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Thermopower signatures and spectroscopy of the canyon of conductance suppression
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Interference effects in quantum dots between different transport channels can lead to a strong suppression of
conductance, which cuts like a canyon through the common conductance plot [Phys. Rev. Lett. 104, 186804
(2010)]. In the present work we consider the thermoelectric transport properties of the canyon of conductance
suppression using the second-order von Neumann approach. We observe a characteristic signal for the zeros of
the thermopower. This demonstrates that thermoelectric measurements are an interesting complimentary tool to
study complex phenomena for transport through confined systems.
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I. INTRODUCTION

Thermoelectric effects in nanoscale structures have been
frequently studied with the aim to improve the efficiency of
devices [1,2]. In addition, it has been recently demonstrated
that thermopower measurements can serve as an interesting
tool to characterize complex scenarios due to coherences and
interactions in nanoscale systems [3–11]. Here the intrinsic
advantage of thermoelectric measurements is that they probe
asymmetries around the Fermi level and therefore can easily
provide information about excited states [12].

Close to a degeneracy of energy levels in a quantum dot,
interference and correlation effects can play an important role
for transport and lead to pronounced quantum mechanical
phenomena. For a spin-degenerate quantum dot (QD) the
conductance experiences an enhancement for low tempera-
tures due to the Kondo effect [13,14]. The thermopower of
the single and multiple quantum dots in the presence of the
Kondo effect was examined both theoretically [6,15–28] and
experimentally [29]. On the other hand, in the case of two
degenerate levels with equal spin, at degeneracy, conductance
can be suppressed due to electron correlation and interference
effects [30–35]. Such a spin-polarized two-level model was
widely used to interpret the phenomena of phase lapses of
transmission in an Aharonov-Bohm interferometer containing
a QD [34,36–41]. Additionally, due to their small size the quan-
tum dots also can exhibit Coulomb blockade effect [42,43].
The thermopower of the usual Coulomb blockade sequential
tunneling peaks and the cotunneling signal were addressed in
Refs. [44–52].

In Ref. [53] a system of two spin-polarized degenerate
levels was realized in an InSb nanowire QD, where different
g factors allow us to control level crossings for the same
spin by a magnetic field. The experiment showed, in good
agreement with supporting calculations, that the suppression
cuts as a canyon through the standard conductance plot for
different parities of the level couplings. A more detailed
analysis of the conductance spectrum can be found in Ref. [54].
A related two-level system was optimized for achieving high
thermoelectric performance in Ref. [55]. In this work we
further elaborate on thermoelectric properties and focus on
the fingerprint of conductance suppression in the thermopower
signal.

The paper is organized as follows. In Sec. II the model
for the spin-polarized two-level quantum dot is introduced.
Results for conductance and thermopower are presented in

Sec. III. Here we focus on the zeros of the thermopower,
which are relatively easy to extract experimentally. We start in
Sec. III A with a discussion of the noninteracting case, where
results are obtained using transmission formalism. Here we
show that up to five zeros in the thermopower can be found
if the gate voltage is varied. Furthermore, we establish the
role of temperature and level broadening for the existence of
multiple zeros. The impact of finite QD charging energy is
addressed in Sec. III B, where calculations are performed by
the second-order von Neumann (2vN) approach. This reveals
the full scenario for the canyon of conductance suppression.
Concluding remarks are given in Sec. IV.

II. MODEL

The two-level quantum dot system under investigation is
depicted in Fig. 1. Its energy levels E1, E1′ are assumed to
be individually tunable. In practice this is achieved by a gate
voltage vg = (E1 + E1′ − μL − μR)/2e (where e < 0 is the
electron charge and μL/R is the chemical potential in the left and
right lead, respectively); and by controlling the detuning �E =
E1 − E1′ , which, for example, can be physically realized by a
magnetic field if the two levels have different g factors [53].

The total Hamiltonian for the system consisting of the QD
coupled to two leads via tunneling barriers can be written as

H = HD + HLR + HT. (1)

FIG. 1. Schematic of the system: A quantum dot with single
particle levels E1 and E1′ coupled to the leads via tunneling barriers.
The leads have a temperature difference �T which can give rise to a
current flowing through the dot.
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The two-level spinless QD Hamiltonian HD, in a single particle
basis, is

HD = E1d
†
1d1 + E1′d

†
1′d1′ + Ud

†
1d1d

†
1′d1′ , (2)

where U is the charging energy due to Coulomb repulsion
between electrons in the dot. In our calculations and corre-
sponding plots we shift the zero value of the gate voltage to
the particle-hole symmetric point and use

Vg = |e|vg − U/2. (3)

The lead Hamiltonian HLR is

HLR =
∑
k,�

Ekc
†
k�ck�, (4)

where k denotes the lead state and � = L,R denotes the lead.
We assume that the leads are thermalized resulting in an
occupation function

f�(k) = 1

e(Ek−μ�)/kBT� + 1
, (5)

with different temperatures TL/R, for the left and right lead,
respectively. The tunneling between the dot and the lead is
governed by the Hamiltonian HT that reads

HT =
∑
k,�

(t�1d
†
1 + t�1′d

†
1′ )ck� + H.c., (6)

where, for simplicity, the tunneling amplitudes t�i are assumed
to be the same for all values of k and the coupling strengths
are defined as ��i(E) = 2π |t�i |2

∑
k δ(Ek − E) ≈ 2πνF |t�i |2.

