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Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly
distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested
in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device
variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under
the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored
or poorly understood. In this work, we report a general formalism of Green’s function based nonequilibrium
effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized
coherent potential approximation for the Keldysh nonequilibrium Green’s function, we developed a generalized
nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green’s-function correlator.
We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any
two-Green’s-function correlator and find they can be solved by a set of linear equations. As an important
result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and
averaged shot noise, which involve different two-Green’s-function correlators, can all be derived and computed
in an effective and unified way. To test the general applicability of this method, we applied it to compute the
transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the
exact results and other previously proposed approximations. Our results show very good agreement with the
exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density
functional theory to realize first-principles quantum transport simulation, we have also derived a general form of
conditionally averaged nonequilibrium Green’s function for multicomponent disorders.

DOI: 10.1103/PhysRevB.94.045424

I. INTRODUCTION

Due to experimental imperfections or doping for special
functionality, disordered impurities/defects are inevitable in
realistic nanoelectronic devices. The disorders can signifi-
cantly influence or even completely determine the quantum
transport properties of the device [1–3] and give rise to
large device-to-device variability on the nanometer scale [4,5].
Thus, thorough understanding of the effects of disorders
is critically important for both modern device technology
and fundamental transport physics. However, quantum trans-
port simulation of disordered nanoelectronics faces several
difficulties: (i) since electron transport in current flow is
an intrinsically nonequilibrium process, the nonequilibrium
quantum statistics must be correctly treated in the simulation;
(ii) the strong coupling of transport properties to the atomic,
chemical, and materials details at the nanoscale requires
accurate atomic-level simulation without using any empirical
parameter; (iii) the absence of translational invariance in
disordered devices renders many well established state-of-
the-art computational methods useless; (iv) the theoretical
transport property, such as current, must be averaged over
a large ensemble of disorder configurations to be physically
meaningful; (v) for the nanoscale device, the device-to-device
variability induced by disorders is a general and important
phenomenon and it is thus important to calculate the statistical
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fluctuation of the transport property. Since these difficulties
involve different areas of physics, one must combine different
theoretical algorithms together to realize the simulation of
disordered nanoelectronics. As far as we know, the above
five difficulties have only been partially solved; no general
algorithm has been reported to calculate disordered nano-
electronics. To solve the first two difficulties, the present
workhorse for simulation of nanoelectronics combines the
nonequilibrium (NE) Green’s function (GF) method [6–8]
with density functional theory (DFT) [9–11] to account for
nonequilibrium statistics from first principles. (Implementa-
tion examples are Refs. [12–21].) However, the applicability
of the NEGF-DFT method is limited to perfect or ordered
nanoelectronics. The remaining three difficulties are basically
related to how to do disorder averaging to obtain averaged
nonequilibrium electronic structure, transport property, and
its fluctuation. Recently, considerable efforts have been de-
voted to addressing the disorder averaging problem in the
NEGF framework and incorporating with the DFT method to
simulate disordered nanoelectronics. In Ref. [22], one of the
authors (Y.K.) and his coworkers have applied a conventional
coherent potential approximation (CPA) [23,24] to construct
a translational invariant effective medium to compute the
averaged retarded/advanced GF GR/A and then developed
a nonequilibrium vertex correction (NVC) method to ob-
tain the averaged NEGF 〈G<〉 = 〈GR�<GA〉 = 〈GR〉(�< +
�NV C)〈GA〉 (where �< is the lesser self-energy of electrodes
and �NV C is the NVC). In this method, the NVC accounts for
not only effects of the multiple impurity scattering, but also the
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nonequilibrium quantum statistics, for which it is named. In
combination with the NEGF-DFT quantum transport method,
the CPA-NVC has seen important applications in simulating
nanoelectronics with atomic disorders [22,25–34]. Besides, an
alternative approach called nonequilibrium CPA (NECPA) has
been reported independently in Refs. [35,36]. In this method,
the CPA is generalized to treat the configurational average
of the contour-ordered Green’s function to obtain the 〈G<〉
by introducing a nonequilibrium coherent potential. Although
NECPA provides a different derivation of 〈G<〉, Ref. [36]
proves that the nonequilibrium coherent potential in NECPA
and the NVC are the same quantity within the single-site
approximation in the CPA. Because the CPA-NVC or NECPA
developed so far can only calculate the average of a single
NEGF, namely 〈G<〉, the present available methods only allow
the calculation of nonequilibrium electronic structure and
averaged electron current. However, other properties require
the average of the two-NEGF correlator; for example, the
disorder-induced current fluctuation and averaged quantum
shot noise contain 〈G<CG<〉 as we will show in Sec. II, rep-
resenting a great challenge for the present available methods.
By rewriting 〈G<CG<〉 = 〈GR�<GACGR�<GA〉, several
different approximations have been proposed to compute the
average of this quantity which involves the complex four-
Green’s-function correlator. For example, Ref. [37] reported a
perturbation expansion method and Ref. [5] reported a low
concentration limit approximation and a Green’s function
based diagrammatic technique. However, these approximate
methods [5,37] are not generally applicable. In particular,
the perturbation expansion [37] and low concentration limit
approximation [5] may only be valid for the case of low
concentration and weak scattering, and the diagrammatic
technique as reported [5] can give large errors and even
generate unphysical results. Therefore, we can see there is
no general algorithm that allows the computation of both the
〈G<〉 and 〈G<CG<〉, and the simulation of disorder effects in
nanoelectronics still requires further significant development
in quantum transport theory.

