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Effect of the electromagnetic environment on current fluctuations in driven tunnel junctions
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We examine current fluctuations in tunnel junctions driven by a superposition of a constant and a sinusoidal
voltage source. In standard setups, the external voltage is applied to the tunneling element via an impedance
providing an electromagnetic environment of the junction. The modes of this environment are excited by the
time-dependent voltage and are the source of Johnson-Nyquist noise. We determine the autocorrelation function
of the current flowing in the leads of the junction in the weak tunneling limit up to terms of second order in the
tunneling Hamiltonian. The driven modes of the electromagnetic environment are treated exactly by means of a
unitary transformation introduced recently. Particular emphasis is placed on the spectral function of the current
fluctuations. The spectrum is found to comprise three contributions: a term arising from the Johnson-Nyquist noise
of the environmental impedance, a part due to the shot noise of the tunneling element, and a third contribution
which comes from the cross correlation between fluctuations caused by the electromagnetic environment and
fluctuations of the tunneling current. All three parts of the spectral function occur already for devices under dc
bias. The spectral function of ac driven tunneling elements can be determined from the result for a dc bias by
means of a photoassisted tunneling relation of the Tien-Gordon type. Specific results are given for an Ohmic
environment and for a junction driven through a resonator.
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I. INTRODUCTION

The effect of the electromagnetic environment on tunnel
junctions has extensively been studied some 25 years ago both
experimentally [1–4] and theoretically [5–9]. The theory of the
dynamical Coulomb blockade (DCB), frequently also referred
to as P (E) theory, has explained the experimentally observed
suppression of the tunneling current at low voltage bias as
an effect of photon exchange between the tunneling element
and its electromagnetic environment. More recently, new
experiments [10–12] with designed, approximately single-
mode, electromagnetic environments have led to a revival of
the DCB theory [13–17]. In particular, in view of advances
in microwave technology, ac driven tunneling elements have
moved to the focus of attention.

The study of ac driven devices is extensive and has
been reviewed by several authors [18–20]. Frequently, also
properties of the current noise [21] have been addressed in
this context. In this paper, the focus is on the effects of the
electromagnetic environment on the current noise of an ac
driven tunnel junction. Previous work mostly assumes that
the external driving leads to a time dependence of properties
of the tunneling system itself [19,20] rather than studying
the driving by an external voltage source connected to the
tunneling system via leads of finite impedance. The work by
Safi and co-workers [22,23] presents a rather general approach
to ac driven systems and includes an environmental impedance.
However, the analysis is then based on the assumption that in
the absence of tunneling the charge of the tunneling system is
conserved. This means that displacement currents are not taken
into account. These currents are, however, crucial to describe
the influence of the electromagnetic environment accurately.

The standard Hamiltonian model of conventional DCB
theory properly describes a tunneling element biased by a
voltage source via an environmental impedance. In the original
work [5–8] this model was only studied for applied dc voltages.
We have recently shown [15] that the analysis of the model

for ac bias voltages entails substantial modifications of the
theory. The time dependence of the Hamiltonian arising from
the external bias can no longer be transformed in the usual
way [8] into a time-dependent phase factor of the tunneling
Hamiltonian. This is due to the fact that the modes of the
electromagnetic environment are excited by an alternating
voltage source and constitute a driven quantum bath [24].

A suitable way of handling time-dependent voltages within
P (E) theory is based on a unitary transformation involving
also the environmental degrees of freedom [15]. Employing
this method, the average current flowing through the environ-
mental impedance into the outer circuit was determined, and
for ac driven devices a suppression of higher harmonics of the
current by the electromagnetic environment was found [15]. In
this paper, we now investigate specifically the autocorrelation
function of the current flowing in the leads of a tunneling ele-
ment driven by dc and ac voltage sources. The experimentally
relevant spectral density of current fluctuations is determined
and discussed for specific models of the electrodynamic
environment.

The paper is organized as follows. In Sec. II we recall
the standard Hamiltonian of a voltage biased tunnel junction
with an electrodynamic environment characterized by a lead
impedance. The relevant current operators are introduced
and the perturbation theory in the tunneling Hamiltonian is
outlined. Also, the unitary transformation removing the time
dependence of the environmental Hamiltonian is specified.
Section III introduces the current autocorrelation function.
All terms up to second order in the tunneling Hamiltonian
contributing to the current correlator are determined. Each of
these terms factorizes into an average over the quasiparticles
in the leads of the tunnel junction and an average over the
electromagnetic environment. It is shown that for arbitrary
driving voltages these averages can be fully expressed in terms
of quantities known from the standard P (E) theory for constant
voltage bias. Finally, the results are specified for a driving
voltage comprising a dc voltage and a sinusoidal ac voltage.
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In Sec. IV, we switch to Fourier space and introduce the
Fourier coefficients of the steady-state current autocorrelation
function of a periodically driven junction. These Fourier
coefficients are functions of the lag time, that is, the time
difference between the positions in time of the two current
operators linked by the correlation function. The zero-order
Fourier coefficient describes the time-averaged current cor-
relator where the absolute positions in time of the two
current operators are averaged at constant lag time over one
period of the driving voltage. We then introduce the Fourier
transform of the time-averaged current correlator which gives
the experimentally relevant spectral function.

The explicit evaluation of the spectral function naturally
divides into three steps. First, we determine the part of the
spectrum coming from the Johnson-Nyquist noise of the
environmental impedance. Next, we calculate the contribution
to the spectrum arising from the shot noise of the tunneling
current. In addition, we obtain a third part of the spectrum
which is due to the cross correlation between fluctuations of
the tunneling current and Johnson-Nyquist voltage fluctuations
across the environmental impedance.

In Sec. V we illustrate our findings by studying specific
models of the electromagnetic environment. First, we consider
the case of a strictly Ohmic environment with a constant
environmental impedance. In the limit of a low impedance
environment, one recovers the shot noise of a tunnel junction
in the absence of DCB effects. As a second example, we
study a tunnel junction driven through an LC resonator. At
the resonance frequency, the noise is strongly enhanced and
the cross-correlation part of the spectrum predicted in Sec. IV
is shown to be very significant. Finally, in Sec. VI we present
our conclusions.

II. MODEL AND PERTURBATION THEORY

We consider the standard model for the DCB [5–8], a
tunnel junction with junction capacitance C and tunneling
conductance GT driven by a voltage source Vext(t) via an
environmental impedance Z(ω). A circuit diagram of the setup
indicating also the currents flowing in the circuit is shown
in Fig. 1.

FIG. 1. Circuit diagram of a voltage biased tunneling element
showing a tunnel junction with capacitance C and tunneling conduc-
tance GT coupled to a voltage source Vext via an external impedance
Z(ω). The current Ienv flowing through the environmental impedance
and the tunneling current IT are also indicated.

A. Model Hamiltonian

The Hamiltonian of a voltage biased tunnel junction may
be written as

H = Hel + HT + Henv, (2.1)

where Hel describes the conduction electrons of the leads on
either side of the tunnel junction

Hel =
∑
k,σ

εkσ a
†
kσ akσ +

∑
q,σ

εqσ a†
qσ aqσ . (2.2)

The operator akσ (aqσ ) is the annihilation operator of an
electron state with energy εkσ (εqσ ) in the left (right) electrode,
where k (q) denotes the longitudinal wave number and
σ denotes the transversal and spin quantum numbers. The
quantum number σ is conserved during tunneling transitions
described by the tunneling Hamiltonian

HT = �e−iϕ + �†eiϕ (2.3)

with the quasiparticle tunnel operator

� =
∑
k,q,σ

tkqσ a
†
kσ aqσ , (2.4)

where tkqσ is the tunneling amplitude. The phase operator ϕ

is conjugate to the junction charge Q and obeys the canonical
commutation relation [5] [ϕ,Q] = ie. The last term in Eq. (2.1)
describes the junction capacitance C and the environmental
impedance Z(ω) and it may be written in the form [8]

Henv(t)

= Q2

2C
+

∑
n

{
Q2

n

2Cn

+ 1

2Ln

(
�

e

)2

[ϕ − ϕn − ϕext(t)]
2

}
,

(2.5)

where the first term is the charging energy of the tunnel
junction with capacitance C and the second term represents the
impedance Z(ω) as a collection of LC circuits [25,26]. These
environmental modes form a thermal bath causing dissipation
and fluctuations and lead to the DCB effect. The charge
operators Qn are conjugate to the phase operators ϕn with
the commutators [ϕn,Qn] = ie, and the phase

ϕ̇ext(t) = e

�
Vext(t) (2.6)

describes the external driving where Vext(t) is the voltage
applied to the circuit.

B. Current operators

Using the Hamiltonian (2.1), we find for the time rate of
change of the junction charge

Q̇ = i

�
[H,Q] = Ienv − IT , (2.7)

where [9,27]

Ienv = i

�
[Henv,Q] = −�

e

∑
n

ϕ − ϕn − ϕext

Ln

(2.8)
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is the current flowing through the environmental impedance
Z(ω) while

IT = − i

�
[HT ,Q] = −i

e

�
[�e−iϕ − �† eiϕ] (2.9)

is the tunneling current flowing across the tunneling element.
Tunneling currents are not experimentally accessible [28] since
measurements typically relate to the current Ienv entering the
outer circuit.

