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Dislocations via incompatibilities in phase-field models of microstructure evolution
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We develop a phase-field model that describes the elastic distortion of a ferroelastic material with cubic
anisotropy due to an arbitrary dislocation network and a uniform external load. The dislocation network is
characterized using the Nye tensor and enters the formulation via a set of incompatibility constraints for the
internal strain field. The long-range elastic response of the material is obtained by minimization of the free
energy that accounts for higher-order terms of the order parameters and symmetry-adapted strain gradients.
The influence of dislocations on the microstructure is studied using a static equilibrium analysis of a material
without dislocations and with a random array of parallel edge dislocations. A minimal continuum dislocation
dynamics is then used to investigate the simultaneous evolution of the network of geometrically necessary
dislocations and the internal strain field. The model developed here is directly applicable to single-phase cubic
crystals with an arbitrary degree of anisotropy as well as to ferroelastic materials undergoing temperature-driven
cubic-to-tetragonal phase transitions.
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I. INTRODUCTION

The presence of a large density of dislocations in real
crystalline materials is often responsible for their com-
plex nonlinear response to external load. Dislocations are
metastable defects that move at much lower shear stresses
than the theoretical yield strength of the defect-free lattice
and are thus dominant carriers of plastic deformation in high-
symmetry crystal structures. In martensites, where the phase
transition takes place in a coordinated manner without the
help of diffusion, dislocations represent preferential sites for
heterogeneous nucleation of martensitic embryos [1–4]. These
nucleate preferentially in regions of high stress near individual
dislocations [5] and grow under the combined effects of
temperature, externally applied load [6], image stresses near
surfaces [7], or as a result of changes in the dislocation
substructure [8,9]. The change of shape of the material
that accompanies a martensitic transformation is described
by a strain order parameter that may be complemented by
other degrees of freedom such as intra-unit-cell displacements
(shuffles) or even parameters characterizing local magnetic
and electronic ordering in the crystal [10].

The main obstacle in developing continuum models that
couple the evolution of dislocation networks with spatially
inhomogeneous fields of internal strains and stresses arises
from the existence of multiple length scales. The smallest of
these corresponds to the Burgers vector of the dislocation,
which mostly fits within the range 0.2 to 0.5 nm. Another
length scale is that associated with the spacing between
dislocations, which is of the order of hundreds of nm depending
on the underlying dislocation density. In martensites, there
is an additional length scale related to the twin width, W ,
that ranges from units to hundreds of nm depending on
a particular material [11]. The twin width scales as W ∝
|T − Tc|−1 and thus theoretically diverges at the transition
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temperature [11,12]. Bridging the length scales in modeling
microstructure evolution is clearly a challenging task that may
be undertaken by two different approaches. One can utilize
a number of different models each representing the behavior
of the material within a certain range of scales and requiring
that the predictions agree at the interfaces of their domains of
applicability. However, a more ambitious project is to develop
a single theoretical framework that describes the evolution of
microstructure within a wide range of scales from the atomic
level up to the continuum.

Phase-field models are among the most widely used
techniques for microstructure evolution that are rooted in the
use of coarse-grained fields at the mesoscale [13–23]. They
are based on the concept of the order parameter [24,25] which
was initially developed in the theory of phase transitions to
describe symmetry breaking from one structure or phase to
another. Khachaturyan and Shatalov [26] extended this idea
to model elastic platelet inclusions that are coherent within
the surrounding crystal. They showed that the underlying
elasticity problem permits a solution for the inhomogeneous
strain required to accommodate the platelet inclusions [27].
Hu and Chen [28] used this phase-field microelasticity (PFM)
theory in conjunction with the time-dependent Cahn-Hilliard
equation to study the evolution of microstructure in anisotropic
systems with strong elastic inhomogeneities. The PFM theory
was also applied to dislocation loops [17,29–32] which can
be viewed as coherent platelet inclusions [33]. Within this
theory, dislocations are described by stress-free strains ε0

ij

that are nonzero inside dislocation loops and zero outside.
This gives rise to the plastic strain tensor, ε

p

ij , which repre-
sents an incompatible deformation. The same applies to the
elastic strain tensor εij = εt

ij − ε
p

ij but not to the total strain
tensor εt

ij that is always compatible. The free energy of a
deformed material is then written as F = ∫

V
(1/2)Cijkl(εt

ij −
ε

p

ij )(εt
kl − ε

p

kl)dx and minimized with respect to εt
ij subject

to the given field of stress-free (plastic) strains ε
p

ij . Adopting
the Khachaturyan-Shatalov microelasticity theory, Koslowski
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et al. [15] developed an incremental variational framework
in which the dislocation motion is obtained by a sequence
of minimization steps. Kundin et al. [34] utilized the PFM
theory to obtain the dislocation substructure that is needed
to accommodate martensitic needles in the parent austenite
matrix. Sreekala and Haataja [35] formulated a phase-field
model of dislocation-mediated grain growth in which the
driving force is nonlocal due to the long-range strain fields
of dislocations. The influence of dislocations on spinodal
decomposition was studied by Leonard and Desai [36]. Hunter
et al. [37] combined the phase-field model of dislocation
dynamics with atomistically calculated γ surfaces [38] to study
the evolution of dislocation substructures in materials with
low and high stacking fault energies. More recently, Levitas
and Javanbakht [39–42] developed a phase-field approach for
studies of the evolution of dislocations in materials subjected to
finite deformations. This model was used to study the ordering
of dislocations and their effect on phase stability under high
pressures [43].

The objective of the variational models of microstructure
evolution is to find the deformation of a body that minimizes
the free energy of the system. One way to write this free energy
is by using directly the stress-free strains (or eigenstrains) ε0

ij

that characterize the dislocation network [44]. The distortion of
the body is then obtained by solving numerically the equation
of elastodynamics, ρüi = ∂jσij , where ρ is the mass density
and ui the displacement field. The ensuing total strain field
εt
ij is calculated as the gradient of the displacement field

and is thus always compatible in the sense of the Saint
Venant law ∇ × ∇ × εt = 0. An alternative approach is to
write the free energy directly using the incompatible elastic
strains εij and supply additional conditions through which the
free energy is informed about the presence of dislocations.
These are represented by the set of incompatibility constraints
∇ × ∇ × ε = η, where ηij is a symmetric tensor field that
characterizes the underlying dislocation network. It is defined
uniquely by the Nye tensor field [45,46] that describes a
spatially continuous distribution of the Burgers vectors of
geometrically necessary dislocations (GNDs).

We have demonstrated this formalism previously [47] for
edge dislocations in a two-dimensional anisotropic elastic
medium of cubic symmetry. The same idea was used in the
variational formulation of Groma et al. [48], where the Gibbs
free energy of a deformed elastic medium is written in terms
of internal stresses. In the plane strain case, their model gives
predictions that are identical with our strain-based approach.
However, the generalization of their model to three dimensions
has not been made so far, which is likely due to complications
arising from an increase of the number of constraints between
the internal fields and the dislocation density. This problem
was investigated in our previous publication [49], where we
derive a set of three constraint equations that the individual
components of the elastic strain tensor have to satisfy in a
body with dislocations.

