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Renowned for its sensitivity to detect the presence of numerous substances, graphene is an excellent chemical
sensor. Unfortunately, which general features a dopant must have in order to enter the list of substances detectable
by graphene are not exactly known. Here we demonstrate with a simple model calculation implemented in three
different ways that one of such features is the symmetry properties of the impurity binding to graphene. In
particular, we show that electronic scattering is suppressed when dopants are bound symmetrically to both
graphene sublattices, giving rise to impurity invisibility. In contrast, dopants that affect the two sublattices
asymmetrically are more strongly scattered and therefore the most likely candidates to being chemically sensed
by graphene. Furthermore, we demonstrate that impurity invisibility is lifted with the introduction of a symmetry-
breaking perturbation such as uniaxial strain. In this case, graphene with sublattice-symmetric dopants will
function as efficient strain sensors. We argue that classifying dopants through their bonding symmetry leads to a
more efficient way of identifying suitable components for graphene-based sensors.

DOI: 10.1103/PhysRevB.94.045417

I. INTRODUCTION

Due to its well-documented physical properties and numer-
ous applications, graphene has been in the scientific limelight
for over a decade now [1–4]. Due to its linear dispersion
relation graphene shows some quite unique transport phe-
nomena, such as Klein tunneling, manifest as a suppression
of backscattering [5–7]. Here we focus on one of the more
exciting features of graphene—the extreme sensitivity of its
transport properties to relatively low disorder or impurity
concentrations [8–13]. This makes graphene an attractive
material for use in sensor-based applications, and indeed there
has already been a lot of research in this direction, confirming
its ability to detect substances at ultralow concentrations
(sub-PPM) [14–21].

Which substances can graphene detect is a question that
continues driving the search for atoms and molecules that
impact its transport properties. This search has been mainly
based on trial and error, i.e., by exposing graphene to a variety
of dopants in the hope that they function as strong scattering
centers [11,22–26]. Owing to the overwhelming number of
possibilities to account for, it is no surprise that this ad hoc
approach fails to provide insight on the conditions that ideal
dopants must have to make good graphene-based sensors.
Rather than trial and error, a more general approach is needed
to guide the search for efficient sensors.

With that goal in mind, this study makes use of a simple
model calculation that describes the electronic scattering in
impurity-doped graphene. Rather than specifying the exact
form and detailed characteristics of the doping impurities, we
adopt a more general approach that aims to separate the distinct
contributions to scattering events: one that depends on the
intrinsic specificity of dopants and another that is determined

primarily by their bonding symmetry. Whereas there is an
enormous variety of impurities that interact with graphene,
there are only a few different conformations that characterize
the bonding symmetry. Remarkably, out of this small number
of symmetries, we show that there is one in particular that
gives rise to vanishingly small scattering regardless of the
specific details of the dopant. This class of dopants is therefore
expected to be hardly visible for the conduction electrons.

This finding corresponds to a considerable advance from
the aforementioned ad hoc strategy since we are able to
infer about the graphene properties of a whole range of
dopants that have this particular bonding symmetry. Most
importantly, because the predicted weak-scattering behavior
is symmetry-dependent, any symmetry-breaking perturbation
is likely to enhance the scattering strength of this class of
impurities. Therefore, we argue that graphene doped with
impurities that have this particular bonding symmetry will
give rise to devices that are extremely sensitive to, for instance,
uniaxial mechanical strain.

Regarding the sequence adopted in this manuscript, we start
by defining the model Hamiltonian, followed by a few different
yet complementary ways of accounting for the scattering
contribution of impurities in graphene. All these approaches
lead to the same conclusion, i.e., that impurities with certain
bonding symmetries may be completely transparent, causing
hardly any electronic scattering. We finish by discussing
possible consequences that this feature might bring to the field
of sensor design.