C. Perturbation theory in the tunneling Hamiltonian

To evaluate the time evolution for weak tunneling we write
the total Hamiltonian (2.1) as H = H0 + HT where H0 =
Hel + Henv is the Hamiltonian in the absence of tunneling.
A straightforward expansion in terms of HT yields for the
Heisenberg current operator Ienv(t) up to terms of second order
in HT

Ienv(t) = Ǐenv(t) + i

�

∫ t

0
ds [�̌(s) e−iϕ̌(s) + H.c. ,Ǐenv(t)]

− 1

�2

∫ t

0
ds1

∫ s1

0
ds2 [�̌(s2) e−iϕ̌(s2)

+ H.c.,[�̌(s1) e−iϕ̌(s1) + H.c. ,Ǐenv(t)]]. (2.10)

Here, we have introduced the interaction representation of
operators Ǎ(t) = U

†
0 (t,0) AU0(t,0) with the unperturbed time

evolution operator

U0(t,t ′) = T exp

{
− i

�

∫ t

t ′
ds H0(s)

}
. (2.11)

D. Unitary transformation

Since the electrons in the junction leads and the electro-
magnetic environment are decoupled for vanishing tunneling,
the time evolution operator (2.11) factorizes according to

U0(t,t ′) = Uenv(t,t ′) e− i
�

Hel (t−t ′) (2.12)

into the time evolution operator

Uenv(t,t ′) = T exp

{
− i

�

∫ t

t ′
ds Henv(s)

}
(2.13)

of the electrodynamic environment and the time evolution
operator of the quasiparticles. The time dependence of the
environmental Hamiltonian Henv(t) arising from the applied
voltage can be removed by a unitary transformation [15]

�(t) = exp

{
i

e

[
ϕ̄(t)Q +

∑
n

ϕ̄n(t)Qn

]}

× exp

{
− i�

e2

[
C ˙̄ϕ(t)ϕ +

∑
n

Cn ˙̄ϕn(t)ϕn

]}
, (2.14)

where the phase ϕ̄(t) is determined by

C ¨̄ϕ(t) +
∫ t

0
ds Y (t − s)[ ˙̄ϕ(s) − ϕ̇ext(s)] = 0 (2.15)

with the temporal response function

Y (t) =
∑

n

1

Ln

cos(ωnt) (2.16)

of the electromagnetic environment which is the Fourier
transform of the admittance

Y (ω) = 1/Z(ω) =
∫ ∞

0
dt Y (t) eiωt . (2.17)

The phases ϕ̄n(t) are given by

ϕ̄n(t) = ωn

∫ t

0
ds sin [ωn(t − s)][ϕ̄(s) − ϕext(s)].

Under the unitary transformation (2.14) the environmental
Hamiltonian becomes [15]

Ĥenv(t) = �(t)Henv(t) �†(t) + i�
∂�(t)

∂t
�†(t)

= H 0
env + G(t), (2.18)

where

H 0
env = Q2

2C
+

∑
n

[
Q2

n

2Cn

+ 1

2Ln

(
�

e

)2

(ϕ − ϕn)2

]
(2.19)

is the time-independent Hamiltonian of the electromagnetic
environment in the absence of driving. G(t) is a function of
time which gives rise to a phase factor in the time evolution
operator [15] dropping out in the Heisenberg representation of
operators employed in the sequel.

Introducing the Heisenberg operators of the undriven
electromagnetic environment Ã(t) = e

i
�

H 0
env t A e− i

�
H 0

env t , the
phase operator in the interaction representation may be written
as [15]

ϕ̌(t) = ϕ̃(t) + ϕ̄(t), (2.20)

and for the interaction representation of the current operator
(2.8) one finds

Ǐenv(t) = Ĩenv(t) + Īenv(t), (2.21)

where

Ĩenv(t) = �

e
C ¨̃ϕ(t) (2.22)

is the current operator in the absence of driving and tunneling
and

Īenv(t) = �

e
C ¨̄ϕ(t) (2.23)

is the average displacement current flowing in a driven circuit
in the absence of tunneling [15]. Hence, by virtue of the
unitary transformation (2.14), all Heisenberg operators in the
interaction representation on the right-hand side of Eq. (2.10)
can be expressed in terms of Heisenberg operators of the
undriven system.

III. CURRENT AUTOCORRELATION FUNCTION

We are interested in properties of the system under
quasistationary conditions, when the driving voltage Vext(t)
has been acting for a long time. Letting the initial time when
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driving starts tend to −∞, one obtains from Eq. (2.10) for the
current operator

Ienv(t)

= Ǐenv(t) + i

�

∫ ∞

0
du [�̌(t − u) e−iϕ̌(t−u) + H.c. ,Ǐenv(t)]

− 1

�2

∫ ∞

0
du

∫ ∞

0
dv [�̌(t − u − v) e−iϕ̌(t−u−v)

+ H.c.,[�̌(t − u) e−iϕ̌(t−u) + H.c. ,Ǐenv(t)]]. (3.1)

The average current in second order in HT resulting from this
equation has been evaluated previously [15]. Here, we now
determine the current autocorrelation function.

A. Current autocorrelation function for weak tunneling

The (nonsymmetrized) current autocorrelation function is
defined by

C(t,t ′) = 〈Ienv(t)Ienv(t ′)〉 − 〈Ienv(t)〉〈Ienv(t ′)〉. (3.2)

This quantity is now determined up to terms of second order in
the tunneling Hamiltonian. The result can be expressed entirely
in terms of quantities known from the standard DCB theory [8].
The outcome of the calculation for arbitrary time-dependent
voltages is given in Eq. (3.7) below, while the result for a
superposition of a constant and a sinusoidal voltage drive is
given in Eq. (3.15).

It is advantageous to introduce the lag time s, the time
difference between the two points in time t and t ′. Inserting
then the expansion (3.1) of the Heisenberg operator Ienv(t)
up to second order in the tunneling Hamiltonian HT , we
obtain for C(t + s,t) a somewhat lengthy expression which
is, however, readily written and given explicitly in Eq. (A1) in
Appendix A. All terms of the perturbative expansion refer to
the unperturbed system with Hamiltonian H0 = Hel + Henv .

Since the quasiparticle Hamiltonian Hel and the environmental
Hamiltonian Henv commute, all terms of the expansion can
be factorized into a quasiparticle average and an average
over the electromagnetic environment. This is performed in
Appendix A and the quasiparticle averages are expressed in
terms of the correlator

α(t) = 〈�̌(t)�̌†(0)〉 = 〈�̌†(t)�̌(0)〉 (3.3)

of tunneling operators.
Furthermore, one inserts the decomposition (2.21) of

Ǐenv(t), the decomposition (2.20) of ϕ̌(t) as well as the
representation (2.22) of Ĩenv(t). As outlined in Appendix A,
one then obtains for the current autocorrelation function
the result (A3) where all averages over the electromagnetic
environment are expressed in terms of averages over the
phase operator ϕ̃(t) of the undriven circuit in the absence
of tunneling. These averages can be expressed through the
phase-phase correlation function

J (t) = 〈[ϕ̃(t) − ϕ̃(0)]ϕ̃(0)〉 (3.4)

introduced in the standard P (E) theory [5–8]. The function
J (t) is given by

J (t) = 2
∫ ∞

0

dω

ω

Z′
t (ω)

RK

×
{

coth

(
1

2
β�ω

)
[cos(ωt) − 1] − i sin(ωt)

}
, (3.5)

where Z′
t (ω) is the real part of the total impedance of the

electromagnetic environment

Zt (ω) = 1

Y (ω) − iωC
(3.6)

and RK = h/e2 is the resistance quantum.
Appendix A presents the evaluation of averages over the

electromagnetic environment in terms of the phase-phase cor-
relation function J (t). Afterwards, the current autocorrelation
function takes the form

C(t + s,t) = �
2C2

e2

....
J (s) + 2iC2

e2

∫ ∞

0
du

∫ ∞

0
dv (α(v)eJ (v) − c.c.)J̈ ′′(u)[J̈ (s + u) − J̈ (s + u + v)](eiϕ̄(t−u)e−iϕ̄(t−u−v) + c.c.)

+ 2iC2

e2

∫ ∞

0
du

∫ ∞

0
dv (α(v)eJ (v) − c.c.)J̈ ′′(u)[J̈ (s − u) − J̈ (s − u − v)](eiϕ̄(t+s−u)e−iϕ̄(t+s−u−v) + c.c.)

