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Light-element diffusion in Mg using first-principles calculations: Anisotropy and elastodiffusion
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The light-elemental solutes B, C, N, and O can penetrate the surface of Mg alloys and diffuse during heat
treatment or high temperature application, forming undesirable compounds. We investigate the diffusion of these
solutes by determining their stable interstitial sites and the interpenetrating network formed by these sites. We
use density functional theory (DFT) to calculate the site energies, migration barriers, and attempt frequencies for
these networks to inform our analytical model for bulk diffusion. Due to the nature of the networks, O diffuses
isotropically, while B, C, and N diffuse anisotropically. We compute the elastodiffusion tensor which quantifies
changes in diffusivity due to small strains that perturb the diffusion network geometry and the migration barriers.
The DFT-computed elastic dipole tensor which quantifies the change in site energies and migration barriers due
to small strains is used as an input to determine the elastodiffusion tensor. We employ the elastodiffusion tensor
to determine the effect of thermal strains on interstitial diffusion and find that B, C, and N diffusivity increases on
crystal expansion, while O diffusivity decreases. From the elastodiffusion and compliance tensors we calculate
the activation volume of diffusion and find that it is positive and anisotropic for B, C, and N diffusion, whereas
it is negative and isotropic for O diffusion.
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I. INTRODUCTION

Magnesium and its alloys have found increased application
in the automotive industry due to their higher strength-to-
weight ratio than steel and aluminum alloys, which reduces
vehicle weight leading to increase in fuel efficiency [1–3]. Mg
alloys interact with the surrounding gaseous atmosphere dur-
ing their application which can lead to the penetration of light
impurity elements. These impurities can also get introduced
due to interaction with reactive gases during heat treatment,
leading to the formation of oxide layers on the surface or
precipitates at grain boundaries which can be detrimental to
strength [2,4]. Experiments have shown that O, C, and N can
react with Mg to form oxides, carbides, and nitrides [2]. Boron
is used for Fe removal during Mg processing [2], but a small
amount of B may be retained as an impurity. The penetration
of these impurities into bulk is governed by thermally activated
processes, and a detailed study of their diffusion mechanisms
can provide insights that may help to mitigate them.

There have been few theoretical studies on the behavior of
light elements in hcp metals. Wu et al. studied the influence
of substitutional B, C, N, and O on the stacking faults and
surfaces of Mg [5] using density functional theory (DFT).
All four elements reduce the unstable stacking fault energy
and surface energy of Mg and enhance the ductility according
to the Rice criterion, with O having the largest impact [5].
Atomistic studies of light elements in hcp metals—O in α-
Ti [6,7], O and N diffusion in α-Hf [8], and O in multiple
hcp metals [9]—modeled the diffusion of solutes through the
networks formed by interstitial sites. However, a theoretical
or experimental study of interstitial diffusion in Mg is absent
except for the limited experimental data for C diffusion [10].

We analyze the diffusion of B, C, N, and O in the
dilute limit in hcp Mg using DFT calculations to inform
an analytical diffusion model [11,12]. We also study the
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changes in diffusivities due to strain from thermal expansion.
Section II details the DFT parameters used to determine
the energetics of interstitial sites and the migration barriers
between them. Section III lays out the inputs for the diffusion
model: probabilities of occupying sites, connectivity networks
between these sites, and the transition rates for these networks.
We derive analytical expressions for interstitial diffusivity in
hcp crystals and apply them to diffusion of B, C, N, and O in
Mg. We find that the O diffusion is isotropic while B, C, and N
diffusion is anisotropic. Section IV discusses the elastic dipole
tensors of solutes at interstitial sites and transition states, which
determine the changes in the transition energetics of solutes
due to small strains. Section V defines the elastodiffusion
tensor [11,13–15], which quantifies the effect of small strains
on diffusivity and discusses the sign inversion behavior of
elastodiffusion components with temperature. We find that the
activation volume of O diffusion is negative which leads to
an increase in O diffusion under hydrostatic pressure. We also
find that the diffusivity of O decreases with thermal expansion
while the diffusivity of B, C, and N increases.

II. COMPUTATIONAL DETAILS

We perform the DFT calculations using the Vienna ab initio
simulation package VASP [16] which is based on plane wave
basis sets. The projector-augmented wave pseudopotentials
[17] generated by Kresse [18] describe the nuclei and the
valence electrons of solutes and Mg atoms. The solute atoms
B, C, N, and O are described by [He] core with 3, 4, 5,
and 6 valence electrons, respectively. We use the [Ne] core
with two valence electrons for Mg instead of the [Be] core
with eight valence electrons because the energies computed
using either choice of pseudopotential differ by less than
20 meV. Electron exchange and correlation is treated using
the PBE [19] generalized gradient approximation. We use a
4 × 4 × 3 (96 atoms) supercell of Mg atoms with a 6 × 6 × 6
Monkhorst-Pack k-point mesh to sample the Brillouin zone.
Methfessel-Paxton smearing [20] is used with energy width of
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0.25 eV to integrate the density of states; the k-point density
and smearing width are based on convergence of the DOS
compared with tetrahedron integration. A plane wave energy
cutoff of 500 eV is required to give an energy convergence
of less than 1 meV/atom. All the atoms are relaxed using
a conjugate gradient method until each force is less than
5 meV/Å. The Mg unit cell has a hexagonal close packed
(HCP) crystal structure with DFT calculated lattice parameters
of a = 3.189 Å and c/a ratio of 1.627 which agree well with
values reported from experiments, a = 3.19 Å and c/a = 1.62
[21].