II. MODEL HAMILTONIAN

Let us define the model Hamiltonian used throughout the
manuscript. The system consists of a graphene sheet with one
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single impurity described by the Hamiltonian H = H0 + V ,
where

H0 = −
∑
〈i,j〉

|i〉ti,j 〈j | +
∑
〈�,m〉

|�〉h�,m〈m| (1)

corresponds to the pristine nearest-neighbor tight-binding
graphene Hamiltonian defined by the matrix elements ti,j plus
a single impurity defined by the matrix elements h�,m. The
indices i and j label the graphene sites, while � and m label
the impurity sites. The states |α〉 represent an atomic orbital
centered at site α, where α = {i,j,�,m}. The matrix elements
ti,j = t when i and j are nearest neghbors and vanish other-
wise. The value of t = 2.7 eV is known to reproduce well the
low energy electronic structure of graphene and will hereafter
serve as our energy unit. Although not specified, the matrix
elements h�,m may describe a variety of possible impurities
ranging from single atoms to more complex structures such
as molecules and nanoparticles. The only assumptions made
about the impurity are that it connects to graphene through only
one of its sites (labeled � = 0) and that the orbital |0〉 possesses
certain symmetries. These assumptions can be easily relaxed,
should we need to consider impurities of a more complex geo-
metrical structure and/or with orbitals of different symmetries
[27,28].

Note that H0 describes a graphene sheet and a single
impurity totally decoupled from one another. The graphene-
impurity coupling term is described by V and depends on
the bonding conformation. We assume that impurities can be
either center-, top-, or bridge-bonded to the graphene lattice, as
schematically depicted in Fig. 1. For the sake of completeness,
we also include substitutional impurities in the figure because
their scattering response is practically identical to top-bonded
impurities.

The coupling operator V , now renamed VT , VB ,
and VC depending on the conformation type, is defined

FIG. 1. Schematic representation of a center-bonded (labeled
with a C), a top-bonded (labeled with a T), and a bridge-bonded
(labeled with a B) impurity. For the sake of completeness, we
also include a schematic representation of a substitutional impurity
(labeled with an S). Impurities are represented by red circles while
filled and hollow circles correspond to the two graphene sublattices
also referred to as A and B sublattices.

as

VT = |0〉τ 〈1| + H.c., (2)

VB = |0〉τ1〈1| + |0〉τ2〈2| + H.c., (3)

VC =
∑
i∈R

|0〉τi〈i| + H.c., (4)

where the subscripts T , B, and C refer to top, bridge, and
center, respectively. The state |0〉 represents an orbital centered
at the impurity site that is bonded to the graphene sheet,
whereas the others are orbitals centered on graphene sites.
In the center bonded case, the sum runs over the six carbon
sites of the hexagonal ring R surrounding the impurity.

In the case of center-bonded impurities, the values of τi de-
pend on how the impurity hybridizes with the graphene atoms.
The possibilities are [27,28] as follows. (i) It may hybridize
equally with all six neighboring carbon atoms (τi = τ ), which
is the case for s and dz2 orbitals. (ii) It may have a π -phase
difference in the hybridization of the adsorbed impurity with
the two different sublattices, (τ1 = τ3 = τ5 = −τ2 = −τ4 =
−τ6 ≡ τ ), which is typical of f orbitals. (iii) For a dxy orbital,
τ1 = τ4 = 0 and τ2 = τ5 = −τ3 = −τ6 = √

3τ/2. (iv) For a
dx2−y2 orbital, τ1 = τ4 = τ and τ2 = τ3 = τ5 = τ6 = −τ/2.
Here we focus on the first two possibilities, where the values
of |τi | are the same for all i.

III. IMPURITY SCATTERING

Having defined the model Hamiltonian, three distinct ap-
proaches will be used to study how the graphene conductance
is impacted by the introduction of different bonding-symmetry
impurities. First we investigate how the scattering events are
described by the real-space Green functions of impurity-doped
graphene. We then turn our attention to writing the scattering
cross section in wave-number domain and analyze how it
is affected by the introduction of graphene dopants. Finally,
the conductance of doped graphene is numerically calculated
through the Kubo formula. These complementary methods
shed light on different aspects of the scattering process and how
the electronic transport is affected by the bonding symmetry
of the dopants.

A. Scattering in real space

It is convenient to describe the scattering processes as-
sociated to adsorbed impurities in graphene in terms of
the T matrix. The latter is defined by G = g + gT g, where
G = (E − H )−1 is the system full Green’s function and
g = (E − H0)−1 is the free Green’s function. The T matrix
can be obtained from the Dyson equation, G = g + g V G,
using standard Green’s function techniques [29].