In this paper, we report a generalized CPA-NVC algorithm
to calculate the 〈G<〉 and 〈G<CG<〉 in a unified and
effective way, so that various transport properties of disordered
nanoelectronics can be simulated. In this method, based on a
generalized CPA for the Keldysh GF, the generalized NVC
algorithm is developed to calculate the average of any two-
Green’s-function correlator, such as 〈GRCGA〉, 〈G<CG<〉,
and other pairwise combinations of various Green’s functions.
We obtained nine generalized NVCs, which can be solved by a
set of linear equations, to account for the effects of multiple im-
purity scattering under the nonequilibrium condition. With the
nine generalized NVCs, the disorder-averaged nonequilibrium
density matrix and various important transport properties, in-
cluding averaged current, disorder-induced current fluctuation,
and the averaged shot noise, can all be effectively computed.
To test the general applicability of this method, we applied it to
calculate the transmission coefficient and its fluctuation with a
tight-binding model on a square lattice, and compared with the
exact results and other previously proposed approximations
[5]. Our calculations agree very well with the exact results
for a wide range of disorder concentrations and energies,
while other methods do not. In addition, to combine with

the DFT, a general form of the conditionally averaged NEGF
〈G<,Q〉 is derived for multicomponent disorders (beyond the
binary case reported in the previous CPA-NVC paper [22]) to
do first-principles simulation of disordered nanoelectronics.
The generalized CPA-NVC provides a unified, effective, and
general method for simulation of electron transport properties
of disordered nanoelectronics.

The rest of the paper is organized as follows. In Sec. II, we
review the GF-based quantum transport method and we show
that various disorder-averaged quantum transport properties
can all be expressed in terms of two-GF correlators for
disordered nanoelectronics. Section III reviews the various
types of NEGFs and their relations, and the associated
perturbation expansion technique. Section IV describes a
generalized coherent medium theory to compute the average
of the Keldysh GF. Section V formulates the generalized NVC
method to calculate any two-GF correlator. In Sec. VI, we
applied the generalized CPA-NVC method to calculate the
averaged transmission and its fluctuation using a tight-binding
model and compared our results with the exact calculations and
other approximations. Section VII derives the general form of
conditionally averaged NEGFs for multicomponent disorders
to combine with DFT to realize first-principles simulations.
Finally, we conclude in Sec. VIII and provide additional details
in Appendices A, B, C, D, and E.

II. QUANTUM TRANSPORT PROPERTIES OF A
DISORDERED DEVICE

In this section, we briefly review the NEGF-based quantum
transport theory. We only consider a two-probe device as
shown in Fig. 1(a).

The central scattering region containing the disordered
impurities is sandwiched by two semi-infinite ideal leads.
Under a finite bias, electrons flow from one lead to the other
with scattering events happening on the disordered impurities.
The electron-photon, electron-phonon interactions are not
considered in this paper, but in principle, they can be taken into
account in the NEGF formalism [8,38]. Since the two-probe
device shown in Fig. 1(a) is infinite and nonperiodic in the

FIG. 1. Physical model for a two-probe nanoelectronic device
with disorders. (a) The central device region with disorders is
sandwiched by two semi-infinite leads. (b) The effects of the leads are
turned into the self-energies so that the central device region becomes
calculable.
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transport direction, it cannot be calculated directly. We usually
turn the effects of the two semi-infinite leads into the lead
self-energies �ld , as shown in Fig. 1(b), so that the central
device region becomes calculable.

For simplicity, we here only give some important results
for quantum transport properties within the NEGF theory, and
more details can be found in the related literature [7,39]. The
retarded GF, GR , is directly associated with the Hamiltonian
of the central device region H through

GR = [
E − H − �R

ld

]−1
, (1)

where �R
ld = �R

L + �R
R is the retarded self-energy due to the

left and right leads. The advanced GF and self-energy are
conjugate with the retarded ones, namely GA = [GR]† and
�A

ld = [�R
ld ]†. Since we assume the leads will not be affected

by the scattering region, �ld is a constant, independent of the
disorder in the central device region. For the device shown
in Fig. 1, the averaged nonequilibrium electron density of the
central region is given by

〈ρ(r)〉 = −i

∫
dE

2π
〈G<(r,r′; E)〉r′=r, (2)

where 〈G<〉 is the averaged lesser Green’s function that can
be calculated by the Keldysh formula

〈G<〉 = 〈GR�<
ldG

A〉. (3)

Here, �<
ld is the lesser self-energy of the leads. It should be

mentioned that we have dropped the boundary term in Eq. (3),
which accounts for the contribution of bound states [40] and
can be generally neglected for devices in the steady state that
we are focusing on here [7]. Since the leads are in equilibrium
states, we can get

�<
ld = i[fL(E)�L + fR(E)�R], (4)

where fL/R(E) are the Fermi-Dirac distribution of the left
and right leads. �L/R in Eq. (4) are called linewidth functions
defined as �L/R ≡ i[�R

L/R − �A
L/R], describing the coupling

between the scattering region and the leads. If we assume
fL(E) = 1 and fR(E) = 0 at nonequilibrium, then Eq. (4) is
reduced to

�<
ld (E) = i�L(E), (5)

where �L(E) is constant, independently of the disordered
central region. From the Landauer-Büttiker formula [7], the
averaged current through the device can be written as

〈I 〉 =
∫

dE

2π
〈T (E)〉[fL(E) − fR(E)], (6)

where 〈T (E)〉 is the averaged transmission coefficient

〈T (E)〉 = Tr〈GR�LGA�R〉. (7)

The current fluctuation δI under low bias can be approximated
by [5]

δI ≈
∫

dE

2π
δT (E)[fL(E) − fR(E)], (8)

where the transmission fluctuation is defined as δT =√
〈T 2〉 − 〈T 〉2, which requires the average of T 2. By writing

〈T 2〉 explicitly, we have

〈T 2〉 = 〈Tr[GR�LGA�R]Tr[GR�LGA�R]〉
= −〈Tr[G<�R]Tr[G<�R]〉, (9)

where we have used Eqs. (3) and (5). This equation requires
us to average a product of two traces, which is inconvenient
in calculation. To go further, we make a decomposition[40]
�R = ∑

i |Wi〉〈Wi |, where |Wi〉 is the normalized eigenvector
of �R . By putting this decomposed �R into Eq. (9) and using
the cyclic invariance property of the trace, we obtain

〈T 2〉 = −
∑

i

∑
j

Tr〈G<SijG
<S

†
ij 〉, (10)

where Sij ≡ |Wi〉〈Wj | is independent of disorders. Addition-
ally, the quantum shot noise [41,42] given as

〈S〉 =
∫

dE

π
Tr〈T̂ 〉[fL(1 − fL) + fR(1 − fR)]

+
∫

dE

π
Tr[〈T̂ 〉 − 〈T̂ 2〉](fL − fR)2 (11)

where T̂ ≡ GR�LGA�R called transmission operator, also
involves the product of two lesser GFs.