We use DFT to calculate the energy of solutes at various
sites and use the climbing-image nudged elastic band (CNEB)
[22] method to locate the transition states between the sites.
The site (or solution) energy Eα of a solute X at an interstitial
site α is the difference between the energy of a Mg supercell
containing solute X at site α, E(Mg96 + Xα

1 ), and the energy
of a pure Mg supercell, E(Mg96),

Eα = E
(
Mg96 + Xα

1

) − E(Mg96). (1)

We also determine the site energy for a solute X as a
substitutional defect, Esub,

Esub = E
(
Mg95 + Xsub

1

) − 95

96
E(Mg96), (2)

where E(Mg95 + Xsub
1 ) is the energy of the supercell where one

of the Mg atoms is substituted by a solute atom X. Both the
interstitial site energy Eα and the substitutional site energy Esub

for solute X are referenced to its elemental state. The energy
differences �E = Eα − Esub for the solutes B, C, N, and O are
−1.48, −3.23, −4.34, and −4.19 eV, where α is the interstitial
site with the lowest energy and is independent of the reference
state for the solutes. Since the energies of interstitial sites are
lower than the substitutional site, these solutes are likely to
diffuse through networks of interstitial sites. We use CNEB
with one image [22] to locate the transition state between two
interstitial sites. Similar to Eq. (1), the energy Eα-β of the
transition state between site α and site β is referenced to the
elemental state of X

Eα-β = Eα-β(Mg96 + X1) − E(Mg96), (3)

where Eα-β(Mg96 + X1) is the energy at the transition state
obtained from a CNEB calculation. We report the interstitial
site energies and the transition state energies relative to the
interstitial site with the lowest energy, which is independent
of the reference state for the solutes.

III. DIFFUSION MODEL

We calculate the occupation probabilities at interstitial
sites and transition rates for diffusion pathways from DFT-
computed site energies, transition state energies, and vibra-
tional frequencies. The probability ρα of a solute occupying a
particular site α at temperature T is

ρα = ν∗
α · exp(−Eα/kBT )∑

β ν∗
β · exp(−Eβ/kBT )

, (4)

where kB is the Boltzmann constant, the denominator is the
normalization constant summed over all the interstitial sites in
the unit cell, and ν∗

α is the site prefactor proportional to the

FIG. 1. Positions of interstitial sites in the unit cell of hcp Mg.
The octahedral (o, orange), tetrahedral (t, red), hexahedral (h, blue),
distorted hexahedral (dh, cyan), and crowdion (c, yellow) interstitial
sites are shown relative to host Mg atoms (Mg, white). In an hcp
unit cell, there are two o, two h, four t, six c, and six dh sites.
The transitions between stable interstitial sites determine the possible
diffusion pathways. The unit cell vectors a1 and a2 form the basal
plane (0001) and the vector c (also referred to as the c axis) is
perpendicular to it.

Arrhenius factor for formation entropy of site α, exp (Sα/kB),
calculated from the vibrational frequencies

ν∗
α = 1∏3

p=1 να,p

. (5)

This expression ignores interstitial-interstitial interaction and
is exact in the dilute concentration limit. We compute the vibra-
tional frequencies of a state using the one atom approximation
by diagonalizing the dynamical matrices corresponding to the
interstitial atom [23]. The dynamical matrices are obtained
from the forces induced on interstitial atoms by small dis-
placements (±0.01 Å) from their equilibrium positions, while
keeping the other atoms fixed. From transition state theory,
the rate λα-β for a solute to transition from site α to site β at
temperature T is

λα-β = ν∗
α-β · exp(−(Eα-β − Eα)/kBT ). (6)

The attempt frequency ν∗
α-β for the α to β transition is

calculated using the Vineyard expression [24], which is the
product of vibrational frequencies να,p at the initial site α

divided by the product of real vibrational frequencies να-β,q at
the transition state

ν∗
α-β =

∏3
p=1 να,p∏2

q=1 να-β,q

. (7)

At equilibrium, the transition between site α and site β obeys
detailed balance

ρα · λα-β = ρβ · λβ-α. (8)

Figure 1 shows the newly found distorted hexahedral dh site
in Mg along with the other interstitial sites (h, t, c, o) which
have been discussed previously for O in α-Ti [7]. The dh site
is stable for B and C and is located between two nearest Mg
atoms in the basal plane with a displacement of 0.17 Å for B
and 0.40 Å for C towards the nearest hexahedral h site. The h
site has three basal Mg neighbors and two other Mg neighbors
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FIG. 2. Interstitial sites and site-to-site connectivity in hcp crystals. Connections between two neighboring sites form diffusion pathways
which are shown as lines colored corresponding to the colors of the interstitial sites. For example, o-o(c) and o-o(b) are octahedral site-to-
octahedral site diffusion pathways along the c axis and in the basal plane of hcp Mg, respectively. The diffusion pathways shown in the top row
are uncorrelated, while correlated diffusion pathways are shown in the bottom row. These correlated pathways are the combined connections
formed among o and t sites, o, dh and h sites, and o and dh sites. In the last two figures of the bottom row, the c axis is tilted and the cell is
rotated counterclockwise around the c axis for better visibility of connections and sites.

located directly above and below it, which are further away.
The four-atom coordinated tetrahedral t site is stable for O and
lies 0.65 Å along the c direction from an basal plane containing
three of its Mg neighbors. The six-atom coordinated octahedral
o site is stable for all four solutes. The six-atom coordinated
nonbasal crowdion c with lower symmetry than o site has two
nearest neighboring Mg atoms lying in adjacent basal planes
which get displaced away from the c site while the other four
neighbors lying further apart get displaced towards the c site
on relaxation. The c site is stable for C and N but unstable for
B and O.

