′
z

and φx + φ′
z take values of the form π/2 + λπ + πn, where

n ∈ Z, provided that Ax and Ay have opposite signs. Third, it is
important to realize that nonrational values of λ can also yield a
coupling energy, i.e., our new interaction can potentially be the
driving force for the formation of incommensurate perovskite
phases.

E. Phonon spectra and incommensurability

Let us now discuss how our new coupling energy affects
the phonon bands of a perovskite material. To do this, we

consider the ideal cubic structure and assume that the second
derivatives of the energy (at the harmonic level) with respect to
the atomic displacements associated with the polar distortions
and octahedral rotations are given by

E′′
u(λ) = ∂2E

∂u(λ)2
= Fu + Gu cos(λπ ),

E′′
ω(λ) = ∂2E

∂ω(λ)2
= Fω + Gω cos(λπ ), (11)

E′′
uω(λ) = ∂2E

∂u(λ)∂ω(λ)
= Huω sin(λπ ),

where, as before, we use λ to label k points in the � line
[31]. The diagonal terms of this k-dependent Hessian matrix
represent the typical energetics of polar and AFD bands in
perovskites. The off-diagonal elements have the form of the
coupling that we are introducing in this work, as it is derived
from Eq. (10) by taking sin(φx + φ′

z − λπ ) = sin(φy + φ′
z −

λπ ) = 1. The F , G, and H parameters characterize the
energetics of the u and ω variables and their mutual coupling
[the Huω coefficient is therefore related to the K parameter
of Eq. (1)]. Diagonalizing this k-dependent Hessian results in
two bands that are given by

κ−(λ) = E′′
u(λ) + E′′

ω(λ)

2

−
√

(E′′
u(λ) − E′′

ω(λ))2 + 4H 2
uω sin2(λπ )

2
,

κ+(λ) = E′′
u(λ) + E′′

ω(λ)

2

+
√

(E′′
u(λ) − E′′

ω(λ))2 + 4H 2
uω sin2(λπ )

2
. (12)

These two bands are associated with eigenvectors that display
a hybrid u-ω character at all k points except for the λ = 0
and λ = 1 limits. The degree of hybridization depends on
the relative magnitude of the coupling parameter Huω. Note
also that, whenever we have negative eigenvalues κ− or κ+,
the corresponding eigenvector constitutes an instability of the
cubic perovskite structure.

Let us consider two choices of parameters and thus
discuss the phenomenology that our simple model can yield.
Figures 4(a)–4(c) illustrate the situation for a case (1) charac-
terized by the following features: (i) E′′

u(λ) is lowest at � and
rapidly increases with λ (i.e., we have a strong ferroelectric
instability of displacive character); (ii) E′′

ω(λ) is minimal at the
M point (i.e., we have a strong AFD instability) and rapidly
increases for decreasing λ; and (iii) the minimum of E′′

ω(λ) is
lower than the minimum of E′′

u(λ) (i.e., the AFD instability is
stronger than the ferroelectric one). Figures 4(a)–4(c) further
display the resulting κ−(λ) and κ+(λ) eigenvalues of Eq. (12)
for three different choices of the Huω coupling parameter.
Moreover, Fig. 4(d) shows the dependency on Huω of the
value of λ at which κ−(λ) is minimum, which we denote as
λmin. Figure 4(a) indicates that a relatively small Huω results
in a small gap between the κ−(λ) and κ+(λ) bands. Note that
the associated eigenvectors change character as a function of
λ. Thus, for example, the distortion mode associated with
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FIG. 4. Dependencies of E′′
u(λ), E′′

ω(λ), κ−(λ), and κ+(λ) along the � line, choosing here (in arbitrary units) E′′
u(λ) = −75 − 75 cos(πλ)

and E′′
ω(λ) = −75 + 125 cos(πλ). κ−(λ) and κ+(λ) are given by Eq. (12) for three different cases: Huω = 31.6 (a), 54.8 (b), and 316.2 (c). (d)

further displays the λmin value of λ at which κ−(λ) is minimum, as a function of Huω.