Here we performed the k sum using the flat density of states
approximation, i.e.,

∑
k → νF

∫ D

−D
dE, with νF denoting the

density of states at the Fermi level and 2D denoting the
bandwidth of the leads. We also assume 2D to be the largest
energy scale in the problem.

In a nonequilibrium situation a current I through the dot can
be generated both by an applied bias V = (μL − μR)/e and
a temperature difference �T = TL − TR between the leads.
Close to equilibrium this establishes a linear relation between
�T and the bias V for which this current vanishes. This defines
the Seebeck coefficient (or thermopower) S via

S = − V

�T

∣∣∣∣
I=0

. (7)

This coefficient can be numerically obtained for a given
transport model. For the units of the thermopower we use
S0 = kB/|e| ≈ 86.2 μV/K and for the units of conductance
we use G0 = e2/h ≈ 38.7 μS. Lastly, in linear response to
applied bias V or temperature difference �T the Hamiltonian
Eq. (1) can be mapped to generalized Anderson model, which
was discussed in Ref. [34]. This mapping for model parameters
considered in this paper is discussed in Appendix B.

A. Noninteracting case U = 0

For the noninteracting case, when there is no charging
energy U = 0, the thermopower S and conductance G can
be calculated exactly from the electronic transmission T (E)

as [56–58]

G = e2L0, (8a)

S = − 1

|e|T
L1

L0
, (8b)

with

Lm = 1

h

∫ +∞

−∞
dE(E − μ)m

(
−∂f (E,μ,T )

∂E

)
T (E), (9)

where the limit of vanishing temperature difference �T → 0
and vanishing bias V → 0 between the leads was taken. The
transmission is calculated using the Caroli formula [59]

T (E) = Tr[�LGR(E)�RGA(E)], (10)

where GR/A(E) is the retarded/advanced Green’s function of
the quantum dot electrons and �� is the coupling strength given
by

�� =
(

��,11 ��,11′

��,1′1 ��,1′1′

)
, ��,ij = 2πνF t�i t

∗
�j . (11)

The retarded/advanced Green’s function can be obtained from

G = (
G−1

0 − 	
)−1

, (12a)

G−1
0 =

(
z − E1 0

0 z − E1′

)
, (12b)

by replacing z = E + iη for the retarded function GR and
z = E − iη for the advanced function GA, where η is positive
infinitesimal. Here 	 is the self-energy given by

	 = 	L + 	R, 	
R/A

� = ∓i
��

2
, (12c)

in the case of infinite bandwidth D → +∞. If the following
choice of tunneling amplitudes (corresponding to the canyon
of conductance suppression) is made:

tL1 = t, tR1 = t, tL1′ = −at, tR1′ = at, (13)

we get the coupling strength matrices

�L = �

(
1 −a

−a a2

)
, �R = �

(
1 +a

+a a2

)
, (14)

with � = 2πνF |t |2, and the transmission function takes a
simple and intuitive form as a sum of two Breit-Wigner
resonances [60–63]:

T (E) = �2

∣∣∣∣ 1

E − E1 + i�
− a2

E − E1′ + ia2�

∣∣∣∣
2

. (15)

Here the minus sign between both terms relates to the different
parities of the tunnel couplings for both levels as defined in
Eq. (13). For small � both terms cancel at E1′ = a2E1 resulting
in zero transmission. This provides a line of conductance
suppression in the (E1,E1′ ) plane.

In order to see whether the canyon of conductance suppres-
sion gives qualitatively different results for the thermopower,
we will make a comparison to the case when all the tunneling
amplitudes have the same sign:

tL1 = t, tR1 = t, tL1′ = +at, tR1′ = at. (16)
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This choice leads to such coupling strength matrices

�L/R = �

(
1 +a

+a a2

)
. (17)

The transmission function acquires a more complicated struc-
ture than a sum of two resonances [61–65]:

T (E) = �2

∣∣∣∣ a2(E − E1) + (E − E1′ )

(E − E1 + i�)(E − E1′ + ia2�) + a2�2

∣∣∣∣
2

.

(18)

For zero energy E = 0 the above transmission is zero at E1′ =
−a2E1.

B. Second-order von Neumann (2vN) approach

For the interacting case we use the second-order von
Neumann (2vN) approach [66], which contains both coherent
effects and cotunneling. However, the method fails around
and below the Kondo temperature where strong correlations
between the dot and the lead electrons appear. For our con-
sidered spinless system the Kondo temperature can be defined
through the mapping to the generalized Anderson model as
discussed by Kashcheyevs et al. [34,67]. Numerically, the
thermopower is found in an iterative procedure by varying the
voltage until the current vanishes. The governing equations of
the method and the solution procedure of those equations is
presented in Appendix A. In the numerical calculations we use
kBT ∼ � and a finite temperature difference �T = TL − TR

(about an order of magnitude lower) in order to achieve
convergent and reliable results. Furthermore, we define the
average temperature T = (TL + TR)/2 as a reference point.
All the calculations in Figs. 4–7 are done using the 2vN
approach. For the noninteracting case U = 0 the 2vN approach
reproduces the exact transmission formalism results [68,69].
We explicitly checked that for present calculations the values
kB�T = V = 0.1� give the linear conductance G and the
linear thermopower S on the scale of Figs. 4–7 within the
2vN approach. Additionally, the value of bandwidth D = 20�

is chosen large enough that the results in the considered
parameter regime do not depend on D [70].