This strategy allows us calculate the electronic propagator
between two arbitrary graphene sites a and b in the presence
of the graphene-impurity coupling term. The simplest case to
consider is of top-bonded impurities described by VT . Here,

Ga,b = ga,b + ga,1TT g1,b, (5)
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where

TT = �(1 − g11�)−1 (6)

is the relevant T -matrix element and

� ≡ |τ |2 g0,0, (7)

where g0,0 is the uncoupled impurity Green’s function pro-
jected on |0〉. � acts as the self-energy associated with the
impurity.

Scattering is fully described by the second term on the
right-hand side (RHS) of Eq. (5). It is worth noting that
the part of the T matrix that depends on the specific details
of the impurity is entirely contained in the self-energy, i.e., in
the “contact” Green function g0,0. Therefore, scattering caused
by any top-bonded impurity is fully taken into account by
Eq. (5) once the Green function g0,0 is known.

Similar steps are followed to obtain the propagator Ga,b for
bridge- and center-bonded impurities, taking care to replace
VT by VB and VC , respectively. The corresponding full Green’s
functions are given by

Ga,b = ga,b + (ga,1 + ga,2)TB(g1,b + g2,b) (8)

and

Ga,b = ga,b + (ga,1 + · · · + ga,6)TC(g1,b + · · · + g6,b),

(9)

respectively. The T matrix for the bridge- and the center-
bonded impurities are denoted, respectively, by TB and TC .
They read

TB = �(1 − γB�)−1 (10)

and

TC = �(1 − γC�)−1, (11)

where γB = ∑2
i,j=1 gij and γC = ∑6

i,j=1 gij are sums of all the
matrix elements of g involving graphene sites that are bonded
to the impurity. γB involves a sum over four terms and γC a
sum over 36 terms.

A simple analysis of Eq. (5) indicates that, for top-
bonded impurities, the scattering contribution to the prop-
agator �Ga,b ≡ Ga,b − ga,b contains the usual product of
three quantities: (i) one off-diagonal propagator ga,1 between
site a and the scattering site on graphene, (ii) the relevant
matrix element of the T matrix, and (iii) another off-diagonal
propagator g1,b this time associated with site b. In this
case, the only way the scattering can be weak is if the TT

itself is small, i.e., if the top-bonded impurity is a weak
scatterer.

The situation changes for bridge- and center-bonded im-
purities, described respectively by Eqs. (8) and (9). The
scattering correction of the propagator is still written as a
product of three separate terms, one of which is the T matrix.
The other two terms involve not one single propagator but
a sum of several propagators g. More specifically, the sums
αB = ga,1 + ga,2 and βB = g1,b + g2,b appear in Eq. (8), while
the sums αC = ga,1 + · · · + ga,6 and βC = g1,b + · · · + g6,b

can be seen in Eq. (9).
The sums in αC and βC give rise to interference effects

that strongly modify �Gab. To investigate the magnitude

FIG. 2. Scattering contribution to the single-particle Green func-
tion |α × β| (in units of t−2) as a function of the energy (in units
of the electron hopping t). The (black) solid line corresponds to the
case of center-bonded impurities described by Eq. (9); the (black)
dashed line is for bridge-bonded impurities described by Eq. (8)
and the (red) dot-dashed line represents the case of top-bonded
impurities. Note that in the case of top-bonded impurities the product
α × β = ga,1 × g1,b. The inset shows the same results in a linear-log
plot.

of the interference contribution, we show in Fig. 2 results
for the product |αB × βB | and |αC × βC |, for bridge- and
center-bonded impurities, respectively. These results are for
impurities halfway between sites a and b, chosen to be a
distance 20a0 apart along the armchair direction, where a0

is the graphene lattice parameter. Sites a and b are arbitrarily
chosen carbon atoms on the graphene lattice and the results
shown in Fig. 2 are not qualitatively affected by any specific
choice of their values. For the sake of comparison, we also plot
the equivalent product |ga,1 × g1,b| seen in Eq. (5) for the case
of top-bonded impurities. Results are plotted as a function of
the electron energy. While all curves have a minimum at the
Dirac point, the most revealing aspect of this figure is what
happens to the curves as the energy moves away from E = 0.
Results for top- and bridge-bonded impurities increase fairly
rapidly, but the center-bonded case is remarkably different.
The quantity αC × βC is orders of magnitude smaller than
the other two cases and clearly indicates that the sums
(ga,1 + · · · + ga,6) and (g1,b + · · · + g6,b) vanish as a result
of destructive interference in the propagators g. The log-scale
plot in the inset of Fig. 2 shows that the center-bonded results
are between two and three orders of magnitude weaker than the
other two cases. The same could have been concluded by using
the analytical expression for the off-diagonal matrix elements
of the graphene Green’s function within the tight-binding
approximation [30].