the smaller eigenvalue κ− is strongly polar close to � [with
κ−(λ ≈ 0) ∼ E′′

u(λ ≈ 0)], but it is rotational-like close to M

[with κ−(λ ≈ 1) ∼ E′′
ω(λ ≈ 1)]. Such features are typical of an

avoided crossing (anticrosssing) between bands, as we have in
this case. As Huω grows [Fig. 4(b)], we find that κ−(λ) is rather
insensitive to λ for a large region around λ = 1/2. Furthermore
and as shown in Fig. 4(d), λmin moves away from the value of
1 when Huω is above a critical value [as it is straightforward
to analytically prove when considering Eqs. (11) and (12)].
It then rapidly converges to λmin = 1/2 [see Fig. 4(c)] when
further increasing Huω, i.e., the dominant instability is a mode
with hybrid u − ω character for large enough Huω.

These results are reminiscent of what was found for the
phonons of cubic PZO along the � line, as computed from first
principles [32]. More specifically, PZO seems to correspond
to the case shown in Fig. 4(b), for intermediate values of the
u − ω coupling. Indeed, PZO presents soft � modes with a
hybrid character, associated with a very flat band; yet, the
dominant instability of the cubic phase is the AFD one at the
boundary of the Brillouin zone. (More precisely, PZO displays
a very flat branch of AFD-like phonons connecting the M and
R k points [6], where kR = π/alat(x + y + z)). Hence, at the
harmonic level, we would predict PZO to present a regular
AFD ground state, as opposed to the AFE one it actually
displays. Indeed, as demonstrated in Ref. [6], the additional
factor that permits the stabilization of PZO’s AFE phase is the
trilinear coupling between R+

4 , �2, and S4.

Let us now tackle case (2) that corresponds to a different
choice of parameters and yields the results shown in Fig. 5.
In case (2), the E′′

u(λ) still has a minimum at λ = 0 but its
dependence with λ is relatively weak (i.e., we have a ferro-
electric instability that tends to be of the order-disorder type).
Further, this minimum of E′′

u(λ) is only slightly higher than the
M-point minimum of E′′

ω(λ). Figures 5(a)–5(c) depict E′′
u(λ)

and E′′
ω(λ), along with the coupled κ− and κ+ eigenvalues, for

increasing magnitude of the coupling coefficient Huω. One can
see that the minimum of κ−(λ) = κ−(λmin) is displaced from
the M point towards λ = 1/2 as Huω increases above a certain
value. This is because the minimum of κ−(λ) corresponds
to the minimum of E′′

ω(λ), that is λ = 1, for small Huω,
while the cross-coupling E′′

uω(λ) of Eq. (11) always favors
the minimum of κ−(λ) to be at λ = 1/2 for arbitrarily large
Huω. λmin therefore possesses different values, depending on
the strength of Huω, with these values being not necessarily
inverse of integers. For instance, as also seen in Fig. 5(b),
λmin is equal to 0.69 for Huω = 54.8 (note that this value
of Huω rather yields, in Fig. 4(b) [i.e., in case (1)], a κ−(λ)
having a minimum at the M point, i.e., at λ = 1). In other
words, the dominant instability of our model may correspond
to arbitrary long-range, even incommensurate, distortions of
the perovskite lattice [33], with the period of incommensurate
distortions being dependent on the coupling coefficient K
of Eq. (1). Let us stress that the incommensurate distortion
involves both the A-cation displacements and AFD motions,

054107-6



ATOMISTIC MECHANISM LEADING TO COMPLEX . . . PHYSICAL REVIEW B 94, 054107 (2016)

FIG. 5. Dependencies of E′′
u(λ), E′′

ω(λ), κ−(λ), and κ+(λ) along the � line, choosing here (in arbitrary units) E′′
u(λ) = −192.5 − 2.5 cos(πλ)

and E′′
ω(λ) = −75 + 125 cos(πλ). κ−(λ) and κ+(λ) are given by Eq. (12) for three different cases: Huω = 31.6 (a), 54.8 (b), and 438.2 (c). (d)

further displays the λmin value of λ at which κ−(λ) is minimum, as a function of Huω.

since the eigenvector corresponding to κ−(λ) combines both
features. The results of this analysis are thus reminiscent
of the Neutron-Rietveld refinement of the incommensurate
phase of the Pb(Co,W)O3 compound, which was described
as presenting both significant shifts of the Pb atoms and a
rather complex mixing of tilt and deformation of the oxygen
octahedra [17].