+ 2iC2

e2

∫ ∞

0
du

∫ ∞

0
dv α(s − u + v) eJ (s−u+v)J̈ ′′(u)[J̈ (−v) − J̈ (v)](e−iϕ̄(t+s−u)eiϕ̄(t−v) + c.c.), (3.7)

which is written fully in terms of three quantities. The
correlation function of tunneling operators α(t) defined in
Eq. (3.3) and the phase autocorrelation function J (t) defined in
Eq. (3.4). These quantities characterize the quasiparticles and
the electromagnetic environment, respectively, in the absence
of tunneling and driving. Third, the result (3.7) depends on
the phase ϕ̄(t) determined by Eq. (2.15). This latter quantity
describes the dependence on the external voltage. So far,
the results are valid for any form of the driving potential
Vext(t).

B. Correlation function for periodic driving

In the following, we focus on the important case of a circuit
driven by the voltage

Vext(t) = Vdc + Vac cos (�t) (3.8)

composed of a dc voltage Vdc and a sinusoidal ac voltage Vac of
frequency �. In the absence of tunneling the junction charge
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then reads as [15]

〈Q̌(t)〉 = CVdc + Re

{
CY (�)

Y (�) − i�C
Vac e−i�t

}
, (3.9)

which oscillates with an amplitude proportional to Vac about
the time-averaged charge CVdc. Using the polar decomposition

Y (ω)

Y (ω) − iωC
= Zt (ω)

Z(ω)
= �(ω) eiη(ω) (3.10)

of the admittance ratio into modulus � and phase η, Eq. (3.9)
simply reads as

〈Q̌(t)〉 = C[Vdc + � Vac cos(�t − η)]. (3.11)

Here and in the following, we denote by � and η without
argument the functions �(ω) and η(ω) for ω = �. Below, we
will employ these functions also for other frequencies which
are then always indicated explicitly as arguments.

Furthermore, one can show that the phase ϕ̄(t) introduced
in Eqs. (2.14) and (2.15) coincides with the average phase

〈ϕ̌(t)〉 across the junction in the absence of tunneling and is
given by [15]

ϕ̄(t) = e

�
Vdct + a sin(�t − η), (3.12)

where we have introduced the dimensionless ac amplitude

a = e � Vac

��
. (3.13)

We now make use of

ϕ̄(t) − ϕ̄(t − s)

= e

�
Vdcs + a sin(�t − η) − a sin[�(t − s) − η]. (3.14)

Inserting this into the result (3.7), the current autocorrelation
function takes the form

C(t + s,t) = �
2C2

e2

....
J (s) + 2iC2

e2

∫ ∞

0
du

∫ ∞

0
dv (α(v)eJ (v) − c.c.)J̈ ′′(u)[J̈ (s + u) − J̈ (s + u + v)]

× (e
i
�

eVdcveia sin[�(t−u)−η]e−ia sin[�(t−u−v)−η] + c.c.) + 2iC2

e2

∫ ∞

0
du

∫ ∞

0
dv (α(v)eJ (v) − c.c.)J̈ ′′(u)

× [J̈ (s − u) − J̈ (s − u − v)](e
i
�

eVdcv eia sin[�(t+s−u)−η] e−ia sin[�(t+s−u−v)−η] + c.c.)

+ 4C2

e2

∫ ∞

0
du

∫ ∞

0
dv α(s − u + v)eJ (s−u+v)J̈ ′′(u) J̈ ′′(v)(e

i
�

eVdc(s−u+v)eia sin[�(t+s−u)−η] e−ia sin[�(t−v)−η] + c.c.).

(3.15)

To proceed, it is advantageous to turn to the spectral density of current fluctuations.

IV. CURRENT SPECTRAL FUNCTION

The spectrum of current fluctuations is experimentally
particularly relevant. Accordingly, we continue with the
analysis in Fourier space. We will show that the spectrum
is composed of three parts given in Eqs. (4.27), (4.54), and
(4.73) below.

A. Fourier coefficients of current autocorrelation function

The correlation function (3.15) has the periodicity

C(t + 2π/� + s,t + 2π/�) = C(t + s,t) (4.1)

and may thus be written as a Fourier series

C(t + s,t) =
∞∑

n=−∞
Cn(s) e−in(�t−η) (4.2)

with coefficients Cn(s) that are functions of the lag time s.
To extract these coefficients, we employ the Jacobi-Anger
expansion [29]

eia sin(�t) =
∞∑

k=−∞
Jk(a) eik�t (4.3)

with the Bessel functions of the first kind Jk(z). Inserting this
series expansion into Eq. (3.15), we obtain for the current
autocorrelation function the expression

C(t + s,t) = �
2C2

e2

....
J (s) + 2iC2

e2

∫ ∞

0
du J̈ ′′(u)

∫ ∞

0
dv (α(v)eJ (v) − c.c.)[J̈ (s + u) − J̈ (s + u + v)]

×
∞∑

k,l=−∞
Jk(a) Jl(a)(e

i
�

eVdcveik[�(t−u)−η]e−il[�(t−u−v)−η] + c.c.) + 2iC2

e2

∫ ∞

0
du J̈ ′′(u)

∫ ∞

0
dv (α(v)eJ (v) − c.c.)

× [J̈ (s − u) − J̈ (s − u − v)]
∞∑

k,l=−∞
Jk(a) Jl(a)(e

i
�

eVdcv eik[�(t+s−u)−η] e−il[�(t+s−u−v)−η] + c.c.)
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+ 4C2

e2

∫ ∞

0
du J̈ ′′(u)

∫ ∞

0
dv J̈ ′′(v)α(s − u + v) eJ (s−u+v)

×
∞∑

k,l=−∞
Jk(a) Jl(a)(e

i
�

eVdc(s−u+v)eik[�(t+s−u)−η]e−il[�(t−v)−η] + c.c.). (4.4)

From this result we can now easily extract the Fourier coefficients Cn(s). In particular, we obtain for the most important coefficient
C0(s), which corresponds to the average of the correlator C(t + s,t) over time t , the result

C0(s) = �
2C2

e2

....
J (s) + 2iC2

e2

∫ ∞

0
du J̈ ′′(u)

∫ ∞

0
dv (α(v)eJ (v) − c.c.)[J̈ (s + u) − J̈ (s + u + v)]

×
∞∑

k=−∞
Jk(a)2(e

i
�

eVdcveik�v + c.c.) + 2iC2

e2

∫ ∞

0
du J̈ ′′(u)

∫ ∞

0
dv (α(v)eJ (v) − c.c.)

× [J̈ (s − u) − J̈ (s − u − v)]
∞∑

k=−∞
Jk(a)2(e

i
�

eVdcv eik�v + c.c.) + 4C2

e2

∫ ∞

0
du J̈ ′′(u)

∫ ∞

0
dv J̈ ′′(v)

×α(s − u + v) eJ (s−u+v)
∞∑

k=−∞
Jk(a)2(e

i
�

eVdc(s−u+v) eik�(s−u+v) + c.c.). (4.5)

We now switch to Fourier space also with respect to the lag
time s.

B. Spectral function

The Fourier coefficient C0(s) of the current correlator can
be written as a Fourier integral

C0(s) =
∫ ∞

−∞

dω

2π
S(ω) e−iωs (4.6)

with the spectral function

S(ω) =
∫ ∞

−∞
ds C0(s) eiωs . (4.7)

To determine S(ω) it is advantageous to transform the result
(4.5) for C0(s) in such a way that the dependence on s arises
via exponential factors of the form exp(iνs). To this purpose
we make use of Eq. (3.5), which gives

J̈ (t) = −2
∫ ∞

0
dω ω

Z′
t (ω)

RK

×
{

coth

(
1

2
β�ω

)
cos(ωt) − i sin(ωt)

}
. (4.8)

This may be transformed to read as

J̈ (t) = − e2

π�

∫ ∞

−∞
dω

ω Z′
t (ω) e−iωt

1 − e−β�ω
, (4.9)

where we have made use of the symmetry

Z′
t (ω) = Z′

t (−ω) (4.10)

following from Eq. (3.6) and the relation

1

1 − e−x
= 1

2

[
1 + coth

(
x

2

)]
. (4.11)

It is convenient to introduce also the function

K(s) = −J̈ (s) = 〈 ˙̃ϕ(t + s) ˙̃ϕ(t)〉, (4.12)

which is proportional to the charge autocorrelation function
in the absence of tunneling and driving, and its Fourier

representation

K(s) =
∫ ∞

−∞

dω

2π
SK (ω) e−iωs . (4.13)

From Eq. (4.9) we obtain for the spectrum

SK (ω) = 2e2

�

ω Z′
t (ω)

1 − e−β�ω
(4.14)

which is real, implying K(−s) = K(s)∗, and which has the
symmetry

SK (−ω) = e−β�ωSK (ω). (4.15)

To uncover the dependence of C0(s) on s, we also need a
Fourier representation of the function α(t) eJ (t). To this purpose
we introduce the familiar P (E) function of the DCB theory
[5–8]

P (E) = 1

2π�

∫ ∞

−∞
dt eJ (t)+ i

�
Et (4.16)

which gives the probability that a tunneling transition is
associated with an exchange of the energy E with the
electromagnetic environment. Now, Eq. (4.16) implies

eJ (t) = �

∫ ∞

−∞
dω P (�ω) e−iωt . (4.17)