Figure 2 shows the possible diffusion networks between
interstitial sites for hcp systems, which are inputs to our
diffusion model [11,12]. A solute at a o site can jump to the
following neighboring sites: two o sites lying above and below
along the c axis with transition rate λo-o(c), six o sites lying in
the same basal plane with λo-o(b) in cases where the c site is
unstable, six neighboring c sites with λo-c, six h sites with λo-h,
six t sites with λo-t, and six dh sites with λo-dh. A solute at an h
site can jump to: six o sites with λh-o, six c sites with λh-c, and
three dh sites lying in the same basal plane with λh-dh. The c
site is between two h sites which lie in adjacent basal planes
and also between two o sites in the same basal plane. A solute
from a c site can jump to those neighboring o and h sites with
λc-o and λc-h. A solute at a t site can jump to three neighboring
o sites which are all lying either above or below the t site with
λt-o, and to one neighboring t site lying either above or below

with λt-t. A solute at a dh site can jump to one neighboring h
site with λdh-h and to two nearest dh sites in the same basal
plane with λdh-dh.

Figure 3 shows the energies for the interstitial sites and
the transition states of active diffusion pathways for all four
solutes. Active diffusion pathways for a solute are determined
by its set of stable sites. The set of stable sites for B is {o, dh},
for C it is {o, h, c, dh}, for N it is {o, h, c}, and for O it is
{o, t}. All DFT energies are relative to the lowest-energy site
which is the ground state [25]. The o site is the ground state
for B, C, and N, while the t site is the ground state for O. The
transition between two sites is shown as a line connection and
the associated value is the transition state energy. For example,
in the case of O, t is the ground state and o is metastable with
energy 0.21 eV. The active diffusion pathways for O (refer
to Fig. 2) are o-o, t-t (both along the c axis), and t-o with
transition state energies of 1.01, 0.09, and 0.7 eV, respectively.
Since there is no direct o-o (b) jump in the basal plane—which
would pass through the unstable c site—basal diffusion occurs
by combining o-t and t-o jumps.

Table I lists analytical expressions for diffusivity based
on the active diffusion pathways formed by the stable sites,
in terms of occupation probabilities and transition rates. We
follow the approach of near-equilibrium thermodynamics to
calculate the diffusivity D by finding a steady state solution for
the system in equilibrium distribution with a small perturbation
in the chemical potential gradient of the solute [11]. The
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FIG. 3. Energetics of stable sites and the transition states between
them, relative to the lowest-energy interstitial site for B, C, N, and
O solutes in Mg. Interstitial sites are marked on the horizontal axis,
and their relative site energies are shown in bold below the thick
horizontal base lines. Thin lines from one site to another (or the
same) site denote transitions, and the associated number is the energy
at the transition state between those two sites. For example, in the
case of B, the o site is the lowest energy site and the energy of the
metastable dh site relative to it is 0.90 eV. Thin lines starting and
ending from the thick base line of o denote the o-o transition. The
associated transition state energies in eV are 1.08(c) for the transition
along the c axis and 0.73(b) for the transition in the basal plane.

derived analytical expressions for solute diffusivity are made
up of bare mobilities and correlation effects. Table I lists the
term-by-term contributions to the basal diffusivity Db and
the c-axis diffusivity Dc from each type of transition. The bare
mobility terms have the form of a site probability multiplied
by a transition rate. The correlation effects are present in

dh-o, dh-dh, and dh-h transitions which contribute to the
basal diffusivity as well as in t-o and t-t transitions which
contribute to the c-axis diffusivity. Each of these networks
show correlation as the jumps from particular sites (dh and t)
are unbalanced: the sum

∑
β λα-βδxα−β �= 0 for displacements

δxα−β from site α to β. This leads to a correlated random walk
where, for example, if an interstitial is in a tetrahedral site with
a low t-t barrier it is very likely to be in that same tetrahedral
site after two jumps; hence, a large (anti)correlation between
the displacement vector in subsequent jumps. The analytical
expressions are applicable in any hcp crystal for any solute
having a set of interstitial sites corresponding with that network
for a Markovian diffusion process. Our expression for the set of
sites {o, h, c} agrees with the expression for O diffusing in α-Ti
[7]. In the case of t-t jumps which tend to have low barriers,
the assumption of “independent” tetrahedral sites becomes
invalid; instead, the pair is similar to a superbasin which
thermalizes rapidly, and the λt-t disappears from the diffusivity
as λt-t → ∞. The site energies and site prefactors, as well as
the attempt frequencies and transition state energies of all the
transitions for B, C, N, and O, is available in tabular form [26].