IV. DISCUSSION

Our prediction that nonperiodic structures can arise from
the (microscopic) coupling between polar and rotational vari-
ables bears a strong resemblance with the (phenomenological)
theory proposed by Heine and McConnell (HM) [35], which
is based on the coupling between two different modes of
transformation. More precisely, these authors worked with
two modes denoted as ψ and ϕ, which they considered to
be coupled by the interaction energy

�EHM
int = h(ϕ∇ψ − ψ∇ϕ), (13)

where h is a constant and ∇ the gradient operator in one
dimension. Note that the right-hand side of Eq. (13) is a Lifshitz
invariant [36], and has also been used in other phenomenolog-
ical approaches to incommensurate crystals [37].

It is interesting to determine the form that our microscopic
coupling in Eq. (1) takes in the continuum limit, in order to
(i) check whether it is similar to Eq. (13) that was previously
proposed in Refs. [35,37] and (ii) have an expression that can

be used in the development of phenomenological theories.
Indeed, if we focus on the terms involving a certain ui in our
Eq. (1), it is apparent that this quantity is coupled to the spatial
derivatives of ωi . More precisely, if we take u and ω to be the
continuum limit of our local dipoles and O6 rotations, we can
see that Eq. (1) can be rewritten as ∼u · (∇ × ω). Alternatively,
the microscopic Eq. (1) can equally be rewritten by choosing
a specific ωi at a given B-site i and considering its coupling
with the spatial derivatives of the u displacements. In that case,
the continuum limit goes as ∼ω · (∇ × u). It is therefore more
elegant to adopt the following form for the continuum version
of Eq. (1):

�Econt = K
2

[u · (∇ × ω) + ω · (∇ × u)]. (14)

Equation (14) therefore contains a term of the form (ux
∂ωz

∂y
−

ωz
∂ux

∂y
), that is similar to the previously suggested Eq. (13)

when choosing ϕ = ux , ψ = ωz and taking the gradient
to be the partial derivative with respect to y. However,
Eq. (14) is more general than the interaction proposed by
Heine and McConnell, since it contains five other, symmetry-
equivalent terms, namely, (−uy

∂ωz

∂x
+ ωz

∂uy

∂x
), (−ux

∂ωy

∂z
+

ωy
∂ux

∂z
), (uy

∂ωx

∂z
− ωx

∂uy

∂z
), (uz

∂ωy

∂x
− ωy

∂uz

∂x
), and (−uz

∂ωx

∂y
+

ωx
∂uz

∂y
). In fact, the general form of Eq. (14), that involves

the sum of (i) a dot product between a first vector, which
is polar and the curl of the second vector, which is axial,
and (ii) another dot product that is now between the second
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vector and the curl of the first vector, constitutes an energy
invariant that has never been previously proposed to the best
of our knowledge, while being perfectly valid on symmetry
and physical considerations.

We also performed first-principles calculations to extract
the K coefficient of two different materials, namely, PbZrO3

and CaTiO3, that exhibit similar Goldschmidt tolerance factor
[29]. For that, we chose the configurations of oxygen octahe-
dral tiltings depicted in Fig. 1(b) and collected the force acting
on the A atoms as a function of the magnitude of oxygen
octahedral tiltings [these configurations are thus associated
with the 2π/alat (1/4, 1/4, 0) k point and possess A and B

cations sitting at their ideal positions]. Equation (1) tells us that
such force should be linearly dependent on this magnitude,
with the resulting slope being directly proportional to the K
coefficient. These first-principles calculations did confirm such
linearity, and yield values of 0.013 and 0.011 atomic units for
K in PbZrO3 and CaTiO3, respectively. Moreover, the fact that
these two systems possess similar values of their K coefficient,
while CaTiO3, unlike PbZrO3, does not adopt the complex
Pbam phase as ground state, can also be understood thanks
to additional information provided by these first-principles
calculations, namely the computed energy first decreases,
before increasing, with the magnitude of oxygen octahedral
tiltings in PbZrO3 while such energy always increases with
the strength of the oxygen octahedral tiltings in CaTiO3. In
other words, the “bare” octahedral tilting mode [i.e., the one
related to E′′

