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Effect of the electromagnetic environment on current fluctuations in driven tunnel junctions
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We examine current fluctuations in tunnel junctions driven by a superposition of a constant and a sinusoidal
voltage source. In standard setups, the external voltage is applied to the tunneling element via an impedance
providing an electromagnetic environment of the junction. The modes of this environment are excited by the
time-dependent voltage and are the source of Johnson-Nyquist noise. We determine the autocorrelation function
of the current flowing in the leads of the junction in the weak tunneling limit up to terms of second order in the
tunneling Hamiltonian. The driven modes of the electromagnetic environment are treated exactly by means of a
unitary transformation introduced recently. Particular emphasis is placed on the spectral function of the current
fluctuations. The spectrum is found to comprise three contributions: a term arising from the Johnson-Nyquist noise
of the environmental impedance, a part due to the shot noise of the tunneling element, and a third contribution
which comes from the cross correlation between fluctuations caused by the electromagnetic environment and
fluctuations of the tunneling current. All three parts of the spectral function occur already for devices under dc
bias. The spectral function of ac driven tunneling elements can be determined from the result for a dc bias by
means of a photoassisted tunneling relation of the Tien-Gordon type. Specific results are given for an Ohmic
environment and for a junction driven through a resonator.
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I. INTRODUCTION

The effect of the electromagnetic environment on tunnel
junctions has extensively been studied some 25 years ago both
experimentally [ 1-4] and theoretically [5—9]. The theory of the
dynamical Coulomb blockade (DCB), frequently also referred
to as P(E) theory, has explained the experimentally observed
suppression of the tunneling current at low voltage bias as
an effect of photon exchange between the tunneling element
and its electromagnetic environment. More recently, new
experiments [10-12] with designed, approximately single-
mode, electromagnetic environments have led to a revival of
the DCB theory [13-17]. In particular, in view of advances
in microwave technology, ac driven tunneling elements have
moved to the focus of attention.

The study of ac driven devices is extensive and has
been reviewed by several authors [18-20]. Frequently, also
properties of the current noise [21] have been addressed in
this context. In this paper, the focus is on the effects of the
electromagnetic environment on the current noise of an ac
driven tunnel junction. Previous work mostly assumes that
the external driving leads to a time dependence of properties
of the tunneling system itself [19,20] rather than studying
the driving by an external voltage source connected to the
tunneling system via leads of finite impedance. The work by
Safi and co-workers [22,23] presents a rather general approach
to ac driven systems and includes an environmental impedance.
However, the analysis is then based on the assumption that in
the absence of tunneling the charge of the tunneling system is
conserved. This means that displacement currents are not taken
into account. These currents are, however, crucial to describe
the influence of the electromagnetic environment accurately.

The standard Hamiltonian model of conventional DCB
theory properly describes a tunneling element biased by a
voltage source via an environmental impedance. In the original
work [5-8] this model was only studied for applied dc voltages.
We have recently shown [15] that the analysis of the model
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for ac bias voltages entails substantial modifications of the
theory. The time dependence of the Hamiltonian arising from
the external bias can no longer be transformed in the usual
way [8] into a time-dependent phase factor of the tunneling
Hamiltonian. This is due to the fact that the modes of the
electromagnetic environment are excited by an alternating
voltage source and constitute a driven quantum bath [24].

A suitable way of handling time-dependent voltages within
P(E) theory is based on a unitary transformation involving
also the environmental degrees of freedom [15]. Employing
this method, the average current flowing through the environ-
mental impedance into the outer circuit was determined, and
for ac driven devices a suppression of higher harmonics of the
current by the electromagnetic environment was found [15]. In
this paper, we now investigate specifically the autocorrelation
function of the current flowing in the leads of a tunneling ele-
ment driven by dc and ac voltage sources. The experimentally
relevant spectral density of current fluctuations is determined
and discussed for specific models of the electrodynamic
environment.

The paper is organized as follows. In Sec. II we recall
the standard Hamiltonian of a voltage biased tunnel junction
with an electrodynamic environment characterized by a lead
impedance. The relevant current operators are introduced
and the perturbation theory in the tunneling Hamiltonian is
outlined. Also, the unitary transformation removing the time
dependence of the environmental Hamiltonian is specified.
Section III introduces the current autocorrelation function.
All terms up to second order in the tunneling Hamiltonian
contributing to the current correlator are determined. Each of
these terms factorizes into an average over the quasiparticles
in the leads of the tunnel junction and an average over the
electromagnetic environment. It is shown that for arbitrary
driving voltages these averages can be fully expressed in terms
of quantities known from the standard P (E) theory for constant
voltage bias. Finally, the results are specified for a driving
voltage comprising a dc voltage and a sinusoidal ac voltage.
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In Sec. IV, we switch to Fourier space and introduce the
Fourier coefficients of the steady-state current autocorrelation
function of a periodically driven junction. These Fourier
coefficients are functions of the lag time, that is, the time
difference between the positions in time of the two current
operators linked by the correlation function. The zero-order
Fourier coefficient describes the time-averaged current cor-
relator where the absolute positions in time of the two
current operators are averaged at constant lag time over one
period of the driving voltage. We then introduce the Fourier
transform of the time-averaged current correlator which gives
the experimentally relevant spectral function.

The explicit evaluation of the spectral function naturally
divides into three steps. First, we determine the part of the
spectrum coming from the Johnson-Nyquist noise of the
environmental impedance. Next, we calculate the contribution
to the spectrum arising from the shot noise of the tunneling
current. In addition, we obtain a third part of the spectrum
which is due to the cross correlation between fluctuations of
the tunneling current and Johnson-Nyquist voltage fluctuations
across the environmental impedance.

In Sec. V we illustrate our findings by studying specific
models of the electromagnetic environment. First, we consider
the case of a strictly Ohmic environment with a constant
environmental impedance. In the limit of a low impedance
environment, one recovers the shot noise of a tunnel junction
in the absence of DCB effects. As a second example, we
study a tunnel junction driven through an LC resonator. At
the resonance frequency, the noise is strongly enhanced and
the cross-correlation part of the spectrum predicted in Sec. IV
is shown to be very significant. Finally, in Sec. VI we present
our conclusions.

II. MODEL AND PERTURBATION THEORY

We consider the standard model for the DCB [5-8], a
tunnel junction with junction capacitance C and tunneling
conductance G driven by a voltage source V. (f) via an
environmental impedance Z(w). A circuit diagram of the setup
indicating also the currents flowing in the circuit is shown
in Fig. 1.
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FIG. 1. Circuit diagram of a voltage biased tunneling element
showing a tunnel junction with capacitance C and tunneling conduc-
tance G coupled to a voltage source Vi, via an external impedance
Z(w). The current /,,,, flowing through the environmental impedance
and the tunneling current I are also indicated.
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A. Model Hamiltonian

The Hamiltonian of a voltage biased tunnel junction may
be written as

H = H, + Hr + Hpy, (21)

where H,; describes the conduction electrons of the leads on
either side of the tunnel junction

H, = Z ek(,a,iaa,m + Z eq(,aj;(,aq(, . 2.2)
k,o q,0

The operator a,, (a,,) is the annihilation operator of an
electron state with energy €;, (€,0) in the left (right) electrode,
where k (g) denotes the longitudinal wave number and
o denotes the transversal and spin quantum numbers. The
quantum number o is conserved during tunneling transitions
described by the tunneling Hamiltonian

Hr = Qe ¥ + 0fe? (2.3)
with the quasiparticle tunnel operator
0= tigoal,a,,. (2.4)

k.q,0

where 14, is the tunneling amplitude. The phase operator ¢
is conjugate to the junction charge Q and obeys the canonical
commutation relation [5] [¢, Q] = ie. Thelasttermin Eq. (2.1)
describes the junction capacitance C and the environmental
impedance Z(w) and it may be written in the form [§]

Hepny (1)

o 0> 1 ()’ 2
= f_‘_%:{ﬁ—i_ 2L, (Z) [(p_(pn _Qﬁex[(t)] >

(2.5)

where the first term is the charging energy of the tunnel
junction with capacitance C and the second term represents the
impedance Z(w) as a collection of LC circuits [25,26]. These
environmental modes form a thermal bath causing dissipation
and fluctuations and lead to the DCB effect. The charge
operators Q, are conjugate to the phase operators ¢, with
the commutators [¢,,0,] = ie, and the phase

fen1) = 7 Veu(0) 2.6)
describes the external driving where Vi (f) is the voltage
applied to the circuit.