III. RESULTS

Our main focus is on the zeros of the thermopower S, which
is a rather distinct spectroscopic feature, especially when
there is a sign change of S. To emphasize the parameter values
where the zeros appear we plot the square root of the absolute
value of the thermopower

√|S| and use a grayscale scheme
where the zero value corresponds to white.

A. Noninteracting case U = 0

We start by discussing the thermopower for the noninter-
acting U = 0 case [61–65]. If the temperature is the lowest
energy scale in the system, i.e., kBT 
 �, the zeros of the
thermopower can be obtained directly from the transmission
function by using the Mott approximation [71–74], which
yields the following expression:

SM

S0
≈ −π2

3
kBT

∂ ln T (E)

∂E

∣∣∣∣
E=0

. (19)

Then we see that in this limit the zeros of thermopower
are given by the zeros of the derivative of the transmission,
i.e., SM = 0, when ∂ET (E)|E=0 = 0. Using Eq. (15), this
condition defines the following curves in the (�,�E,Vg) space:

�E

2
= ±

√
V 2

g + (a�)2, (20a)

�E

2
= −1 − a2

1 + a2
Vg, (20b)

�E

2
(1 − a2) = −(1 + a2)Vg ± a

√
4V 2

g + [(1 − a2)�]2.

(20c)

From the above expressions we see that for given detuning
�E between the levels there can be up to five zeros, when
the gate voltage Vg is scanned. Three zeros appear once
the distinct peaks, related to the energies of the single
particle levels, become resolvable and this happens when the
separation between the levels is larger than the energy scale
determined by �. These zero’s curves are given by the two
solutions (20a), and by solution in (20c) with the minus sign
for Vg > 0 or the plus sign for Vg < 0. An additional two
zeros appear due to destructive interference, and for finite
detuning �E �= 0 this happens only when the couplings to
the levels are asymmetric, a �= 1. For symmetric couplings,
a = 1, destructive interference leads to zero thermopower for
�E = 0, but without the sign change, because it is a solution
of double multiplicity. Figure 2 depicts the zeros given by
analytical expressions Eqs. (20) by blue dashed curves for
different asymmetries a. These lines can be compared to the
thermopower

√|S/S0| (in grayscale) where the temperature is
comparable to the coupling �. We see that for larger values
of �E or Vg the zeros, corresponding to single particle levels,
for the finite temperature case match Eqs. (20), but there are
some discrepancies when �E and Vg do not exceed kBT .
For the interference features we see that they are sensitive to
finite temperature, i.e., depending on the coupling asymmetry
they appear for larger values of �E, Vg � kBT . Figure 2(e)
shows the calculated data for a fixed �E = −8.5�. For
a = 1/2 (dashed blue curve) we clearly see the five zeros
in thermopower for the finite temperature calculation.

For the case of the same sign tunneling amplitudes from
Eqs. (18) and (19) we find that there can be up to three zeros
in the thermopower for T → 0 for given �E:

�E

2
= ±Vg, (21a)

�E

2
= −1 + a2

1 − a2
Vg. (21b)

For low energies in the transmission Eq. (18) the destructive
interference corresponds to a zero given by Eq. (21b), i.e., the
gate voltage has to be within the window of energies given by
the detuning, i.e., |Vg| < |�E|. This is in contrast to the canyon
of conductance suppression situation, where the destructive
interference appears for |Vg| > |�E|. Additionally, the canyon
of conductance suppression exhibits a thermopower zero for
|Vg| < |�E| just because there is a minimum of conductance,
and there is no necessity for destructive interference for this
zero to appear. On the other hand, for the same sign amplitudes
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FIG. 2. The thermopower S (left column) and conductance G

(right column) as a function of the detuning �E and gate voltage
Vg in the noninteracting case U = 0. The asymmetry values are a =
1, 1/2, 1/4, 0 for (a) to (d), respectively. For the contour plots
the temperature is set to kBT = 0.5� and ± denotes the sign of
the thermopower for these contour plots. The dashed (blue) curves
depict zeros of thermopower, given by Eqs. (20), for the case of a
small temperature � � kBT → 0. (e) A cut of the contour plots at
the detuning �E = −8.5�.

the large values of the thermopower close to a zero give a hint
for the presence of the destructive interference (see Fig. 3) [61].

The role of finite temperature can be understood as follows.
In the different limit, when the tunneling coupling is the
smallest energy scale, i.e., � 
 |E − E1|, |E − E1′ |, we
obtain the following expression for transmission to lowest
order in �:

T (E) ≈ π�[δ(E − E1) + a2δ(E − E1′)], (22)
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FIG. 3. Same as Fig. 2 just for the case where the tunneling
amplitudes have the same sign. The dashed (blue) curves depict zeros
of thermopower, given by Eqs. (21).

which is valid for both Eqs. (15) and (18). Applying Eq. (8b)
yields the condition for zeros of thermopower

x cosh2 y + a2y cosh2 x = 0,

x = E1/(2kBT ), y = E1′/(2kBT ). (23)