ω(λ) in Sec. III E] is unstable with respect to the
ideal cubic structure at the 2π/alat (1/4, 1/4, 0) k point in
PbZrO3 while it is stable in CaTiO3. E′′

ω(λ) taken at λ = 1/2
should thus be negative in PbZrO3 while being positive in
CaTiO3. To illustrate the consequence of such features, Fig. 6
displays the κ−(λ) and κ+(λ) eigenvalues of Eq. (12) when
choosing Huω being the same as in Fig. 4(b) as well as E′′

u(λ)
being identical to the one selected for case (1), but now taking
a E′′

ω(λ) that has a positive value at λ = 1/2 [while having the
same value as in case (1) for the M point indexed by λ = 1].
Figure 6 (which can be thought as corresponding to the case

FIG. 6. Dependencies of E′′
u(λ), E′′

ω(λ), κ−(λ), and κ+(λ) along
the � line for Huω = 54.8, choosing here (in arbitrary units) E′′

u(λ) =
−192.5 − 2.5 cos(πλ) and E′′

ω(λ) = +100 + 300 cos(πλ). κ−(λ) and
κ+(λ) are given by Eq. (12).

of CaTiO3) reveals that the resulting κ− at λ = 1/2 is further
away from the (minimum) κ− at λ = 1 than in Fig. 4(b) (which
can be thought as representing the situation for PbZrO3). As
a result and unlike in PbZrO3, no realistic trilinear coupling
between R+

4 , �2, and S4 can make Pbam become the ground
state of CaTiO3.

V. CONCLUSIONS

In summary, we have introduced an elemental atomistic
energy that exists in all ABO3 perovskites, which naturally
explains, in an unified way, a variety of structurally complex
phenomena. This energy couples, in a collaborative fashion,
polar distortions driven by the A-site cations with O6-rotational
modes. Analytical derivations starting from this atomistic
energy allow us to understand the nature and (in)stability of
complex long-period phonons associated with k-points in the
interior of the first Brillouin zone. Examples are the modes
that play a key role in the stabilization of the antiferroelectric
phases of PbZrO3, PbHfO3, BiFeO3, and BiFe1/2Sc1/2O3.

The newly-proposed couplings should be relevant to
explain the behavior of perovskites in which the A-site cations
have a tendency to move off-center (as it is, e.g., the case
of those containing Pb2+ or Bi3+ cations) and also present
oxygen-octahedral rotational instabilities. For instance, the
proposed theory is most likely relevant to explain the unusual
tilting pattern recently discovered in Nd1−xLixTiO3 [30] as
well as the large variety of antiferroelectric structures that are
known to exist in Pb-based compounds (see, e.g., Ref. [14]).
A structural determination of the A-site distortions and O6

tiltings would be required, at the experimental level, to confirm
such a connection.

Finally, we demonstrated that our theory can also natu-
rally explain the occurrence of incommensurate phases in
perovskites. Indeed, we show that our work provides an unified
description that brings together ferroelectric, antiferroelec-
tric, antiferrodistortive (O6-rotational), and incommensurate
structures. Our results thus appear to be critical for deep
understanding of the structural diversity in many perovskites,
making a clear connection between the simplest and most
exotic structures.

The structural instabilities driven by our proposed mech-
anism are hybrid in nature, in the sense that they combine
(anti)polar and octahedra-rotational characters. Moreover, the
coupling tends to favor long-period distortions corresponding
to wave vectors that are away from the center or boundaries
of the first Brillouin zone. In such cases, the pattern of O6

rotations is not perfect (we can say it is truncated) and
the oxygen octahedra deform. Hence, our newly proposed
coupling is most likely to be relevant in perovskites with
relatively soft O6 groups. The existing examples suggest that
this situation is favored by the presence of relatively large B

cations in the perovskite structure.
Interestingly, it should also be possible to incorporate our

interatomic couplings in atomistic approaches, such as the
so-called effective Hamiltonians [27,38] [with, e.g., the K
coefficient of Eq. (1) being extracted from first-principles
calculations], in order to, e.g., investigate properties of antifer-
roelectrics and incommensurate systems, as a function of tem-
perature, applied electric fields, epitaxial strain, etc. Moreover,
we have shown that it is straightforward to derive a continuum
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(original) version of our coupling energy, as needed for the
development of phenomenological Landau-Lifshitz theories.
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