At this point, we have seen that many physical quantities
in electron transport, including the averaged nonequilibrium
electron density, averaged current, current fluctuation, and shot
noise, can all be expressed in terms of two-GF correlators,
such as Eqs. (3), (7), and (10). In the following sections, we
will discuss how to calculate the average of these two-GF
correlators to realize the nonequilibrium transport simulation
of disordered devices.

III. THE NONEQUILIBRIUM GREEN’S FUNCTION
THEORY

We have introduced several kinds of GFs to express
the quantum transport properties of nanoelectronics. In this
section, we will briefly introduce the relations between various
GFs and the different quantity representations in the NEGF
theory and discuss the associated perturbation expansion
technique.

A. Quantity representation in NEGF theory

The central quantity in the NEGF theory is the contour-
ordered GF which is defined as [8]

G(r,t ; r′,t ′) ≡ −i〈�0|TC[ψH (r,t)ψ†
H (r′,t ′)]|�0〉, (12)

where ψH is the field operator defined in the Heisenberg
picture, and ψ

†
H is its conjugate. |�0〉 refers to the normalized

ground state of the system. TC is the contour-ordering operator
that arranges the time-dependent operators according to their
order on the time contour, which starts from remote past, passes
through t and t ′, and finally returns to the remote past again, as
shown in Fig. 2(a). The reason why the contour looks this way
is because we are considering the nonequilibrium process, in
which we cannot predict the system when t → +∞.

The same as the contour-ordered GF, in the NEGF theory,
many other physical quantities, such as the Hamiltonian H ,
self-energy �, potential V , and T matrix T introduced in next
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FIG. 2. (a) The time contour starts from −∞, passes through t

and t ′, and finally returns to −∞. (b) Four possible combinations of
t and t ′ on the time contour.

section, denoted as Q, can be defined on the time contour. For
these contour-ordered quantities, the two time labels can lie
on either of the two branches C1 and C2 on the contour as
shown in Fig. 2(b). As a result, each contour-ordered quantity
contains four different possibilities given as follows:

Q(t,t ′) =

⎧⎪⎨
⎪⎩

Qt (t,t ′) t ∈ C1,t
′ ∈ C1,

Q<(t,t ′) t ∈ C1,t
′ ∈ C2,

Q>(t,t ′) t ∈ C2,t
′ ∈ C1,

Qt̄ (t,t ′) t ∈ C2,t
′ ∈ C2,

(13)

which are called time-ordered, lesser, greater, and anti-time-
ordered real-time quantities, respectively. One can check that
these four real-time quantities are not linearly independent
since they satisfy Qt + Qt̄ = Q< + Q> [38]. Conventionally,
one can define another three real-time quantities [43]:

QR = Qt − Q< = Q> − Qt̄, (14)

QA = Qt − Q> = Q< − Qt̄, (15)

QK = Qt + Qt̄ = Q> + Q<. (16)

These three terms are called retarded, advanced, and Keldysh
quantities and have the relations QR = [QA]† and QK =
−[QK ]†. If Q is Hermitian, then QK = 0 and QR = QA.

With the help of these real-time quantities, the contour-
ordered quantity can be alternatively represented by using
a 2 × 2 real-time matrix defined in the following form, as
suggested by Craig [44]:

Q =
(

Qt −Q<

Q> −Qt̄

)
, (17)

which contains the same amount of information as the
time-contour representation. Since the four elements in the
above matrix are not linearly independent, to eliminate this
redundance, one can apply the Keldysh linear transformation
Q′ = R−1QR to the Craig matrix, where R ≡ 1√

2
( 1 1

−1 1) [6].
After the transformation, we get the Keldysh 2 × 2 matrix [6]

Q′ =
(

QA 0

QK QR

)
, (18)

where the relations in Eqs. (14), (15), and (16) are used. Note
that the Keldysh matrix features a lower triangular matrix;
the matrix addition, multiplication, and inverse operations on
Keldysh matrices do not change the mathematical structure.
Moreover, the zero element in Eq. (18) can greatly simplify the
matrix operations. For these reasons, it is convenient to work in
the Keldysh representation, and then make the transformation
to the Craig matrix to obtain all the real-time GFs in Eq. (17).

As shown in Appendix A, one can assert the equivalence of
using different representations of contour-ordered quantity in
applications, including Craig/Keldysh real-time matrix and
time-contour representations.

B. Perturbation expansion of the Green’s function

The most appreciated feature of the NEGF theory is
its perturbation expansion [8] technique for treating many
different kinds of complex interactions, such as interaction
with electrodes, random impurity scattering, and electron-
phonon/photon/electron interactions. In particular, an un-
known GF of a system can be expanded to an infinite series
with definite calculable quantities. In the presence of some
complex interaction, one divides the system Hamiltonian H

into two parts

H = H0 + �, (19)

where H0 refers to an unperturbed Hamiltonian of which the
GF can be calculated exactly, and � is the self-energy due to
the complex interaction in the system. A very important result
by using the perturbation expansion is that

G = G0 + G0�G0 + G0�G0�G0 + · · · , (20)

where the GF of the realistic system, G, is expanded as an
infinite series in terms of G0 (the GF of the unperturbed
Hamiltonian H0) and �. Equation (20) can be rewritten in
a more compact form, namely the Dyson equation

G = G0 + G0�G = G0 + G�G0, (21)

which is satisfied by many GFs, including the re-
tarded/advanced GFs and different representations of the
contour-ordered GF [6,8,44]. By replacing quantities with the
2 × 2 real-time matrices, the relations between various real-
time GFs in the presence of interaction � can be derived from
simple matrix multiplication, such as the Keldysh formula
[38] in Eq. (3). Equation (21) provides an important basis to
treat various complex problems in the NEGF theory, such as
the disorder-averaging problem that we want to solve in this
paper.