B. Current operators

Using the Hamiltonian (2.1), we find for the time rate of
change of the junction charge

0= %[H,Q] = Lo — I, @7
where [9,27]

i h @ — On — Pext
Ienv =z Henv» = - —_— 2.8
[ Hen, 0] = —— Z T 2.8)
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is the current flowing through the environmental impedance
Z(w) while
i e . .
Ir=——[Hr,Ql=~i [0 -0 (29
h h
is the tunneling current flowing across the tunneling element.
Tunneling currents are not experimentally accessible [28] since

measurements typically relate to the current /,,, entering the
outer circuit.

C. Perturbation theory in the tunneling Hamiltonian

To evaluate the time evolution for weak tunneling we write
the total Hamiltonian (2.1) as H = Hy + Hr where Hy =
H, + H,,, is the Hamiltonian in the absence of tunneling.
A straightforward expansion in terms of Hy yields for the
Heisenberg current operator /,,,,(¢) up to terms of second order
in H. T

. t
Lony(t) = Ly (t) + ;—_L / ds [O(s) e + Hee., Ly (1]
0

1 ff f . .
—— | dsi | ds2[O(sy) e 96
h? 0 0

+He [OCs) e ) + He. L] (2.10)

Here, we have introduced the interaction representation of
operators Ar) = Ug(t,O) A Uy(t,0) with the unperturbed time
evolution operator

i

Uo(t,t") = T exp {_E,/ ds Ho(s)}. (2.11)

D. Unitary transformation

Since the electrons in the junction leads and the electro-
magnetic environment are decoupled for vanishing tunneling,
the time evolution operator (2.11) factorizes according to

Uo(t1,1') = Uy (1,1') €7 =1 2.12)
into the time evolution operator
. t
Uno(t,)) = T exp {—% f ds Henv(s)} (2.13)
p

of the electrodynamic environment and the time evolution
operator of the quasiparticles. The time dependence of the
environmental Hamiltonian H,,,(¢) arising from the applied
voltage can be removed by a unitary transformation [15]

A = exp {2[@(!)Q + Zq‘zn(r)Qn} }

ih| . .
X exp {‘le_z [Cqﬁ(r)w +y cnrzn(r)wn} } (2.14)
where the phase @(¢) is determined by
Co(t) + / ds Y (t = $)[P(s) = Pext($)] = 0 (2.15)
0
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with the temporal response function

Yy => Li cos(wnt) (2.16)

n n

of the electromagnetic environment which is the Fourier
transform of the admittance

Y() = 1/Z(w) = /Oodz Y(t) e, 2.17)
0

The phases ¢, (t) are given by

@n(1) = wn/() ds sin[w,(t — $)][P(s) — Pexi(s)].

Under the unitary transformation (2.14) the environmental
Hamiltonian becomes [15]
AA(1)

Hepo(t) = A(t)Hppo(t) AT () + mTA*a)

=H) +G@), (2.18)

where
2

0 o 1 (hY )l o4
Hyw =56+ |50+ a (3 ) e | @19

is the time-independent Hamiltonian of the electromagnetic
environment in the absence of driving. G(¢) is a function of
time which gives rise to a phase factor in the time evolution
operator [15] dropping out in the Heisenberg representation of
operators employed in the sequel.

Introducing the Heisenberg operators of the undriven
electromagnetic environment A(f) = e# o’ A ¢~ Hen! | the
phase operator in the interaction representation may be written
as [15]

Pt) = (1) + ¢(1), (2.20)

and for the interaction representation of the current operator
(2.8) one finds

Lono(t) = Loy (1) + Lony (1), (221

where

- h .
Lony(1) = ;C<Z>(t) (2.22)
is the current operator in the absence of driving and tunneling
and

- h .
Lony(1) = EC¢(t) (2.23)

is the average displacement current flowing in a driven circuit
in the absence of tunneling [15]. Hence, by virtue of the
unitary transformation (2.14), all Heisenberg operators in the
interaction representation on the right-hand side of Eq. (2.10)
can be expressed in terms of Heisenberg operators of the
undriven system.

III. CURRENT AUTOCORRELATION FUNCTION

We are interested in properties of the system under
quasistationary conditions, when the driving voltage Vex(?)
has been acting for a long time. Letting the initial time when
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driving starts tend to —oo, one obtains from Eq. (2.10) for the
current operator

Ienv(t)
v i [ v - v
= Lon(t) + E / du [0 —u) e io=w +H.c., Leny(2)]
0

1

n Jo
+Hee, [0 —u)e P + He. Iy, (D)]).

[o¢] 00 . N
du/ dv[O@G — u — v) e P4V
0
3.1

The average current in second order in Hy resulting from this
equation has been evaluated previously [15]. Here, we now
determine the current autocorrelation function.

A. Current autocorrelation function for weak tunneling

The (nonsymmetrized) current autocorrelation function is

defined by

C(t,1") = Lenv(®) Leny(t)) — Leno()) {Tenn (1)) (3.2)
This quantity is now determined up to terms of second order in
the tunneling Hamiltonian. The result can be expressed entirely
in terms of quantities known from the standard DCB theory [8].
The outcome of the calculation for arbitrary time-dependent
voltages is given in Eq. (3.7) below, while the result for a
superposition of a constant and a sinusoidal voltage drive is
given in Eq. (3.195).

It is advantageous to introduce the lag time s, the time
difference between the two points in time ¢ and ¢’. Inserting
then the expansion (3.1) of the Heisenberg operator I,,(f)
up to second order in the tunneling Hamiltonian Hy, we
obtain for C(t 4 s,¢) a somewhat lengthy expression which
is, however, readily written and given explicitly in Eq. (A1) in
Appendix A. All terms of the perturbative expansion refer to
the unperturbed system with Hamiltonian Hy = H,; + H,y,.

J

RC? ... 2i
C(t+s,t) = 5 J(s)+
e e
2i
+
2i
+

which is written fully in terms of three quantities. The
correlation function of tunneling operators «(t) defined in
Eqg. (3.3) and the phase autocorrelation function J(¢) defined in
Eq. (3.4). These quantities characterize the quasiparticles and
the electromagnetic environment, respectively, in the absence
of tunneling and driving. Third, the result (3.7) depends on
the phase ¢(¢) determined by Eq. (2.15). This latter quantity
describes the dependence on the external voltage. So far,
the results are valid for any form of the driving potential

Vex(2).

[C? [ 00 . . . . .
> / du / dva(s —u +v) e’ J W) [ J (—v) — J(0)](e I PUH—Welt=v) | ¢ o),
e 0 0
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Since the quasiparticle Hamiltonian H,; and the environmental
Hamiltonian H,,, commute, all terms of the expansion can
be factorized into a quasiparticle average and an average
over the electromagnetic environment. This is performed in
Appendix A and the quasiparticle averages are expressed in
terms of the correlator

a(t) = (BNO(0)) = (OT(1)O(0)) (3.3)

of tunneling operators.