The above Eq. (23) can have only up to three gate voltage
Vg solutions for given �E, i.e., the features arising due
to destructive interference for the canyon of conductance
suppression get washed out due to high temperature [as also
seen from Eq. (22)]. Additionally, for symmetric coupling
a = 1, Eq. (23) yields the following condition for resolution
of two levels:

er = r + 1

r − 1
, r = �E

2kBT
, (24)
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FIG. 4. The thermopower S and conductance G evolution as
a function of increasing charging energy for symmetric coupling
configuration a = 1. The charging energy values are U = 0, 5�, 10�

for (a) to (c), respectively. For the 2vN thermopower calculations we
have set kB�T = 0.1�, kBT = � and for conductance calculations
we have set kB�T = 0, kBT = �, V = 0.1�. Also a finite bandwidth
D = 20� is used. The dashed (green) lines denote the bare resonances
given by Eq. (25). The dashed (red) lines show a region of
detuning, where the thermopower is not defined because of the zero
conductance.

which has a solution |�Ec| ≈ 3.09kBT [75]. From Fig. 2(a) we
see that both the temperature T and the coupling � contribute to
the effective broadening and the two levels become resolvable
in the thermopower for �E ∼ 2� + 3kBT in the case of
the canyon of conductance suppression. For the same sign
tunneling amplitudes we obtain that the resolution of the
thermopower zeros around �E = 0 is determined just by the
temperature broadening and not by � [see Fig. 3(a)].

B. Finite U �= 0 case

In order to study the impact of the finite interaction U �= 0,
we first examine a case of equal coupling strengths for the
two levels, i.e., a = 1. The corresponding thermopower and
conductance are shown in Fig. 4. Changing the interaction
strength U causes a minor change in the conductance, while
the changes are more visible in the thermopower. We note
that for U �= 0 the 2vN method can give negative diagonal
reduced matrix elements �

[0]
bb defined in Eq. (A18) and also

the linear conductance G can become negative, which is
unphysical [53]. This is the reason that we do not address the
interference features in the thermopower appearing at large
gate voltages Vg .

The conductance plots in the right column of Fig. 4 show
that the conductance peaks for large |�E| appear at particular

resonances, where the quantum dot ground states differing by a
single charge cross in energy. These are the common sequential
tunneling peaks occurring at

Vg = ±U + |�E|
2

, (25)

which are shown by dashed green lines in Fig. 4. For zero
detuning �E these sequential tunneling lines are broken by a
canyon of conductance suppression.

Now we consider the thermopower in the left column
of Fig. 4. Around the sequential tunneling lines there is
an equal amount of electron and hole tunneling for the
given resonance and the average energy of tunneling particles
becomes zero [52]. This provides a zero in the thermopower.
As can be seen for large |�E| there is actually a zero close to
the dashed green lines, as expected. A further zero is occurring
in between (at Vg = 0 for the case a = 1 considered here),
where electron and hole tunneling for different resonances
compensate each other.

For the charging energy U � Uc = � + 3kBT , smaller
than the effective broadening of the levels, there is a region
of detuning, where the level crossing of empty with singly
occupied and singly with doubly occupied states in the
dot cannot be resolved [see Figs. 4(a) and 4(b)]. For the
corresponding thermopower, there is only one sign shift for
all gate voltages around zero detuning. For larger detunings
�E � Uc − U the levels can be resolved and again three sign
shifts appear in the thermopower: at the two-level crossings
and at the electron-hole symmetry point Vg = 0. When the
charging energy becomes larger than the effective broadening
there are always three sign shifts in the thermopower as can be
seen from Fig. 4(c).

The behavior of thermopower and conductance for different
U when the coupling is asymmetric a = 1/2 is shown in
Fig. 5. Here we focus on the thermopower zeros, which appear
for low values of gate voltage and detuning, i.e., we do not
address zeros, which appear due to interference (as discussed
for U = 0 above). The canyon of conductance suppression
is now tilted due to the asymmetric coupling as discussed
already in Ref. [54]. More interestingly, the appearance of the
thermopower zeros is changed quite drastically: for U � Uc =
5�, the curve of zero thermopower becomes strongly tilted
around �E = 0. It takes a characteristic S-shaped form around
its center denoted by a box in Figs. 5(a)–5(c). Increasing U

pushes two further thermopower zeros [their onset is denoted
by two asterisks in Figs. 5(b) and 5(c)] towards the central
S-shaped curve. Around critical Uc there is a qualitative change
[compare Figs. 5(c) and 5(d)], where the S-shaped curve
merges with the other ones. Finally, for large U [Fig. 5(e)] the
situation resembles the case for symmetric coupling, a = 1,
addressed in Fig. 4(c).

The situation when all the tunneling amplitudes have the
same sign is depicted in Fig. 6. For U > Uc we see that
the evolution of zeros is qualitatively the same as in Fig. 5.
However, for the canyon of conductance suppression the zero
lines have a jump around �E ≈ 0 [see Figs. 5(d) and 5(e)].
Additionally, for U < Uc the S-shaped zero thermopower
curve does not appear for the same sign configuration.

Lastly, in Fig. 7 we present the thermopower behavior
for a system, whose conductance was studied experimentally
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FIG. 5. The thermopower S and conductance G evolution as
a function of increasing charging energy for asymmetric cou-
pling configuration a = 1/2. The charging energy values are U =
0, 2.5�, 5�, 7.5�, 10� for (a) to (e), respectively. Other parameter
values are as in Fig. 4.

in Ref. [53]. These results may be relevant for future
thermoelectric experiments on similar type devices, and shows
the situation when the couplings have more general structure
than Eq. (13). Note that for given parameters in Fig. 7 we have
the level E1′ more strongly coupled than the level E1, which
is opposite from the cases studied in Figs. 2–5. This results in
a mirrored behavior of thermopower and conductance along
zero detuning �E = 0. Otherwise, the introduced additional
asymmetries in the couplings between the left and the right
lead does not alter the qualitative behavior of the asymmetric
coupling a = 1/2 thermopower seen in Fig. 5.