IV. GENERALIZED COHERENT POTENTIAL
APPROXIMATION

The conventional CPA formulation [23,24] of the averaged
retarded/advanced GFs 〈GR/A〉 is based on the Dyson equation
for GR/A, namely Eq. (21). Because of the fact that the contour-
ordered GF takes the same form of the perturbation expansion
as the retarded/advanced GFs, it is straightforward to extend
the conventional CPA formulation to a general case 〈G〉 which
satisfies Eq. (21). In this section, we present a generalized CPA
to calculate the disorder average of various GFs introduced in
the NEGF theory.

A. Theory of generalized CPA

For the system as shown in Fig. 1(b), because of the
unintentional impurities, the potential of the system V is
random. V can be written as the contribution from each cell
centered on the atomic nucleus, namely V = ∑

n vn, where
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vn is the on-site random potential. The Hamiltonian of this
system can be divided into

H = H0 + �ld + V, (22)

where H0 is a perfect system Hamiltonian and �ld is the
self-energy due to the leads. The central idea of CPA is to
construct a coherent effective medium whose GF Ḡ is equal
to the disorder-averaged GF 〈G〉 of the system, namely

Ḡ = 〈G〉. (23)

To physically describe this effective medium, one can in-
troduce a self-energy due to disorders �im = ∑

n �im,n,
which contains contributions from each site, and rewrite the
disordered system Hamiltonian as

H = (H0 + �) + (V − �im), (24)

where � = �ld + �im contains the contributions from both
the leads and effective medium. The term in the first set of
parentheses in Eq. (24) can be regarded as the Hamiltonian of
the effective medium and the second set of parentheses contain
the deviation of the random potential from �im which can be
rewritten as

V − �im =
∑

n

(vn − �n,im). (25)

With the perturbation expansion technique of the GF, one can
obtain the following two Dyson equations:

G = Ḡ + Ḡ(V − �im)G = Ḡ + G(V − �im)Ḡ, (26)

Ḡ = G0 + G0�Ḡ = G0 + Ḡ�G0, (27)

where G, Ḡ, and G0 are the GFs corresponding to the
Hamiltonians H , H0 + �, and H0, respectively. Here, Eq. (26)
can be rewritten in another form,

G = Ḡ + ḠT Ḡ, (28)

where T is called the T matrix defined as

T ≡ (V − �im) + (V − �im)Ḡ(V − �im) + · · ·
= (V − �im)(I + ḠT ) = (I + T Ḡ)(V − �im).

(29)

From Eq. (28), we can see that the T matrix contains all the
complexities of a disordered device. By taking the average on
both sides of Eq. (28) and comparing with Eq. (23), one finds
an important equation,

〈T 〉 = 0, (30)

namely the CPA condition for the effective medium �im

[23,24]. In principle, the above equation in combination with
Eq. (27) provides a closed set of self-consistent equations
to solve �im and Ḡ of the effective medium. However, to
evaluate 〈T 〉 in Eq. (30), one needs to enumerate all possible
configurations of the disorders, which is computationally
prohibitive. Therefore, further approximation to the average
of the T matrix is required to enable CPA self-consistent
calculation.

B. Single-site approximation

In order to make Eq. (30) practically useful, the single-site
approximation (SSA) [45] was introduced to decouple all the
disorder scattering events contained in the T . To formulate
SSA, one can insert Eq. (25) into Eq. (29) and get

T =
∑

n

(vn − �n,im)(I + ḠT ) ≡
∑

n

Qn, (31)

where Qn ≡ (vn − �n,im)(I + ḠT ) can be solved to obtain

Qn = tn

⎛
⎝I + Ḡ

∑
m�=n

Qm

⎞
⎠, (32)

tn ≡ [I − (vn − �n,im)Ḡ]−1(vn − �n,im). (33)

Here, tn describes the scattering event on the single site n

(tn = 0 at the site without random occupations). By recursively
substituting Eq. (32) into Eq. (31), we get the multiple
scattering equation:

T =
∑

n

tn +
∑
n�=m

∑
m

tnḠtm + · · · . (34)

From this equation, we can see that the overall disorder
scattering effects during electron transport are regarded as
successive multiple scattering processes from one site to
another. For example, the first two terms in Eq. (34) are
contributed by the respective one-time and two-time scattering
processes. From Eq. (34), we can also see that the process in
which an electron is successively scattered twice on the same
site is prohibited. Averaging Eq. (34) gives

〈T 〉 =
∑

n

〈tn〉 +
∑
n�=m

〈tnḠtm〉 + · · · . (35)

At this point, all the formulations are exact. To introduce the
SSA, we take the disorder average on Eq. (32) and rewrite it
as

〈Qn〉 = 〈tn〉
⎛
⎝I + Ḡ

∑
m�=n

〈Qm〉
⎞
⎠ +

〈
tnḠ

∑
m�=n

(Qm − 〈Qm〉)
〉
,

where the first term describes the averaged wave scattered by
the individual atom on site R, and the second term contains
fluctuations away from the average wave. Neglecting the
second term yields the SSA, namely

〈Qn〉 = 〈tn〉
⎛
⎝I + Ḡ

∑
m�=n

〈Qm〉
⎞
⎠, (36)

which means that the successive scattering events are in-
dependent of each other. Since the probability is small for
scattering off multiple impurities at the same time, the SSA is
a good approximation and becomes accurate at low impurity
concentration.

After applying SSA, we can rewrite Eq. (35) in the
following form:

〈T 〉 =
∑

n

〈Qn〉 =
∑

n

〈tn〉 +
∑
n�=m

〈tn〉Ḡ〈tm〉 + · · · . (37)
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As an immediate result, the CPA self-consistent condition
〈T 〉 = 0 is simplified to

〈tn〉 ≡
∑
Q

cQ
n tQn = 0, (38)

where cQ
n is the concentration of the Q element on the site

n. Combining the above single-site equation and Eq. (27), the
on-site self-energy �n,im can be self-consistently solved for
each site of the system. In such a way, the effective medium
described by �im = ∑

n �n,im can be efficiently obtained.