Furthermore, one inserts the decomposition (2.21) of
Ive,,v(t), the decomposition (2.20) of ¢(¢) as well as the
representation (2.22) of I,,,(t). As outlined in Appendix A,
one then obtains for the current autocorrelation function
the result (A3) where all averages over the electromagnetic
environment are expressed in terms of averages over the
phase operator @(¢) of the undriven circuit in the absence
of tunneling. These averages can be expressed through the
phase-phase correlation function

J (@) = ([9(1) — @(0)]@(0)) (34

introduced in the standard P(E) theory [5—8]. The function
J(t) is given by

* dw Z;(w)
J(t)=2f D
o ® Rg

X {coth <%,Bha)) [cos(wt) — 1] —i sin(a)t)}, 3.5

where Z/(w) is the real part of the total impedance of the
electromagnetic environment

1

Zi(@) = Y ) —iaC

(3.6)
and Rx = h /e2 is the resistance quantum.

Appendix A presents the evaluation of averages over the
electromagnetic environment in terms of the phase-phase cor-
relation function J(¢). Afterwards, the current autocorrelation
function takes the form

2 o) 00
5 / du / dv (@()e’V — c.c)J"J (s + u) — J(s 4+ u 4+ v)](e' P11 0—Uu=0) 4 ¢ c)
0 0

iC2 [ o . , . - -
- / du / dv (@(@)e’™ — c.c)J" W) (s —u) — J(s — u — v)](e" P T ¢ )
e Jo 0

(3.7)

(
B. Correlation function for periodic driving

In the following, we focus on the important case of a circuit
driven by the voltage

Vexl(t) = Vie + Ve cos (Qt) (38)

composed of a dc voltage V. and a sinusoidal ac voltage V,. of
frequency Q2. In the absence of tunneling the junction charge
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then reads as [15]

CY(2)
Y(Q)—iQC
which oscillates with an amplitude proportional to V,. about
the time-averaged charge C V.. Using the polar decomposition

Y()  Zi(w)

Y(w)—iwC  Z(w)

of the admittance ratio into modulus E and phase n, Eq. (3.9)
simply reads as

(O(1)) = C[ Ve + & Vi cos( — )]

Here and in the following, we denote by E and 1 without
argument the functions E(w) and n(w) for o = Q2. Below, we
will employ these functions also for other frequencies which
are then always indicated explicitly as arguments.
Furthermore, one can show that the phase ¢(¢) introduced
in Egs. (2.14) and (2.15) coincides with the average phase

(O()) = CVye + Re{ Ve e"Qf}, (3.9)

= B(w) "

(3.10)

@3.11)

J

K2C? 2i

C(t+s,t) = T(s)+

e2

« (e%eVdcveia Sin[Q(t—u)—1] ,~ia sin[Qt—u—v)—n] +ee)+
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(¢(2)) across the junction in the absence of tunneling and is
given by [15]

@(1) = %vdcr +asin(Qr — 1), (.12)

where we have introduced the dimensionless ac amplitude

e & Ve

h&2

a= (3.13)
We now make use of

o) — o —s)
- %Vdcs Fasin(Qr — 1) — asin[Q —s) — ). (3.14)

Inserting this into the result (3.7), the current autocorrelation
function takes the form

P2 o) 00
ef / du / dv (a()e’™ — c.c)J" W) J (s +u) — J(s +u + v)]
0 0

2iC? [ ®© .
! > / du/ dv (a@(v)e’™ —c.c)J"(u)
0 0

e

% [](S _ I/t) _ J(S —u— v)](e%eVdcv eiu sin[Q(t+s—u)—n] e—ia sin[Q(t+s—u—v)—n] + C.C.)

4C?

4 — / du / dv O[(S —u4+ v)ej(s—u+v)1//(u) J//(U)(e%evdc(x—u-kv)eza sin[Q(t+s—u)—n] e la sin[Q(t—v)—n] + C.C.).
e Jo 0

(3.15)

To proceed, it is advantageous to turn to the spectral density of current fluctuations.

IV. CURRENT SPECTRAL FUNCTION

The spectrum of current fluctuations is experimentally
particularly relevant. Accordingly, we continue with the
analysis in Fourier space. We will show that the spectrum
is composed of three parts given in Eqs. (4.27), (4.54), and
(4.73) below.

A. Fourier coefficients of current autocorrelation function

The correlation function (3.15) has the periodicity

Clt+27/Q+ 5,0 +27/Q) = C(t +5.1) @.1)

J

h?C? 2iC

Clt+s.0)=— J()+

oo
x Z Ji(a) Jl(a)(e%eVcheik[ﬂ(f—u)—'}]e—il[Q(t—u—U)—'I] +cc)+

k,l=—00

oo

(

and may thus be written as a Fourier series

[o.¢]
Ct+s.t)y= Y Cyls)e ™™

n=—0o0

“4.2)

with coefficients C,(s) that are functions of the lag time s.
To extract these coefficients, we employ the Jacobi-Anger
expansion [29]

o0

eiusin(Qt) — Z Jk(a) eith

k=—00

(4.3)

with the Bessel functions of the first kind J;(z). Inserting this
series expansion into Eq. (3.15), we obtain for the current
autocorrelation function the expression

2 00 00
= f du f”(u)/ dv (@@)e’® — ce)J(s +u) — J(s + u + v)]
0 0

2iC?

/ du J"”(u)/ dv (@(v)e’V —c.c.)
0 0

e2

X [J(s —u)— J(s —u —v)] Z Je(a) Ji(@)(eneVer KU ts—=n] o=illQi+s—u=v)=nl 4 ¢ ¢ )

k,l=—00
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4C?
62

oo

« Z Ji(a) Jl(a)(e%eVdc(s—u+v)eik[§2(t+s—u)—r]]e—il[Q(r—v)—n] +c.c.).

k,l=—00
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o pig o0 .
+— du JN(M)/ dvJ " (Wa(s —u +v) g/ (s—utv)
0 0

“4.4)

From this result we can now easily extract the Fourier coefficients C,,(s). In particular, we obtain for the most important coefficient
Cy(s), which corresponds to the average of the correlator C(t + s,¢) over time ¢, the result

h2C2 2iC

Co(s) = J(s)+

i P 2i
x Z Jk(a)Z(eEeVdcvelev +C.C.)+ >
k=—00

/ du J" (1) /OO dv (@()e’® —c.c)[J(s +u) — J(s + u + v)]
0 0

/ ” du J" () / ~ dv (a(v)e’V —c.c.)
0 0

2 0
X [J(s —u)— J(s —u — v)] Z Je(@)2(emeVey ok 4oy 4 ﬂf du J”(u)f dv J" (v)
0

k=—00

x (s — u + v) e/ 5—utv) Z Jk(a)2(e%e\/dc(s—u+v) o KQs—utv) +c.c.).

k=—00

We now switch to Fourier space also with respect to the lag
time s.