Figure 4 shows that O diffuses isotropically while B, C,
and N diffuse anisotropically. B and C diffuse faster in the
basal plane than along the c axis, while N diffuses faster along
the c axis than in the basal plane. The analytical expressions
in Table I give the diffusivity as a function of temperature.
For all temperatures from 300 K to 923 K (the melting point
of Mg), the basal diffusivities of the four solutes follow
DB

b > DO
b > DN

b ≈ DC
b and the c-axis diffusivities follow

DO
c > DB

c > DN
c > DC

c . Zotov and Tseldkin [10] measured
the diffusivity of C experimentally in the temperature range
of 773–873 K (500–600 ◦C) and our results overestimate their
measured diffusivity by a factor of 10–80. With only the single
experiment for comparison, it is difficult to assess the source
of the discrepancy.

Table II lists the activation energies and diffusivity pref-
actors obtained from Arrhenius fits to the diffusivity plots
(Fig. 4). For each solute, the comparison between the activation
energy for diffusion Q and the migration energies of individual
transitions (see Fig. 3) indicates the dominant type of transition
that contributes most to diffusion. In the case of O, the
migration energy of t-o transition is 0.70 eV which is close to

TABLE I. Analytical expressions for interstitial solute diffusivity in the basal plane (Db) and along the c axis (Dc) through the network
formed by interstitial sites in the hcp crystal. These expressions are functions of transition rates (λ) between interstitial sites and the occupation
probability of each type of interstitial site. The occupation probability of each type of site is the product of ρ [from Eq. (4)] and its multiplicity
in the unit cell. The occupation probability for any o, h, t, dh, and c site is 2ρo, 2ρh, 4ρt, 6ρdh, and 6ρc, respectively. These analytical expressions
for diffusivity are valid for any interstitial solute diffusing in an hcp crystal with lattice parameters a and c and having a set of stable interstitial
sites corresponding with that network for a Markovian diffusion process.

Network a−2 · Db c−2 · Dc

o, dh 2ρo
3λo-o(b)

2
+ 2ρo

3λo-dhλdh-dh

2λdh-o + 3λdh-dh
2ρo

λo-o(c)

4
+ 2ρo

3λo-dh

8

o, h, dh, c 2ρo
3λo-c

4
+ 2ρh

λh-c

4
+ 2ρo

λo-dhλdh-h

2λdh-o + λdh-h
2ρo

λo-o(c)

4
+ 2ρo

3λo-dh

8
+ 2ρh

3λh-c

8

o, h, c 2ρo
3λo-c

4
+ 2ρh

λh-c

4
+ 2ρoλo-h 2ρo

λo-o(c)

4
+ 2ρo

3λo-h

8
+ 2ρh

3λh-c

8

t, o 4ρt
λt-o

2
2ρo

λo-o(c)

4
+ 4ρt

3λt-oλt-t

24λt-o + 16λt-t
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FIG. 4. Analytical results for diffusivities in the basal plane (DX
b )

and along the c axis (DX
c ) of Mg for interstitial solute X = B, C,

N and O. Diffusion of O is isotropic while diffusion of B and C
is slower along the c axis than in the basal plane and diffusion of
N is faster along the c axis than in the basal plane. The analytical
expressions listed in Table I are employed to compute the variation
of diffusivity with temperature. Also shown is the diffusivity of C
(DC

Experiment), determined experimentally by Zotov and Tseldkin [10]
at four temperatures between 773–873 K.

the activation energy of 0.69 eV, so this transition contributes
more than the other transitions to both diffusivities. Similarly,
o-o basal and o-c transitions dominate for basal diffusion of B
and C, respectively, while o-dh transitions dominate for c-axis
diffusion of both these solutes. However, for N, all transitions
except o-o along the c axis have similar energies, so it is
likely that more than one transition type contributes to both
diffusivities.

IV. ELASTIC DIPOLE TENSOR

The elastic dipole tensor quantifies the elastic interaction
energy between an external strain field and the point defect in

TABLE II. The Arrhenius fitting parameters for basal (DX
b ) and c

axis (DX
c ) diffusivities through active networks of sites for interstitial

solute X = B, C, N, and O. The diffusivities vary with temperature
according to the Arrhenius model D = D0 · exp(−Q/kBT ), where
D0 is the diffusivity prefactor, Q is the activation energy of diffusion,
T is temperature in K, and kB is the Boltzmann constant. The
comparison of energy barriers from Fig. 3 to the activation energy Q

gives the dominant transition.

Solute DX
b DX

c

X Network D0 (m2 s−1) Q (eV) D0 (m2 s−1) Q (eV)

B o, dh 2.52×10−6 0.74 1.83×10−6 0.90
C o, h, dh, c 2.07×10−6 1.07 1.38×10−6 1.11
N o, h, c 1.42×10−6 1.05 1.58×10−6 1.04
O o, t 0.49×10−6 0.69 0.52×10−6 0.69

the small strain limit. The dipole tensor is equal to the negative
derivative of elastic energy E with respect to strain ε. The elas-
tic dipole components Pij are computed from the stress tensor
σ after relaxing the ions while keeping the supercell shape and
volume V fixed in the presence of the interstitial [27],

Pij = − dE

dεij

≈ σijV . (9)

The elastic dipole tensor determines the change in site
energies and transition state energies of interstitial solutes due
to small strain. The site energy Eα(s)(ε) of α with orientation
vector s under small strain ε is approximated by the linear
relation