The objective of this paper is to utilize Kröner’s continuum
theory of dislocations to develop a three-dimensional phase
field model in which strain plays the role of the order param-
eter. An arbitrary dislocation network is described using the
Nye tensor that couples to the internal elastic strains through
a set of three incompatibility constraints. A notable difference

of this method from that of Khachaturyan and Shatalov [15] is
that enforcing the constraint of strain compatibility provides
analytical expressions for the inhomogeneous strain field that
minimizes the free energy without the need for the Green’s
function of the underlying anisotropic problem. In addition,
the presence of symmetry-allowed strain gradients and thus the
dispersion character of phonons can be included without much
further effort. This will be especially important in capturing
the length scale associated with inhomogeneous dislocation
substructures [50,51].

This paper is organized as follows. In Sec. II, we outline the
essential concepts of a continuum theory of dislocations and
develop a method to incorporate an arbitrary dislocation sub-
structure into the field-theoretical description of the free energy
of the system. In Sec. III, we perform a careful parametrization
of the model to represent Fe-30 at. % Pd, which is a
model ferroelastic material exhibiting a temperature-driven
martensitic phase transition. In Sec. IV, we investigate the
static properties of the model by comparing the internal strain
field of a dislocation-free body with a material containing
a random array of parallel edge dislocations. In Sec. V, we
employ the simplest version of the continuum dislocation
dynamics of GNDs to investigate the dynamical properties
of the model, in particular the tendency to form correlated
dislocation domains above and below the transformation
temperature. Section VI summarizes the key elements of our
model and its applicability.

II. COUPLING OF DISLOCATIONS WITH INTERNAL
STRAINS

A. General formulation

Let us consider a single crystal of cubic symmetry whose
bulk is represented by an orthorhombic, fully periodic sim-
ulation box discretized by a finite number of cells. The
dislocation network will influence the internal strain field only
through their geometrically necessary dislocations (GNDs)
that represent the combined effect of all crystal dislocations
within a cell on its linear-elastic distortion. The density of
these GNDs in each cell will be represented by the Nye tensor

αij = τibjρ, (1)

where τi is the tangential vector (local orientation) of the
GND belonging to the given cell, bj its Burgers vector,
and ρ its density. With reference to crystal dislocations, τi

thus represents the average orientation of a bundle of crystal
dislocations [52] embedded in each cell, bj the Burgers
vector of these dislocations, and ρ the number of dislocations
piercing the area perpendicular to the dislocation line that
corresponds to each cell. Unlike crystal dislocations, GNDs
do not have well-defined orientations of their Burgers vectors
and, therefore, bj as well as τi and ρ may vary throughout
the simulated domain. It is then not surprising that very
different dislocation substructures can be described by the
same distribution of GNDs and thus the same Nye tensor
field. Provided the Nye tensor is known in every cell of the
discretized body, it will be possible to obtain the internal
strain field by minimizing the free energy of the system. This
was previously demonstrated by Groma et al. [48] in their
two-dimensional variational formulation.
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Our objective in the following is to develop a continuum
model that describes linear-elastic response of an anisotropic
cubic material containing an arbitrary density of GNDs. Under
the assumption of small strains, the strain energy density of a
deformed anisotropic linear-elastic material is

felast = 1
2Cijklεij εkl, (2)

where Cijkl is the elastic stiffness tensor, and εij the internal
elastic strain tensor. To simplify the notation throughout the
paper, we employ Einstein summation over repeated indices.
There are two sources of internal strain: the externally applied
stress 
ij and the body forces generated by GNDs. The work
done by the former per unit volume is

fload = 
ijεij . (3)

In order to couple the GNDs with the internal elastic strain
εij , we will use the incompatibility constraint that was first
introduced by Kröner [45]:

fconstr = λij (εilmεjpk∂l∂pεkm − ηij ), (4)

where εijk is the antisymmetric Levi-Civita tensor, ηij the
symmetric incompatibility tensor [45,46], and λij a symmetric
matrix of six Lagrange multipliers. The incompatibility tensor
is defined as

ηij = 1
2 (εilm∂lαjm + εjlm∂lαim) (5)

and relates, through Eq. (4), the nonsymmetric Nye tensor of
GNDs, αij , to the elastic strain tensor εij .

The incompatibility tensor vanishes in the body without
GNDs. In this case, the displacement field must be single-
valued everywhere [53,54], which is true only if the six
components of εij satisfy six Saint Venant conditions [55–58]
that correspond to the vanishing bracket in (4) with ηij = 0. We
have shown previously [49] that three of these equations are the
same as the remaining ones and thus only three conditions are
needed to ensure that the field εij is compatible. If the body
contains GNDs, the displacement field is not single-valued
across the planar cuts used to create the dislocations. In this
case, the incompatibility tensor ηij is no longer zero and (5)
represents six nontrivial equations. We have shown in Ref. [49]
that only three of these are independent, while the other three
are related by the Bianchi identity ∂iαij = 0, which represents
an important condition that dislocations cannot end inside
the body [45]. Therefore, if the dislocation network is to be
permissible, all dislocations must: (i) form closed loops, or
(ii) emanate on the surface of the body. The latter condition
is irrelevant here due to the presence of periodic boundary
conditions.

The volume integral of the sum of Eqs. (2)–(4) provides
the free-energy density of a single-phase material subjected
to an arbitrary (but permissible) distribution of GNDs. To
broaden the range of applicability of our model, we will
further consider that the material can undergo a structural
phase transition from the high-symmetry cubic phase into
a low-symmetry tetragonal phase, which takes place, for
example, in Fe-30 at. % Pd and In-Tl alloys. Following the
suggestion of Landau, the free energy of the system must
be expanded in powers of a suitably chosen order parameter,
keeping only those terms that are invariant with respect to all
symmetry operations of the reference structure. This gives rise

to the last contribution to the free energy that we denote fLandau

and whose explicit form will be given in Sec. II B following
the choice of the order parameters.

Up to this point, the elastic strain energy of the deformed
body (2) was purely local and thus the model is not able to
describe the dispersive character of phonons at larger wave
vectors k or phonon softening observed experimentally for
materials undergoing structural phase transitions. This missing
term can be incorporated by the procedure suggested originally
by Ginzburg, i.e., expanding the free energy in terms of the
gradients of the order parameters and keeping only those terms
that are invariant with respect to all symmetry operations of the
reference (cubic) structure. We will return to this in Sec. II B.

By collecting the contributions above, the total free energy
of a deformed anisotropic linear-elastic material that under-
goes a structural phase transition, contains an arbitrary density
of GNDs, and is subjected to external load is written as

F =
∫

V

(felast + fLandau + fgrad − fload + fconstr) dx, (6)

where the individual contributions to the integrand are given
by Eqs. (2)–(4). The explicit forms of the contributions fLandau

and fgrad are derived in the following subsection.