C. Application to the Keldysh representation

The quantities we defined so far in the generalized CPA with
SSA (such as G, �, V , T and their single-site counterparts)
are all defined for a general case of GF. If we substitute with
the retarded/advanced quantities, we obtain the conventional
CPA formalism. Here, we apply the generalized CPA to the
Keldysh real-time matrix representation of contour-ordered
GF, aiming to obtain the disorder average of all the real-time
GFs introduced in Sec. III. To do this, we need to rewrite the
quantities G, �, V , T and their single-site counterparts in the
form of the Keldysh matrix in Eq. (18). For example, � =
(

�A 0
�K �R),T = (

T A 0
T K T R), and V = (

V A 0
V K V R) = (

V 0
0 V) since

the potential is Hermitian. Replacing the quantities in Eq. (27)
with Keldysh matrices leads to the following equations (see
more details in Appendix B):

ḠR = GR
0

(
I − �RGR

0

)−1
, (39a)

ḠA = GA
0

(
I − �AGA

0

)−1
, (39b)

ḠK = ḠR�KḠA + (I + ḠR�R)GK
0 (I + �AḠA), (39c)

where � = �ld + �im. Equations (39a) and (39b) for
retarded and advanced GFs are the same as the conventional
CPA. Equation (39c) is usually called the Keldysh formula for
GK which relates ḠK to ḠR/A and different components of
�. From the above equation, we can see the three components
of G, namely GR/A/K , are not independent of each other: GA

is the conjugate of GR , and thus GK is given by GR through
the Keldysh formula. Thus GR provides sufficient knowledge
to compute NEGFs, provided the self-energy �. This fact
forms the important physical foundation for the CPA-NVC
method [22] in which the conventional CPA is carried out
only for ḠR/A. Actually, the similar relations between the
retarded/advanced and the Keldysh quantities can also be
found for other quantities, such as T and tn, as we show in
the following.

To obtain the CPA equations, we apply the Keldysh matrices
to Eq. (29), and find

T R = [
I − (

V − �R
im

)
ḠR

]−1(
V − �R

im

)
, (40a)

T A = [
I − (

V − �A
im

)
ḠA

]−1(
V − �A

im

)
, (40b)

T K = T RḠKT A − (I + T RḠR)�K
im(I + ḠAT A). (40c)

Similarly, applying the Keldysh matrices to Eq. (33) directly
leads to

tRn = [
I − (

vn − �R
n,im

)
ḠR

]−1(
vn − �R

n,im

)
, (41a)

tAn = [
I − (

vn − �A
n,im

)
ḠA

]−1(
vn − �A

n,im

)
, (41b)

tKn = tRn ḠKtAn − (
I + tRn ḠR

)
�K

n,im

(
I + ḠAtAn

)
. (41c)

The quantity �K
im in Eqs. (40c) and (41c) is called the

nonequilibrium coherent potential in the literature of NECPA
[35,36]. We provide a simple proof that �K

im is generally equal
to the NVC [22] in Appendix E. Here Eqs. (40c) and (41c) can
be called the Keldysh formula for T and tn. Similarly to G, we
find that the retarded, advanced, and Keldysh components of
T or tn are also not independent. After applying to the Keldysh
representation, by combining Eqs. (39) and (41) with the
CPA condition 〈tR/A/K

n 〉 = 0 in SSA, we can self-consistently
compute the self-energy �

R/A/K

im and ḠR/A/K to obtain
the effective medium. As an important result, according to
the relations in Appendix C, the average of all other real-time
GFs can be easily obtained with the linear combination of the
averaged ḠR/A/K .

V. GENERALIZED NONEQUILIBRIUM VERTEX
CORRECTION

The generalized CPA only provides an effective way to
average a single GF. However, many physical quantities
contain the product of two GFs, such as all the quantum
transport properties mentioned in Sec. II. Because the two GFs
describing the same disordered system are internally correlated
by the multiple disorder scattering, 〈GCG〉 is not simply equal
to 〈G〉C〈G〉 where C is an arbitrary constant. In this section,
the generalized NVC is formulated to compute 〈GCG〉, so that
the disorder average of any two-GF correlator can be obtained,
such as 〈G<CG<〉.

A. Theory of generalized nonequilibrium vertex correction

Here, we consider a two-GF correlator

K = 〈G(z1)CG(z2)〉, (42)

where C is an arbitrary constant. In Eq. (42), the GFs can be
at two different energies. For simplicity, these energy indices
will be suppressed in the rest of the derivation. To evaluate K ,
we insert Eq. (28) into Eq. (42) and apply the CPA condition
〈T 〉 = 0, and then obtain

〈GCG〉 = Ḡ(C + �)Ḡ, (43)

where

� ≡ 〈T ḠCḠT 〉 (44)

is the generalized NVC, containing all the effects of disorders
on the two-GF correlator.

In order to compute �, one can substitute the T with
Eq. (31) and then obtain

� =
∑

n

∑
m

〈QnḠCḠQ̃m〉. (45)
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FIG. 3. Diagrammatic representation of 〈GCG〉. The thick line
and thin line represent G and Ḡ, respectively. The dashed line
represents the interaction with the disorders (red dots). The blue
dot represents a vertex C.

For terms with n �= m, by applying SSA, we can obtain
〈QnḠCḠQ̃m〉 = 0. Consequently, Eq. (45) is simplified to

� =
∑

n

�n, (46)

where we have defined �n ≡ 〈QnḠCḠQ̃n〉. To proceed
further, we replace the Qn, Q̃n with the relation in Eq. (32),
Qn = tn(I + Ḡ

∑
p �=n Qp) and its counterpart Q̃n = (I +∑

q �=n Q̃qḠ)tn, and get

�n =
〈
tn

(
I + Ḡ

∑
p �=n

Qp

)
ḠCḠ

(
I +

∑
q �=n

Q̃qḠ

)
tn

〉
.