Eα(s)(ε) ≈ Eα(0) −
∑
ij

Pα(s),ij εij , (10)

where Eα(0) is the site energy of α in the unstrained cell
and Pα(s),ij are the elastic dipole components of site α

with orientation s. In the infinitesimal strain limit, the sites
and network topology remains unchanged; with larger finite
strains, sites may become unstable or change the network
topology, which requires a new analysis of the network. The
vector s distinguishes the multiple sites of the same type which
are present in an hcp unit cell. The orientation of the c site is
defined as the vector connecting it to the nearest o site, and the
orientation of the dh site is defined as the vector connecting it
to the nearest h site. In an hcp unit cell (see Fig. 1), there are
two o, two h, four t, six c, and six dh sites. In an unstrained
cell, multiple sites of the same type have the same energy.
However, strain can cause these sites to become nonequivalent
in energy depending on their elastic dipole tensor which may
depend on their site orientation. The dipoles for o, h, and t sites
are independent of their orientation vector while the dipole for
c and dh sites depend on their orientation vector. Similarly, the
transition state energy Ev

α(s)-β(s′)(ε) for site α of orientation s
to site β of orientation s′ under strain is

Ev
α(s)-β(s′)(ε) ≈ Eα-β(0) −

∑
ij

P v
α(s)-β(s′),ij εij , (11)

where v is the vector from site α to β, Eα-β(0) is the
v-independent transition state energy in the unstrained cell, and
P v

α(s)-β(s′),ij are the elastic dipole components at the transition
state corresponding to v. As discussed previously in Fig. 2,
there are multiple transitions of the same type distinguished
through their transition vectors v. In a strained cell, these tran-
sitions can have different transition state energies depending
on their dipole tensors which may depend on their transition
vectors.

Tables III and IV list the components of the elastic dipole
tensor at representative interstitial sites with orientations s,
and representative transition states with transition vectors
v. We diagonalize the elastic dipole tensors along three
principal axes (e1, e2, e3), and report the diagonalized entries
entries (P11,P22,P33) and principal axes. From Table III,
the elastic dipole components in the two orthogonal basal
directions are equal for o, h, and t sites due to the basal
symmetry of these sites. The trace of the elastic dipole for
N and O at o sites is negative, leading to the volumetric
contraction upon cell relaxation, in contrast to the other
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TABLE III. Elastic dipole tensors P at representative interstitial sites for B, C, N, and O in Mg. The symmetric elastic dipole tensor is
diagonal along three principal axes e1, e2, and e3 and has units of eV. For c and dh sites, the dipole tensors and their axes depend on the
orientations s of the sites with respect to the nearest o and h sites, respectively, whereas the dipole tensors for o, t, and h sites are independent
of orientation. The possible orientations of dh sites with respect to an h site are [1100], [1010], and [0110], and the orientations of c sites with
respect to an o site are [2110], [1120], and [1210]. Here the dipole tensor of each type of site is given for one representative s, and other tensors
with different s are obtained by applying the appropriate point group operations on the representative dipole tensor.

Solute Site Orientation (s) P11 P22 P33 e1 e2 e3

B o any 2.38 2.38 2.55 orthogonal basal vectors [0001]
dh [1100] 11.03 0.04 −0.49 [1120] [1100] [0001]

C o any 1.08 1.08 0.24 orthogonal basal vectors [0001]
h any 4.74 4.74 −1.10 orthogonal basal vectors [0001]
c [2110] 6.59 4.20 −5.18 [022̄3] [2110] [044̄3̄]

dh [1100] 8.94 −0.22 −0.86 [1120] [1100] [0001]
N o any 0.00 0.00 −1.39 orthogonal basal vectors [0001]

h any 3.22 3.22 −1.81 orthogonal basal vectors [0001]
c [2110] 4.22 4.31 −5.39 [022̄3] [2110] [044̄3̄]

O o any −0.15 −0.15 −1.76 orthogonal basal vectors [0001]
t any 2.06 2.06 0.79 orthogonal basal vectors [0001]

interstitial sites. The ground state configuration of N undergoes
volume contraction on cell relaxation while the ground state
configuration of B, C, and O undergoes volume expansion
on cell relaxation. In the case of the dh site, its two nearest
Mg atoms experience larger atomic forces compared to other
Mg atoms; the elastic dipole for the dh site has the largest

component in the [1120] direction which connects these two
nearest Mg atoms. From Table IV, most of the transition states
break the symmetry of the crystal except for the o-o and t-t
transitions along the c axis which obey hexagonal symmetry.
Hence, of the transition state energies of the o-o (c axis)
and t-t transitions with different v remain equivalent in the

TABLE IV. Elastic dipole tensors P at representative transition states for B, C, N, and O in Mg. The transition state from site α to site β

is denoted by α-β, and v is the vector connecting these two sites. The symmetric elastic dipole tensor is diagonal along three principal axes
e1, e2, and e3 and has units of eV. The dipole tensor of an equivalent transition with a different v is obtained by applying the appropriate point
group operation to the given dipole tensor. The value of x for B and C is 0.197 and 0.238, respectively, and the value of z for O is 0.153. The
values of x and z are obtained from the relaxed position of dh and t sites in the Mg supercell, respectively.