B. Order parameters and the reduced form of the free energy

Without the loss of generality, we may now simplify the
formulation by replacing the six components of the strain
tensor εij by its cubic eigenstrains em (m = 1, . . . ,6). These
are defined implicitly as

εij =
6∑

m=1

embm
ij , (7)

where bm
ij represents six orthonormal basis tensors

[59]. Equation (7) can be written explicitly as ε11 =
(1/

√
6)(e1

√
2 + e2

√
3 + e3), ε22 = (1/

√
6)(e1

√
2 − e2

√
3 +

e3), ε33 = (1/
√

3)(e1 − e3

√
2), ε23 = e4/

√
2, ε13 = e5/

√
2,

and ε12 = e6/
√

2. The linear relations between the compo-
nents of εij and em make it possible to invert these equations
to arrive at closed-form expressions of the six deformation
parameters: e1 = (ε11 + ε22 + ε33)/

√
3, e2 = (ε11 − ε22)/

√
2,

e3 = (ε11 + ε22 − 2ε33)/
√

6, e4 = ε23

√
2, e5 = ε13

√
2, and

e6 = ε12

√
2. One immediately sees that, apart from the

constant prefactors, e1 is a measure of the local hydrostatic
strain, e2 and e3 quantify the local tetragonal deformation,
and e4 to e6 determine the magnitude of local shear strain.
Similarly, we write the applied stress tensor 
ij in terms of
its six cubic eigenstresses Sm, which can be obtained from (7)
by the replacements em → Sm and εij → 
ij . The relations
between Sm and 
ij are then identical to those between em and
εij .

Using the substitutions εij → em and 
ij → Sm defined
above, one arrives at equivalent but physically more trans-
parent expressions of the individual components of the free
energy. In particular, the strain energy density (2) becomes

felast = Ah

2
e2

1 + Ad

2

(
e2

2 + e2
3

) + As

2

(
e2

4 + e2
5 + e2

6

)
, (8)
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where Ah = C11 + 2C12, Ad ≡ C ′ = C11 − C12, As = 2C44,
and Cij are the three 〈100〉 elastic moduli of a cubic anisotropic
material. Similarly, the work done by the applied stress (3)
reduces to

fload = Smem (9)

and the constraint that couples the density of GNDs with
internal elastic strains will be treated in k space as

f̃constr = λmg̃m, (10)

where m = {1,2,3} in (9) and (10).
In order to give a particular form of the Landau part of the

free energy that depends on higher-order terms of the order
parameters, we consider a generic two-phase material that
undergoes a cubic-to-tetragonal transition. The free-energy
density is assumed to take the form f = 1

2Cijklεij εkl +
1
3Dijklmnεij εklεmn + 1

4Eijklmnopεij εklεmnεop + · · · , where the
first term is already represented by felast above. The irreducible
representations of the higher-order terms in this expansion
are determined by identifying the components of the tensor
Dijklmn that are invariant with respect to the transformations
DIJKLMN = aIiaJj aKkaLlDijklmn, where aij are transforma-
tion matrices representing individual symmetry operations of
the parent cubic structure. A similar procedure has to be
applied to each tensor in the expansion above. It can be
shown that both the third-order and fourth-order terms provide
nonvanishing contributions to the free energy. Keeping only
the terms that contain the order parameters, we arrive at

fLandau = Bd

3
e3

(
e2

3 − 3e2
2

) + Cd

4

(
e2

2 + e2
3

)2
, (11)

where Bd < 0 and Cd > 0. This expression was given origi-
nally by Barsch and Krumhansl [6].

A similar procedure can be used to obtain the gra-
dient part of the free energy, which is written generally
as an expansion fgrad = Fijklmεij,mεkl + G1

ijklmnεij,mnεkl +
G2

ijklmnεij,mεkl,n + · · · . As shown in Ref. [60], the lowest-
order correction vanishes for all centrosymmetric structures,
i.e., also for our reference cubic structure. Integrating the
second term by parts converts it to the same form as the
third term, and thus the lowest order gradient term is fgrad =
Gijklmnεij,mεkl,n. For the cubic symmetry, the tensor Gijklmn

contains eleven independent components [61] that are further
reduced to two if only the order parameters are considered.
In particular, expressing the resultant form of fgrad using em

and keeping only those terms that contain the gradients of the
order parameters e2 and e3 gives

fgrad = c1
(
e2

2,1 + e2
2,2

) + c2
(
e2

3,1 + e2
3,2

)
+ c3(e2,1e3,1 − e2,2e3,2) + (4/3)(Gde

2
3,3 + Hde

2
2,3),

(12)

where c1 = Gd + Hd/3, c2 = Gd/3 + Hd , and c3 = (2/
√

3)
(Gd − Hd ). The above expression thus contains only two
independent parameters, Gd and Hd , that can be determined by
fitting the curvature of the phonon branch that drives the phase
transition. Equation (12) was previously utilized by Rasmussen
et al. [55] but with only generic coefficients. This expression

differs somewhat from the apparently incomplete form given
in Ref. [6]. In the case when Gd = Hd , as in Ref. [62], the
gradient term reduces to fgrad = (4/3)Gd (|∇e2|2 + |∇e3|2).

The parameters λm in (10) are Lagrange multipliers
through which the three incompatibility constraints gm = 0
for m = {1,2,3} affect the deformation fields em. The k-space
representation of these conditions was derived previously in
Ref. [49] and we repeat them for convenience:

g̃1 = k2k3(
√

2ẽ1 +
√

3ẽ2 + ẽ3)

+
√

3
(
k2

1 ẽ4 − k1k2ẽ5 − k1k3ẽ6
) −

√
6k2k3Ñ1 = 0,

g̃2 = k1k3(
√

2ẽ1 −
√

3ẽ2 + ẽ3)

−
√

3
(
k1k2ẽ4 − k2

2 ẽ5 + k2k3ẽ6
) −

√
6k1k3Ñ2 = 0,

g̃3 = k1k2(
√

2ẽ1 − 2ẽ3)

−
√

3
(
k1k3ẽ4 + k2k3ẽ5 − k2

3 ẽ6
) −

√
6k1k2Ñ3 = 0.

(13)

Given the dislocation substructure and thus both αij and ηij ,
the k-space fields Ñ1, Ñ2, and Ñ3 that are needed to implement
the three incompatibility constraints (13) are defined as

Ñ1 = k2
1 η̃11 − k2

2 η̃22 − k2
3 η̃33

2k2
2k

2
3

+ η̃23

k2k3
,

Ñ2 = − k2
1 η̃11 + k2

2 η̃22 − k2
3 η̃33

2k2
1k

2
3

+ η̃13

k1k3
, (14)

Ñ3 = − k2
1 η̃11 − k2

2 η̃22 + k2
3 η̃33

2k2
1k

2
2

+ η̃12

k1k2
.

One can see from the above that the contributions felast,
fLandau, and fload are all local. However, both fgrad and fconstr

contain gradients of em and thus their k-space representations
will provide mixing between individual Fourier modes. These
terms automatically regularize the deformation field. This
regularization must be present in any physically based field-
theoretic description of dislocation networks, as previously
argued by Groma et al. [48].