B. Spectral function

The Fourier coefficient Cy(s) of the current correlator can
be written as a Fourier integral

* dw _
Co(s) = — S(w)e™'** (4.6)
oo 2TC
with the spectral function
oo
S(w) = / ds Co(s) ™. 4.7)
—00

To determine S(w) it is advantageous to transform the result
(4.5) for Cy(s) in such a way that the dependence on s arises
via exponential factors of the form exp(ivs). To this purpose
we make use of Eq. (3.5), which gives

J@t) = —2/0001600)M
0 Ry

X {coth <%ﬂhw) cos(wt) — i sin(a)t)}. 4.8)
This may be transformed to read as
jin=-< / ¢ IZ _(‘e')) Z;:t , 4.9)
where we have made use of the symmetry
Z)() = Z)(~w) (4.10)
following from Eq. (3.6) and the relation
17 =1[1+coth(f>] @.11)
l—e> 2 2
It is convenient to introduce also the function
K(s) = —J(s) = (§(t + )p(1)), (4.12)

which is proportional to the charge autocorrelation function
in the absence of tunneling and driving, and its Fourier

4.5)
(
representation
*® dw .
K(s)= — Sk(w)e " (4.13)
oo 2T
From Eq. (4.9) we obtain for the spectrum
Sk (@) = 2 wZ)(w) @.14)
K h1—ehhe '

which is real, implying K(—s) =
symmetry

K (s)*, and which has the

Sk(—w) = e P Sk (). (4.15)

To uncover the dependence of Cy(s) on s, we also need a
Fourier representation of the function a(¢) e’®. To this purpose
we introduce the familiar P(E) function of the DCB theory
[5-8]

1 * i
P(E)= — / dt ! O+ wE! (4.16)
2rh J_o
which gives the probability that a tunneling transition is

associated with an exchange of the energy E with the
electromagnetic environment. Now, Eq. (4.16) implies
e’V =p f dw P(hw)e . 4.17)

—00

Furthermore, for tunnel junctions in the wide-band limit, the
correlator of tunneling operators «(t) is given by [8,15]

1 o0 E —LLEt
hGT/ E=¢" (4.18)

S 1 — e PE’

where G is the tunneling conductance of the junction.
Combining Eqs. (4.17) and (4.18), one obtains

(1! 27 kG /“’o dw /“’O do’
a)e’' = ——— —
e2 oo 2 J_o 2m

w P(hw')
1 — e Pho

—i(w+a)t

(4.19)
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We write this result in the form

o0
d .
a(t) e’ ® = / 2D p(w)e e (4.20)
oo 2T
with the spectrum
WHGr [® (0—o)P(ho)
Flo)= — /m do) =y 4.21)
J
h=C
Sy(w) =

PHYSICAL REVIEW B 94, 045429 (2016)

which obeys the symmetry

F(—w) = e P F(w). (4.22)

Using the Fourier representations (4.13) and (4.19), the
expression (4.5) for the function Cy(s) can be transformed
in such a way that the spectral function S(w) can easily
be extracted. This is shown explicitly in Appendix B. The
resulting spectral function is found to be the sum of three
terms

Sl P e [ [ d .
St(w) = —_/ du / _’u(] _ e—ﬂﬁu)SK(M)e—zuu/ dv/ —U(l _ e—ﬁhv)SK(v) oV piw—0)
62 0 —00 2 0 —00 2

X Y J@P [F(@+ eVae/h+kQ) + F(w — eVae/h — k)]

k=—00

and

C2 00 00 d,u ) 00 ) )
Syr(w) = —2/ du/ — (1 - e_ﬁh”)SK(,u)e_”‘”/ dv (a(v)e’® — c.c)Sk(w) e ' [1 — e7'?]
e” Jo —o 27 0
o0

X Z Jk(a)z(e%evd°”eik9“ +c.c.)+cc.

k=—00

These three contributions to S(w) are now evaluated further.

C. Evaluation of Sy ()

The contribution Sy(w) to the spectral function S(w) may
be written as
2h C* 0 Z)(w)

Sw(w) = =

4.27)

where we have inserted the explicit form (4.14) of the spectrum
Sk (w) into Eq. (4.24). Now, the real part Z/(w) of the total
impedance (3.6) may be written as

Zi()
Z(w)

2
Z{(®) = | Zi(@)]Y () = ‘Z/(w) (4.28)

= B(w)*Z'(v),

where we have made use of the polar decomposition (3.10) to
obtain the last expression. This allows us to write the result
(4.27) in the form

Sy(@) = [E(@)wZ'(@)C1* Sty 1, (@), (4.29)
where
2hw 1
Siyiy () = mm (4.30)

is the spectrum of Johnson-Nyquist current noise [30-32]
generated by the environmental impedance Z(w). We thus
see that the contribution Sy(w) to the spectral function S(w)
is the current noise in the outer circuit arising from the

S(w) = Sy(w) + Sr(w) + Syr(w), (4.23)
where
2
w? Sk (w), (4.24)
(4.25)
(4.26)

(

Johnson-Nyquist noise of the environmental impedance. The
dimensionless factor [E(a))a)Z/(a))C]2 in Eq. (4.29) can be
understood from circuit theory.

D. Evaluation of Sy ()

Next, we turn to the contribution Sr(w) to the spectral
function S(w). We start by noting that the average current
14.(Vge) in the presence of a dc voltage V. only may be written
as [8]

L4c(V) = e[l'(V) = T(=V)], (4.31)
where
Gr [® _EP(V—E)
rv)y=— dE ——
V) er J_o 1 —ePE
RGr [*  ,(eV/h— ') P(ho')
=— /700 dw [ oFev—ha) (4.32)

is the electron tunneling rate in the presence of an applied dc
voltage V. When we compare this with the definition (4.21)
of the spectrum F(w) introduced previously, we see that F(w)
may be written as

F(w) = R*T (hw/e). (4.33)
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Inserting this result into Eq. (4.25) we obtain

h2C2 00 o 4
S = =" [au [ seqo
e 0 —00 27

—i > > dv —Bhv —iv
x e dv —(1—e )Sk(v)e™M
0 —00 2z
o0

XY @D (Vg + Wk + w)/e)e™ ™)

k=—00

+ (= Vye — WkQ — w)/e)e' ™™V}, (4.34)

J

r*C?

1
Sr(@) = —— [E(l—e-ﬁh‘")SK(w)—iP /

—iP/OO dv (1= e P™)Sg(v)

2 V4w
- + k=—00

This result contains the Cauchy principal value

00 _ ,—Bh
H (o) = p/ dn Qe D5G
oo 2m U —w

(4.38)
which is evaluated next.

1. Evaluation of Hg (w)
To determine Hg (w), we first note that Eq. (4.14) gives

—Bhw 262 /
(1—e )Sk(w) = Ya)Zt(w) 4.39)
so that
2 2 o g 7/
Hy (@) = ip/ i nZ,(w
h Ce0 2T p—w
2¢? * du nZz
=% Re P/ D LZGD |y )
h 0 2T g —w
We now make use of
ko142 (4.41)
n—w nw—ow
which implies
. /‘” AR
Lo 2T p—w
*© d *® du Z
= / 7+ a)P/ di Ziw) -y 4y
oo 2T o0 2T U —
The total impedance Z,(w) obeys the sum rule [6,8]
o T
f do Z/(w) = — (4.43)
oo C
and the Kramers-Kronig relations imply
*© Zi(w) . ,
P dw - =inZ, (o). (4.44)
oo w—w

* dp (1= e PM)Sk(n)
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Now, the right-hand side of this relation contains the
integrals

o0
/ due M e = 18(u — w) — i P (4.35)
0

u—w

and

oo ) ) 1
/ dve™ e =a8(v+w)—iP ,
0 V+o

(4.36)

where P denotes the Cauchy principal value. When we apply
these relations, Eq. (4.34) takes the form

oo 2T

1
o ][5(1 — 1) Sy (—w)

} Z Ji(@* (T (Vae + h(kQ + w)/€) + T (= Ve — h(kQ — w)/e)}.  (4.37)

[
With the help of these relations we obtain

© d Z 1 ]
p/ dppz) _ L i
L0 2T U —w 2C 2

which combines with Eq. (4.40) to give

el y
Hg(w) = 7 |:E —wZ, (a))i| (4.45)
which has the symmetry
Hg(w) = Hix(—w). (4.46)