FIG. 6. The thermopower S and conductance G evolution as a
function of increasing charging energy for the same sign tunneling
amplitudes Eq. (16) and asymmetric coupling configuration a = 1/2.
The charging energy values are U = 0, 2.5�, 5�, 7.5�,10� for (a)
to (e), respectively. Other parameter values are as in Fig. 4. The
(red) horseshoe patches denote the region of parameters, where our
numerical procedure for solving the 2vN equations does not converge.

IV. CONCLUSIONS

The canyon of conductance suppression known from
Refs. [53,54] has been further investigated with thermopower
S acting as a probing tool. Zeros of the thermopower are a
telling spectroscopic feature, which for the system studied
in this paper yields information about the level coupling
asymmetry a (compare Fig. 4 vs Fig. 5) and charging
energy U compared to the effective broadening of the levels
given by ∼2� + 3kBT . Additionally, for the noninteracting
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FIG. 7. The thermopower S (first column) calculated for canyon
of conductance G suppression (second column) discussed in
Ref. [53]. The charging energy values are U = 2� and U = 5�

for (a) and (b), respectively. Note that here the parametrization
tL1 = −√

0.3t0, tR1 = √
0.1t0, tL1′ = t0, tR1′ = √

0.4t0, with t0 =√
�/(2πνF ), for tunneling amplitudes is used. Other parameter values

are as in Fig. 4.

case it was shown that up to five zeros can be observed
when scanning the gate voltage for given detuning. This
shows that the thermopower measurement could be useful
to resolve features appearing due to destructive interference
[see Fig. 2 and Eq. (20)]. Additionally, by comparing the
same sign tunneling amplitude thermopower [Eq. (13)] to
the canyon of conductance suppression thermopower it was
shown that the canyon of conductance suppression has a unique
signature around zero detuning �E = 0 (compare Fig. 5 vs
Fig. 6).
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APPENDIX A: SECOND-ORDER VON
NEUMANN (2VN) APPROACH

In the 2vN approach [66,76,77] we approximately solve the
equation

i�
∂

∂t
ρ = [H,ρ] (A1)

by considering the density matrix ρ elements, which connect
the states differing by up to two electron or hole excitations.
Such a treatment corresponds to the so-called resonant tunnel-
ing approximation in real-time diagrammatic approach [78],
and yields an exact current for noninteracting systems (U = 0
for our considered system) [69]. We note that the 2vN method
equations were originally derived in Ref. [66], and here
we present this derivation for convenience with a slightly
different notation. We write the governing equations in the
many-particle eigenbasis |a〉,|b〉, . . . of the dot Hamiltonian
HD (2). Expressed in this many-particle basis the tunneling

Hamiltonian HT (6) becomes

HT =
∑
ab,k�

(Tba,�|b〉〈a|ck� + H.c.), (A2)

Tba,� =
∑

i=1,1′
ti�〈b|d†

i |a〉. (A3)

Here we used the letter convention: if more than one state
enters an equation, then the position of the letter in the alphabet
follows the particle number (for example Nb = Na + 1,Nc =
Na + 2,Na′ = Na). In such a way the sum

∑
bc restricts to

those combinations, where Nc = Nb + 1. For our considered
system we have four many-particle eigenstates

|0〉, E0 = 0,

|1〉 = d
†
1 |0〉, E1 = −Vg + �E

2
− U

2
,

(A4)

|1′〉 = d
†
1′ |0〉, E1′ = −Vg − �E

2
− U

2
,

|2〉 = d
†
1′d

†
1 |0〉, E2 = −2Vg,

and such many-particle tunneling amplitudes

T � =

⎛
⎜⎝

0 T01,� T01′,� 0
T10,� 0 0 T12,�

T1′0,� 0 0 T1′2,�

0 T21,� T21′,� 0

⎞
⎟⎠

=

⎛
⎜⎝

0 t∗1� t∗1′� 0
t1� 0 0 t∗1′�
t1′� 0 0 −t∗1�

0 t1′� −t1� 0

⎞
⎟⎠. (A5)

The density matrix elements are defined as

ρ
[n]
ag,bg′ = 〈ag|ρ|bg′〉, (A6)

where |bg〉 = |b〉 ⊗ |g〉, with |b〉 denoting the eigenstate of
the dot Hamiltonian HD (2) and |g〉 denoting the eigenstate of
the lead Hamiltonian HLR (4). Here the label n provides the
number of electron or hole excitations needed to transform |g〉
into |g′〉. For example, we consider the matrix elements of the
type

ρ
[0]
bg,b′g = 〈bg|ρ|b′g〉,

ρ
[1]
bg−κ,ag = 〈bg − κ|ρ|ag〉,

(A7)
ρ

[2]
dg−κ−κ ′,bg = 〈dg − κ − κ ′|ρ|bg〉,

ρ
[2]
bg−κ+κ ′,b′g = 〈bg − κ + κ ′|ρ|b′g〉.