A direct consequence of the results shown in Fig. 2 is that
center-bonded impurities, except for the d-orbital ones, are
very weak scatterers. The generality of our argument is based
on the fact that, even without specifying what impurities are
being considered, the destructive interference experienced by
the propagators in Eq. (9) will give rise to results that are
orders of magnitude smaller than those obtained by Eqs. (5)
and Eq. (8). Note that this effect occurs regardless of the value
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of the real-space T -matrix TC , unless of course the T matrix
has resonance levels at very specific energies. We address the
issue of resonances in Sec. III C.

B. Scattering cross section

We now turn our attention to the cross section of graphene
in the presence of top-bonded (σT ) and center-bonded (σC)
impurities. Results for bridge-bonded impurities will not be
pursued simply because, as seen in Fig. 2, they behave very
similarly to the case of top-bonded dopants.

The cross section is directly related to the T matrix. In
scattering theory, the T matrix is usually defined

V |ψ (+)
E 〉 = T +(E)|k〉, (12)

where |ψ (+)
E 〉 is a solution of the Lippmann-Schwinger equa-

tion, namely

|ψ (+)
E 〉 = |k〉 + g+(E)V |ψ (+)

E 〉. (13)

We are interested in the scattering amplitude fscat(k,k′) ∼
〈k|T |k′〉, that is directly related to the scattering cross section
and the transport time that appears in the Boltzmann equation
used in the analysis of the transport properties of graphene in
the diffusive regime [3,5,6]. The fundamental difference to the
previous section is that here we express all key quantities in
the wave-number basis, as opposed to the real-space basis.

Recall that the tight-binding Hamiltonian for pristine
graphene can be written in momentum representation as

H0,graphene = t

(
0 f (k)

f ∗(k) 0

)
, (14)

where

f (k) = −(e−ik·a1 + e−ik·a2 + 1). (15)

The corresponding eigenstates read [31]

|k,±〉 = 1√
2

∑
n

eik·Rn
(|n,A〉 ± eiθ(k)|n,B〉), (16)

where + (−) corresponds to positive (negative) eigenenergies,
Rn = RA

n , and θ (k) = arg[f (k)]. A and B refer to the two
equivalent graphene sublattices. Note that |k,±〉 are scattering
states normalized to a Dirac δ function, and, consequently,
they have a different normalization than the states defined in
Ref. [31].

Since |k〉 distinguishes between A and B sites, we introduce
the lattice labeling defined in Fig. 3. The primitive unit cell
consists of a pair of A and B sites connected by a vertical bond.
The PUCs are defined as i = (m,n) with Ri = ma1 + na2.

For top-bonded impurities, the explicit representation of the
T -matrix operator in the site basis is

TT = |i〉〈i|TT |i〉〈i| = TT (E)
∑

i

|i〉〈i|. (17)

For a single top-absorbed impurity, we write

〈k′, ± |TT |k,±〉 = 1

2

∑
i,j

e−ik′ ·Ri+ik·Rj (〈i,A| ± eiθ(k′)〈i,B|)

× TT (|j,A〉 ± e−iθ(k)|j,B〉). (18)

(1,0)B

(1,0)A

(0,0)A

(0,1)A

(0,1)B

(1,1)B

a1a2

FIG. 3. Schematic representation of the lattice labels i = (m,n)
corresponding to Ri = ma1 + na2. For the top-bonded case, the
impurity is placed atop the (0,0) site, whereas for the center-bonded
case, the impurity is at the center of the hexagonal ring.