Solute α-β Transition (v) P11 P22 P33 e1 e2 e3

B o-o [000 1
2 ] 5.34 5.34 −3.58 orthogonal basal vectors [0001]

o-o 1
3 [2110] −3.08 2.74 8.56 [0443] [2110] [0223]

o-dh [xx0 1
4 ] 10.99 0.19 −0.61 [1120] [22̄01] [4̄409]

dh-dh (x − 1
3 )[2110] 7.69 4.25 −0.20 [0110] [2110] [0001]

C o-o [000 1
2 ] 3.63 3.63 −3.22 orthogonal basal vectors [0001]

o-c 1
6 [2110]] −3.93 1.57 5.19 [0443] [2110] [0223]

o-dh [xx0 1
4 ] −2.60 0.58 7.28 [110

√
3
8 ] [110

√
27
8 ] [1120]

h-c [0 1
6

1
6

1
4 ] 3.02 −0.68 4.45 [2110] [0223] [0443]

h-dh (x − 1
3 )[1100] 7.59 1.07 −1.01 [1120] [1100] [0001]

N o-o [000 1
2 ] 2.58 2.58 −1.16 orthogonal basal vectors [0001]

o-c 1
6 [2110]] −4.08 3.23 3.58 [0443] [2110] [0223]

o-h [ 1
3

1
3 0 1

4 ] −2.08 0.31 4.61 [0.57,0.57,0,0.10] [0.09,0.09,0,0.60] [1120]

h-c [0 1
6

1
6

1
4 ] 3.72 −4.14 3.94 [2110] [0443] [0223]

O o-o [000 1
2 ] 2.37 2.37 1.76 orthogonal basal vectors [0001]

t-t [000( 1
2 − 2z)] 1.97 1.97 −1.67 orthogonal basal vectors [0001]

o-t [ 1
3

1
3 0z] 0.67 1.37 2.07 [0.12,0.12,0,0.60] [0.56,0.56,0,0.12] [1120]
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TABLE V. The fitting parameters d0 and E in Eq. (15) for the components of the B, C, N, and O elastodiffusion tensor in Mg over
300–923 K. The elastodiffusion tensor in Voigt notation has six unique components in an hcp crystal, where d66 = (d11 − d12)/2. A subset of
components change sign with temperature; their transition temperature is listed in lieu of fitting parameters (c.f., Fig. 5 for the temperature
dependence). The “activation barrier” E corresponds closely to the migration barrier of the dominant transition. The d12 and d33 components
for B, all diagonal components for C, and d44 and d66 for N and O are negative throughout the temperature range (i.e., have negative d0). The
negative d0 implies that the increase in diffusivity caused by lowered migration barriers is greater than the decrease in diffusivity due to reduced
jump vectors under compressive strains. For d44 of B, the geometric contribution is dominant and is best described with an Arrhenius fit of
1.3 × 10−6m2/s · exp(−0.74/kBT ).

B C N O

d0 (eV m2 s−1) E (eV) d0 (eV m2 s−1) E (eV) d0 (eV m2 s−1) E (eV) d0 (eV m2 s−1) E (eV)

d11 (854.7 K) −3.0 × 10−8 0.91 (398.4 K) (900.9 K)
d12 −2.9 × 10−6 0.74 5.0 × 10−8 0.94 2.5 × 10−6 1.04 (678.0 K)
d13 5.6 × 10−6 0.74 2.0 × 10−6 1.05 2.9 × 10−6 1.05 (552.5 K)
d31 5.5 × 10−6 0.90 2.2 × 10−6 1.12 1.8 × 10−6 1.04 (865.8 K)
d33 −5.3 × 10−6 0.90 −3.3 × 10−7 1.10 3.9 × 10−6 1.05 (409.8 K)
d44 1.5 × 10−7 0.78∗ −9.7 × 10−7 1.11 −1.2 × 10−6 1.04 −1.0×10−8 0.65
d66 1.5 × 10−6 0.74 −4.0 × 10−8 0.93 −9.3 × 10−7 1.03 −5.0×10−8 0.68

strained cell while the same is not true for the other types of
transitions.

Elastic dipole tensors for symmetry-equivalent sites with
different s, and symmetry-equivalent transitions with different
v, are obtained by group operations on the representative dipole
tensors in Tables III and IV. For example, the three c sites in
the basal plane with different orientations ([2110], [1120], and
[1210]) are all related Wyckoff sites, that are transformed by
120◦ rotations about the c axis; call that transformation matrix
R. The dipole tensors for the other two equivalent sites s′ are

P α(s′) = RP α(s)R
T , (12)

where P α(s) is the representative dipole tensor and R trans-
forms s to s′. Similarly, the dipole tensors of all the other sites
are calculated using their associated transformation matrices.
The same operations are carried out for all the transition state
dipole tensors based on the symmetry of the transition vectors
v. The dipole data in the Cartesian basis for all these equivalent
sites and equivalent transitions for B, C, N, and O are available
in tabular form [26]. This dipole tensor data is used to estimate
changes in site energies and the changes in migration barriers
of transitions under strain using Eqs. 10 and 11, which are
inputs to the elastodiffusion tensor calculations.