Here we have introduced the following notation:

κ ≡ k, �; (A8)

|bg + κ〉 = |b〉 ⊗ c†κ |g〉,
|bg − κ〉 = |b〉 ⊗ cκ |g〉,

(A9)
|dg − κ − κ ′〉 = |d〉 ⊗ cκ ′cκ |g〉,
|bg − κ + κ ′〉 = |b〉 ⊗ c

†
κ ′cκ |g〉.
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By neglecting all the density matrix elements with more than
two electron or hole excitation n > 2 from Eq. (A1) we obtain
the equations

i�
∂

∂t
ρ

[0]
bg,b′g = (Eb − Eb′ )ρ[0]

bg,b′g + Tba1,κ1ρ
[1]
a1g+κ1,b′g(−1)Na1

+ Tbc1,κ1ρ
[1]
c1g−κ1,b′g(−1)Nb

− ρ
[1]
bg,c1g−κ1

(−1)Nb′ Tc1b′,κ1

− ρ
[1]
bg,a1g+κ1

(−1)Na1 Ta1b′,κ1 , (A10)

i�
∂

∂t
ρ

[1]
cg−κ,bg = (Ec − Eκ − Eb)ρ[1]

cg−κ,bg

+ Tcb1,κ1ρ
[2]
b1g−κ+κ1,bg

(−1)Nb1

+ Tcd1,κ1ρ
[2]
d1g−κ−κ1,bg

(−1)Nc

− ρ
[2]
cg−κ,c1g−κ1

(−1)NbTc1b,κ1

− ρ
[2]
cg−κ,a1g+κ1

(−1)Na1 Ta1b,κ1 , (A11)

i�
∂

∂t
ρ

[2]
bg−κ+κ ′,b′g ≈ (Eb − Eκ + Eκ ′ − Eb′ )ρ[2]

bg−κ+κ ′,b′g

+ Tba1,κρ
[1]
a1g−κ+κ ′+κ,b′g(−1)Na1

+ Tbc1,κ ′ρ
[1]
c1g−κ+κ ′−κ ′,b′g(−1)Nb

− ρ
[1]
bg−κ+κ ′,c1g−κ (−1)Nb′ Tc1b′,κ

− ρ
[1]
bg−κ+κ ′,a1g+κ ′(−1)Na1 Ta1b′,κ ′ , (A12)

i�
∂

∂t
ρ

[2]
dg−κ−κ ′,bg ≈ (Ed − Eκ − Eκ ′ − Eb)ρ[2]

dg−κ−κ ′,bg

+ Tdc1,κρ
[1]
c1g−κ−κ ′+κ,bg(−1)Nc1

+ Tdc1,κ ′ρ
[1]
c1g−κ−κ ′+κ ′,bg(−1)Nc1

− ρ
[1]
dg−κ−κ ′,c1g−κ (−1)NbTc1b,κ

− ρ
[1]
dg−κ−κ ′,c1g−κ ′ (−1)NbTc1b,κ ′ . (A13)

Note that all indices with subscript 1 like a1, c1, κ1 are summed
over. Additionally, phase factors like (−1)Nb appear due to
order exchange of the lead operators with the dot operators,
i.e., cκ (|b〉 ⊗ |g〉) = (−1)Nb |b〉 ⊗ cκ |g〉.

Summing Eqs. (A10) and (A11) over all the lead states |g〉
we get

i�
∂

∂t
�

[0]
bb′ = (Eb − Eb′ )�[0]

bb′ + Tba1,κ1�
[1]
a1b′,κ1

+ Tbc1,κ1�
[1]
c1b′,κ1

−�
[1]
bc1,κ1

Tc1b′,κ1 − �
[1]
ba1,κ1

Ta1b′,κ1 , (A14)

i�
∂

∂t
�

[1]
cb,κ ≈ (Ec − Eκ − Eb)�[1]

cb,κ

+ Tcb1,κ�
[0]
b1b

fκ − �[0]
cc1

Tc1b,κf−κ ,

+ Tcb1,κ1�
[2]
b1b,−κ+κ1

+ Tcd1,κ1�
[2]
d1b,−κ−κ1

+�
[2]
cc1,−κ+κ1

Tc1b,κ1 + �
[2]
ca1,−κ−κ1

Ta1b,κ1 , (A15)

i�
∂

∂t
�

[2]
bb′,−κ+κ ′ ≈ (Eb − Eκ + Eκ ′ − Eb′ )�[2]

bb′,−κ+κ ′

− Tba1,κ�
[1]
a1b′,κ ′fκ + Tbc1,κ ′�

[1]
c1b′,κf−κ ′

−�
[1]
bc1,κ ′Tc1b′,κf−κ + �

[1]
ba1,κ

Ta1b′,κ ′fκ ′ ,

(A16)

i�
∂

∂t
�

[2]
db,−κ−κ ′ ≈ (Ed − Eκ − Eκ ′ − Eb)�[2]

db,−κ−κ ′

− Tdc1,κ�
[1]
c1b,κ ′fκ + Tdc1,κ ′�

[1]
c1b,κfκ ′

−�
[1]
dc1,κ ′Tc1b,κf−κ + �

[1]
dc1,κ

Tc1b,κ ′f−κ ′ .