Hence, if i belongs to the A sublattice, we obtain

〈k′, ± |TT |k,±〉 = TT (E)

2
e−i(k′−k)·Ri , (19)

while if i belongs to the B sublattice

〈k′, ± |TT |k,±〉 = TT (E)

2
e−i(k′−k)·Ri eiθ(k′)−iθ(k). (20)

The results for TT are then further simplified by identifying
the i site as (0,0) in the notation of Fig. 3. Note that if one
is interested in coherent multiple scattering due to a finite
concentration of impurities, the relative phases are important.
Let us restrict ourselves to the low impurity concentration,
where coherent multiple scattering is unlikely to play a
significant role.

As a result,

〈k′, ± |TT |k,±〉 = TT (E)

2
(21)

for i ∈ A and

〈k′, ± |TT |k,±〉 = TT (E)

2
eiθ(k′)−iθ(k) (22)

for i ∈ B. The difference is just a phase, which is immaterial
for the cross section. Despite not affecting the cross section for
top-bonded dopants, this phase difference will have a dramatic
effect when impurities are coupled equally to both A and B

sublattices, as we demonstrate next.
Following similar steps, we now derive the wave-vector

dependent T matrix associated with center-bonded impurities.
For a single impurity this quantity is expressed in the real-space
basis by

TC =
∑

(i,j )∈R

|i〉〈i|TC |j 〉〈j | = TC(E)
∑

(i,j )∈R

|i〉〈j |. (23)

045417-4



IMPURITY INVISIBILITY IN GRAPHENE: SYMMETRY . . . PHYSICAL REVIEW B 94, 045417 (2016)

Hence, for an impurity centered at the Rth hexagon, one
has

〈k′, ± |TC |k,±〉 = 1

2

∑
i,j∈R

e−ik′ ·Ri+ik·Rj (〈iA| ± eiθ(k′)〈iB|)

× TC(|jA〉 ± e−iθ(k)|jB〉). (24)

The above expression yields 36 terms to compute. After a
long, but straightforward calculation, one obtains

〈k′, + |TC |k,+〉 = TC(E)

2
[f (k′) + eiθ(k′)e−ik·(a1+a2)f ∗(k′)]

× [f ∗(k) + e−iθ(k)eik′ ·(a1+a2)f (k)], (25)

for positive energies.
For low energies, it is convenient to expand the wave vectors

around the K points [3], namely, k = Kξ + q and k′ = Kξ +
q′, where ξ = ± is the valley index. For what follows it is
useful to recall that

Kξ · a1 = 2π

3
ξ and Kξ · a2 = −2π

3
ξ. (26)

Note that k · (a1 + a2) = Kξ · (a1 + a2) + q · (a1 + a2) =
3aqy .

Expanding f (k) to first order in q, one obtains

fξ (k) = 3
2qa e−iθξ (q), (27)

where

e−iθ(k) ≡ e−iθξ (q) = ξ
qx

q
+ i

qy

q
. (28)

We are now ready to conclude the calculation of the k-
dependent T matrix, namely

〈q′ξ ′+|TC |qξ+〉 = TC(E)
9a2

4
qq ′ei[θξ ′ (q′)−θξ (q)]/2{cos 3[θξ ′ (q′)

− θξ (q)] + cos 3[θξ ′ (q′) + θξ (q)]}, (29)

where |k+〉 ≡ |qξ+〉.
Two immediate conclusions can be extracted from Eq. (29).

(i) The angular part of the scattering cross section displays the
familiar 2π/3 periodicity that is inherent to the hexagonal
symmetry of graphene. (ii) The T matrix scales as (qa)2 for
low energies for both intra- (ξ = ξ ′) and intervalley (ξ 
= ξ ′)
scattering. The latter conclusion reiterates the results shown
in Sec. III A and demonstrates once again that center-bonded
impurities hardly affect the transport properties of electrons
near the Dirac point.

It is worth emphasizing that this is a situation where a
short-range impurity, taking into account intra- and intervalley
scattering process, is suppressed by interference effects. This
is quite different from the standard picture inferred from the
scattering analysis of the Dirac equation in graphene, where
one identifies the suppression of backscattering with long-
range impurities and as a manifestation of Klein tunneling
[5].