V. ELASTODIFFUSION TENSOR

Strain affects the diffusivity of solutes by changing the jump
vectors and migration barriers of the diffusion network. The
first order strain dependence of diffusivity is represented with
the elastodiffusion tensor [11,13–15] d

dijkl = ∂Dij

∂εkl

, (13)

and is derived using perturbation theory [11,12]. The contri-
bution dgeom to the elastodiffusion tensor from the changes in
jump vectors is [11]

d
geom
ijkl = 1

2 (Djk(0)δil + Dil(0)δjk + Dik(0)δjl + Djl(0)δik),

(14)

where δij is the Kronecker delta. Hence, if the diffusivity has
Arrhenius temperature dependence, then so does the geometric
term in the elastodiffusion tensor. The contribution dmb from
changes in the migration barriers is determined by the elastic
dipole tensors of the migration barriers and sites. The elastic
dipole tensor of a transition state relative to the initial site
determines the rate of that transition under strain, and the
elastic dipole tensor of the interstitial site determines the
occupation probability of that site under strain. The term
dmb is the sum of contributions from each transition; these
contributions are proportional to the product of the inverse
temperature, transition rate, and difference of transition state
dipole and thermal average dipole of interstitial sites. The
contribution from one transition can be represented as

d0

kBT
· exp(−E/kBT ), (15)

where the elastic dipole terms are absorbed in the “prefactor”
d0, which has units of eV m2 s−1, and E is the barrier of the
dominant transition.

The symmetry of the hexagonal closed-packed crystal
reduces the number of unique elastodiffusion components
to six. We use Voigt notation, similar to elastic constants,
to represent the indices of the fourth rank tensor as both
diffusivity and strain are symmetric second rank tensors. The
reduction by symmetry is the same as the elastic constants,
except that dij is not necessarily equal to dji . In the case of
hcp, the nonzero elastodiffusion elements are d11 = d22, d33,
d12, d13 = d23, d31 = d32, d44 = d55, and d66 = (d11 − d12)/2.
The change in jump vectors contributes only to d11, d33, d44,
and d66. Unlike the contribution from the change in jump
vectors, the change in migration barrier can contribute to all
six independent components of elastodiffusion tensor and need
not only be positive.

Table V shows that the contribution dmb dominates over the
contribution dgeom due to the relatively larger values of elastic
dipole tensor components compared to kBT [see Eq. (15)]
for all the temperatures between 300–923 K. However, the
contribution dgeom is greater than the contribution dmb for
the d44 component for B due to larger transition rate of o-o
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d11 d12 d13 d31 d33

positive
negative

FIG. 5. Components of the elastodiffusion tensor d that change
sign as a function of temperature, for B, N, and O. The magnitudes
of each component are shown with filled symbols for positive values
and unfilled for negative values. For a component, changes of sign
are observed as a dip in the curve, and the crossover temperatures
are listed in Table V. The sign inversion of these components is
caused by two competing mechanisms, which dominate at either low
or high temperatures. Five components of the elastodiffusion tensor
for O change sign, and each component has a different crossover
temperature.

transition in the basal plane and for the d11 component for
B and O at temperatures above crossover (discussed below).
Equation (15) is used to fit the elastodiffusion component
because of the larger contribution from dmb over dgeom and
also due to the dominant transition for each solute. The fitting
parameter E in Table V corresponds to the migration barrier
of the dominant transition. These dominant transitions under
strain are the same as that in the unstrained crystal, except
for the basal components d11, d12, and d66 for C which are
now dominated by the h-dh transition. The remaining basal
component d13 of C is governed by o-c transition, and the
basal components (d12, d13 and d66) and d44 of B are governed
by o-o(b) transition. The nonbasal components (d31 and
d33) are governed by o-dh transition for both B and C. The
isotropic o-t transition is dominant for all the components for
O, and in N, both o-h and h-c transitions, which have similar
migration barriers, contribute to elastodiffusion components.

Figure 5 shows that five of the elastodiffusion compo-
nents for oxygen change sign (fewer for B and N) due
to the small energy separation from the ground state and
the metastable states, while for B, C, and N the energy
separation is significant. The change in sign from positive
(filled symbol) to negative (unfilled symbol) is observed as
dips in the logarithm of the magnitude of d, and the associated
crossover temperature is listed in parenthesis in Table V for
these components. The sign inversion of these components
is due to the competing mechanism dominating at different
temperatures which we observe as different slopes on the
opposite side of the crossover. The sign inversion of d12, d13,
d31, and d33 for O is due to the large variation in thermally

averaged elastic dipole tensor of sites, which occurs because
of the low energy separation of 0.21 eV between o and t sites.
The difference between the transition state dipole and the
thermally averaged dipole contributes to the elastodiffusion
component sign changes with temperature as the o and t sites
have different elastic dipoles. However, for d11 for B and O, the
sign inversion is due to the competition between the negative
contribution of dmb and positive contribution of dgeom, where
the former dominates below the crossover temperature (thanks
to the 1/kBT contribution in Eq. (15)) and the latter dominates
above the crossover temperature. For the component d11 of N,
sign inversion is due to the o-c transition dominating above
the crossover temperature while the o-h transition dominates
below the crossover. The sign inversion behavior of different
components suggest that the diffusivity under strain will
have contrasting features at different temperatures, which we
observe for the activation volume of diffusion and for the effect
of thermal expansion on diffusion.