Furthermore, for tunnel junctions in the wide-band limit, the
correlator of tunneling operators α(t) is given by [8,15]

α(t) = 1

2π

� GT

e2

∫ ∞

−∞
dE

E e− i
�

Et

1 − e−βE
, (4.18)

where GT is the tunneling conductance of the junction.
Combining Eqs. (4.17) and (4.18), one obtains

α(t) eJ (t) = 2π�
4GT

e2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

× ω P (�ω′)
1 − e−β�ω

e−i(ω+ω′)t . (4.19)
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We write this result in the form

α(t) eJ (t) =
∫ ∞

−∞

dω

2π
F (ω) e−iωt (4.20)

with the spectrum

F (ω) = �
4GT

e2

∫ ∞

−∞
dω′ (ω − ω′) P (�ω′)

1 − e−β�(ω−ω′) (4.21)

which obeys the symmetry

F (−ω) = e−β�ωF (ω). (4.22)

Using the Fourier representations (4.13) and (4.19), the
expression (4.5) for the function C0(s) can be transformed
in such a way that the spectral function S(ω) can easily
be extracted. This is shown explicitly in Appendix B. The
resulting spectral function is found to be the sum of three
terms

S(ω) = SN (ω) + ST (ω) + SNT (ω), (4.23)

where

SN (ω) = �
2C2

e2
ω2 SK (ω), (4.24)

ST (ω) = −C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ)e−iμu

∫ ∞

0
dv

∫ ∞

−∞

dν

2π
(1 − e−β�ν)SK (ν) e−iνveiω(u−v)

×
∞∑

k=−∞
Jk(a)2 [F (ω + eVdc/� + k�) + F (ω − eVdc/� − k�)] (4.25)

and

SNT (ω) = C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ)e−iμu

∫ ∞

0
dv (α(v)eJ (v) − c.c.)SK (ω) e−iωu[1 − e−iωv]

×
∞∑

k=−∞
Jk(a)2(e

i
�

eVdcveik�v + c.c.) + c.c. (4.26)

These three contributions to S(ω) are now evaluated further.

C. Evaluation of SN (ω)

The contribution SN (ω) to the spectral function S(ω) may
be written as

SN (ω) = 2� C2ω3Z′
t (ω)

1 − e−β�ω
, (4.27)

where we have inserted the explicit form (4.14) of the spectrum
SK (ω) into Eq. (4.24). Now, the real part Z′

t (ω) of the total
impedance (3.6) may be written as

Z′
t (ω) = |Zt (ω)|2Y ′(ω) =

∣∣∣∣Zt (ω)

Z(ω)

∣∣∣∣
2

Z′(ω) (4.28)

= �(ω)2Z′(ω),

where we have made use of the polar decomposition (3.10) to
obtain the last expression. This allows us to write the result
(4.27) in the form

SN (ω) = [�(ω)ωZ′(ω)C]2SININ
(ω), (4.29)

where

SIN IN
(ω) = 2�ω

1 − e−β�ω

1

Z′(ω)
(4.30)

is the spectrum of Johnson-Nyquist current noise [30–32]
generated by the environmental impedance Z(ω). We thus
see that the contribution SN (ω) to the spectral function S(ω)
is the current noise in the outer circuit arising from the

Johnson-Nyquist noise of the environmental impedance. The
dimensionless factor [�(ω)ωZ′(ω)C]2 in Eq. (4.29) can be
understood from circuit theory.

D. Evaluation of ST (ω)

Next, we turn to the contribution ST (ω) to the spectral
function S(ω). We start by noting that the average current
Idc(Vdc) in the presence of a dc voltage Vdc only may be written
as [8]

Idc(V ) = e[�(V ) − �(−V )], (4.31)

where

�(V ) = GT

e2

∫ ∞

−∞
dE

E P (eV − E)

1 − e−βE

= �
2GT

e2

∫ ∞

−∞
dω′ (eV/� − ω′) P (�ω′)

1 − e−β(eV −�ω′) (4.32)

is the electron tunneling rate in the presence of an applied dc
voltage V . When we compare this with the definition (4.21)
of the spectrum F (ω) introduced previously, we see that F (ω)
may be written as

F (ω) = �
2�(�ω/e). (4.33)
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Inserting this result into Eq. (4.25) we obtain

ST (ω) = −�
2C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ)

× e−iμu

∫ ∞

0
dv

∫ ∞

−∞

dν

2π
(1 − e−β�ν)SK (ν)e−iνv

×
∞∑

k=−∞
Jk(a)2{�(Vdc + �(k� + ω)/e)eiω(u−v)

+�(−Vdc − �(k� − ω)/e)eiω(u−v)}. (4.34)

Now, the right-hand side of this relation contains the
integrals∫ ∞

0
du e−iμu eiωu = πδ(μ − ω) − iP

1

μ − ω
(4.35)

and ∫ ∞

0
dv e−iνv e−iωv = πδ(ν + ω) − iP

1

ν + ω
, (4.36)

where P denotes the Cauchy principal value. When we apply
these relations, Eq. (4.34) takes the form

ST (ω) = −�
2C2

e2

[
1

2
(1 − e−β�ω)SK (ω) − iP

∫ ∞

−∞

dμ

2π

(1 − e−β�μ)SK (μ)

μ − ω

][
1

2
(1 − eβ�ω)SK (−ω)

− iP

∫ ∞

−∞

dν

2π

(1 − e−β�ν)SK (ν)

ν + ω

] ∞∑
k=−∞

Jk(a)2{�(Vdc + �(k� + ω)/e) + �(−Vdc − �(k� − ω)/e)}. (4.37)

This result contains the Cauchy principal value

HK (ω) = P

∫ ∞

−∞

dμ

2π

(1 − e−β�μ)SK (μ)

μ − ω
(4.38)

which is evaluated next.

1. Evaluation of HK (ω)

To determine HK (ω), we first note that Eq. (4.14) gives

(1 − e−β�ω)SK (ω) = 2e2

�
ωZ′

t (ω) (4.39)

so that

HK (ω) = 2e2

�
P

∫ ∞

−∞

dμ

2π

μZ′
t (μ)

μ − ω

= 2e2

�
Re

[
P

∫ ∞

−∞

dμ

2π

μZt (μ)

μ − ω

]
. (4.40)

We now make use of

μ

μ − ω
= 1 + ω

μ − ω
(4.41)

which implies

P

∫ ∞

−∞

dμ

2π

μZt (μ)

μ − ω

=
∫ ∞

−∞

dμ

2π
Zt (μ) + ωP

∫ ∞

−∞

dμ

2π

Zt (μ)

μ − ω
. (4.42)

The total impedance Zt (ω) obeys the sum rule [6,8]∫ ∞

−∞
dω Zt (ω) = π

C
(4.43)

and the Kramers-Kronig relations imply

P

∫ ∞

−∞
dω

Zt (ω)

ω − ω′ = iπZt (ω
′). (4.44)

With the help of these relations we obtain

P

∫ ∞

−∞

dμ

2π

μZt (μ)

μ − ω
= 1

2C
+ i

2
ωZt (ω)

which combines with Eq. (4.40) to give

HK (ω) = e2

�

[
1

C
− ω Z′′

t (ω)

]
(4.45)

which has the symmetry

HK (ω) = HK (−ω). (4.46)

2. Evaluation of ST (ω) continued

Expressing the right-hand side of Eq. (4.37) in terms of
HK (ω) and using then Eq. (4.45), we obtain

ST (ω) =
{

�
2C2

e2

[
1

2
(1 − e−β�ω)SK (ω)

]2

+ e2[1 − ω C Z′′
t (ω)]2

}

×
∞∑

k=−∞
Jk(a)2{�(Vdc + �(k� + ω)/e)

+�(−Vdc − �(k� − ω)/e)}. (4.47)

Next, we note that [8]

P (−E) = e−βEP (E). (4.48)

Hence, Eq. (4.32) implies

�(−V ) = e−βeV �(V ). (4.49)

The current (4.31) may thus be written in the form

Idc(V ) = e(1 − e−βeV )�(V ). (4.50)

Vice versa, the rate can be expressed as

�(V ) = Idc(V )

e(1 − e−βeV )
, �(−V ) = Idc(V )

e(eβeV − 1)
. (4.51)
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Further, using the explicit form (4.14) of SK (ω) we obtain

�
2C2

e2

[
1

2
(1 − e−β�ω)SK (ω)

]2

= e2[ωCZ′
t (ω)]2. (4.52)

The first factor in Eq. (4.47) may thus be written as

�
2C2

e2

[
1

2
(1 − e−β�ω)SK (ω)

]2

+ e2[1 − ω C Z′′
t (ω)]2

= e2([ωCZ′
t (ω)]2 + [1 − ωCZ′′

t (ω)]2)

= e2

∣∣∣∣Zt (ω)

Z(ω)

∣∣∣∣
2

= e2�(ω)2, (4.53)

where we have employed the form (3.6) of Zt (ω) and the polar
decomposition (3.10).