C. Numerical results

We now study resonance scattering regime and the case of
finite impurity-doped graphene systems, that involve multiple

scattering. For that purpose we numerically calculate the con-
ductance using the Kubo formula. The zero bias conductance
� reads [32–34]

� = 4e2

�
Re Tr

[
G̃00U01G̃11U10 − U01G̃10U10G̃10

]
, (30)

where G̃j,� = (G−
j,� − G+

j,�)/2i is the difference between the
retarded and advanced Green functions. Here, G±

j,� is the
matrix formed by the Green function elements connecting unit
cells j and �. For computational purposes it is convenient
to define a finite-sized graphene sample across which the
conductance is calculated. In practice, this comes down to
defining three graphene nanoribbons of similar width, two of
which are semi-infinite and act as leads, separated by a finite-
length section where impurities are placed. The indices 0 and
1 correspond the the interface between the central region and
one of the leads. By taking the boundary conditions properly,
this method gives the same results as the standard recursive
Green’s function method [35]. Unit cells are defined as lines
across the ribbon width and the trace is taken over both site and
spin indices. Similarly, Uj,� represents a matrix consisting of
off-diagonal hopping terms connecting neighboring unit cells
j and �. All Green functions above are evaluated at EF .

Rather than treating the scatterers as general objects
described by the self-energy definition of Eq. (7) as before,
we must now specify the impurity in order to evaluate the
conductance. We consider impurities with on-site energy εa ,
which modifies the self-energy � to

� = |τ |2(E − εa)−1. (31)

Figure 4 shows numerically evaluated results for the change in
the conductance of an eight-atom wide graphene ribbon due
to the presence of a single impurity as a function of the Fermi
energy. Solid (dashed) line is for a center-bonded (top-bonded)
impurity. Top-bonded impurities are strong scatterers when
compared to their center-bonded counterparts. The dashed

FIG. 4. Change in the conductance �� (in units of 2e2/h) as
a function of the Fermi energy for a single impurity with on-site
energy εa = −0.5t , and τ = −0.5t . Solid red (dashed black) line
corresponds to the case of a center-bonded (top-bonded) impurity.
Inset depicts the same quantity for a fixed Fermi energy EF = 0.11t ,
this time plotted as a function of the impurity’s on-site energy.
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line shows that the conductance with top-bonded impurities
is significantly reduced across a wide range of energies.

In contrast, the conductance of graphene with center-
bonded impurities is practically identical to that of the pristine
case, except for a very narrow energy range around the
resonance. This corroborates the preceding argument that
the center-bonded symmetry makes impurities with this type
of bonding hardly visible to the conduction electrons. The
narrow peak seen in the main panel of Fig. 4 is explained by
Eq. (9). While the quantity αC × βC approaches zero, as seen
in Fig. 2, it is possible to find a suitable Fermi energy that
leads to γC × � ≈ 1. When that happens the T -matrix TC in
Eq. (11) diverges, compensating the destructive interference
effects. However, this is practically accidental and calls for
some fine-tuning of the Fermi energy and/or of the impurity
resonance values, neither of which are very practical.

To make this point more explicitly, in the inset of Fig. 4
we have also shown �� plotted as a function of the impurity
on-site energy for a fixed EF . Once again, an extremely narrow
isolated peak suggests that the lack of transparency of center-
bonded impurities is not a robust feature but results from a
coincidental match of energies.

In fact, in a recent paper, Garcı́a and collaborators [28]
studied the Anderson localization driven by adatom disorder
in graphene. They find that despite the suppression of the
scattering cross section due to destructive interference in center
adsorbed impurities, the system undergoes an Anderson metal-
insulator transition but only for particular values of the doping
and the impurity resonance energy. Our results evidence that
such a transition requires a very precise parameter tuning.

Instead of considering single impurities, we now proceed
to studying how the conductance � changes as the impurity
concentration nimp increases, as shown in Fig. 5. Extensive
configurational averaging was carried out to obtain statistical
significance in our calculations. A very small percentage

FIG. 5. Conductance (in units of 2e2/h) as a function of the
impurity concentration nimp. Solid (dashed) line corresponds to the
case of top-bonded (center-bonded) impurities. EF = 0, τ = −2t ,
and εa = 0.3t . Inset shows the change in conductance ��, indicating
that the conductance actually decreases with increasing nimp, but
extremely slowly. All points were averaged over 1000 configurations.

