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Inverted pendulum state of a polariton Rabi oscillator
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Exciton-photon beats known as polariton Rabi oscillations in semiconductor microcavities are usually excited
by short pulses of light. We consider a different pumping scheme, assuming a cw pumping of the Rabi oscillator
from an exciton reservoir. We account for the initial pulse of light setting the phase, exciton decay due to
exciton-phonon and exciton-exciton scattering, photon leakage, and blueshift of the exciton resonance due to
interactions. We find nontrivial stationary solutions reminiscent of the Kapitza pendulum, where polaritons are
accumulated at the upper branch while the lower branch empties.
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I. INTRODUCTION

Light composite quasiparticles that occur due to strong
coupling of quantum well excitons with photons confined
in a semiconductor microcavity—exciton polaritons—have
shown the ability to display macroscopic quantum coherence,
including Bose-Einstein condensation [1,2], superfluidity
[3–6], and varieties of bosonic Josephson phenomena [7–13].
The underlying principle of the polariton physics is that of
Rabi oscillations, which are considered a signature of the
strong exciton-photon coupling regime in the microcavity.
From the point of view of classical optics they can be viewed
as the effect of interference of two coherent electromagnetic
waves emitted at different frequencies corresponding to the
lower (LP) and upper (UP) polariton branches. As a result,
the intensity of light emitted from the cavity oscillates with
a terahertz frequency corresponding to the splitting between
upper and lower polariton frequencies, which has been recently
observed with high precision [14]. It is important that also
the excitonic population in the system oscillates in time.
The excitonic oscillations having the same frequency but
opposite phase compared to photonic oscillations can be
measured independently, e.g., by the pump-probe Kerr rotation
technique [15].

As both excitons and cavity photons are bosons, polariton
Rabi oscillations may be considered as beats in a system of
two coupled harmonic oscillators. One of these oscillators
is essentially nonlinear: repulsive exciton-exciton interactions
result in the time-dependent blueshift of the exciton energy.
This blueshift contributes to the detuning between the exciton
and photon modes in microcavities.

Another important feature of the polariton system is its
driven and dissipative character. Due to the finite quality factor
of any realistic microcavity, cavity photons may tunnel through
the Bragg mirrors—as an advantage, allowing the condensate
properties to be accessed for measurement. Excitons, too, may

*nsvoronova@mephi.ru

escape from the coherent Rabi oscillator due to scattering with
acoustic phonons and other excitons. In an experiment, this
leakage of photons and excitons is compensated by pumping.
Resonant optical pumping of the system creates photons which
may be converted into excitons due to the Rabi oscillations.
In addition, a nonresonant optical pumping [1] or electrical
injection [16] is capable of creating an excitonic reservoir that
would pump excitons into the coherent Rabi oscillator.

It has been argued recently that stimulated exciton pump-
ing may bring the Rabi oscillator to a PT-symmetric state
characterized by permanent Rabi oscillations [17]. In this
work, we study the effect of exciton pumping further and
demonstrate that it may lead to the appearance of a nontrivial
stationary state, where the upper polariton branch is strongly
occupied with exciton-polaritons while the lower polariton
branch is essentially empty. This state is sustained despite the
strong leakage of excitons from the upper polariton branch
due to the acoustic phonon assisted scattering and exciton-
exciton scattering. We draw an analogy between this peculiar
solution of the nonlinear driven-dissipative Rabi problem and
classical Kapitza pendulum. We discuss the critical conditions
of excitation of this “inverted pendulum” state in realistic
microcavities.

II. GENERAL EQUATIONS AND THE
PENDULUM ANALOGY

It is convenient to describe the polariton Rabi oscillator in
the exciton-photon basis (see, e.g., [18]), adopting the complex
Ginzburg-Landau model of Ref. [19] for the spinless two-
component system with homogeneous pumping and decay.
It has been argued that a more complicated approach taking
into account the dynamics of the exciton reservoir [20] can
be effectively reduced when the reservoir mean-field potential
is negligible and the excitation spot size is larger than the
condensate size. Applicability of this model has been discussed
in Refs. [21,22].