Using now the relations (4.51) and (4.53), the result (4.47)
can be cast in the form

ST (ω) = e�(ω)2
∞∑

k=−∞
Jk(a)2

{
Idc(Vdc + �(k� + ω)/e)

1 − e−β[eVdc+�(k�+ω)]

+ Idc(Vdc + �(k� − ω)/e)
eβ[eVdc+�(k�−ω)] − 1

}
(4.54)

which expresses the contribution ST (ω) to the spectral function
in terms of the current-voltage relation for the average current
Idc(Vdc) in the absence of an ac driving voltage.

3. Relation of ST (ω) to shot noise

In the absence of an ac voltage, i.e., when a = 0, all Bessel
functions Jk(0) = 0 except for J0(0) = 1, and the result (4.54)
simplifies to read as

ST (Vdc,0,ω)

= e�(ω)2

{
Idc(Vdc + �ω/e)

1 − e−β[eVdc+�ω]
+ Idc(Vdc − �ω/e)

eβ[eVdc−�ω] − 1

}
, (4.55)

where we have made the voltage dependence of the spectral
function explicit using the notation S(Vdc,Vac,ω) for the
spectral function and its parts whenever appropriate.

The result (4.55) may be written as [9]

ST (Vdc,0,ω) = �(ω)2SIT IT
(Vdc,ω), (4.56)

where

SIT IT
(V,ω) = e

[
Idc(eV + �ω)

1 − e−β(eV +�ω)
+ Idc(eV − �ω)

eβ(eV −�ω) − 1

]
(4.57)

is the shot noise of the tunneling current [9,33] caused by
electron tunneling across a tunnel junction with applied dc
voltage V . This shows that the component ST (ω) of the spectral
function comes from the shot noise generated at the tunneling
element. There is a frequency-dependent factor �(ω)2 in
Eqs. (4.54)–(4.56) relating the noise of the tunneling current
with the noise of the environmental current. This factor can
also be derived from circuit theory.

When we compare the results (4.54) and (4.55), we see
that the contribution ST (Vdc,Vac,ω) to the spectral function
S(Vdc,Vac,ω) in the presence of dc and ac voltages is related
to the corresponding contribution ST (Vdc,0,ω) in the presence

of a dc voltage only by a photoassisted tunneling relation

ST (Vdc,Vac,ω) =
∞∑

k=−∞
Jk(a)2 ST (Vdc + k��/e,0,ω) (4.58)

of the Tien-Gordon type [18,34].

E. Evaluation of SNT (ω)

Finally, we need to determine the contribution SNT (ω) to the
spectral function S(ω). We start by noting that the right-hand
side of Eq. (4.26) contains the integral∫ ∞

0
du e−iμu e−iωu = πδ(μ + ω) − iP

1

μ + ω
. (4.59)

Accordingly, we obtain from Eq. (4.26)

SNT (ω) = − C2

2e2

[
(1 − e−β�ω)SK (ω)2

+ 2i SK (ω) P

∫ ∞

−∞

dμ

2π

(1 − e−β�μ)SK (μ)

μ + ω

]

×
∞∑

k=−∞
Jk(a)2

∫ ∞

0
dv (α(v)eJ (v) − c.c.)

× [1 − e−iωv](e
i
�

eVdcveik�v + c.c.) + c.c., (4.60)

where we have exploited the symmetry (4.15) of SK (ω). Now,
the result (4.60) contains the Cauchy principal value HK (ω)
introduced in Eq. (4.38) and integrals of the form

L(ω) =
∫ ∞

0
dv (α(v)eJ (v) − c.c.)eiωv, (4.61)

which are evaluated next.

1. Evaluation of L(ω)

To evaluate the integral L(ω) defined in Eq. (4.61), we write
it in the form

L(ω) =
∫ ∞

0
dv α(v)eJ (v) eiωv −

∫ 0

−∞
dv α(v)eJ (v) e−iωv

(4.62)

and we make use of of the standard result of the DCB theory
[5–8] for the current Idc in the presence of a dc voltage Vdc

only:

Idc(Vdc) = e

�2

∫ ∞

−∞
ds α(s) eJ (s)(e

i
�

eVdcs − c.c.). (4.63)

We also employ the Kramers-Kronig transformed current [15]

IKK(Vdc) = ie

�2

∫ ∞

−∞
ds sign(s) α(s) eJ (s)(e

i
�

eVdcs + c.c.)

(4.64)
which can be expressed in terms of Idc(V ) by [15,18]

IKK(V ) = P

∫ ∞

−∞

dU

π

Idc(U ) − GT U

U − V
. (4.65)
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The relations (4.63) and (4.64) imply

�
2

e
Idc

(
�ω

e

)
=

∫ ∞

−∞
ds α(s) eJ (s)(eiωs − c.c.)

=
∫ 0

−∞
ds α(s) eJ (s)(eiωs − c.c.)

+
∫ ∞

0
ds α(s) eJ (s)(eiωs − c.c.)

(4.66)
and

i
�

2

e
IKK

(
�ω

e

)
= −

∫ ∞

−∞
ds sign(s)α(s)eJ (s)(eiωs + c.c.)

=
∫ 0

−∞
ds α(s) eJ (s)(eiωs + c.c.)

−
∫ ∞

0
ds α(s) eJ (s)(eiωs + c.c.) (4.67)

which can be combined to give

�
2

2e

[
Idc

(
�ω

e

)
± iIKK

(
�ω

e

)]

= ±
∫ 0

−∞
ds α(s) eJ (s) e±iωs ∓

∫ ∞

0
ds α(s) eJ (s) e∓iωs .

(4.68)

This result can now we used to write the integral (4.62) in the
form

L(ω) = �
2

2e

[
Idc

(
�ω

e

)
− iIKK

(
�ω

e

)]
. (4.69)

2. Evaluation of SNT (ω) continued

Using the results (4.45) and (4.69), we obtain from
Eq. (4.60)

SNT (ω) = −�
2C2

2e3
(1 − e−β�ω)SK (ω)2

∞∑
k=−∞

Jk(a)2

[
Idc

(
Vdc + �(k� + ω)

e

)
− Idc

(
Vdc + �(k� − ω)

e

)]

+ �C

e
SK (ω) [1 − ω C Z′′

t (ω)]
∞∑

k=−∞
Jk(a)2

[
IKK

(
Vdc + �(k� + ω)

e

)

+ IKK

(
Vdc + �(k� − ω)

e

)
− 2IKK

(
Vdc + k��

e

)]
. (4.70)

Furthermore, by inserting the explicit expression (4.14) for SK (ω), we obtain for the frequency-dependent factors on the right-hand
side of Eq. (4.70)

�
2C2

2e3
(1 − e−β�ω)SK (ω)2 = 2e[ωCZ′

t (ω)]2

1 − e−β�ω
= 2e

1 − e−β�ω
�(ω)2 sin2[η(ω)] (4.71)

and

�C

e
SK (ω)[1 − ωCZ′′

t (ω)] = 2eωCZ′
t (ω)[1 − ωCZ′′

t (ω)]

1 − e−β�ω
= 2e

1 − e−β�ω
�(ω)2 sin[η(ω)] cos[η(ω)], (4.72)

where we have made use of the polar decomposition (3.10). This allows us to write the result (4.70) in the form

SNT (ω) = 2e

1 − e−β�ω
�(ω)2

∞∑
k=−∞

Jk(a)2

{
sin2[η(ω)]

[
Idc

(
Vdc + �(k� − ω)

e

)
− Idc

(
Vdc + �(k� + ω)

e

)]

+ sin[2η(ω)]

2

[
IKK

(
Vdc + �(k� − ω)

e

)
+ IKK

(
Vdc + �(k� + ω)

e

)
− 2IKK

(
Vdc + k��

e

)]}
. (4.73)

Clearly, also this contribution to the spectral function can be written in terms of the current-voltage relation Idc(Vdc) in the absence
of an ac driving voltage.

One can show [35] that the contribution SNT (ω) to the current noise spectrum comes from a cross correlation between
fluctuations of the tunneling current and the Johnson-Nyquist noise of the electromagnetic environment. The latter causes
fluctuations of the voltage across the tunnel junction which then induce fluctuations of the tunneling current. Correspondingly,
the result (4.73) combines frequency-dependent factors stemming from circuit theory and the finite-frequency junction admittance.

In the absence of an ac voltage, i.e., when a = 0, the expression (4.73) simplifies to read as

SNT (Vdc,0,ω) = 2e

1 − e−β�ω
�(ω)2

{
sin2[η(ω)][Idc(Vdc − �ω/e) − Idc(Vdc + �ω/e)]

+ sin[2η(ω)]

2
[IKK(Vdc − �ω/e) + IKK(Vdc + �ω/e) − 2IKK(Vdc)]

}
, (4.74)

where we have again made the voltage dependence of the spectral function explicit. Clearly, the noise component SNT (ω) is also
present for tunnel junctions solely under dc bias [9].
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Finally, when we compare the results (4.73) and (4.74), we
see that the contribution SNT (Vdc,Vac,ω) to the spectral func-
tion S(Vdc,Vac,ω) is related to the corresponding contribution
SNT (Vdc,0,ω) measured at dc bias by a photoassisted tunneling
relation

SNT (Vdc,Vac,ω) =
∞∑

k=−∞
Jk(a)2 SNT (Vdc + k��/e,0,ω).