2. Evaluation of Sr(w) continued
Expressing the right-hand side of Eq. (4.37) in terms of
Hg (w) and using then Eq. (4.45), we obtain

RAC2[ 1 2
Sr(w) = { = [—(1 - eﬂﬁw)sm)}

2

+el—wC z;’(w)]z}

X ) J@HT (Vae + hkQ + w)/e)

k=—00

+ (Vg — MkQ — w)/e)}. (4.47)
Next, we note that [8]
P(—E)= ¢ PEP(E). (4.48)
Hence, Eq. (4.32) implies
[(=V)=ePVr(v). (4.49)
The current (4.31) may thus be written in the form
Lie(V) = e(1 — e PV (V). (4.50)
Vice versa, the rate can be expressed as
rwv)= %, r—v)= %. 4.51)
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Further, using the explicit form (4.14) of Sk (w) we obtain

R*C?[1
2

2
— (50— e’sh“’)SK(a)):| =wCZ/(w)].  (4.52)
e
The first factor in Eq. (4.47) may thus be written as

202 2
we B(l — e‘ﬂh‘”)SK(w):| + el —wCZ/ ()]

62
= 2([0CZ/(@)]* + [1 — wCZ(®)]*)

Zi(w) |
Z(w)

=2 = ?E(w)?, (4.53)

where we have employed the form (3.6) of Z,(w) and the polar
decomposition (3.10).

Using now the relations (4.51) and (4.53), the result (4.47)
can be cast in the form

Sr(@) = eB(w) Y Ji(a)

k=—00

Idc(vdc + h(kSZ - a))/e)
ePleVathkQ—o)l _ |

Lic(Vge + A(kR2 4+ w)/e)
1 — e BleVact+hkQ+w)]

(4.54)

which expresses the contribution Sy (w) to the spectral function
in terms of the current-voltage relation for the average current
13.(Vqc) in the absence of an ac driving voltage.

3. Relation of St(w) to shot noise

In the absence of an ac voltage, i.e., when a = 0, all Bessel
functions J;(0) = 0 except for Jy(0) = 1, and the result (4.54)
simplifies to read as

ST(Vdcv()?w)

Lie(Vae + hw /e)
1| — o—PleVathal

Idc(Vdc - hw/e)
eBleVae—hol _ |

_ es(w>2{ } (455)
where we have made the voltage dependence of the spectral
function explicit using the notation S(Vyc,Vae,w) for the
spectral function and its parts whenever appropriate.

The result (4.55) may be written as [9]

S1(Vae,0,0) = E(@)* Sy 1 (Vae, ), (4.56)

where

Iic(eV + ho)

lac(eV — how)
S (V) = €|:1 _ ¢-BleV+hw)

+ v - 1] (4.57)

is the shot noise of the tunneling current [9,33] caused by
electron tunneling across a tunnel junction with applied dc
voltage V. This shows that the component S7(w) of the spectral
function comes from the shot noise generated at the tunneling
element. There is a frequency-dependent factor E(w)> in
Egs. (4.54)—(4.56) relating the noise of the tunneling current
with the noise of the environmental current. This factor can
also be derived from circuit theory.

When we compare the results (4.54) and (4.55), we see
that the contribution S7(Vyc, Vae,) to the spectral function
S(V4e, Vac,w) in the presence of dc and ac voltages is related
to the corresponding contribution S7(V4.,0,®) in the presence

PHYSICAL REVIEW B 94, 045429 (2016)

of a dc voltage only by a photoassisted tunneling relation

[e¢]
St(Vae, Vae-0) = Y (@)’ St(Vae + kh2/e,0,0) (4.58)

k=—00

of the Tien-Gordon type [18,34].

E. Evaluation of Syr(®)

Finally, we need to determine the contribution Sy 7 (w) to the
spectral function S(w). We start by noting that the right-hand
side of Eq. (4.26) contains the integral

o0
/ du e M ¢TI = 1 §(u + w) — i P (4.59)
0

n+w
Accordingly, we obtain from Eq. (4.26)

2

C
Snr(w) = —@[a — e M) Sk (w)?
. *® dp (1 — e PP)Sg (i)
+21SK(w)P/,OOE Pt o i|

x Z Ji(a)? / oodv(a(v)ej(v)—c.c.)
k=—o00 0

X [1 — e i@](enVerelk® 4 ¢ 0y 1 cc., (4.60)

where we have exploited the symmetry (4.15) of Sk (w). Now,
the result (4.60) contains the Cauchy principal value Hg(w)
introduced in Eq. (4.38) and integrals of the form

L(w) = / ” dv (a(v)e’V — c.c.)e'®?, 4.61)
0

which are evaluated next.

1. Evaluation of L(®)

To evaluate the integral L(w) defined in Eq. (4.61), we write
it in the form

oo 0
L(w) =/ dv a(v)e’™ @ —/
0

—00

dv a(v)e’™ e~

(4.62)

and we make use of of the standard result of the DCB theory
[5-8] for the current /4 in the presence of a dc voltage V.
only:

oo

Tae(Vae) = % f dsa(s)e’O@ereVes _cc).  (4.63)
—0oQ

We also employ the Kramers-Kronig transformed current [15]

. 0 _
Ik (Vo) = ;—i / ds sign(s) a(s) e’ (e +c.c.)
- (4.64)
which can be expressed in terms of 14.(V) by [15,18]
*© dU I4.(U) — GrU
Ik (V) = P/ U 1) = GrU (4.65)
o T u-Vv
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The relations (4.63) and (4.64) imply which can be combined to give
K2 how % . 2
_Idc<—> = / ds O[(S) ej(s)(elw‘Y — C.C.) h_ Idc h_a) + iIKK h_a)
¢ ¢ —o0 2e e e
0 J(s)s jiws 0 . o0 .
= ds a(s)e (e — C.C.) — :t/ ds (X(S) e!(s) e:i:zws :F/ dSOl(S) eJ(s) eTFios
—00
o 4 —00 0
+ / dsa(s)e’W e —c.c) (4.68)
0
(4.66) This result can now we used to write the integral (4.62) in the
and ’ form
/ hz hw > : s iws 2
l—IKK<—) = - / ds sign(s)a(s)e’® (e +c.c.) L) = 2| 1o (") — inee (") . (4.69)
e e —00 2e e e
0
= / ds a(s)e’ (e +c.c.) 2. Evaluation of Syt(w) continued

0o A Using the results (4.45) and (4.69), we obtain from
- / dsa(s) e’ +cc) (4.67)  Eq. (4.60)
0

J

202 00 Q o_
Sr@) = ~ (1 = S Y Jk<a)2[1dc<vdc+—h(k - w)> —Idc<vdc+—h(k e w)]

2e3
k=—00

S Q
+ Sl -0 C 2] Y Jk(a>2[1KK<vdc + M)
¢ e

k=—00
Ak — khQ
+ IKK<Vdc + %) — 2Ikk (Vdc + 7)] (4.70)

Furthermore, by inserting the explicit expression (4.14) for Sk (w), we obtain for the frequency-dependent factors on the right-hand
side of Eq. (4.70)

h2C? B 2e[wC Z! (w)]? 2e .
_ ,—Bho 2 _ t _ = 2 2
S (1= PM)Sk@) = S = s By sin’[(@)] @.71)
and
hC 2ewCZ/(0)[1 — wCZ! 2
" Sc ol —wez @) = 2L Z0CHIO] 2 sinin@)cosln@)],  @472)

where we have made use of the polar decomposition (3.10). This allows us to write the result (4.70) in the form

2 = Mk — hEQ
1= 2 5, i B2) 222

k=—00 e e
+ —Sm[zg (@)] [IKK<VdC n —h(me_ w)> + IKK<VdC n —h(er+ w)> - 2IKK<VdC n khTQﬂ } 473)

Clearly, also this contribution to the spectral function can be written in terms of the current-voltage relation /4.(Vy.) in the absence
of an ac driving voltage.