We are interested in the temporal evolution of the system,
and will consider the homogeneous case when there is
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no external trapping potential and the pumping is spatially
uniform. Assuming zero wave vector, we therefore omit all
the spatial derivatives. Taking into account that the pumping
of polaritons is going through their excitonic component, and
the natural decay is governed by the photon leak out of the
cavity, this model reads in dimensionless form as follows:

i∂tψC =[
ε0
C − iκ

]
ψC + 1

2 ψX,

i∂tψX =[
ε0
X + g|ψX|2+ i(γ −�|ψX|2)

]
ψX + 1

2 ψC,
(1)

with ψC,X the complex order parameters of cavity photons
(C) and quantum well excitons (X), ε0

C,X the bottoms of their
dispersions, g > 0 the constant of exciton-exciton repulsive
interaction. The imaginary terms in the right-hand sides read
as follows: κ is the photon decay rate, and γ = γX − κX is
the effective linear gain rate of excitons, where γX and κX are
the phonon-assisted exciton scattering from the reservoir and
decay, respectively. �|ψX|2 represents the exciton losses due
to exciton-exciton scattering, and is usually referred to as gain
saturation [19]. All energies are rescaled in the units of ��R ,
lengths in the units of

√
�/mC�R , time in the units of �−1

R ,
and the wave functions in the units of

√
�/mC�R (�R is the

Rabi coupling strength between the photon and exciton modes,
and mC is the effective mass of cavity photon).

Using the Madelung form of the wave functions ψC,X(t) =√
nC,X(t) eiφC,X(t) and introducing the new variables, total pop-

ulation n(t) = nC(t) + nX(t), population imbalance ρ(t) =
nC(t) − nX(t), and relative phase φ(t) = φC(t) − φX(t), one
gets the set of motion equations

ṅ = (γ − κ)n − (γ + κ)ρ − �

2
(n − ρ)2, (2)

ρ̇ = −
√

n2 − ρ2 sin φ − (γ + κ)n + (γ − κ)ρ + �

2
(n− ρ)2,

(3)

φ̇ = −(
ε0
C − ε0

X

) + g(n − ρ)

2
+ ρ√

n2 − ρ2
cos φ. (4)

The evolution equations (2)–(4) allows one to understand
the effects of pumping and losses on the dynamics of the
two-component condensate using the analogy of a mechanical
pendulum. Its dynamics can then be visualized on a Bloch
sphere of the radius n, with coordinates x =

√
n2 − ρ2 cos φ,

y =
√

n2 − ρ2 sin φ, z = ρ, which length
√

x2 + y2 + z2 is
not conserved in the general case. To merge this picture with
the pendulum analogy, one would have to rotate the sphere
by π/2 so that the poles corresponding to the pure photonic
(north) and pure excitonic (south) states are located at the new
equator [see Fig. 1(a)]. Then the relative phase φ rotating along
the old equator coincides with the tilt angle of the pendulum.
Note that due to the positive sign chosen in front of the coupling
terms in Eqs. (1), the gravity of the pendulum acts towards the
state φ = π corresponding to the equilibrium condensate of
lower polaritons, and the state φ = 0 is at the new north pole
corresponding to the upper polariton condensate. Population
imbalance ρ is connected to the polar angle on the sphere as
ρ/n = cos θ . This representation matches with the one used
in Ref. [14].

FIG. 1. (a) Bloch sphere of the radius n rotated by π/2 and the
pendulum analogy for the problem. Azimuthal angle on the sphere (tilt
angle of the pendulum) corresponds to the relative phase φ changing
from 0 to 2π ; polar angle θ changing from 0 to π corresponds to
normalized population imbalance: cos θ = ρ/n. (b)–(c) Evolution
trajectories on the normalized Bloch sphere, both starting in the point
ρ(0) = 0.5n, φ(0) = π for κ = 0.1, γ = 0.4 = 4γ thr, g = 0.002.
(b) �/g = 1; the system relaxes towards the LP condensate, to the
point given by (15). (c) �/g = 0.8; the stabilization of the “inverted
pendulum” state on the UP branch. The focus point is given by (16).
All energies are in units of ��R = 5 meV.