(A17)

where we introduced the following notation:

�
[0]
bb′ =

∑
g

ρ
[0]
bg,b′g, �

[1]
cb,κ =

∑
g

ρ
[1]
cg−κ,bg(−1)Nb , �

[1]
bc,κ = [

�
[1]
cb,κ

]∗
,

�
[2]
ca,−κ−κ ′ = −

∑
g

ρ
[2]
cg−κ−κ ′,ag, �

[2]
bb′,−κ+κ ′ = +

∑
g

(1 − δκκ ′ )ρ[2]
bg−κ+κ ′,b′g,

fκ ≡ fk� = (exp[(Ek − μ�)/kBT�] + 1)−1, f−κ ≡ 1 − fk�, (A18)

and when going from Eq. (A11) to Eq. (A15) we have used

ρ
[2]
b1g−κ+κ1,bg

= ρ
[0]
b1g−κ+κ,bg + (1 − δκκ1 )ρ[2]

b1g−κ+κ1,bg
, ρ

[2]
cg−κ,c1g−κ1

= ρ
[0]
cg−κ,c1g−κ + (1 − δκκ1 )ρ[2]

cg−κ,c1g−κ1
. (A19)

Here we have also assumed that the electrons in the leads are thermally distributed according to the Fermi-Dirac distribution
f and that this distribution is not affected by the coupling to the quantum dots. This assumption leads to the following relations
for Eq. (A11): ∑

g

ρ
[0]
b1g−κ+κ,bg ≈ fκ�

[0]
b1b

,
∑

g

ρ
[0]
cg−κ,c1g−κ ≈ f−κ�

[0]
cc1

, (A20)

for Eq. (A12) ∑
g

ρ
[1]
a1g−κ+κ ′+κ,b′g(−1)Na1 ≈ −fκ�

[1]
a1b′,κ ′ ,

∑
g

ρ
[1]
c1g−κ+κ ′−κ ′,b′g(−1)Nb ≈ f−κ ′�

[1]
c1b′,κ ,

(A21)∑
g

ρ
[1]
bg−κ+κ ′,c1g−κ (−1)Nb′ ≈ f−κ�

[1]
bc1,κ ′ ,

∑
g

ρ
[1]
bg−κ+κ ′,a1g+κ ′(−1)Na1 ≈ −fκ ′�

[1]
ba1,κ

,
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and for Eq. (A13) ∑
g

ρ
[1]
c1g−κ−κ ′+κ,bg(−1)Nc1 ≈ −�

[1]
c1b,κ ′fκ,

∑
g

ρ
[1]
c1g−κ−κ ′+κ ′,bg(−1)Nc1 ≈ �

[1]
c1b,κfκ ′ ,

(A22)∑
g

ρ
[1]
dg−κ−κ ′,c1g−κ (−1)Nb ≈ �

[1]
dc1,κ ′f−κ ,

∑
g

ρ
[1]
dg−κ−κ ′,c1g−κ ′(−1)Nb ≈ −�

[1]
dc1,κ

f−κ ′ .

For the stationary state we assume the conditions

i�
∂

∂t
�

[0]
bb′ = 0, i�

∂

∂t
�

[1]
cb,κ = 0, i�

∂

∂t
�

[2]
bb′,−κ+κ ′ = 0, i�

∂

∂t
�

[2]
db,−κ−κ ′ = 0, (A23)

which allow us to write �[2] in terms of �[1] as

�
[2]
bb′,−κ+κ ′ = −Tba1,κ�

[1]
a1b′,κ ′fκ + Tbc1,κ ′�

[1]
c1b′,κf−κ ′ − �

[1]
bc1,κ ′Tc1b′,κf−κ + �

[1]
ba1,κ

Ta1b′,κ ′fκ ′

Eκ − Eκ ′ − Eb + Eb′ + iη
,

�
[2]
db,−κ−κ ′ = −Tdc1,κ�

[1]
c1b,κ ′fκ + Tdc1,κ ′�

[1]
c1b,κfκ ′ − �

[1]
dc1,κ ′Tc1b,κf−κ + �

[1]
dc1,κ

Tc1b,κ ′f−κ ′

Eκ + Eκ ′ − Ed + Eb + iη
. (A24)

Here we have added a positive infinitesimal η = +0 to ensure a proper decay of initial conditions. After inserting the above
expressions into Eq. (A15) we obtain the integral equations of the 2vN method for the stationary state

0 = −(Eκ − Ec + Eb + iη)�[1]
cb,κ + Tcb1,κfκ�

[0]
b1b

− �[0]
cc1

f−κTc1b,κ

+ Tcb1,κ1

[
Tb1c1,κ1f−κ1�

[1]
c1b,κ + �

[1]
b1a1,κ

fκ1Ta1b,κ1−Tb1a1,κfκ�
[1]
a1b,κ1

− �
[1]
b1c1,κ1

f−κTc1b,κ

]
Eκ − Eκ1 − Eb1 + Eb + iη

+ Tcd1,κ1

[
Td1c1,κ1fκ1�

[1]
c1b,κ + �

[1]
d1c1,κ

f−κ1Tc1b,κ1−Td1c1,κfκ�
[1]
c1b,κ1

− �
[1]
d1c1,κ1

f−κTc1b,κ

]
Eκ + Eκ1 − Ed1 + Eb + iη

+
[
Tcd1,κ1f−κ1�

[1]
d1c1,κ

+ �
[1]
cb1,κ

fκ1Tb1c1,κ1−Tcb1,κfκ�
[1]
b1c1,κ1

− �
[1]
cd1,κ1

f−κTd1c1,κ

]
Tc1b,κ1

Eκ − Eκ1 − Ec + Ec1 + iη

+
[
Tcb1,κ1fκ1�

[1]
b1a1,κ

+ �
[1]
cb1,κ

f−κ1Tb1a1,κ1−Tcb1,κfκ�
[1]
b1a1,κ1

− �
[1]
cb1,κ1

f−κTb1a1,κ

]
Ta1b,κ1

Eκ + Eκ1 − Ec + Ea1 + iη
, (A25a)