C. Minimization of the free energy

We now seek the deformation of the body, i.e., the six fields
em that minimize the free energy (6) with individual terms
given by (8)–(12) and the dislocation substructure defined by
(14). The conditions of stable equilibrium are δF/δem = 0
(m = 1, . . . ,6), δF/δλm = 0 (m = 1,2,3) and, at the same
time, the second derivatives of F with respect to all em and λm

have to be positive. Given the order parameter fields e2 and
e3, we first find the remaining (non-order-parameter) fields
e1 and e4 to e6 that minimize the free energy. The k-space
representations of these equilibrium fields are

ẽ1 = 1

Ah

[S1δ(k) −
√

2(k2k3λ̃1 + k1k3λ̃2 + k1k2λ̃3)],

ẽ4 = 1

As

[S4δ(k) −
√

3
(
k2

1 λ̃1 − k1k2λ̃2 − k1k3λ̃3
)
],
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ẽ5 = 1

As

[S5δ(k) −
√

3(−k1k2λ̃1 + k2
2 λ̃2 − k2k3λ̃3)],

ẽ6 = 1

As

[S6δ(k) −
√

3(−k1k3λ̃1 − k2k3λ̃2 + k2
3 λ̃3)]. (15)

Substituting these expressions into the three incompatibility
constraints (13) yields three algebraic equations for the Fourier
images of Lagrange multipliers, λ̃m, as functions of ẽ2, ẽ3. Sub-
stituting these back into (15) provides analytical expressions
of the Fourier images of the four non-order-parameter fields
in terms of ẽ2 and ẽ3,

ẽm = C̃e2
m ẽ2 + C̃e3

m ẽ3 + C̃rem
m , (16)

where m = {1,4,5,6}, and the kernels C̃e2
m , C̃e3

m , C̃rem
m are given

analytically in Appendices A and B.
The evolution of the two order parameter fields is made

using the standard velocity Verlet algorithm,

ei(t + δt) = ei(t) + ėi(t)�t − δF (t)

δei

�t2,

(17)

ėi(t + δt) = ėi(t) −
[
δF (t)

δei

+ δF (t + �t)

δei

]
�t,

where i = {2,3}, and the effective mass was taken as m = 1/2.
When solving the problem numerically, care must be exercised
when calculating the values of certain fields that correspond
to zero components of the wave vector k. In Appendix B,
we identify the sources of these singularities and provide
analytical expressions for C̃e2

m , C̃e3
m , C̃rem

m in (16) for zero
components of the wave vector k and their combinations.

In order to simplify the implementation of the model
developed in this paper, we summarize below the main steps to
calculate the internal stress and strain fields subject to a given
distribution of GNDs represented by the Nye tensor αij .

(1) Determine the Fourier images α̃ij of the individual
components of the Nye tensor. Calculate the k-space compo-
nents of the incompatibility tensor η̃ij and use them to calculate
the three components of the k-space vector Ñi defined by (14).

(2) Calculate the k-space fields C̃e2
m , C̃e3

m , and C̃rem
m for m =

{1,4,5,6} from Appendices A and B.
(3) Update the two primary fields ẽ2 and ẽ3 according to

(17).
(4) Use the two order parameter fields from above in (16)

to obtain the remaining fields ẽm for m = {1,4,5,6}.
(5) Fourier-invert the six fields ẽm and calculate the real-

space representations of the strain field εij .
(6) Determine the spatial variation of the individual

components of the internal stress tensor as σij =∑6
k=1(δf ∗/δek)(∂ek/∂εij ), where f ∗ = felast + fLandau

+ fgrad.
(7) Go back to 3 unless the changes in ẽ2 and ẽ3 are below

some specified threshold, i.e., the order parameter fields are
not changing any more.

III. PARAMETRIZATION OF THE FREE-ENERGY
FUNCTIONAL

In the following simulations, we will consider Fe-
30 at. % Pd as a model material that undergoes a temperature-

driven martensitic transformation from its high-temperature
fcc phase (space group Oh) to the low-temperature fct phase
(space group D4h) [63]. The temperature dependencies of
the coefficients Ah, Ad , As in the harmonic part of the free
energy (8) were obtained from the elastic moduli measured
by Muto et al. [64]. We also make a convenient choice that
Gd = Hd , which reduces fgrad to the form used in Ref. [62].
The numerical value of this coefficient is taken from the same
paper.

The coefficients Bd and Cd of the higher-order terms of the
free energy (11) were determined as follows. We first identified
the extrema of the local part of the free-energy functional that
depends on the order parameters:

flocal = Ad

2

(
e2

2 + e2
3

) + Bd

3
e3

(
e2

3 − 3e2
2

) + Cd

4

(
e2

2 + e2
3

)2
,

(18)

where it is customary to express the lowest-order coefficient
as Ad = A0

d (T − T0) with A0
d and T0 determined by fitting the

temperature dependence of the elastic constant C ′ of the cubic
phase. The positions of these extrema are represented by the
pairs (e∗

2,e
∗
3). One of these is (0,0) which corresponds to the

cubic structure. The remaining six roots represent two conju-
gate sets of tetragonal distortions along the axes x1, x2, and x3.
We constructed the Hessian matrix H to find the value(s) of
Ad , and thus temperature(s), for which each of these extrema
changes character. This occurs when det H = 0 for which the
second derivative test is inconclusive, but a small change of Ad

(and thus temperature) makes the root a minimum, maximum
or a saddle point. For the cubic root at (0,0), this occurs only
for Ad = 0 (and thus T = T0), where the cubic phase becomes
unstable on cooling (this root is a minimum of flocal above
T0, and a maximum below T0). As far as the six remaining
roots are concerned, the second derivative test is inconclusive
for two values of Ad . One of them is again Ad = 0. The
other is Ad = B2

d/(4Cd ) that corresponds to the transformation
temperature Tc (> T0) at which the tetragonal phase becomes
stable on cooling. The two tetragonal roots at (0,e∗

3) are defined

by e∗
3 = −(Bd ±

√
B2

d − 4AdCd )/(2Cd ). For Ad = 0, i.e., at
the temperature T0, this is e∗

3(T0) = −Bd/Cd . Similarly, for
Ad = B2

d/(4Cd ) and thus temperature Tc, we get e∗
3(Tc) =

−Bd/(2Cd ). These values e∗
3 can be obtained from temperature

dependencies of the lattice parameters measured by x-ray
diffraction [63,65]. In particular, e∗

3(T0) = 2(at − ct )/(ac

√
6),

where ac = 3.75 Å is the reference lattice parameter of the
cubic phase measured at Tc, and at = 3.79 Å, ct = 3.7 Å
are parameters of the tetragonal phase at T0. The tetragonal
distortion at T0 is then e∗

3 = 0.020 and thus Bd = −0.020Cd .
Because the temperature Tc is known from x-ray diffraction
measurements [63,65], we can combine this with the equation
Ad (Tc) = B2

d/(4Cd ) to obtain both coefficients Bd and Cd . The
former is negative and the latter positive as required for the
existence of a convex free-energy well.

The summary of all parameters of the free-energy func-
tional used here is given in Table I. The temperature T0 is
obtained directly from the temperature dependence of the
elastic moduli measured by Muto et al. [64] and agrees well
with the maximum temperature for which a diffraction peak
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TABLE I. Parameters of the free-energy functional for Fe-
30 at. % Pd, where the temperature T is given in Kelvins.