III. ANALYSIS OF THE NONLINEAR DYNAMICS

A. Averaged evolution

In the case of no pumping and losses (κ,γ,� ≡ 0), Eq. (2)
immediately reduces to ṅ = 0, while the equations (3), (4)
acquire autonomous Hamiltonian form

ρ̇ = ∂H

∂φ
, φ̇ = −∂H

∂ρ
(5)

with conserved energy

H (φ,ρ) =
(

ε0
C − ε0

X − gn

2

)
ρ + gρ2

4
+

√
n2 − ρ2 cos φ.

(6)
The condensate density n is constant, and the influence of
interactions on the dynamics of bounded motion in this case is
negligible [13]. For zero detuning (ε0

C = ε0
X), the Hamilton

equations (5) can be expressed in terms of action-angle
coordinates:

J̇ = ∂H

∂θ
= 0, θ̇ = −∂H

∂J
= ω

with generalized conserved momenta

J ≡ 1

2π

∮
ρdφ = 2

π

φ∗∫
0

√
n2 − H 2

cos2 φ
dφ = n − |H |, (7)

where φ∗ = arccos(H/n). The angular variable θ which is
canonically conjugate to J is introduced as a polar angle in the
phase space (ρ,φ), defining the position of the system on the
orbit at a given moment of time. It is interesting to note that
frequency ω of this Hamilton system does not depend on the
amplitude, and equals ±1. As can be seen from (7), ω changes
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sign when the energy (6) crosses zero, which manifests itself
in change of the rotation direction.

The pair of conjugate variables ρ and φ can now be defined
in terms of (J,θ ):

ρ = ∓
√

J (2n − J ) sin θ, (8)

| cos φ| = n − J√
n2 − J (2n − J ) sin2 θ

. (9)

We use the expressions (8) and (9) for approximate
analytical investigation of the case when pump and dissipation
are present. The transition from the variables (n,ρ,φ) to
(n,J,θ ) in the evolution equations (2)–(4) allows us to separate
fast and slow motion: since the angle variable θ changes fast
while the variables n and J undergo slow evolution, it is
justified to average the evolution equations for ṅ(t) and J̇ (t)
over “fast time” (assuming ergodicity of the system, we replace
time averaging with averaging over θ ) [23], with the result

〈ṅ〉 = (γ − κ)n − �

2
n2 − �

4
J (2n − J ), (10)

〈J̇ 〉 = J

[
(γ − κ) − �

(
n − J

4

)]
. (11)

A phase portrait of the averaged evolution equa-
tions (10), (11) is presented in Fig. 2. One can see that there
are two sets of trajectories which are divided by the separatrix

FIG. 2. Integral trajectories of the averaged set of equa-
tions (10), (11) on the phase plane (n,J ) (solid lines: numerical
solutions; dashed lines: analytical solutions in the small-amplitude
limit). Fixed points: (a) unstable node, (b) saddle, (c) and (d)
stable nodes (see the text for more details). Thin dotted line marks
the separatrix J = n. Vertical dot-dashed line n = 4(γ − κ)/3�

shows the point for each trajectory when the population imbalance
oscillations start to decay while the trajectories move away from
the separatrix line. Inset shows numerical solutions ρ(t) and φ(t) in
the small-amplitude limit, for κ = 0.1, γ = 0.2 = 2γ thr, g = 0.002,
�/g = 1. All energies are given in units of ��R = 5 meV.

line J = n, with four fixed points as follows:

(a) (0,0) unstable node,

(b)
(

4
3

γ−κ

�
, 4

3
γ−κ

�

)
saddle,

(c)
(
2 γ−κ

�
,0

)
stable node,

(d)
(
2 γ−κ

�
,4 γ−κ

�

)
stable node.