0 = (Eb − Eb′ )�[0]
bb′ + Tba1,κ1�

[1]
a1b′,κ1

+ Tbc1,κ1�
[1]
c1b′,κ1

− �
[1]
bc1,κ1

Tc1b′,κ1 − �
[1]
ba1,κ1

Ta1b′,κ1 . (A25b)

Additionally, we impose the normalization condition for the diagonal reduced-density matrix elements:∑
b

�
[0]
bb = 1. (A26)

The integral equation (A25a) under interest has the structure

�[1]
κ = Fκ +

∑
κ1

Kκ,κ1�
[1]
κ1

. (A27)

It is solved iteratively on an equidistant energy grid Ek by having N = 213 discretization points for our considered calculations.
The zeroth iteration of �

[1]
κ,0 = Fκ is determined by making a local approximation, i.e., terms of the form �

[1]
ba,κ1

which have

integrated momentum label κ1 are neglected. Then the first correction is determined as δ�
[1]
κ,1 = ∑

κ1
Kκ,κ1Fκ1 . The higher

order corrections are given by δ�[1]
κ,n = ∑

κ1
Kκ,κ1δ�

[1]
κ ′,n−1 and the solution is expressed as �[1]

κ = �
[1]
κ,0 + ∑

n δ�
[1]
κ ′,n. We make

iterations up to n = 6, which yields good convergence for most parameter values. In these iterations we need to evaluate a lot
Hilbert transform of the form

H
(
�[1]

κ

) = 1

π

∫ D

−D

�
[1]
κ ′ dEκ ′

Eκ − Eκ ′ ± iη
= 1

π
P

∫ D

−D

�
[1]
κ ′ dEκ ′

Eκ − Eκ ′
∓ i�[1]

κ θ (D − |Eκ |). (A28)

The principal value integrals are efficiently evaluated on equidistant grid with N points using fast Fourier transform, which has
complexity O(N log N ) [79,80].

Finally, we are interested in the current going from the lead � into the quantum dots, which is given by

I�(t) = 2e

�

∑
k

Im
[
Tbc,k��

[1]
cb,k�

]
, (A29)

and which shows that �
[1]
cb,k� are the energy resolved current amplitudes.
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APPENDIX B: MAPPING TO GENERALIZED
ANDERSON MODEL

In linear response to applied bias V or temperature
difference �T the Hamiltonian Eq. (1) can be mapped to
generalized Anderson model by mixing the left lead electrons
with the right lead electrons, and the dot orbital 1 with the
orbital 1′. The generalized Anderson model has the form [34]

H =
∑
k,σ

Ekc
†
kσ ckσ +

∑
k,σ

Vσ

(
c
†
kσ dσ + H.c.

) + Un↑n↓

+
∑

σ

(
ε − σ

h

2
cos θ

)
nσ − (d†

↑d↓ + d
†
↓d↑)

h

2
sin θ,

(B1)

where nσ = c
†
kσ ckσ ,σ ∈ {↑,↓} represents a pseudospin, and

h is an effective magnetic field. The Hamiltonian (1) is
expressed in the form of (B1) by performing a singular value
decomposition (SVD) on the tunneling Hamiltonian (6) as

HT =
∑

k

t[c†Lk c
†
Rk

]A
[

d1

d1′

]
+ H.c., (B2)

A =
(

tL1 tL1′

tR1 tR1′

)
= R

†
l

(
V↑ 0
0 V↓

)
Rd. (B3)

Using the rotations Rl and Rd the pseudospin operators are
expressed in terms of original basis operators as[

c↑k

c↓k

]
= Rl

[
cLk

cRk

]
,

[
d↑
d↓

]
= Rd

[
d1

d1′

]
. (B4)

For the tunneling amplitudes of the form Eq. (13) we obtain

A− = t

(
1 −a

1 a

)
= R

†
l t

(√
2 0

0
√

2a

)
Rd,−,

Rl = 1√
2

(+1 +1

−1 +1

)
, Rd,− =

(
1 0

0 1

)
, (B5)

θ− = π,

which corresponds to parallel field configuration. For the same
sign tunneling amplitudes we obtain

A− = t

(
1 −a

1 a

)
= R

†
l t

(√
2(1 + a2) 0

0 0

)
Rd,+,

Rd,+ = 1√
1 + a2

(+1 +a

−a +1

)
, θ+ = − arctan

(
2a

1 − a2

)
.

(B6)

Lastly, for tunneling amplitudes examined in Fig. 7 we get

A = t0

(
−√

0.3 1√
0.1

√
0.4

)
≈ R

†
l t0

(
1.23 0

0 0.54

)
Rd,

Rl ≈
(

0.91 0.41

−0.41 0.91

)
, Rd ≈

(−0.30 0.95

0.95 0.30

)
, (B7)

θ ≈ 0.61.

In all above cases we have ε = −Vg,h = �E/2.
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