T0 270 K
Tc 273 K
Ah (= C11 + 2C12) 563.0 − 0.536T GPa
Ad (= C ′ = C11 − C12) 0.460(T − T0) GPa
As (= 2C44) 143.5 + 0.002T GPa
Bd −276.0 GPa
Cd 13800.0 GPa
ac 3.75 Å
ρ 8.91 g/cm3 Ref. [66]
Gd/a

2
c , Hd/a

2
c 84.0 GPa Ref. [62,67]

corresponding to the tetragonal lattice parameter at is observed
in Ref. [65]. Within the narrow range of temperatures 〈T0,Tc〉,
the tetragonal phase is not yet fully formed and the microstruc-
ture is characterized by the so-called pre-transformational
tweed [67,68].

In Fig. 1, we show two contour maps of flocal calculated at
different temperatures using the parameters given in Table I. In
particular, Fig. 1(a) corresponds to T < T0, where the white
dots in dark areas represent stable tetragonal distortions of
the parent cubic structure along the x1, x2, and x3 axes. The
remaining three dots in the vicinity of (0,0) represent saddle-
points of flocal and the dot at (0,0) is the metastable cubic
structure. In Fig. 1(b), i.e., at T > Tc, there is a single (global)
minimum at (0,0) that corresponds to the cubic phase.

Before proceeding further, it is interesting to look at what ef-
fect the two nonlocal terms of the free-energy functional, fconstr

and fgrad, have on the patterning in the two order parameter
fields e2 and e3. For this purpose, we consider a simulation cell
with 32 × 32 × 32 mesoscopic cells with lattice parameters
ameso = {3.75,37.5,375} nm, and two extreme values of the
coefficients of the gradient term, Gd/a

2
c = Hd/a

2
c = {0,500}.

We have investigated these effects for the temperature below
T0, where the tetragonal phase is stable.

If the gradient term is ignored, i.e., Gd = Hd = 0, the
spatial variation of the deformation of the lattice is entirely due
to the compatibility of strains that is enforced by fconstr. In this

-0.02
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-0.06 -0.04 0 0.02 0.04 0.06

0

0.02

0.04

0.06

T1T2

T3

t1t2

t3

C

-0.02-0.04-0.06

-0.04

-0.02

0 0.02 0.04 0.06

0

0.02

0.04

0.06

C

(a () b)

FIG. 1. Contour maps of flocal (18) for (a) T = 250 K (tetragonal
phase stable) and (b) T = 300 K (cubic phase stable). The positions
of the minima of flocal are marked by white dots and the maxima by
the black dots. The labels T1–T3 and t1–t3 correspond to tetragonal
distortions and C to the undistorted reference cubic lattice.

(a) e2 (b) e3

FIG. 2. Order parameter fields (a) e2 and (b) e3 calculated for
Gd = Hd = 0 at the temperature T = 250 K, i.e., below T0. All three
tetragonal variants are present in the microstructure. The color range
is from −0.03 (darkest blue), via 0 (gray), to 0.03 (darkest red). The
labels T1–T3 refer to the minima of flocal plotted in Fig. 1(a).

case, the order parameter field e2 develops the pattern shown
in Fig. 2(a) that, together with e3 [Fig. 2(b)], involves all three
variants of the tetragonal phase corresponding to the minima
of flocal shown in Fig. 1. No change of the microstructure was
observed by changing ameso from 3.75 nm to 375 nm. This
means that fconstr alone does not set the length scale of the
problem, as mentioned earlier by Rasmussen et al. [55].

When the gradient term is present, the patterning changes
substantially. This will be demonstrated in the following by
taking extreme values Gd/a

2
c = Hd/a

2
c = 500 of the coeffi-

cient of the gradient term while also keeping the compatibility
constraint arising from fconstr. If the lattice parameter of the
mesoscopic cell is ameso = 3.75 nm, i.e., the edge length of the
simulated domain is 0.12 μm, the field e2 develops a twinned
microstructure shown in Fig. 3(a), where the blue and red
domains correspond to the two variants of the tetragonal phase
shown in Fig. 1 for e3 < 0. If the size of the mesoscopic cell
is an order of magnitude larger, i.e., ameso = 37.5 nm (and
thus the edge length of the simulated domain is 1.2 μm), the
twinned pattern in e2 still persists [69] as shown in Fig. 3(c).
With increasing size of the mesoscopic cell, the gradient term
becomes weaker compared to the local terms of the free-energy
functional and the microstructure may develop more domain
boundaries. This is indeed shown in Fig. 3(e) obtained for
ameso = 375 nm (i.e., the edge length of the simulated domain
is 12 μm). Here, the fields e2 and e3 are similar to those shown
in Fig. 2 obtained without the gradient term. This gives rise
to fine microstructural details with wavelength comparable
to ameso.

IV. MICROSTRUCTURE DUE TO STATIC
DISLOCATIONS

In order to illustrate the performance of the model devel-
oped in Sec. II, we will first consider a problem of calculating
the deformation of Fe-30 at. % Pd mediated by a random
array of edge dislocations that are all parallel to the x3

axis. The simulated block is discretized by a uniform grid
of 32 × 32 × 32 mesoscopic cells with edge length ameso =
375 nm, each representing 109 underlying atomic-level units
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T1

T2

T2
T1

(a) e2 (b) e3

T1 T2 T1T2

(c) e2 (d) e3

(e) e2 (f) e3

FIG. 3. Influence of the gradient term on the spatial distribution
of the order parameter fields e2 and e3 for two extreme values of
the coefficients Gd and Hd in (12), in particular Gd/a

2
c = Hd/a

2
c =

500 GPa, calculated at T = 250 K (i.e., below T0). Three different
lattice parameters of the mesoscopic cell were considered here: (a),
(b) ameso = 3.75 nm, (c), (d) ameso = 37.5 nm, and (e), (f) ameso =
375 nm. The color range is from −0.03 (darkest blue), via 0 (gray),
to 0.03 (darkest red). The labels T1–T3 refer to the minima of flocal

plotted in Fig. 1(a).

cells. We consider that all crystal dislocations have Burgers
vectors 1/2〈110〉 which complies with the fcc structure of the
reference cubic phase. No attempt is made here to account for
different orientations of the Burgers vectors of dislocations
in the tetragonal phase, because we stay within the limits of
small-strain elasticity, where also the tetragonal strains (e2 and
e3) are small. The dislocation network is generated at random
using 1/2[110] and 1/2[11̄0] edge dislocations with line
directions parallel to [001]. Each mesoscopic cell is assigned
a random number of 0–100 crystal dislocations with positive
and negative Burgers vectors corresponding to (1̄11)[110] and

(a) e2 (T > Tc ) (no dislo.) (b) e2 (T > Tc ) (with dislo.)

(c) e2 (T < T0 ) (no dislo.) (d) e2 (T < T0 ) (with dislo.)

FIG. 4. The partially relaxed order parameter fields e2 above Tc

[(a), (b)] and below T0 [(c), (d)]. The width (height) of each figure
is 12 μm. The panels (a) and (c) correspond to zero dislocation
density, whereas in (b) and (d) we consider an array of parallel edge
dislocations with line directions perpendicular to the figure. The color
range is the same in all figures, from dark blue (e2 = −0.03) via gray
(e2 = 0) to dark red (e2 = 0.03).