(12)

The system sets on a trajectory defined by the initial conditions
ρ(0) and φ(0), and gets attracted to one of the nodes, (c) or
(d), which correspond to equilibrium LP and UP condensates,
respectively. As follows from (8), J = n corresponds to
the maximal possible amplitude of population imbalance
oscillations ρm = n, hence the closer the trajectory is to the
separatrix, the larger is the amplitude of oscillations. It is
worth noting that after the averaging, all terms containing the
interaction constant g in the initial set of equations disappear.
Therefore the Eqs. (10), (11) can be considered valid only
for the cases when interactions are negligible. To account for
interactions, one has to consider higher approximation of the
Krylov-Bogoliubov averaging method [23].

B. Simulation parameters

In our modeling presented below, we assume that at the
moment t = 0 the two-component condensate is formed by
a short pulse of light exciting both LP and UP branches,
setting the initial populations and phases, and will impose
for all our simulations n(0) = 1 (which in scaled units
corresponds to ∼1010 cm−2) and (ρ(0),φ(0)) on the lower
semisphere of Fig. 1(a). Initial value of the action variable J

can be defined from Eqs. (8) and (9), and it reads J (0) =
n(0) −

√
n2(0) − ρ2(0) cos S(0). Note that for the sake of

simplicity, we consider only the case of zero energy detuning
ε0
C − ε0

X = 0.
Before describing the different regimes of the dynamics, it

is convenient to approximately define the parameters’ values.
We take the interaction constant g = 0.002 (in scaled units,
0.015 meV μm2). Values of the decay rate κ in our simulations
vary from 0.02 to 0.1 (which corresponds to 0.1 to 0.5 meV).
This is consistent with the experiments to date reporting the
cavity photon linewidth at low excitation powers; see, e.g.,
Ref. [1]. The linear gain rate for excitons at threshold is equal
to γ thr = κ , so we use the values from just above threshold
up to 20 times the threshold pump power, 1 < γ/γ thr < 20.
Obviously, if γ < κ , the condensate density will decay to zero.
At last, the value of the saturation coefficient �, which is
most important as it brings the imaginary nonlinearity to the
system, is unclear. If � is too small, the condensate population
n grows (given γ > κ) until reaching the equilibrium value
n∞ = γ /� and the population imbalance ρ shifts to −n as all
photons leak out of the cavity and the system becomes filled
with excitons. If � is very high (larger than the interaction
constant g), i.e., the saturation is fast, the total population
tends to the equilibrium value n∞ = 2(γ − κ)/� while the
(normalized) population imbalance performs small-amplitude,
fast-decaying oscillations around gn∞/2. At further increase
of �, the dynamics does not change except for speeding-up of
the oscillations’ decay. As we indeed see in our simulations, the
ratio �/g is one of the values determining the type of dynamics.
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It has been argued [24,25] that the imaginary nonlinearity
�|ψX|2 in Eq. (1) should be 3 to 40 times smaller than the real
nonlinearity g|ψX|2. For the present discussion, we will use
the values in the range 0.025 < �/g < 1.

C. Small-amplitude oscillations

In the case when amplitude of oscillations is small during
the whole evolution time (which corresponds to integral
trajectories far from the separatrix in Fig. 2), the set of
equations (2)–(4) allows analytical solution. Imposing ρ 
 n

in (2) or, equivalently, J 
 n in (10), one gets

n(t) = γ − κ

�

[
1 + tanh

{
γ − κ

2
(t + t0)

}]
, (13)

where t0 = 2 arctanh[�n(0)/(γ − κ) − 1]/(γ − κ). At t →
∞, this solution gives the limiting value for the condensate
population, n∞ = 2(γ − κ)/�. Similarly, assuming J 
 n

in (11), one gets

J (t) = J (0)
cosh2[(γ − κ)t0/2]

cosh2[(γ − κ)(t + t0)/2]
. (14)

The analytical solutions for trajectories corresponding to the
small-amplitude limit are plotted in Fig. 2 as dashed lines.
Numerical solutions for ρ(t) and φ(t) in the small-amplitude
limit are shown in the inset of Fig. 2. A typical trajectory of
the pendulum on the Bloch sphere for this case is plotted in
Fig. 1(b) for γ = 4γ thr and �/g = 1. As explained below, the
trajectories starting from the basin of attraction of the lower
fixed point (which exists at large values of �/g) flow towards
the unstable limit cycle, and then relax towards the stable lower
focus which is located on the “photon” semisphere (ρ > 0,
φ > π ).