(47)

Expanding the products in 〈· · · 〉, one gets four terms, among
which, after applying SSA, two terms involving the single
Q vanish, and the term involving the product of two Qs is
simplified to 〈tnḠ

∑
p �=n �pḠtn〉. Therefore, Eq. (47) finally

becomes

�n = 〈tnḠCḠtn〉 +
∑
p �=n

〈tnḠ�pḠtn〉, (48)

which forms a closed set of linear equations for the unknown
�n. In Eq. (48), the average is over pairs of scattering events
on the same site. In other words the scattering from different
sites is regarded as statistically uncorrelated and the motion of
two particles, represented by the two GFs, in the medium is
correlated only if they both scatter from the same site. Solving
Eq. (48) leads to �n for each disordered site, and thus the
averaged two-GF correlator in Eq. (42) can be obtained. The
procedure to average the two-GF correlator from Eq. (43) to
Eq. (48) can be represented by the Feynman diagrams as shown
in Fig. 3 [46]. The first line in Fig. 3 expresses the two-GF
correlator with an infinite series of ladder diagrams that refers
to the direct expansion of the GFs in SSA, and the second
line reduces the infinite ladder series to a single NVC. With
this simple Feynman diagram, the various two-GF correlators,
such as G<CG<, can be calculated in a much more effective
way than the diagrammatic technique reported in Ref. [5].

B. Application to the Keldysh representation

Similar to the generalized CPA, the generalized NVC
formalism can also be applied to the Keldysh representation.
To do so, we first consider the arbitrary constant C matrix for

the following four different cases:

C(1) =
(

C 0
0 0

)
, C(2) =

(
0 C

0 0

)
,

C(3) =
(

0 0
C 0

)
, C(4) =

(
0 0
0 C

)
.

By applying these four C(i)s to Eq. (44), we obtain four
different �(i)s as follows,

�(1) =
(

�AA 0
�KA 0

)
, �(2) =

(
�AK �AR

�KK �KR

)
,

�(3) =
(

0 0
�RA 0

)
, �(4) =

(
0 0

�RK �RR

)
.

Applying these �(i) and the corresponding C(i) to Eq. (43)
leads to nine different pairwise combinations of GR , GA, and
GK :

〈GRCGR〉 = ḠR(C + �RR)ḠR, (49)

〈GRCGA〉 = ḠR(C + �RA)ḠA, (50)

〈GACGR〉 = ḠA(C + �AR)ḠR, (51)

〈GACGA〉 = ḠA(C + �AA)ḠA, (52)

〈GRCGK〉 = ḠR�RKḠA + ḠR(C + �RR)ḠK, (53)

〈GACGK〉 = ḠA�AKḠA + ḠA(C + �AR)ḠK, (54)

〈GKCGR〉 = ḠR�KRḠR + ḠK (C + �AR)ḠR, (55)

〈GKCGA〉 = ḠR�KAḠA + ḠK (C + �AA)ḠA, (56)

〈GKCGK〉 = ḠR�KKḠA + ḠK�AKḠA

+ ḠR�KRḠK + ḠK (C + �AR)ḠK. (57)

With the linear combination of these nine quantities, one can
obtain the average of any two-GF correlators (see Appendix C
for more details). For example:

〈G<CG<〉 = 1
4 [〈GRCGR〉 − 〈GRCGA〉 − 〈GRCGK〉
− 〈GACGR〉 + 〈GACGA〉 + 〈GACGK〉
− 〈GKCGR〉 + 〈GKCGA〉 + 〈GKCGK〉].

(58)

The remaining task is to find the nine generalized NVC
quantities defined in the four �(i)s. By inserting the Keldysh
matrices into Eq. (48), we obtain nine linear equations with
details provided in Appendix D. From Appendix D, by solving
the nine equations from top to bottom, we can obtain the
nine generalized NVCs to account for the multiple impurity
scattering under the nonequilibrium condition. Consequently,
with the generalized NVC, the averaged physical proper-
ties which contain two-Green’s-function correlators, such as
averaged nonequilibrium electron density, averaged current,
current fluctuation, and averaged shot noise (see Sec. II), can
all be computed in a unified way. The nine NVCs are the major
results of this work.
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FIG. 4. Numerical results of a nanoribbon with a lattice tight-binding model containing 3 × 3 disordered sites as shown in inset of
(a). The left column—(a), (c), (e), and (g)—and the right column—(b), (d), (f), and (h)—show the averaged transmission coefficients and the
corresponding fluctuations with disorder concentrations x = 0.01,0.1,0.3,0.5, respectively.

045424-8



GENERALIZED NONEQUILIBRIUM VERTEX CORRECTION . . . PHYSICAL REVIEW B 94, 045424 (2016)

VI. NUMERICAL RESULTS AND DISCUSSION

To validate the generalized CPA-NVC formalism, we use
the same square-lattice tight-binding model as in Ref. [5] to
calculate the averaged transmission 〈T 〉 and its fluctuation δT .
As shown in the inset of Fig. 4(a), the central scattering region
contains disordered 3 × 3 lattice sites (red color), of which
each is occupied by the host atom whose on-site energies
v = 0 with probability 1 − x, or occupied by the impurity
atom whose on-site energy vim = 0.5 with probability x.
The two semi-infinite leads are assumed to be perfect with
the on-site energies equal to 0. The electron hopping only
happens between the first-nearest neighbors with the strength
t = 1. The exact solution was calculated by enumerating
every possible configuration, namely 29 = 512 cases, and then
weighted by the probabilities.

The left column of Fig. 4, namely panels (a), (c), (e), and
(g), shows the averaged transmission of the model for different
concentrations of impurities. Theoretically, in a perfect system,
the transmission is a steplike curve with the value equal to the
number of modes at that energy. As the impurity concentration
increases, the transmission curve becomes smooth because of
the interchannel scattering by disordered impurities as shown
in Fig. 4. We can see the averaged transmissions calculated
by our generalized NVC for all concentrations are all very
close to the exact results, providing a good validation to
our NVC formalism for calculating 〈G<〉 = 〈GR�<GA〉. To
further test the generalized NVCs, the right column of Fig. 4,
namely panels (b), (d), (f), and (h), shows the transmission
fluctuation for different concentrations of disorder. Besides
the exact results and our generalized NVC calculations, we
also plot the results of the low concentration limit (LCA) and
CPA based diagrammatic techniques reported in Ref. [5] for
comparison. We can see in the low impurity concentration,
e.g., x = 0.01, all three approximate methods perform quite
well in comparison with the exact results. However, when the
disorder concentration increases, both LCA and CPA based
diagrammatic techniques [5] become less and less accurate.
In particular, one can find the large errors in LCA results in
Figs. 4(d), 4(f), and 4(h), and at the same time the diagrammatic
technique even produces unphysical results at some energy
regions (δT is a negative value and has been set to zero
in the plots). However, the generalized NVC calculations
agree very well with the exact results for all the disorder
concentrations, even at x = 0.5. This agreement provides an
important test of the general applicability of the generalized
CPA-NVC method. Thus we believe the generalized CPA-
NVC formalism provides an effective way for simulating
disordered nanoelectronics.