(111)[11̄0] systems, which results in the dislocation density
ρ between 0 and 7.1 × 1014 m−2. The only two nonzero
components of the Nye tensor field α are thus α31 and α32

and their limits are ±1.9 × 1015 m−1. We have rescaled these
densities to ensure that

∫
V

α3idx = 0 for i = 1,2, which is
required in all simulations with periodic boundary conditions
to obtain a finite dislocation network.

The order parameter fields e2 calculated above Tc (T =
300 K) are shown in Figs. 4(a) and 4(b). The former
corresponds to zero dislocation density for which the free
energy is minimized by an undistorted lattice. Incorporat-
ing the array of parallel edge dislocations as explained
above results in a nontrivial distribution of deformations in
Fig. 4(b) but without patterning. This is obviously expected
from the harmonic shape of the free-energy well at this
temperature.

The situation is completely different below T0 (T = 250 K)
for which the calculated order parameter field develops a
noticeable pattern. For zero dislocation density, the partially
relaxed field e2 is shown in Fig. 4(c), whereas that for the
dislocation density described above is shown in Fig. 4(d). One
can thus see that the twinned microstructure arising due to
the presence of the gradient term discussed in the previous
section may be strongly modified by dislocations. In particular,
the higher the dislocation density the larger the deviation
of two order parameter fields e2 and e3 from the twinned
microstructure.
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V. EVOLUTION OF GEOMETRICALLY NECESSARY
DISLOCATIONS

Mobile crystal dislocations experience lattice friction
stresses and thus their speeds are orders of magnitude lower
than vibrational frequencies of the defect-free lattice. This
justifies the use of a quasistatic approximation, whereby the
dislocation substructure is assumed to be unchanged for a
significantly long time so that the internal strain field can come
to equilibrium for given boundary conditions and temperature.
This minimization is then followed by updating the density
of GNDs using the internal stresses obtained from the relaxed
fields e1 . . . e6. Here, we outline a minimal model of continuum
dislocation dynamics that can be used to observe the evolution
of GNDs simultaneously with the evolution of internal strain
fields. Similar models were developed earlier by Rickman and
Viñals [70] and, more recently, by Limkumnerd and Sethna
[71], both of which provide evolution laws for the dynamics
of plastic strain tensor β

p

ij in isotropic media. Adopting the
quasistatic approximation above allows us to go beyond
these approximations and consider full elastic anisotropy
when defining the free energy (6). Moreover, separating the
dislocation dynamics from the evolution of the microstructure
opens the possibility of introducing atomic-level details into
the former. This part is currently a work in progress and will
be published separately.

For the total Burgers vector of the GNDs to be conserved
during the evolution of the dislocation substructure, the time
derivative of the Nye tensor must have the form [72]

α̇ij = −εilm∂ljmj , (19)

where jij = εilmαlj vm represents the dislocation flux density
tensor. Combining these two equations and expressing the
product of two Levi-Civita tensors using Kronecker delta
functions leads to a more transparent form of the above,

α̇ij + ∂l(αij vl) = αlj ∂lvi . (20)

If the right-hand side of this equation were zero, it would
represent a continuity equation that describes conservative
transport of each component of the Nye tensor separately. The
right-hand side of (20) thus represents sources and sinks that
are responsible for mixing the individual components of the
Nye tensor and thus local rotations and changes of the Burgers
vectors and densities of GNDs. The Peach-Koehler force
exerted on each dislocation is defined as Fk = −εijkτiσjlbl ,
where σjl is the internal stress field obtained by the min-
imization of the free energy in Sec. II. The corresponding
dislocation density is obtained as vk = γFk , where γ is a
mobility coefficient.

We have made two dynamical calculations, one above Tc

and the other below T0, to observe the concomitant evolution
of the internal microstructure, primarily the order parameter
fields e2 and e3. All GNDs were initially parallel to the x3

axis (i.e., the [001] direction), had Burgers vectors parallel
to x1, and their density in the (x1,x2) plane was chosen at
random such that the magnitude of the total Burgers vector,
B ≡ B1 = ∫

V
α31dx, vanishes. The dislocation density was

chosen at random in the range ρ = {0,7.1 × 1012} m−1. The
maximum density is quite small compared to the values typical
for metals; it is chosen here for the purpose of highlighting
the dislocation—twin boundary interactions without altering
significantly the microstructure as shown in Fig. 4. All other

e2 e3 α31 (edge) α21 (edge) α11 (screw)

lim. ±0.001 lim. ±0.001 lim. ±104 m−1 lim. ±1 m−1 lim. ±1 m−1

lim. ±0.03 lim. ±0.03 lim. ±103 m−1 lim. ±103 m−1 lim. ±103 m−1

FIG. 5. Order parameter fields e2 and e3 and the three nonzero components of the Nye tensor α31, α21, and α11 for T = 300 K (upper row)
and for T = 250 K (lower row). The color range is from blue (lowest) via gray (zero) to red (highest) values, whereas the limits corresponding
to each color (marked “lim.”) are written below each figure.
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components of αij are initially zero. Since the Burgers vector
of all GNDs is parallel to x1, Eq. (20) reduces to a set of three
equations,

α̇i1 + αi1∂lvl = αl1∂lvi (21)

where i = {1,2,3}. Only the glide component of the Peach-
Koehler force exerted on the GNDs is used here, which is
F

glide
1 = σ12b, and b is the magnitude of the Burgers vector

of crystal dislocations. All calculations here were made by
applying a small external stress 
12 that makes the GNDs to
evolve in the x1 direction [73]. For the sake of simplicity,
Eqs. (21) were integrated using the simple velocity Verlet
algorithm with fixed time step. A different approach to
integrate these equations that uses the spectral method can
be found in the paper of Djaka et al. [74].

In Fig. 5, we show the snapshots of the order parameter
fields e2 and e3 with the corresponding fields α31, α21, and
α11 obtained by a combination of the continuum dislocation
dynamics (21) with the internal stress field obtained from the
relaxed fields e1 . . . e6. Above Tc (upper row in Fig. 5), both
fields e2 and e3 are nonzero and nonuniform which is due to
finite internal strains contributed by the field of GNDs. The
right-hand side of (21) causes the dislocation lines to rotate so
that a part of the initially edge-type network of GNDs gives
rise to screw GNDs with line directions parallel to x1 (nonzero
α11) and edge dislocations with line directions parallel to x2

(nonzero α21). This is evident from the nonzero fields α21 and
α11, respectively.

Below T0, the fields e2 and e3 develop a striped pattern,
which resembles that in Fig. 2. The Nye tensor field α31 again
partially transfers into fields α21 and α11. However, the field
α21 now develops a noticeable pattern whereby larger positive
and negative GNDs with line directions parallel to x2 are
concentrated along twin boundaries. Because the glide plane
coincides with the (x1,x3) plane, these represent localized jogs
on the parent edge dislocation that are stabilized by large strain
gradients in the vicinity of domain boundaries. The dislocation
substructure also builds up nonzero screw components as
shown in α11. Our results are in qualitative agreement with
experimental observations of defective twinned boundaries in
nanotwinned materials [75].