D. Fixed point coordinates and stability

Using the stable node coordinates ρ = 0, φ = π (see
Fig. 2) as a starting point of unaveraged evolution analysis,
we linearize Eqs. (3) and (4) in the region ρ/n 
 1 and
|φ − π | 
 1. In the adiabatic approximation, assuming n(t)
a known, slowly changing function given by (13), we get
damped-driven pendulum equations for ρ(t) and φ(t). From
those equations we extract the damping rates of population
imbalance βρ = 3(�n)/4 − (γ − κ) and relative phase βφ =
(γ − κ − �n/2)/(2 + gn) and the new approximate coordi-
nates of the lower focus:(

ρ

n

)LP

∞
� 1

1 + �
g(γ−κ)

, φLP
∞ � π + 2κ. (15)

It is worth noting that the damping of the oscillations is
density-dependent, which brings the analogy with the van der
Pol oscillator: as long as n < 4(γ − κ)/3�, the oscillations
of population imbalance are amplified, and they start to
decay only after n passes the saddle point shown in Fig. 2.
Oscillations of the relative phase are damped for all n < n∞ =
2(γ − κ)/�. Similarly linearizing the evolution equations
around the upper fixed point of the averaged dynamics, ρ = 0,

φ = 2πk (k ∈ Z), for the upper focus one has(
ρ

n

)UP

∞
� − 1

1 + �
g(γ−κ)

, φUP
∞ � 2πk − 2κ. (16)

As follows from these results, the regime of small-
amplitude damped oscillations can take place only if 2κ 
 1
and g(γ − κ)/� 
 1, i.e., at low decay rate, low pump pow-
ers, and relatively large saturation coefficients (comparable to
g). Given κ is small, if �/g is decreased at a fixed value of γ

or, alternatively, the gain rate γ is increased at fixed �/g, the
initial assumption ρ/n 
 1 becomes invalid. Note, however,
that for the case of no interactions (g = 0), for arbitrary values
of the parameters one has n → 2(γ − κ)/�, 〈ρ〉 = 0, and
〈S〉 = π + 2κ , even for large ρ(0) comparable to n(0) (then
the initial amplitude of oscillations is not small).

To obtain information about the stability of the fixed points,
we graphically determine the exact foci coordinates n∞, ρ∞,
and φ∞ by imposing ṅ = 0, ρ̇ = 0, and φ̇ = 0 for a steady state
at t → ∞ in the evolution equations (2)–(4). Each possible
evolution line ends at a point on the resulting surface ρ(n) in
the 3D space (n,ρ,φ):

(γ − κ)n − (γ + κ)ρ − �

2
(n − ρ)2 = 0. (17)

Intersection of this surface with the lines

±
√

n2 − ρ2

√
1 − g2

4

(n − ρ)2(n2 − ρ2)

ρ2

+ (γ + κ)n − (γ − κ)ρ + �

2
(n − ρ)2 = 0 (18)

gives the coordinates (n,ρ,φ) of the two equilibria of the
dynamical system. Linearizing the system in the vicinity of
the fixed points, one gets a cubic equation for the three
eigenvalues of the Jacobian matrix, which has one real root
λ1 < 0 and two complex conjugate roots λ2,3. If λ1 < 0 and
Re(λ2,3) < 0, then the focus in 3D space is stable (attracting
the trajectories), and if Re(λ2,3) > 0, the focus is unstable
(repulsing the trajectories). Changing the parameters and
defining the coordinates (n∞, ρ∞, φ∞) of the fixed points,
we look for the values of γ , κ , and �, at which the complex
eigenvalues cross the imaginary axis [i.e., Re(λ2,3) = 0]. For
all values of the parameters that we consider, we find that
the upper focus given approximately by (16) is always stable,
while for the lower focus (15) each pair (κ,γ ) reveals values
of � at which the equilibrium LP condensate state becomes
unstable.