VII. CONDITIONALLY AVERAGED GREEN’S FUNCTION

In previous sections, we have introduced the generalized
CPA-NVC algorithm to treat the disorder effects in quantum
transport. In this section, we will discuss how to combine the
generalized CPA-NVC with the NEGF-DFT method to calcu-
late the electronic structure of the disordered nanoelectronics
from first principles.

The central quantity for realizing DFT self-consistent cal-
culation is the conditionally averaged lesser Green’s function

FIG. 5. (a) A fully disorder averaged system. (b) A conditionally
averaged system. (c) Schematic illustration of CPA with SSA.

Ḡ<,Q, which gives the ρQ
n to update vQ

n in each DFT iteration.
In general, the conditionally averaged GF ḠQ is associated
with the system in which the nth site is occupied by the fixed
Q element, and the disorder average is carried out for the rest
of the disordered sites. Thus, ḠQ corresponds to the effective
medium with the Q element occupying the site n, as shown in
Fig. 5(b).

In order to calculate ḠQ, we expand it with reference to Ḡ

shown in Fig. 5(a) by using Eq. (28), and obtain

ḠQ = Ḡ + ḠtQn Ḡ, (59)

where

tQn = [
I − (

vQ
n − �n,im

)
Ḡ

]−1(
vQ

n − �n,im

)
. (60)

Note that we have used T = tQn since there is only one
scattering center. One can check that∑

Q

cQḠQ = Ḡ (61)

by applying the single-site CPA condition 〈tn〉 = 0 in Eq. (59).
Figure 5(c) provides a schematic illustration of the above
equation. By substituting with Keldysh matrices in Eq. (59),
we obtain

ḠR,Q = ḠR + ḠRtR,Q
n ḠR, (62a)

ḠA,Q = ḠA + ḠAtA,Q
n ḠA, (62b)

ḠK,Q = ḠK + ḠRtK,Q
n ḠA

+ ḠKtA,Q
n ḠA + ḠRtR,Q

n ḠK, (62c)

where the matrices t
R/A/K
n are defined in Eq. (41). With

the above three conditionally averaged GFs, Ḡ<,Q can be
calculated by the relation

Ḡ<,Q = 1
2 (−ḠR,Q + ḠA,Q + ḠK,Q). (63)

The conditionally averaged Ḡ<,Q provides the nonequilibrium
density matrix ρ̄Q for each disordered element in the system.
In combination with DFT, the potential vQ

n can be computed
from the electron density in a self-consistent way. As a result,
the effects of disorders on the quantum transport properties
can be simulated from first principles.
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VIII. CONCLUSIONS

We have developed a generalized CPA-NVC formalism
to realize quantum transport simulation of disordered nano-
electronic devices at nonequilibrium states. The generalized
CPA-NVC formalism provides an effective way to compute
the disorder average of any two-GF correlator. We obtain
nine NVCs to account for the effects of the multiple impurity
scattering under nonequilibrium conditions. As an important
result, various nonequilibrium quantum transport properties,
including the averaged nonequilibrium density matrix, aver-
aged current, current fluctuation, and averaged shot noise, can
all be effectively derived and computed with the nine NVCs.
To test the general applicability of the generalized CPA-NVC
method, we have applied it to calculate the transmission
coefficient and its fluctuation with a tight-binding model and
found our calculations agree well with the exact results for
a wide range of disorder concentrations and energies. In
addition, the general form of the conditionally averaged NEGF
is also derived to combine with DFT to enable first-principles
simulation of disordered nanoelectronics. As a summary, the
generalized CPA-NVC method provides a unified, effective,
and general approach for simulating nonequilibrium quantum
transport through disordered nanoelectronics.
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APPENDIX A: RELATIONS BETWEEN ANALYTICAL
CONTINUATION WITH THE LANGRETH THEOREM AND

THE MATRIX REPRESENTATION

The operation on contour-ordered quantities requires in-
tegration along the time contour, which can be transformed
into integration along the real-time axis by using the Langreth
theorem [8]. For example, suppose A, B, and D are three
quantities defined on the contour and have the relation

D = AB. (A1)

According to the Langreth theorem, their real-time counter-
parts have the relations

D< = ARB< + A<BA, (A2)

DR = ARBR. (A3)

These two identities can be derived by deforming the time
contour as indicated in Fig. 4.4 in Ref. [8]. An alternative way
to apply the Langreth theorem is by using the Craig or Keldysh
2 × 2 real-time matrix representation of the contour-ordered
quantities. For example, by substituting the matrix notation
defined in (17) into (A1), we obtain(

Dt −D<

D> −Dt̄

)
=

(
AtBt − A<B> −AtB< + A<Bt̄

A>Bt − At̄B> −A>B< + At̄Bt̄

)
.

From this expression, we directly recover (A2),

D< = AtB< − A<Bt̄

= (At − A<)B< + A<(B< − Bt̄ ) = ARB< + A<AA.

Similarly, substituting Eq. (18) into Eq. (A1) leads to Eq. (A3).
Therefore, we can regard these 2 × 2 matrices as inherently
incorporating the Langreth theorem and they are preferred in
practical applications in this paper.