(4.75)

F. Photoassisted tunneling relation for S(ω)

We have shown that the components ST (Vdc,Vac,ω) and
SNT (Vdc,Vac,ω) of the spectral function S(Vdc,Vac,ω) can
be related by photoassisted tunneling relations [given in
Eqs. (4.58) and (4.75)] to the corresponding components
ST (Vdc,0,ω) and SNT (Vdc,0,ω) in the absence of an ac voltage
Vac. The remaining component SN (Vdc,Vac,ω) determined in
Eq. (4.27) is in fact independent of Vdc and Vac. Nevertheless,
we may formally write

SN (Vdc,Vac,ω) =
∞∑

k=−∞
Jk(a)2 SN (Vdc + k��/e,0,ω) (4.76)

since [29]
∞∑

k=−∞
Jk(a)2 = 1. (4.77)

Therefore, also the total spectral density S(Vdc,Vac,ω) can be
expressed through the spectrum in the absence of an ac voltage
by a relation

S(Vdc,Vac,ω) =
∞∑

k=−∞
Jk(a)2 S(Vdc + k��/e,0,ω) (4.78)

of the Tien-Gordon type. Hence, the spectral function
S(Vdc,Vac,ω) of an ac driven device is obtained as copies of
the same quantity measured under dc bias, with dc voltages
translated by shifts n��/e corresponding to the harmonics and
weighted by Bessel functions. This property has been noticed
previously [12] for the spectrum of the tunneling current and it
remains true for the spectrum of the measurable environmental
current.

V. SPECIFIC ELECTROMAGNETIC ENVIRONMENTS

In this section, we specify the results derived in the
previous sections for two experimentally relevant models of
the electromagnetic environment.

A. Ohmic environment

We first consider the special case of a purely Ohmic
environment with an impedance Z(ω) = R, which implies

Zt (ω) = R

1 − iωRC
. (5.1)

This gives

Zt (ω)

Z(ω)
= 1

1 − iωRC
(5.2)

which has the modulus

�(ω) =
√

1

1 + (ωRC)2
(5.3)

and the phase

arctan[η(ω)] = ωRC. (5.4)

Accordingly,

sin[η(ω)] = ωRC√
1 + (ωRC)2

= ωRC �(ω) (5.5)

and

cos[η(ω)] = 1√
1 + (ωRC)2

= �(ω). (5.6)

We then obtain from Eq. (4.27) for the Johnson-Nyquist part
of the spectral function

SN (ω) = 2�ω3C2R

(1 − e−β�ω)[1 + (ωRC)2]
(5.7)

which is the Johnson-Nyquist current noise

SININ
(ω) = 2�ω

1 − exp(−β�ω)

1

R
(5.8)

of the resistor R scaled by the factor (ωRC)2/[1 + (ωRC)2] =
[�(ω)ωRC ]2.

The shot noise part of the spectral function S(ω) is obtained
from Eqs. (4.54) and (5.1) in the form

ST (ω) = e

1 + (ωRC)2

∞∑
k=−∞

Jk(a)2

{
Idc(Vdc + �(k� + ω)/e)

1 − e−β[eVdc+�(k�+ω)]
+ Idc(Vdc + �(k� − ω)/e)

eβ[eVdc+�(k�−ω)] − 1

}
(5.9)

which corresponds to the shot noise of the tunneling current scaled by the factor 1/[1 + (ωRC)2] = �(ω)2.
Finally, the cross correlation between the noise from the resistor R and the shot noise of the junction leads to the contribution

SNT (ω) = 2e

(1 − e−β�ω)

ωRC

[1 + (ωRC)2]2

∞∑
k=−∞

Jk(a)2

{
ωRC

[
Idc

(
Vdc + �(k� − ω)

e

)
− Idc

(
Vdc + �(k� + ω)

e

)]

+ IKK

(
Vdc + �(k� − ω)

e

)
+ IKK

(
Vdc + �(k� + ω)

e

)
− 2IKK

(
Vdc + k��

e

)}
. (5.10)
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To derive this result, we have combined Eqs. (4.73) and
(5.1)–(5.6).

Let us now briefly address the low impedance limit of the
Ohmic model. Frequently, environmental impedances are quite
small, in the range of 50 �, which is the order of magnitude
of typical transmission line impedances. In the limit R � RK

of a low impedance environment, the contributions SN (ω) and
SNT (ω) to the spectral function become negligible and we
simply have

S(ω) = e

∞∑
k=−∞

Jk(a)2

{
Idc(Vdc + �(k� + ω)/e)

1 − e−β[eVdc+�(k�+ω)]

+ Idc(Vdc + �(k� − ω)/e)
eβ[eVdc+�(k�−ω)] − 1

}
(5.11)

which is the shot noise of an ac driven tunnel junction in the
absence of effects of the electromagnetic environment [18,36].
This is natural since in this limit the influence of the elec-
tromagnetic environment vanishes. There is no sizable DCB
effect, and the dc current-voltage characteristic of the tunnel
junction is approximately linear [8], i.e., Idc(Vdc) = GT Vdc.

B. Tunnel junction driven through a resonator

We consider now a tunnel junction driven through an LC

resonator as studied recently [11,12,15]. The environmental
impedance is assumed to be of the form

Z(ω) = R − iωL (5.12)

with an Ohmic lead resistance R and an inductance L. The
resonance frequency of the LC resonator is

ω0 = 1√
LC

(5.13)

and it has the characteristic impedance

Zc =
√

L

C
(5.14)

implying a quality factor Qf = Zc/R. We shall also use the
loss factor

γ = 1

Qf

= R

Zc

. (5.15)

For this circuit, the ratio between the total impedance (3.6) and
the impedance Z(ω) of the leads is given by

Zt (ω)

Z(ω)
= 1

1 − iωRC − ω2LC
= ω2

0

ω2
0 − ω2 − iγ ω0ω

(5.16)

which implies a modulus

�(ω) = ω2
0√(

ω2
0 − ω2

)2 + (γω0ω)2
(5.17)

and a phase

η(ω) = arctan

(
γω0ω

ω2
0 − ω2

)
, (5.18)

where the values of arctan are to be chosen in the interval
[0,π ). We then have

sin[η(ω)] = γω0ω√(
ω2

0 − ω2
)2 + (γω0ω)2

(5.19)

and

cos[η(ω)] = ω2
0 − ω2√(

ω2
0 − ω2

)2 + (γω0ω)2
. (5.20)

The effects of the electromagnetic environment are most pro-
nounced when the frequency ω coincides with the resonance
frequency ω0 of the LC resonator. We obtain from Eqs. (5.17)
and (5.18) for ω = ω0

�(ω0) = Qf , η(ω0) = π

2
. (5.21)

For this particular frequency, we find from Eq. (4.29)

SN (ω0) = 2�ω0

1 − e−β�ω0

1

R
, (5.22)

where we have made use of �(ω0)ω0RC = 1. This corre-
sponds to the Johnson-Nyquist noise of the lead resistance
R.

The shot noise contribution (4.54) takes the form

ST (ω0) = eQ2
f

∞∑
k=−∞

Jk(a)2

{
Idc(Vdc + �(k� + ω0)/e)

1 − e−β[eVdc+�(k�+ω0)]

+ Idc(Vdc + �(k� − ω0)/e)
eβ[eVdc+�(k�−ω0)] − 1

}
(5.23)

and is thus strongly enhanced by the factor Q2
f relative to the

noise of the tunneling current through the junction.
Finally, the cross correlation between the shot noise and the

resistor noise gives rise to the contribution

SNT (ω0) = 2e

1 − e−β�ω0
Q2

f

∞∑
k=−∞

Jk(a)2

×
[
Idc

(
Vdc + �(k� − ω0)

e

)

− Idc

(
Vdc + �(k� + ω0)

e

)]
, (5.24)

where we have particularized the result (4.73) using the
specific values for ω = ω0 given in Eq. (5.21).

Finally, let us consider the zero-temperature spectral
function S(Vdc,0,ω0) in the absence of an ac voltage. From
Eqs. (5.22)–(5.24) we obtain for T = 0 and Vac = 0

SN (ω0) = 2�ω0

R
, (5.25)

ST (Vdc,0,ω0) = eQ2
f [�(eVdc + �ω0)Idc(Vdc + �ω0/e)

+�(�ω0 − eVdc)Idc(�ω0/e − Vdc)] (5.26)

and

SNT (Vdc,0,ω0)

= 2eQ2
f [Idc(Vdc − �ω0/e) − Idc(Vdc + �ω0/e)], (5.27)
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where �(x) is the unit step function. This shows that the
contribution SNT (ω) can be of the same order of magnitude as
ST (ω) already for junctions under dc bias. The corresponding
results for finite ac voltage Vac can readily be obtained by
means of the photoassisted tunneling relation (4.78).