A. Activation volume of diffusion

The elastodiffusion tensor together with the elastic com-
pliance tensor computes the activation volume of diffusion.
The activation volume of diffusion Vij describes the pressure
p dependence of diffusivity as

Dij (p) = Dij (0) · exp

(
−pVij

kBT

)
, (16)

where Dij (0) is the diffusivity tensor components at zero
pressure. The activation volume is calculated using

Vij = −(Dij (0))−1kBT
∂Dij

∂p

∣∣∣∣
p=0

= (Dij (0))−1kBT
∑
kl

dijkkSkkll, (17)

where d is the elastodiffusion tensor and S is the elastic
compliance tensor. In the case of interstitial diffusion, the
activation volume is equal to the migration volume of a jump:
the volume change between the transition state and initial
state [28].

Figure 6 shows that the activation volume for O diffusion
is isotropic and negative below 740 K, which leads to an
increase in basal and c-axis diffusivities under hydrostatic
pressure. The activation volumes for B, C, and N diffusion
remain positive throughout the temperature range, with N
having the largest activation volume. For O diffusion below
740 K, the dominating t-o transition has negative migration
volume, while the dominating transitions for the diffusion
of other solutes have positive migration volumes. Negative
activation volume has also been observed experimentally for C
diffusing in hcp-Co [30] and in α-Fe [31], and their magnitudes
are comparable to the activation volume computed for O
diffusion in Mg. Due to the temperature-induced softening of
the elastic constants [29], the activation volume of basal and
c-axis diffusion increases by ∼14% and ∼15% from 300 K to
923 K for all four solutes.
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FIG. 6. Activation volume for basal diffusion Vb and c-axis
diffusion Vc, relative to the Mg atomic volume � = 22.84 Å

3
per

atom as a function of temperature for B, C, N, and O. For both
basal and c-axis diffusion, the activation volume of O is isotropic
and negative below 740 K while it remains positive for B, C, and N.
The activation volume for all the solutes increases with increasing
temperatures, in part, as the elastic constants soften as temperature
increases [29]. This increase is ∼14% for basal activation volume
and ∼15% for c-axis activation volume for all the solutes at 923 K.

B. Thermal expansion effect on diffusion

Figure 7 shows that thermal expansion increases the
diffusivity of B, C, and N, but decreases the diffusivity of

FIG. 7. Change in basal and c-axis diffusivity due to thermal
strain, relative to the strain free diffusivity for B, C, N, and O. The
thermal strain is nearly isotropic and linear over the entire temperature
range, to a maximum value of 2% at the melting temperature of
923 K. The effect of thermal expansion is largest for N, for which the
diffusivity doubles approaching melting, and smallest for O. Below
740 K, O diffusivity decreases relative to its strain free diffusivity—
due to the negative activation volume—unlike the other three solutes.

O up to 740 K. The fit of experimental thermal expansion
data to temperature [32] is used to estimate thermal strain.
Thermal expansion is nearly isotropic in the temperature range
300 K to 923 K, reaching a maximum value of 2%. For B,
C, and N, both basal and c-axis diffusivities increase upon
thermal expansion, with N experiencing the largest effect
of more than 100% increase in diffusivity at T > 816 K.
Under thermal strain, O diffusion remains isotropic due to
the dominating t-o transitions which contribute equally to
diffusion in the basal plane and along the c axis. Above
740 K the O diffusivity is greater compared to its strain free
diffusivity as expected due to thermal expansion. However,
below 740 K the O diffusivity is lower compared to its strain
free diffusivity. This nonmonotonic behavior of O diffusivity
with thermal expansion is due to the sign inversion of five of
the elastodiffusion tensor components.

VI. CONCLUSION

We determine the stable interstitial sites, migration barriers,
diffusivities, and elastodiffusion tensors for B, C, N, and O in
Mg. We find a stable distorted hexahedral site that B and
C can occupy in Mg. Analytical expressions for interstitial
diffusion in bulk hcp crystals are derived for the networks of
interstitial sites. Diffusion of O is isotropic due to dominating
isotropic t-o transitions, while B and C have faster basal
diffusion compared to c-axis diffusion, and N has slower
basal diffusion compared to c-axis diffusion. This shows that
diffusion depends on the diffusion network formed by sites
and their energetics, which varies from solute to solute. The
elastodiffusion tensor captures the effect of strain on diffusivity
by summing the contributions from changes in jump vectors
and changes in migration barriers. For B, C, N, and O in
Mg, the contribution to elastodiffusion components due to
changes in migration barriers dominates over the contribution
from changes in jump vectors with a few exceptions. There
are a few elastodiffusion components which change sign at
crossover temperature due to competing mechanisms. In the
case of O, five of the elastodiffusion components change sign,
which leads to negative activation volume below 740 K and
decreased diffusivity upon thermal expansion. This behavior of
O as an interstitial defect is counterintuitive because interstitial
diffusivity is expected to decrease under compression as
transition states are usually “smaller.” We see that N in its
ground state (octahedral) contracts the crystal upon relaxation
while it has the positive activation volume; O in its ground state
(tetrahedral) expands the crystal on relaxation while having
a negative activation volume. This shows that elastic dipole
tensor of transition states plays a vital role along with the
energetics of sites. Our study of interstitial solute diffusion
under strain can be extended for other crystal structures and
interstitial defects. Finally, understanding interstitial solute
kinetics under strain can be helpful in studying the solute
diffusivity in the heterogeneous strain fields due to dislocations
or other defects.
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