One can show [35] that the contribution Syr(w) to the current noise spectrum comes from a cross correlation between
fluctuations of the tunneling current and the Johnson-Nyquist noise of the electromagnetic environment. The latter causes
fluctuations of the voltage across the tunnel junction which then induce fluctuations of the tunneling current. Correspondingly,
the result (4.73) combines frequency-dependent factors stemming from circuit theory and the finite-frequency junction admittance.

In the absence of an ac voltage, i.e., when a = 0, the expression (4.73) simplifies to read as

2
Snr(Vae,0.0) = 1_6% E(w)z{ sin’[(@)][Lae(Vae — hoo/e) = Lae(Vae + hew/e)]

sin[2n(w)]
+ —

where we have again made the voltage dependence of the spectral function explicit. Clearly, the noise component Sy7(w) is also
present for tunnel junctions solely under dc bias [9].

[Txkx(Vac — hw/e) + Ixkx(Vae + hw/e) — 2IKK(Vdc)]}a (4.74)
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Finally, when we compare the results (4.73) and (4.74), we
see that the contribution Sy7(Vyc, Vae, ) to the spectral func-
tion S(Vyc, Vae,w) is related to the corresponding contribution
St (Vie,0,w) measured at dc bias by a photoassisted tunneling
relation

[0¢]
SNt (Ve, Vae, ) = Z Ji(@)* Sy (Vae + kh2/e,0,0).

k=—00

(4.75)

F. Photoassisted tunneling relation for S(w)

We have shown that the components S7(Vyc, Vae,w) and
SnT(Vie, Vae,@) of the spectral function S(Vgc,Vye,w) can
be related by photoassisted tunneling relations [given in
Egs. (4.58) and (4.75)] to the corresponding components
ST (Vie,0,w) and Sy7(Vqye,0,) in the absence of an ac voltage
Vae. The remaining component Sy (Vye, Vye,w) determined in
Eq. (4.27) is in fact independent of V. and V.. Nevertheless,
we may formally write

o0
SN (Vae: Vae: ) = D Ji(@)” Sw(Vae + kiR /e,0,0) (4.76)
k=—00
since [29]
> ey =1. 4.77)
k=—00

Therefore, also the total spectral density S(Vyc, Vac,w) can be
expressed through the spectrum in the absence of an ac voltage
by a relation

S(Vae:Vaes0) = 3 (@) S(Vae + khi2/e.0.0)  (4.78)

k=—00

of the Tien-Gordon type. Hence, the spectral function
S(Vie, Vae,w) of an ac driven device is obtained as copies of
the same quantity measured under dc bias, with dc voltages
translated by shifts n/$2 /e corresponding to the harmonics and
weighted by Bessel functions. This property has been noticed
previously [12] for the spectrum of the tunneling current and it
remains true for the spectrum of the measurable environmental
current.

lac(Vae + MkS2 + w)/e)
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V. SPECIFIC ELECTROMAGNETIC ENVIRONMENTS

In this section, we specify the results derived in the
previous sections for two experimentally relevant models of
the electromagnetic environment.

A. Ohmic environment

We first consider the special case of a purely Ohmic
environment with an impedance Z(w) = R, which implies

R
Z = —. 5.1
@) =T0kRe -1
This gives
Zz 1
(@) _ . (5.2)
Z(w) 1 —iwRC
which has the modulus
E(w) = : (5.3)
=T ¥ (@RCY '
and the phase
arctan[n(w)] = wRC. 54
Accordingly,
RC
sin[n(@)] = —22" ___ — yRCEw) (5.5)
V1 + (wRC)?
and
1 ~
cos[n(w)] = ———— = E(w). (5.6)
1+ (wRC)?

We then obtain from Eq. (4.27) for the Johnson-Nyquist part
of the spectral function

Sy(w) = 2N C*R 5.7)
(1 — e Pro)[1 + (wRC)?]
which is the Johnson-Nyquist current noise
2hw 1
Siyiy (@) = (5.8)

1 — exp(—Bhw) R

of the resistor R scaled by the factor (wRC)?/[1 + (wRC)?] =
[E(w)wRC 1%

The shot noise part of the spectral function S(w) is obtained
from Eqgs. (4.54) and (5.1) in the form

_ ¢ S 2
Sr(@) = T oRCT k;oo Ji(a) {

1 — ¢ PBleVathkQtw)

Lac(Vae + M(kS2 — w)/e) }

oBleVathl—o)l _ | (5.9)

which corresponds to the shot noise of the tunneling current scaled by the factor 1/[1 + (wRC)?*] = E(w)>.
Finally, the cross correlation between the noise from the resistor R and the shot noise of the junction leads to the contribution

2e wRC

Syr(w) =

d 5 Ik — w)
1 - e*ﬂhw) [1+ (wRC)2]2 k;oo Ji(a) {CURC|:Idc<Vdc + —e ) - Idc(Vdc + B

h(k2 — h(kQ + khQ
+ Ik (Vdc + %) + Ikk (Vdc + %) — 21KK<Vdc + 7) }

(k2 + w))]

(5.10)
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To derive this result, we have combined Eqgs. (4.73) and
(5.1)—(5.6).

Let us now briefly address the low impedance limit of the
Ohmic model. Frequently, environmental impedances are quite
small, in the range of 50 €2, which is the order of magnitude
of typical transmission line impedances. In the limit R < Rg
of a low impedance environment, the contributions Sy (@) and
Svr(w) to the spectral function become negligible and we
simply have

S(w) = e Z Ji(a)?

k=—00

lac(Vae + Wk — w)/e) }

TIyc(Vge + RS2 + 0))/6)
1 — e—BleVact+hkQ+w)]

eBleVa+hkQ—w)] _ | (511)

which is the shot noise of an ac driven tunnel junction in the
absence of effects of the electromagnetic environment [18,36].
This is natural since in this limit the influence of the elec-
tromagnetic environment vanishes. There is no sizable DCB
effect, and the dc current-voltage characteristic of the tunnel
junction is approximately linear [8], i.e., I4c(Vic) = G Vyc.

B. Tunnel junction driven through a resonator

We consider now a tunnel junction driven through an LC
resonator as studied recently [11,12,15]. The environmental

impedance is assumed to be of the form
Z(w)=R —iwL (5.12)

with an Ohmic lead resistance R and an inductance L. The
resonance frequency of the LC resonator is

1
wy = —— 5.13
"= VLc &1
and it has the characteristic impedance
L
Z. = c (5.14)
implying a quality factor Q y = Z./R. We shall also use the

loss factor

1 R
J/ = —_——= —,
Q f Zc
For this circuit, the ratio between the total impedance (3.6) and
the impedance Z(w) of the leads is given by

(5.15)

1 2

L) _ = 20 (5.16)
Z(w) 1—iwRC—w?’LC @} —w?—iywow
which implies a modulus
w2
E(w) = 20 5.17)
\/(w(z) — a)z) + (Ywow)?
and a phase
n(w) = arctan ( );a)ow2>, (5.18)
wy —
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where the values of arctan are to be chosen in the interval
[0,77). We then have

Y wow

sin[n(w)] = (5.19)
V@ - ) + anor
and
a)2 — a)2
cos[n(w)] = 0 (5.20)

V@~ + o

The effects of the electromagnetic environment are most pro-
nounced when the frequency w coincides with the resonance
frequency wy of the LC resonator. We obtain from Egs. (5.17)
and (5.18) for w = wy

b4
Blwo) = Q. nlwo) = 7. (5:21)
For this particular frequency, we find from Eq. (4.29)
Sy(wn) = —eo__ 1 5.22
N(wo) = T o R’ (5.22)

where we have made use of E(wy)wyRC = 1. This corre-
sponds to the Johnson-Nyquist noise of the lead resistance
R.