VI. CONCLUSIONS

We have determined the spectrum of current fluctuations of
a tunnel junction biased by an external voltage applied via an
environmental impedance. Apart from the noise components
arising from the Johnson-Nyquist noise of the electromagnetic
environment and the shot noise of the tunneling element,
respectively, there is a third component which comes from the
correlation between fluctuations of the tunneling current and
the environmental Johnson-Nyquist noise. This component
can also be interpreted as a tunneling modification of the
current fluctuations seen in the outer circuit which originate
from the current fluctuations generated by the environmental
impedance. Tunneling opens up a second channel for the
transmission of these fluctuations to the external leads apart
from the transfer via the junction capacitance.

Regarding the noise of ac driven tunnel junctions we
have demonstrated that the spectral function for finite ac
voltage can be obtained from the spectral function at dc
bias by means of a photoassisted tunneling relation of the

Tien-Gordon type. This relation is formally valid for each
of the three noise components separately. Studying specific
models of the electromagnetic environment we have shown
that the third noise component can be as significant as the
two other components. Experimental consequences of this
fact remain to be analyzed. Also, the results obtained here
for the current fluctuations can be combined with previous
findings concerning the average current to examine the validity
of fluctuation dissipation relations and related questions. This
and other aspects of the theory will be addressed elsewhere.
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APPENDIX A: EVALUATION OF THE CURRENT
AUTOCORRELATION FUNCTION C(t + s,t)

Employing the expansion (3.1) of the current operator
Ienv(t) up to second order in the tunneling Hamiltonian HT , the
corresponding expansion of the current autocorrelation func-
tion C(t + s,t) = 〈Ienv(t + s)Ienv(t)〉 − 〈Ienv(t + s)〉〈Ienv(t)〉
is readily obtained in the form

C(t + s,t) =
〈{

Ǐenv(t + s) + i

�

∫ ∞

0
du [�̌(t + s − u) e−iϕ̌(t+s−u) + H.c. ,Ǐenv(t + s)]

− 1

�2

∫ ∞

0
du

∫ ∞

0
dv [�̌(t + s − u − v) e−iϕ̌(t+s−u−v) + H.c. ,[�̌(t + s − u) e−iϕ̌(t+s−u) + H.c. ,Ǐenv(t + s)]]

}

×
{
Ǐenv(t) + i

�

∫ ∞

0
du [�̌(t − u) e−iϕ̌(t−u) + H.c. ,Ǐenv(t)]

− 1

�2

∫ ∞

0
du

∫ ∞

0
dv [�̌(t − u − v) e−iϕ̌(t−u−v) + H.c. ,[�̌(t − u) e−iϕ̌(t−u) + H.c. ,Ǐenv(t)]]

}〉

−
〈
Ǐenv(t + s) + i

�

∫ ∞

0
du [�̌(t + s − u) e−iϕ̌(t+s−u) + H.c. ,Ǐenv(t + s)]

− 1

�2

∫ ∞

0
du

∫ ∞

0
dv [�̌(t + s − u − v) e−iϕ̌(t+s−u−v) + H.c. ,[�̌(t + s − u) e−iϕ̌(t+s−u) + H.c. ,Ǐenv(t + s)]]

〉

×
〈
Ǐenv(t) + i

�

∫ ∞

0
du [�̌(t − u) e−iϕ̌(t−u) + H.c. ,Ǐenv(t)]

− 1

�2

∫ ∞

0
du

∫ ∞

0
dv [�̌(t − u − v) e−iϕ̌(t−u−v) + H.c. ,[�̌(t − u) e−iϕ̌(t−u) + H.c. ,Ǐenv(t)]]

〉
. (A1)

1. Evaluation of quasiparticle averages

Since Hel and Henv decouple in the absence of tunneling, each term of Eq. (A1) factorizes into an average over quasiparticle
operators and an average over the electromagnetic environment. The arising quasiparticle averages coincide with those known
from the standard P (E) theory [5–8] and can be expressed in terms of the correlator of tunneling operators α(t) introduced in
Eq. (3.3). Since only terms correlating a tunneling operator � with its adjoint �† give a finite contribution, we obtain

C(t + s,t) = 〈Ĩenv(t + s)Ĩenv(t)〉 − 1

�2

∫ ∞

0
du

∫ ∞

0
dv {α(−v)(〈Ĩenv(t + s) e−iϕ̌(t−u−v) [eiϕ̌(t−u),Ĩenv(t)]〉

+ 〈Ĩenv(t + s)eiϕ̌(t−u−v)[e−iϕ̌(t−u),Ĩenv(t)]〉) − α(v)(〈Ĩenv(t + s)[eiϕ̌(t−u),Ĩenv(t)]e−iϕ̌(t−u−v)〉
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+〈Ĩenv(t + s)[e−iϕ̌(t−u),Ĩenv(t)]eiϕ̌(t−u−v)〉)}

− 1

�2

∫ ∞

0
du

∫ ∞

0
dv {α(−v)(〈e−iϕ̌(t+s−u−v) [eiϕ̌(t+s−u),Ĩenv(t + s)]Ĩenv(t)〉

+ 〈eiϕ̌(t+s−u−v)[e−iϕ̌(t+s−u),Ĩenv(t + s)]Ĩenv(t)〉) − α(v)(〈[eiϕ̌(t+s−u),Ĩenv(t + s)]e−iϕ̌(t+s−u−v)Ĩenv(t)〉

+ 〈[e−iϕ̌(t+s−u),Ĩenv(t + s)]eiϕ̌(t+s−u−v)Ĩenv(t)〉)} − 1

�2

∫ ∞

0
du

∫ ∞

0
dv α(s − u + v)

×{〈[e−iϕ̌(t+s−u),Ĩenv(t + s)][eiϕ̌(t−v),Ĩenv(t)]〉 + 〈[eiϕ̌(t+s−u),Ĩenv(t + s)][e−iϕ̌(t−v),Ĩenv(t)]}, (A2)

where we have also inserted the decomposition (2.21) of Ǐenv(t).
To proceed, we now insert the decomposition (2.20) of ϕ̌(t) and the representation (2.22) of Ĩenv(t) which gives

C(t + s,t) = �
2C2

e2
〈 ¨̃ϕ(t + s) ¨̃ϕ(t)〉 − C2

e2

∫ ∞

0
du

∫ ∞

0
dv {α(−v)(〈 ¨̃ϕ(t + s) e−iϕ̃(t−u−v) [eiϕ̃(t−u), ¨̃ϕ(t)]〉e−iϕ̄(t−u−v)eiϕ̄(t−u)

+〈 ¨̃ϕ(t + s)eiϕ̃(t−u−v)[e−iϕ̃(t−u), ¨̃ϕ(t)]〉eiϕ̄(t−u−v)e−iϕ̄(t−u)) − α(v)(〈 ¨̃ϕ(t + s)[eiϕ̃(t−u), ¨̃ϕ(t)]e−iϕ̃(t−u−v)〉

× eiϕ̄(t−u)e−iϕ̄(t−u−v) + 〈 ¨̃ϕ(t + s)[e−iϕ̃(t−u), ¨̃ϕ(t)]eiϕ̃(t−u−v)〉e−iϕ̄(t−u)eiϕ̄(t−u−v))} − C2

e2

∫ ∞

0
du

∫ ∞

0
dv

×{α(−v)(〈e−iϕ̃(t+s−u−v) [eiϕ̃(t+s−u), ¨̃ϕ(t + s)] ¨̃ϕ(t)〉e−iϕ̄(t+s−u−v)eiϕ̄(t+s−u)

+〈eiϕ̃(t+s−u−v)[e−iϕ̃(t+s−u), ¨̃ϕ(t + s)] ¨̃ϕ(t)〉eiϕ̄(t+s−u−v)e−iϕ̄(t+s−u)) − α(v)(〈[eiϕ̃(t+s−u), ¨̃ϕ(t + s)]

× e−iϕ̃(t+s−u−v) ¨̃ϕ(t)〉eiϕ̄(t+s−u)e−iϕ̄(t+s−u−v) + 〈[e−iϕ̃(t+s−u), ¨̃ϕ(t + s)]eiϕ̃(t+s−u−v) ¨̃ϕ(t)〉e−iϕ̄(t+s−u)eiϕ̄(t+s−u−v))}

− C2

e2

∫ ∞

0
du

∫ ∞

0
dv α(s − u + v){〈[e−iϕ̃(t+s−u), ¨̃ϕ(t + s)][eiϕ̃(t−v), ¨̃ϕ(t)]〉e−iϕ̄(t+s−u)eiϕ̄(t−v)

+〈[eiϕ̃(t+s−u), ¨̃ϕ(t + s)][e−iϕ̃(t−v), ¨̃ϕ(t)]〉eiϕ̄(t+s−u)e−iϕ̄(t−v)}. (A3)

Here, all averages over the electromagnetic environment are expressed in terms of the phase operator ϕ̃(t) of the undriven circuit
in the absence of tunneling.