E. Inverted pendulum state

If gain rate γ /γ thr is increased at fixed �/g, or, equivalently,
the saturation parameter � decreased at fixed γ , the condensate
population will grow and hence the interparticle interactions
strongly alter the dynamics.

As mentioned above, as long as density is small, damping
βρ is negative, and it reaches zero when n(t) passes the saddle
point on the averaged diagram (see Fig. 2). For unaveraged
trajectories in 3D phase space (n,ρ,φ) this point corresponds
to a saddle limit cycle. When trajectories approach this limit
cycle, 〈n〉 stays approximately constant, while on the phase
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FIG. 3. (a)–(c) Basin of attraction of the lower fixed point (red
circle) and projection of the saddle limit cycle (black dashed line)
for �/g as indicated on the panels and other parameters the same
as in Fig. 2. Initial values of (ρ,φ) that get attracted to the fixed
point (15) are colored gray; others which flow towards the limit cycle
and get attracted to the upper fixed point [see Fig. 4(c)] are white.
(d) Bifurcation diagram showing the regions of stability of the lower
fixed point and existence of the trajectories flowing towards the LP
condensate, for three values of decay rate κ as marked. Regions above
the lines correspond to the existence of points flowing towards the LP
condensate. For colored regions below the lines, any starting point
gets attracted to the upper focus.

plane (ρ,φ) the system is orbiting the same line without
damping, then gets repulsed from it to get finally attracted
to one of the stable equilibria. The projection of the limit
cycle on the plane (ρ,φ) and basin of attraction of the lower
fixed point are shown in Figs. 3(a)–3(c). As one can see, for
large values of � (in the units of g), there can be two regimes of
the dynamics depending on the starting point of the phase plane
(ρ,φ): if the trajectory starts from the basin of attraction, the
dynamics is that of relaxation oscillations shown in the inset of
Fig. 2 and Figs. 4(a) and 4(b); the system then relaxes towards
the equilibrium LP condensate (φ � π ). Contrary to this, if the
system is prepared in the initial state lying outside the basin
of attraction, the trajectory will flow towards the limit cycle,
and then through the series of large-amplitude oscillations
wind up towards the upper focus [see the simulation results in
Figs. 4(c) and 4(d)], which corresponds to the upper polariton
condensate (φ � 2πk, k ∈ Z). With the decrease of �, the
basin of attraction shrinks, and at some critical value of �,
the LP state becomes unstable, the limit cycle disappears,
and all trajectories get attracted to the UP state. The limit
cycle exists as long as there are points being attracted to
the lower equilibrium, and disappears in the moment when
it loses stability. For trajectory projections on the 2D phase
plane (ρ,φ), one then has a subcritical Hopf bifurcation in
which a small-amplitude limit cycle is branching from a fixed
point which changes the type of stability (for more details see,

FIG. 4. Numerical solutions of the evolution equations (2)–(4) for
κ = 0.1, γ = 0.2 = 2γ thr, and initial values ρ(0) = 0.35n, φ(0) =
π + 2κ . (a) Trajectory projection on the phase plane (ρ/n,φ) for
�/g = 1, and (b) corresponding evolutions ρ(t) (gray) and φ(t)
(blue). The red dashed line indicates the focus coordinate φLP

∞
given approximately by (15). (c) Phase-plane portrait projection for
�/g = 0.6 showing crowding of the trajectories in the area of the
limit cycle projection (black dashed line) and consequent stabilization
of the inverted pendulum state at φ � 4π − 2κ . (d) Corresponding
evolutions ρ(t) (gray) and φ(t) (blue). The red dashed lines show
φLP

∞ and φUP
∞ given by (15) and (16), respectively. (e) Total density n

against time for �/g = 1 and 0.6 as marked. When passing the saddle
limit cycle, n(t) oscillates with 〈n〉 ≈ 4(γ − κ)/3� [see the saddle
point (c) in Fig. 2]. Other parameters the same as used in Figs. 1
and 2.

e.g., Ref. [26]). The bifurcation diagram plotted in Fig. 3(d)
shows the parameters at which the system stabilizes in the UP
state regardless of the initial conditions.