The shot noise contribution (4.54) takes the form

[e¢]

Sr(wo) = Q% Y Jk(a>2{

k=—00

Igc(Vge + A(k2 — wp)/e)
eBleVae+hkQ—wo)] _ |

Tae(Vage + Rk 4 wp)/e)
1 — e~ BleVact+hkQ2+wo)]

(5.23)

and is thus strongly enhanced by the factor Q?c relative to the
noise of the tunneling current through the junction.

Finally, the cross correlation between the shot noise and the
resistor noise gives rise to the contribution

2e =
Snr(wo) = T o Fhan Q7 Z Je(a)y’

k=—00

x []dc<vdC + M)

e

h(kQ: a)o)):|’ (5.2

-1 dc <Vdc +
where we have particularized the result (4.73) using the
specific values for w = wy given in Eq. (5.21).

Finally, let us consider the zero-temperature spectral
function S(Vgc,0,wp) in the absence of an ac voltage. From
Egs. (5.22)—(5.24) we obtain for T = 0 and V,. =0

2hw0
Sn(wo) = R

(5.25)

S7(Vae,0,0) = eQ_zf[@(EVdc + hawo)lac(Vae + ha/e)
+ O(hwy — eVye)lac(hwy/e — Vao)]  (5.26)
and
Snt(Vae,0,0)

=207 lac(Vac — hwo/e) — lac(Vae + heo/e)], (5.27)
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where ©(x) is the unit step function. This shows that the
contribution Sy7(w) can be of the same order of magnitude as
S7(w) already for junctions under dc bias. The corresponding
results for finite ac voltage V,. can readily be obtained by
means of the photoassisted tunneling relation (4.78).

VI. CONCLUSIONS

We have determined the spectrum of current fluctuations of
a tunnel junction biased by an external voltage applied via an
environmental impedance. Apart from the noise components
arising from the Johnson-Nyquist noise of the electromagnetic
environment and the shot noise of the tunneling element,
respectively, there is a third component which comes from the
correlation between fluctuations of the tunneling current and
the environmental Johnson-Nyquist noise. This component
can also be interpreted as a tunneling modification of the
current fluctuations seen in the outer circuit which originate
from the current fluctuations generated by the environmental
impedance. Tunneling opens up a second channel for the
transmission of these fluctuations to the external leads apart
from the transfer via the junction capacitance.

Regarding the noise of ac driven tunnel junctions we
have demonstrated that the spectral function for finite ac
voltage can be obtained from the spectral function at dc
bias by means of a photoassisted tunneling relation of the

J
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Tien-Gordon type. This relation is formally valid for each
of the three noise components separately. Studying specific
models of the electromagnetic environment we have shown
that the third noise component can be as significant as the
two other components. Experimental consequences of this
fact remain to be analyzed. Also, the results obtained here
for the current fluctuations can be combined with previous
findings concerning the average current to examine the validity
of fluctuation dissipation relations and related questions. This
and other aspects of the theory will be addressed elsewhere.
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APPENDIX A: EVALUATION OF THE CURRENT
AUTOCORRELATION FUNCTION C(¢ + s,¢)

Employing the expansion (3.1) of the current operator
1., () up to second order in the tunneling Hamiltonian Hr, the
corresponding expansion of the current autocorrelation func-
tion C(t +5,1) = (Lenv(t + ) Leny (1)) = (Lenv(t + $)) (Lenv (1))
is readily obtained in the form

H o]
C(t+s,1) = <{im(r +5)+ %/ du[O¢ +s —u)e ™0 L He. Lt + 5)]
0

1 [ © N . —_— .
= / du/ dv[OF +s —u —v)e P4 L He [0 +5 —u)e U0 L Hee. Ly (f + s)]]}
0 0

: 00
x {im(t) + % / du [O( — u) e ™ 4y Hee., L]
0

1 o0 o0 . . . . .
= / du / dv[O@F —u —v)e P74V L He. [0 —u)e 9™ 4 He. ,Ie,w(t)]]}>
0 0

; [e 9]
— <1;,w(t +5)+ % / du[O@ +s —u)e U0 L He. Lt + 5)]
0

1 [ © N . —_— .
= / du/ dv[O@F +s —u—v)e U L He [0 +5 —u)e U0 L Hee. Ly (f + s)]]>
0 0

. o0
x <L,,v(r) + % / du [O( — u) e " L He., L))
0

1 o0 o0 . . . . .
— = / du / dv[O@F —u —v)e P74V L He. [0 — u)e "™ 4 He. ,16,,v(z)]]>.
0 0

(AD)

1. Evaluation of quasiparticle averages

Since H,; and H,,, decouple in the absence of tunneling, each term of Eq. (A1) factorizes into an average over quasiparticle
operators and an average over the electromagnetic environment. The arising quasiparticle averages coincide with those known
from the standard P(E) theory [5-8] and can be expressed in terms of the correlator of tunneling operators «(¢) introduced in
Eq. (3.3). Since only terms correlating a tunneling operator © with its adjoint @' give a finite contribution, we obtain

C(t + 5.1) = (Lo (1 + ) Ino (1)) — % /ooo du fooo dv {@(—=0) (Lo (t + 5) e P10 [ 1900 T (1)])

A (Tony (1 + $)e P70 T (O1) — ()((Tony (2 + )97, Ly (1)) 907472)
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+ Lot 4 )™ 207, L ()] 70 740)))
1 o[ [ - ) ) ]
Tl / dv {a(—v) (e PH T [P0 T (g )] T (1)
0 0

+ (P TITIETO [(t + ) emy (1)) — @ @)([/ P Loy (8 + 5)]e TP T (1)
o _ o ~ 1 o0 )
+ ([e—zw(l-‘m—u)’lenv(t + S)]elw(t-‘rs—u—v)Ienv(t») _ ﬁ / du / dvals —u +v)
0 0

x {Le U0 Ly (t + 1™, Ly (D) + ([ 97 T (8 4 $)[e 9™, Ly ()]}, (A2)

where we have also inserted the decomposition (2.21) of Ivem,(t). _
To proceed, we now insert the decomposition (2.20) of ¢(¢) and the representation (2.22) of I,,,(¢) which gives

R2C? .. . Cc? [ 00 . - . . - -
(@@ +5)@@)) — —f du/ dv {a(—v)((@(t + 5) e U770 [P0 G(p)])e 10U Um0 il —u)
0 0

C(t+s,t)= g

e2

(Pt + 5)e T TI[eT G()])e! PV — a()((G( 4 5)[e 7T, G(1)]e PV
2
x @ P pmiplt—u—v) | (@([ 4 s)[e—ifﬁ(f—u)’é(t)]eitﬁ(l—u—v)>e—i<ﬁ(f—u)ei¢(l—u—v))} — C_2 /Oodu /00 dv
e” Jo 0

% {a(_v)(<efi¢(t+sfu7v) [ei¢(1+s7u),(;(t + s)](;(t)>e*i@(t+sfufv)ei(ﬁ(t+57u)

+ (ei</'>(t+s—u—v)[e—i(ﬁ(t-&-s—u),é(t + s)](;(t»ei(/’z(t-&-s—u—v)e—i(/’z(z-&-s—u)) _ a(v)(qei@(t-&-x—u),é(t + S)]
% e*i(ﬁ(tJrsfufv)é(t»eizﬁ(tJrsfu)efi(ﬁ(tJrsfufv) 4 <[efi¢(t+sfu)’(;(t 4 s)]eigb(htsfufv)(;(t))e*i(ﬁ(tJrsfu)ei(ﬁ(t+s7u7v))}

c? [ 00 - . - . - -
- / du / dva(s —u + v){{[e 7P G(t + 5)][e P, G(1)])e U IP0EY)
0 0

+ ([eitﬁ(l-ﬁ-s—u),é(l + S)] [e_i‘z’(’_v),é(t)])ei¢(’+3_“)e_i¢(’_”)}. (A3)

Here, all averages over the electromagnetic environment are expressed in terms of the phase operator ¢(#) of the undriven circuit
in the absence of tunneling.