2. Evaluation of averages over the electromagnetic environment

To evaluate the averages over the electromagnetic environment in Eq. (A3), we make use of the phase-phase correlation
function (3.4) and the Gaussian statistics of phase fluctuations in the absence of tunneling and driving. We first note that Eq. (3.4)
implies

J̈ (t) = 〈 ¨̃ϕ(t)ϕ̃(0)〉 (A4)

and
....
J (t) = 〈 ¨̃ϕ(t) ¨̃ϕ(0)〉. (A5)

Accordingly, the first term on the right-hand side of Eq. (A3) may be written as

�
2

e2
C2〈 ¨̃ϕ(t + s) ¨̃ϕ(t)〉 = �

2

e2
C2 ....

J (s). (A6)

To evaluate the other terms, we have to calculate the averages

〈 ¨̃ϕ(t + s) e−iϕ̃(t−u−v) [eiϕ̃(t−u), ¨̃ϕ(t)]〉 = −2ieJ (−v)J̈ ′′(u)[J̈ (s + u + v) − J̈ (s + u)], (A7)

〈 ¨̃ϕ(t + s) eiϕ̃(t−u−v)[e−iϕ̃(t−u), ¨̃ϕ(t)]〉 = −2ieJ (−v)J̈ ′′(u)[J̈ (s + u + v) − J (s + u)], (A8)

〈 ¨̃ϕ(t + s)[eiϕ̃(t−u), ¨̃ϕ(t)]e−iϕ̃(t−u−v)〉 = 2ieJ (v)J̈ ′′(u)[J̈ (s + u) − J̈ (s + u + v)], (A9)

〈 ¨̃ϕ(t + s)[e−iϕ̃(t−u), ¨̃ϕ(t)]eiϕ̃(t−u−v)〉 = 2ieJ (v)J̈ ′′(u)[J̈ (s + u) − J̈ (s + u + v)], (A10)

〈e−iϕ̃(t+s−u−v) [eiϕ̃(t+s−u), ¨̃ϕ(t + s)] ¨̃ϕ(t)〉 = −2ieJ (−v)J̈ ′′(u)[J̈ (s − u − v) − J̈ (s − u)], (A11)

〈eiϕ̃(t+s−u−v)[e−iϕ̃(t+s−u), ¨̃ϕ(t + s)] ¨̃ϕ(t)〉 = −2ieJ (−v)J̈ ′′(u)[J̈ (s − u − v) − J̈ (s − u)], (A12)

〈[eiϕ̃(t+s−u), ¨̃ϕ(t + s)]e−iϕ̃(t+s−u−v) ¨̃ϕ(t)〉 = 2ieJ (v)J̈ ′′(u)[J̈ (s − u) − J̈ (s − u − v)], (A13)
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〈[e−iϕ̃(t+s−u), ¨̃ϕ(t + s)]eiϕ̃(t+s−u−v) ¨̃ϕ(t)〉 = 2ieJ (v)J̈ ′′(u)[J̈ (s − u) − J̈ (s − u − v)], (A14)

〈[e−iϕ̃(t+s−u), ¨̃ϕ(t + s)][eiϕ̃(t−v), ¨̃ϕ(t)]〉 = −2ieJ (s−u+v)J̈ ′′(u)[J̈ (−v) − J̈ (v)], (A15)

〈[eiϕ̃(t+s−u), ¨̃ϕ(t + s)][e−iϕ̃(t−v), ¨̃ϕ(t)]〉 = −2ieJ (s−u+v)J̈ ′′(u)[J̈ (−v) − J̈ (v)], (A16)

where we have used the generalized Wick theorem for Gaussian processes [37] to obtain the right-hand sides.
To indicate how the evaluation proceeds, we give intermediate results for Eq. (A7). The Gaussian statistics implies

〈 ¨̃ϕ(t + s) e−iϕ̃(t−u−v) [eiϕ̃(t−u), ¨̃ϕ(t)]〉 = i〈[ϕ̃(t − u), ¨̃ϕ(t)]〉〈 ¨̃ϕ(t + s) e−iϕ̃(t−u−v) eiϕ̃(t−u)〉. (A17)

The two averages on the right-hand side of this relation can be related to the phase-phase correlation function (3.4) by means of

〈[ϕ̃(t), ¨̃ϕ(s)]〉 = J̈ (t − s) − J̈ (s − t) = 2iJ̈ ′′(t − s), (A18)

where J ′′(t) denotes the imaginary part of J (t), and

〈 ¨̃ϕ(t) e−iϕ̃(u) eiϕ̃(v)〉 = −ieJ (u−v)[J̈ (t − u) − J̈ (t − v)]. (A19)

These relations combine to give the result (A7).
Inserting the findings (A7)–(A16) into Eq. (A3), we obtain the current autocorrelation function in the form (3.7) given in the

main text.

APPENDIX B: DETERMINATION OF THE SPECTRAL FUNCTION S(ω)

The Fourier representation (4.13) of K(s) = −J̈ (s) implies

J̈ (s) − J̈ (s + v) = −
∫ ∞

−∞

dν

2π
SK (ν)e−iνs[1 − e−iνv] (B1)

and

2iJ̈ ′′(s) = J̈ (s) − J̈ (−s) = −
∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμs . (B2)

Inserting these representations into Eq. (4.5), we obtain

C0(s) = �
2C2

e2

∫ ∞

−∞

dω

2π
ω2SK (ω) e−iωs + C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv(α(v)eJ (v) − c.c.)

×
∫ ∞

−∞

dν

2π
SK (ν) e−iν(s+u)[1 − e−iνv]

∞∑
k=−∞

Jk(a)2(e
i
�

eVdcveik�v + c.c.)

+ C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv(α(v)eJ (v) − c.c.)

∫ ∞

−∞

dν

2π
SK (ν) e−iν(s−u)

× [1 − eiνv]
∞∑

k=−∞
Jk(a)2(e

i
�

eVdcv eik�v + c.c.) − C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv

×
∫ ∞

−∞

dν

2π
(1 − e−β�ν)SK (ν) e−iνvα(s − u + v) eJ (s−u+v)

∞∑
k=−∞

Jk(a)2(e
i
�

eVdc(s−u+v) eik�(s−u+v) + c.c.). (B3)

We now insert the Fourier representation (4.19) of α(t)eJ (t) into appropriate s-dependent terms of Eq. (B3) which then takes
the form

C0(s) = �
2C2

e2

∫ ∞

−∞

dω

2π
ω2 SK (ω) e−iωs + C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv (α(v)eJ (v) − c.c.)

×
∫ ∞

−∞

dν

2π
SK (ν) e−iν(s+u)[1 − e−iνv]

∞∑
k=−∞

Jk(a)2(e
i
�

eVdcveik�v + c.c.)

+ C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv (α(v)eJ (v) − c.c.)
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×
∫ ∞

−∞

dν

2π
SK (ν) e−iν(s−u)[1 − eiνv]

∞∑
k=−∞

Jk(a)2(e
i
�

eVdcv eik�v + c.c.)

− C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv

∫ ∞

−∞

dν

2π
(1 − e−β�ν)SK (ν) e−iνv

×
∫ ∞

−∞

dω

2π
F (ω)e−iω(s−u+v)

∞∑
k=−∞

Jk(a)2(e
i
�

eVdc(s−u+v) eik�(s−u+v) + c.c.). (B4)

From this result we can straightforwardly extract the spectral function S(ω) as

S(ω) = �
2C2

e2
ω2 SK (ω) + C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

×
∫ ∞

0
dv (α(v)eJ (v) − c.c.)SK (ω) e−iωu[1 − e−iωv]

∞∑
k=−∞

Jk(a)2(e
i
�

eVdcveik�v + c.c.)

+ C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv (α(v)eJ (v) − c.c.)

× SK (ω) eiωu[1 − eiωv]
∞∑

k=−∞
Jk(a)2(e

i
�

eVdcv eik�v + c.c.)

− C2

e2

∫ ∞

0
du

∫ ∞

−∞

dμ

2π
(1 − e−β�μ)SK (μ) e−iμu

∫ ∞

0
dv

∫ ∞

−∞

dν

2π
(1 − e−β�ν)SK (ν) e−iνveiω(u−v)

×
∞∑

k=−∞
Jk(a)2 [F (ω + eVdc/� + k�) + F (ω − eVdc/� − k�)]. (B5)

Using the symmetry (4.15) of SK (ω) and the symmetries α∗(t) = α(−t), J ∗(t) = J (−t) following from Eqs. (3.4) and (4.18),
one can show that the second and third terms of Eq. (B5) are complex conjugate and that the spectral function S(ω) is real.
Accordingly, the result (B5) may be written as the sum of three terms (4.23) given in the main text with noise components SN (ω),
ST (ω), and SNT (ω) specified in Eqs. (4.24)–(4.26).
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