VI. CONCLUSIONS

The field-theoretical model developed in this paper to
describe inhomogeneous strain effects combines Kröner’s
continuum theory of dislocations with the free-energy func-
tional written in terms of the symmetry-adapted components
of the elastic strain tensor. The dislocation substructure is
described using geometrically necessary dislocations (GNDs)
and characterized by the Nye tensor field αij . The effect of
the dislocation network on the internal strain field is described
by the symmetric incompatibility tensor ηij , which enters the
free-energy functional through a set of three incompatibility
constraints imposed using Lagrange multipliers. Dislocations
represent a localized source in the incompatibility tensor that
also makes the elastic response of the system long-ranged.

The free-energy minimum is sought by first splitting the six
components of the internal strain tensor into order-parameter
(e2,e3) and non-order-parameter (e1,e4,e5,e6) fields. Using
the Euler-Lagrange equations and k-space representations of
the three incompatibility constraints, the non-order-parameters
are expressed as combinations of two order parameters for
a generic material undergoing structural cubic-to-tetragonal
phase transitions. Their equilibrium representation is then
obtained numerically. The minimization of the free-energy
functional in k space necessitates the use of periodic boundary
conditions and imposes additional constraints on the character
of the dislocation network that can represent a permissible
dislocation density.

We demonstrate that the incompatibility of strains arising
due to nonzero GNDs frustrates the minimization of the
free energy and thus stabilizes the tetragonal deformation for
T > Tc. Below T0, the free energy is minimized by developing
a twinned microstructure (or a checkerboard pattern) with
tetragonal distortions corresponding to the minima of the
local part of the free-energy functional. When dislocations are
present, they make a preferential choice of the local distortion
of the lattice which is spread out through the microstructure
due to the existence of long-range cohesive forces.

We further utilize a minimal continuum dislocation dy-
namics for GNDs to demonstrate the simultaneous evolution
of the two order parameter fields and the Nye tensor fields
characterizing the density of GNDs. At any temperature, the
initial edgelike network of GNDs develops into a complex
three-dimensional dislocation substructure in which GNDs
locally acquire not only the perpendicular edge but also the
screw component. Below T0, the dislocations develop localized
jogs when crossing the twin boundary, which are presumably
stabilized by the existence of large deformation gradients in
the vicinity of these boundaries.

The variational formulation developed in this paper pro-
vides the field of internal elastic stresses and strains corre-
sponding to an arbitrary (but permissible) dislocation network.
This model is general for any material of cubic symmetry
without or with phase transition between the high-temperature
cubic and low-temperature tetragonal phases. The continuum
dislocation dynamics used here deals with the evolution of
GNDs only, without resolving the contributions from individ-
ual slip systems, presence of dislocation sources, dislocation
reactions, etc. The latter effects are now being systematically
incorporated into the model and will be published separately.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE
KERNELS C̃e2

m , C̃e3
m , AND C̃rem

m

We have shown in (16) that the fields ẽm for m = {1,4,5,6}
can be obtained at once if the order parameter fields ẽ2 and
ẽ3 are known. These expressions involve the kernels C̃e2

m , C̃e3
m ,

and C̃rem
m that have to be calculated before minimizing the

free energy and then every time the dislocation density or the
applied stress changes.

To simplify the expressions, we will make extensive use of the
substitutions

k2 = k2
1 + k2

2 + k2
3,

d = 6Ahk
2
1k

2
2k

2
3 + As

[
k4

1

(
k2

2 + k2
3

) + k2
2k

2
3

(
k2

2 + k2
3

)
+ k2

1

(
k4

2 + 6k2
2k

2
3 + k4

3

)]
. (A1)

Following are the analytical expressions of the k-space kernels
C̃e2

m , C̃e3
m , and C̃rem

m obtained with the help of MATHEMATICA:
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Ñ1

{
6Ahk

2
2k

2
3 + As

[
k4

2 + 3k2
2k

2
3 + k2

1

(
k2

2 − k2
3

)]}

+ Ñ2
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Because the externally applied load is uniform, it does
not appear in the equations above but only in the k = 0
component of these fields; these are investigated below. Due
to the divisions by d, these expressions are only applicable
for the wave vectors k = [k1k2k3], where k1,k2,k3 
= 0. The
corresponding formulas for the k-space modes with one or
more zero components of the wave vector are treated separately
in Appendix B.

APPENDIX B: TREATMENT OF ZERO WAVE VECTORS

In order to obtain the expressions for the kernels in (16)
when one or more components of the k-space wave vector are
zero, one has to begin at the point where the incompatibility

constraint is written in terms of the six components of the
strain tensor as m̃ε̃ = η̃. This can be written in the augmented
matrix form as [49]⎡

⎢⎢⎢⎢⎢⎢⎣

0 −k2
3 −k2

2 2k2k3 0 0
−k2

3 0 −k2
1 0 2k1k3 0

−k2
2 −k2

1 0 0 0 2k1k2

k2k3 0 0 k2
1 −k1k2 −k1k3

0 k1k3 0 −k1k2 k2
2 −k2k3

0 0 k1k2 −k1k3 −k2k3 k2
3

∣∣∣∣∣∣∣∣∣∣∣

η̃11

η̃22

η̃33

η̃23

η̃13

η̃12

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(B1)

which is applicable to the wave vectors for which all three
components are nonzero. However, care must be exercised
when dealing with zero components of the wave vector;
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otherwise the solution of the problem will be poisoned with
singularities.

1. Wave vector 〈000〉
One immediately sees from (B1) that all components of the

incompatibility tensor η̃ij must be zero for this wave vector.
This was expected because k = 0 corresponds to a uniform
deformation in k space which is automatically compatible.
From Eq. (15), it follows at once that

ẽ1 = 1

Ah

S1δ(k), ẽj = 1

As

Sj δ(k), (B2)

where j = {4,5,6}. This k-space mode alone thus generates
a spatially uniform internal strain field which can be easily
incorporated into the model.

2. Wave vectors 〈ki 00〉
If two components of the wave vector are zero, whereas

the third is nonzero, the system (B1) provides three nontrivial
constraints. For example, if k = [00k3], where k3 
= 0, the
rows 1, 2, 6 of (B1) give the constraints −k2

3 ε̃22 = η̃11,
−k2

3 ε̃11 = η̃22, k2
3 ε̃12 = η̃12. The rows 3, 4, 5 reveal that the

components of the incompatibility tensor η̃33, η̃23, η̃13 must all
vanish for this wave vector and, at the same time, the strain field
components ε̃33, ε̃23, ε̃13 can be arbitrary. Similarly, one may
obtain the reduced constraints for the wave vectors k = [0k20]
and k = [k100], where k1,k2 
= 0. The minimization of the free
energy with respect to the four secondary fields leads to the
same form of Eq. (16), where the kernels corresponding to the
wave vectors 〈ki00〉 are given in Table II. At the same time,
the above-mentioned conditions of vanishing fields η̃33, η̃23,
η̃13 for these wave vectors are enforced when constructing the
Fourier image of the Nye tensor field.