2. Evaluation of averages over the electromagnetic environment

To evaluate the averages over the electromagnetic environment in Eq. (A3), we make use of the phase-phase correlation
function (3.4) and the Gaussian statistics of phase fluctuations in the absence of tunneling and driving. We first note that Eq. (3.4)
implies

J(t) = (§(1)@(0)) (A4)
and
T @) = (§1)§0)). (AS)
Accordingly, the first term on the right-hand side of Eq. (A3) may be written as
h2 . . h?
=S CHP(t +)P(1) = = C* T (s). (A6)
e e
To evaluate the other terms, we have to calculate the averages
(@(t +5) e P [0 G(1)]) = —2ie’ TV T W[ (s + u + v) — J (s + )], (A7)
(Bt + 5) P[00 G()]) = —2ie’ VT @) T (s 4+ u +v) — J(s + )], (A8)
(@t + )P, G()]e Py = 2ie D J W[ (s + u) — J (s + u + )], (A9)
(Bt + $)[e P G(1)]e! 7Ty = 2ie D J W) (s + u) — J (s + u + )], (A10)
(g7 PUHs—u=) [P0+ Gt 4+ )1G(1)) = —2ie’ VT W)[J (s —u — v) — J (s — )], (All)
(eI PUHsTUT [T =0 Gt + )] G(1)) = —2ie’ VT )T (s — u —v) — J(s — w)], (A12)
([€90H70 G(t + $)]e PTG = 2ie’ VT W) (s —u) — J(s —u —v)], (A13)
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([e /P00 G(t + 5)]e' T VG()) = 2ie’ T W) (s —u) — J(s —u —v)], (A14)
([P0 Gt 4+ $)][1,G(1)]) = —2ie’ TV J" W) J(—v) — J ()], (A15)
([P0 G(t + )[e ™, 6()]) = —2ie’ T " () J (—v) — J ()], (A16)

where we have used the generalized Wick theorem for Gaussian processes [37] to obtain the right-hand sides.
To indicate how the evaluation proceeds, we give intermediate results for Eq. (A7). The Gaussian statistics implies

(@( +5) eI G(0)]) = i ([P — ), GO (G(2 + ) e P ), (AI7)
The two averages on the right-hand side of this relation can be related to the phase-phase correlation function (3.4) by means of
(@0, 9O) = J(t =) = J(s =1) = 2" (t = 5), (A18)

where J”(¢) denotes the imaginary part of J(¢), and
(@(1) e717W 90y = —j? I J(t —u) — J(t — v)]. (A19)

These relations combine to give the result (A7).
Inserting the findings (A7)—(A16) into Eq. (A3), we obtain the current autocorrelation function in the form (3.7) given in the
main text.

APPENDIX B: DETERMINATION OF THE SPECTRAL FUNCTION S(w)

The Fourier representation (4.13) of K(s) = —J(s) implies

J(s) = J(s+v)=— / e Sx()e [l — e~ (B1)
0o 2T
and
. .. .. *® du _ph ius
2iJ"(s) = J(s) — J(—s) = —f E(l — e PP Sk () e, (B2)

Inserting these representations into Eq. (4.5), we obtain

h2c2 d C2 00 00 d ) o)
Cols) = / 2L RSk (w)e i + —2/ duf R e Py S () e / dv(@@)e’® —c.c)
e oo 2T e J oo 2T 0

> dv —iv(s+u) —ivv . 20 LeVyv ikQu
x — Sx()e [1—e ] Z Je(a)? (e €Vaev etk 4 ¢ ¢y

oo 2T Rt
C2 o] 00 d 00
_2/ d”/ Z—M _ﬁh”)SK(M)e_’“”/ dv(a(v)e’™ —c.c.) —SK(v)e_“’(Y )
0 —o0 4T
nd o0
x [1— e Z Je(a) (emeVer k2 4 ¢ o) — —/ du/ e—/’h*‘)s,((u)e—'ﬂ"/ dv
k=—00 0

oo
d ; . Qs
X / 2:(1 _ e—ﬂFLV)SK(v) e—lvva(s —u + U) eJ(A u+v) § Jk(a) (ehevdc(d—u-‘rv) ele(b—u-H)) + C.C.). (B3)

oY) k=—00

We now insert the Fourier representation (4.19) of a(t)e’® into appropriate s-dependent terms of Eq. (B3) which then takes
the form

h2C2 d ] C2 00 00 d ) o]
Cols) = / 2L 2 Si(w)e +—/ du[ Ha —e_ﬂh")SK(u)e_’“”/ dv (@@)e’® — c.c.)
e? —00 2 e2 0 —00 2w 0

o0 d\) . . ad i .
X/ E SK(U) e—tv(s+u)[l —lvv] Z Jk(a)Z(egeVdcvelev + C.C.)

k=—00
/ f —(1 — e PhyS () e “/oo dv (a(v)e’® —c.c.)
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xf Z—SK(v)e vis=ry —
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k=—00
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o0
ivv] Z Jk(a)Z(elgeVdcv eika +C.C.)

) %) Ay )
e_ﬂh“)SK(y,)e_’“”/ dv / 2—(1 — e PMYSp(v)e ™Y
oo 2T

dw
« / EF(&)) o i@ —utv) Z Ji(a) (eheVdC(s u+v) HikQs— u+u)+cc) (B4)
—o0

k=—00

From this result we can straightforwardly extract the spectral function S(w) as

h2c2 C2 00 00 d
S(w) = o Sk (@) + —/ du / Ha-
2 e? 0 —00 2w

e

e P S () e

(o]

o0 i .
X / dv (@(v)e’™ — c.c)Sk(w) e " [1 — e Z Ji(a)? (e eVev etk 4 ¢ ¢y
0

C2 /oo /00
i du P
2 0 —00

k=—00

e_ﬁh“)Sk(M)e_i“”/ dv (a(v)e’V —c.c.)
0

o0
X SK(CU) elu)u[ _ eiu)v] Z Jk(a)2(e’ﬁevdcv eika +C.C.)

k=—00

C2 o] 00 d ) oo oo
_Tf du/ —M(l—e_ﬂh“)SK(,u)e"“”f dv/ @
0 —00 2 0 —00

1 — e—ﬂhv)SK(v) e—ivveiw(u—v)

x Y J@y [F(o+ eVae/h+kQ) + F(w — eVae/h — k). (B5)

k=—00

Using the symmetry (4.15) of Sk (w) and the symmetries «*(¢) = a(—1t), J*(t) = J(—t) following from Eqs. (3.4) and (4.18),
one can show that the second and third terms of Eq. (BS) are complex conjugate and that the spectral function S(w) is real.
Accordingly, the result (B5) may be written as the sum of three terms (4.23) given in the main text with noise components Sy (),

S7(w), and Sy (w) specified in Eqgs. (4.24)—(4.26).
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