APPENDIX B: DERIVATION OF EQUATION (39)

We first rewrite Eq. (27) for Ḡ

Ḡ = G0(I − �G0)−1. (B1)

By replacing with the Keldysh representation defined in
Eq. (18), we obtain(

ḠA 0

ḠK ḠR

)
=

(
GA

0 0

GK
0 GR

0

)(
A 0

K R

)−1

, (B2)

where we have defined

R ≡ I − �RGR
0 , (B3)

A ≡ I − �AGA
0 , (B4)

K ≡ −�KGA
0 − �RGK

0 . (B5)

Using the identity(
A 0

K R

)−1

=
(

A−1 0

−R−1KA−1 R−1

)
, (B6)

then we can get

ḠR = GR
0 R−1 = GR

0

[
I − �RGR

0

]−1
, (B7a)

ḠA = GA
0 A−1 = GA

0

[
I − �AGA

0

]−1
, (B7b)

ḠK = GK
0 A−1 − GR

0 R−1KA−1

= ḠR�KḠA + (I + ḠR�R)GK
0 (GA

0 )−1ḠA

= ḠR�KḠA + (I + ḠR�R)GK
0 (I + �AḠA). (B7c)

APPENDIX C: EXPRESSING VARIOUS REAL-TIME
QUANTITIES IN TERMS OF Q R, Q A, AND Q K

This appendix provides a convenient way to express the
various real-time quantities in terms of the linear combinations
of QR , QA, and QK by using the Keldysh linear transformation
shown as follows:(

Qt −Q<

Q> −Qt̄

)
= 1

2

(
1 1

−1 1

)(
QA 0

QK QR

)(
1 −1

1 1

)

= 1

2

(
QR + QA + QK QR − QA − QK

QR − QA + QK QR + QA − QK

)
.

Furthermore, if we want to express the various pair-
wise combinations of real-time quantities, for example
Q<CQ<, we can just substitute Q< = (−QR + QA + QK )/2
into Q<CQ< and expand it into nine terms involving
QR/A/KCQR/A/K .
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APPENDIX D: NINE EQUATIONS FOR THE GENERALIZED NVCs

The following nine equations are obtained from Eq. (48) in the Keldysh representation with four cases of C(i) and �(i)

(i = 1,2,3,4):

�RR
n = 〈

tRn ḠRCḠRtRn
〉 + ∑

p �=n

〈
tRn ḠR�RR

p ḠRtRn
〉
, (D1)

�RA
n = 〈

tRn ḠRCḠAtAn
〉 + ∑

p �=n

〈
tRn ḠR�RA

p ḠAtAn
〉
, (D2)

�AR
n = 〈

tAn ḠACḠRtRn
〉 + ∑

p �=n

〈
tAn ḠA�AR

p ḠRtRn
〉
, (D3)

�AA
n = 〈

tAn ḠACḠAtAn
〉 + ∑

p �=n

〈
tAn ḠA�AA

p ḠAtAn
〉
, (D4)

�RK
n = 〈

tRn ḠRCḠRtKn
〉 + 〈

tRn ḠRCḠKtAn
〉 + ∑

p �=n

[〈
tRn ḠR�RK

p ḠAtAn
〉 + 〈

tRn ḠR�RR
p ḠRtKn

〉 + 〈
tRn ḠR�RR

p ḠKtAn
〉]
, (D5)

�AK
n = 〈

tAn ḠACḠRtKn
〉 + 〈

tAn ḠACḠKtAn
〉 + ∑

p �=n

[〈
tAn ḠA�AK

p ḠAtAn
〉 + 〈

tAn ḠA�AR
p ḠRtKn

〉 + 〈
tAn ḠA�AR

p ḠKtAn
〉]
, (D6)

�KR
n = 〈

tKn ḠACḠRtRn
〉 + 〈

tRn ḠKCḠRtRn
〉 + ∑

p �=n

[〈
tRn ḠR�KR

p ḠRtRn
〉 + 〈

tKn ḠA�AR
p ḠRtRn

〉 + 〈
tRn ḠK�AR

p ḠRtRn
〉]
, (D7)

�KA
n = 〈

tKn ḠACḠAtAn
〉 + 〈

tRn ḠKCḠAtAn
〉 + ∑

p �=n

[〈
tRn ḠR�KA

p ḠAtAn
〉 + 〈

tKn ḠA�AA
p ḠAtAn

〉 + 〈
tRn ḠK�AA

p ḠAtAn
〉]
, (D8)

�KK
n = 〈

tKn ḠACḠRtKn
〉 + 〈

tKn ḠACḠKtAn
〉 + 〈

tRn ḠKCḠRtKn
〉 + 〈

tRn ḠKCḠKtAn
〉

+
∑
p �=n

[〈
tRn ḠR�KK

p ḠAtAn
〉 + 〈

tKn ḠA�AK
p ḠAtAn

〉 + 〈
tRn ḠK�AK

p ḠAtAn
〉 + 〈

tRn ḠR�KR
p ḠRtKn

〉
+ 〈

tKn ḠA�AR
p ḠRtKn

〉 + 〈
tRn ḠK�AR

p ḠRtKn
〉 + 〈

tRn ḠR�KR
p ḠKtAn

〉 + 〈
tKn ḠA�AR

p ḠKtAn
〉 + 〈

tRn ḠK�AR
p ḠKtAn

〉]
. (D9)

APPENDIX E: RELATION BETWEEN NECPA AND
CPA-NVC

In this appendix, we will see that the nonequilibrium
coherent potential defined in the NECPA [35,36], namely �K

im

in Eq. (41c), equals the NVC in Ref. [22] or the �RA in Eq. (D2)
in this paper. To do so, we first consider the Keldysh formula
in Eq. (39c), and it can be simplified as follows for a device in
steady state:

ḠK = ḠR�KḠA, (E1)

because the second term in Eq. (39c) equals zero in the
steady-state condition [7,47]. By substituting Eq. (E1) into

(40c) and using the CPA condition of Eq. (30), we obtain the
nonequilibrium coherent potential in the following form:

�K
im = 〈

T RḠR�K
ld ḠAT A

〉
, (E2)

which is exactly the same as the NVC in Eq. (44). Applying
the SSA still does not change the conclusion. In particular,
applying 〈tKn 〉 = 0 to Eq. (41c) results in

�K
n,im = 〈

tRn ḠR�ldḠ
AtAn

〉 + ∑
m�=n

〈
tRn ḠR�K

m,imḠAtAn
〉
,

which is the same as the NVC formula [22,48] or Eq. (D2).
Therefore, we conclude that the method NECPA [35,36] is
generally equivalent to the CPA-NVC [22] approach.
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