The variational minimization of the free energy with respect
to ẽi (i = 1,4,5,6) provides an interesting conclusion that
the part of the ẽ2 field for the k = [00k3] mode cannot be

TABLE II. Mathematical expressions of the kernels in (16) for
the wave vectors of the type 〈ki00〉.

k

[00k3] [0k20] [k100]

C̃
e2
1 0 0 0

C̃
e3
1 − 1√

2

√
2

√
2

C̃rem
1 −

√
3

2k2
3
(η̃11 + η̃22) −

√
3

k2
2
η̃11 −

√
3

k2
1
η̃22

C̃
e2
4 0 0 0

C̃
e3
4 0 0 0

C̃rem
4 0 0

√
2

k2
1
η̃23

C̃
e2
5 0 0 0

C̃
e3
5 0 0 0

C̃rem
5 0

√
2

k2
2
η̃13 0

C̃
e2
6 0 0 0

C̃
e3
6 0 0 0

C̃rem
6

√
2

k2
3
η̃12 0 0

determined independently by (16) but, instead, from

ẽ2 = 1√
2k2

3

(η̃11 − η̃22). (B3)

A similar result is obtained for the other two wave vectors
of the 〈ki00〉 group. In particular, the part of the ẽ2 field
corresponding to the wave vector k = [0k20] is defined as

ẽ2 = −
√

3ẽ3 +
√

2

k2
2

(η̃11 − η̃33) (B4)

and that for the wave vector k = [k100] is

ẽ2 =
√

3ẽ3 +
√

2

k2
1

(η̃33 − η̃22). (B5)

These equations are applied after the new field ẽ3 is predicted
from (17).

3. Wave vectors 〈ki k j 0〉
Let us now assume that only one of the three wave-vector

components k is zero, while the remaining two are nonzero.
If k = [0k2k3], where k2,k3 
= 0, the rows 2, 3, 4 of (B1)
reduce to −k2

3 ε̃11 = η̃22, −k2
2 ε̃11 = η̃33, and k2k3ε̃11 = η̃23.

These represent three constraints for the field ε̃11. Multiplying
the row 2 by k2

2, row 3 by k2
3, and row 4 by −k2k3 shows that

the left-hand sides of these three equations are identical, while
their right-hand sides are different:

−k2
2k

2
3 ε̃11 = k2

2 η̃22 = k2
3 η̃33 = −k2k3η̃23. (B6)

In order to satisfy all three conditions, we choose the equation
from row 2 as the first constraint that will be imposed when
minimizing the free energy. To satisfy the conditions in rows
3 and 4, we must require that η̃33 = (k2/k3)2η̃22 and η̃23 =
−(k2/k3)η̃22, which are both enforced when constructing the
incompatibility tensor η̃ij from the given Nye tensor field α̃ij .

Returning back to (B1), the rows 5 and 6 represent two
algebraic equations that constrain the internal strain field using
the components of the incompatibility tensor η̃13 and η̃12.
Multiplying the row 5 by k3 and the row 6 by −k2, we find
again that the left-hand sides of these equations are identical,
while the right-hand sides are different:

k2
2k3ε̃13 − k2k

2
3 ε̃12 = k3η̃13 = −k2η̃12. (B7)

The condition in row 5 is then used as the second constraint that
is imposed when minimizing the free energy. The condition in
row 6 is satisfied by requiring that η̃12 = −(k3/k2)η̃13 when
building the Nye tensor field.

The third constraint is then obtained directly from the row
1 of (B1):

−k2
3 ε̃22 − k2

2 ε̃33 + 2k2k3ε̃23 = η̃11. (B8)

By the procedure above, we have thus obtained the three
conditions that constrain the individual components of the
internal strain fields, ε̃ij , for k = [0k2k3] subject to a given
distribution of dislocations. At the same time, the satisfaction
of all six constraints in (B1) yields additional conditions to
be satisfied between certain components of the Nye tensor
η̃ij . Similar results can be obtained for the other two modes
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TABLE III. Incompatibility constraints for the wave vectors of
the type 〈kikj 0〉, where ki,kj 
= 0.

k Constraints

−k2
3 ε̃11 = η̃22

[0k2k3] k2
2 ε̃13 − k2k3ε̃12 = η̃13

−k2
3 ε̃22 − k2

2 ε̃33 + 2k2k3ε̃23 = η̃11

η̃33 = (k2/k3)2η̃22

η̃23 = −(k2/k3)η̃22

η̃12 = −(k3/k2)η̃13

−k2
3 ε̃22 = η̃11

[k10k3] k2
1 ε̃23 − k1k3ε̃12 = η̃23

−k2
3 ε̃11 − k2

1 ε̃33 + 2k1k3ε̃13 = η̃22

η̃33 = (k1/k3)2η̃11

η̃13 = −(k1/k3)η̃11

η̃12 = −(k3/k1)η̃23

−k2
2 ε̃33 = η̃11

[k1k20] k2
1 ε̃23 − k1k2ε̃13 = η̃23

−k2
2 ε̃11 − k2

1 ε̃22 + 2k1k2ε̃12 = η̃33

η̃22 = (k1/k2)2η̃11

η̃12 = −(k1/k2)η̃11

η̃13 = −(k2/k1)η̃23

[k10k3] and [k1k20] for k1,k2,k3 
= 0. For completeness, we
summarize all these constraints in Table III. The expressions
of the kernels C̃e2

m , C̃e3
m , and C̃rem

m for m = {1,4,5,6} that are to
be used for these modes in (16) are given in Table IV.

TABLE IV. Mathematical expressions of the kernels in (16) for
the wave vectors of the type 〈kikj 0〉, where ki,kj 
= 0.

k

[0k2k3] [k10k3] [k1k20]

C̃
e2
1 −

√
3
2

√
3
2 0

C̃
e3
1 − 1√

2
− 1√

2

√
2

C̃rem
1 −

√
3

k2
3
η̃22 −

√
3

k2
3
η̃11 −

√
3

k2
2
η̃11

C̃
e2
4 − k2

2+2k2
3

2k2k3
0 0

C̃
e3
4 −

√
3

2
k2
k3

0 0

C̃rem
4

η̃11k2
3−η̃22(k2

2+k2
3 )√

2k2k3
3

√
2

k2
1+k2

3
η̃23

√
2

k2
1+k2

2
η̃23

C̃
e2
5 0

k2
1+2k2

3
2k1k3

0

C̃
e3
5 0 −

√
3

2
k1
k3

0

C̃rem
5

√
2

k2
2+k2

3
η̃13

η̃22k2
3−η̃11(k2

1+k2
3 )√

2k1k3
3

−√
2 k2

k1(k2
1+k2

2 )
η̃23

C̃
e2
6 0 0 − k2

1−k2
2

2k1k2

C̃
e3
6 0 0

√
3

k2
1+k2

2
2k1k2

C̃rem
6 −√

2 k3
k2(k2

2+k2
3 )

η̃13 −√
2 k3

k1(k2
1+k2

3 )
η̃23

η̃33k2
2−η̃11(k2

1+k2
2 )√

2k1k3
2
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