(0.01%) of top-bonded impurities (dashed line) is sufficient
to reduce the conductance of a graphene ribbon to 50%
of its pristine value, whereas no reduction can be seen for
center-bonded scatterers (solid line). To perceive any reduction
in the case of center-bonded impurities, concentrations must
exceed the 5% mark and yet the reduction is orders of
magnitude smaller than that seen for the top-bonded symmetry
case. The inset shows the change in conductance for center-
bonded impurities and reductions are practically negligible,
confirming once again our ideas of impurity invisibility. When
searching for experimental signatures of the distinct responses
of top- and center-bonded impurities, the results of Fig. 5 are
the most evident.

IV. DISCUSSION AND CONCLUSIONS

Having demonstrated that the center-bonded symmetry
indeed gives rise to impurity transparency, it is worth now
discussing what repercussions this finding brings. For a start,
one may conclude that graphene can function as a good sensor
of substances whose contact to the underlying hexagonal
structure resembles that of top-bonded impurities. More
specifically, it should be sensitive to the presence of impurities
whose binding to the graphene sublattices is asymmetric, i.e.,
the effect that the impurity causes to the graphene sublattices
is different. As shown in Figs. 2, 4, and 5, the scattering caused
by top-bonded impurities is always the largest of all analyzed
cases (for the same hybridization matrix element). This in itself
is a valuable finding since it may offer a clear guideline in the
search for substances that graphene can detect instead of the
common ad hoc approach of trial and error.

Another consequence is that center-bonded impurities
are not ideal for generating chemical sensors since they
may be transparent. Nevertheless, they may be employed in
the construction of sensors of a different nature. Because
the impurity transparency results from a symmetry-driven
destructive interference in the scattering cross section, all one
needs to do to turn transparent objects into opaque scatterers
is to break the perfect bipartite symmetry of the system. This
can be easily achieved with uniaxial strain [36].

To illustrate this point, we evaluate the quantity |αC × βC |
under the action of uniaxial strain and plot it as a function
of the Fermi energy, shown by the dashed line in the main
panel of Fig. 6. For the sake of comparison, the solid line
depicts the corresponding values for the strain-free case, as
seen in Fig. 2. The inset shows the difference between the
strained and unstrained cases plotted as a function of the
uniaxial strain ε for three different values of Fermi energy.
Note that a small amount of strain is sufficient to destroy
the interference seen in the cross section of graphene doped
with center-bonded impurities. This is a different manifestation
of the underlying physics to the orbital symmetry discussion
presented in Ref. [27]. Without the destructive interference in
the scattering cross section the impurity transparency is lifted
and center-bonded dopants will act as strong scatterers just
like the top-bonded counterparts. This is the ideal mechanism
for sensitive strain sensors.

In summary, we have shown that the bonding symmetry of
impurities in graphene can tell whether they act as strong or
weak scatterers, regardless of their specificity. In particular,
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FIG. 6. |αC × βC | as a function of Fermi energy for center-
bonded impurities. Solid (dashed) line corresponds to the case of
unstrained (strained) impurities. Dashed line was obtained for a fixed
value of strain, ε = 0.2. Inset shows a log-scale plot of the difference
between the two curves of the main panel plotted as a function of
uniaxial strain for fixed values of Fermi energy. Solid line is for
EF = 0, dot-dashed line is for EF = 0.01t , and dashed line is for
EF = 0.05t .

impurities that are top-bonded to the underlying hexagonal
lattice are the most suitable for being chemically sensed by
graphene. In contrast, center-bonded impurities in graphene

are invisible to conduction electrons and unable to scatter
them. Nevertheless, any mechanism that breaks the perfect
hexagonal symmetry of center-bonded impurities will lift
this invisibility, causing a subsequent enhancement of the
resistivity in these materials. Mechanical strain is one obvious
mechanism, which suggests that graphene doped with center-
bonded impurities are ideal candidates for high-sensitivity
strain sensors. Finally, despite the simplicity of our model, it
is worth emphasizing the generality of our finding. Having
described the scattering of impurities through their self-
energies, our conclusions are not dependent on specific choices
of parameters but fundamentally dependent on symmetry
arguments. We argue that classifying dopants according to
their bonding symmetry leads to a more efficient way of
identifying strong and weak scatterers. Rather than trial and
error, our approach offers a major advance to establishing to
which substances graphene is a good sensor.

Note added. Recently, we learned of a work that obtains
somewhat similar results by studying the conductivity correc-
tions due to adsorbed impurities using the Kubo formula [37].
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