In the pendulum analogy, the transition to the upper
equilibrium can be compared with the Kapitza pendulum
which stabilizes in the state upwards while gravity is acting
downwards [27]. The corresponding evolution on the sphere
(the trajectory of the pendulum) is presented in Fig. 1(c). How-
ever, for the Kapitza pendulum, the inverted state stabilizes due
to fast vibrations of the suspension point, while in our case the
oscillations are that of the pendulum length (the radius of the
Bloch sphere).
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FIG. 5. Relative phase φ against time for three values of �/g as
marked, for ρ(0) = 0.5n, φ(0) = π . Other parameters are the same
as in Figs. 1 and 2.

The case of relaxation oscillations discussed in the Sec. III C
is shown in Fig. 4 in comparison with the “inverted pendulum”
scenario. We fix the initial conditions ρ(0) = 0.35n, φ(0) =
π + 2κ , and pumping γ = 2γ thr, and change the nonlinear
loss rate �. While for the both cases the starting point lies
inside the limit cycle projection on the phase portrait (ρ,φ),
for �/g = 1 [see Figs. 4(a) and 4(b)] it belongs to the basin
of attraction of the lower focus, in contrast to the case of
�/g = 0.6 shown in Figs. 4(c) and 4(d) where the population
imbalance oscillations amplify up to their maximum amplitude
ρm = n. Note that when the amplitude is large, the analytical
damping rates found in the Sec. III D are no longer correct,
and the oscillations of the relative phase start to amplify
as well. When n(t) reaches its saddle point, it starts to
oscillate around 〈n〉 ≈ 4(γ − κ)/3� [see Fig. 4(e)], while the
trajectories on the phase plane (ρ,φ) get crowded around
the saddle limit cycle projection shown as the black dashed
line in Fig. 4(c). After leaving the limit cycle, the evolution
line relaxes fast towards the upper stable focus (16). The times
at which this stabilization occurs also depend on the ratio �/g

(see Fig. 5).
In Fig. 6, we increase the pumping γ = 4γ thr, and inves-

tigate again the system behavior for different values of the
ratio �/g at fixed initial conditions ρ(0) = 0.1n, φ(0) = π .
Qualitatively, the dynamical regimes are the same as for small
γ , although the dynamics is much faster, and the UP state
is much more shifted towards the exciton state, in agreement
with (16). However, in Fig. 6 we notice that with the decrease
of � and destabilization of the LP equilibrium, the transition to
the UP state happens without population imbalance amplitude
reaching its maximum possible value n. The smaller is �

compared to g, the smaller is the amplitude of oscillations
at which the transition to the upper focus happens. One could
understand this effect as follows. With higher pumping, the
population of the condensate increases, and the blueshift
value g|ψX|2 adds more to the (negative) detuning between
the photon and exciton modes. As we have shown in our
previous work [13] for a conservative system without gain
and dissipation, when the detuning increases, there can be two
regimes of internal oscillations: that of Rabi oscillations with
the relative phase oscillating around π (and trajectories on
the phase plane orbiting the fixed points), and the regime of

FIG. 6. Phase-plane portraits [projections of 3D trajectories on
the plane (ρ/n,φ)] for κ = 0.1, γ = 0.4 = 4γ thr, and �/g as
indicated on the panels. Initial conditions: ρ(0) = 0.1n, φ(0) = π .
Other parameters are the same as used in Figs. 1 and 2. The black
dashed line marks the projection of the saddle limit cycle where it
exists; the red circles indicate the fixed points. When the starting
point belongs to the basin of attraction of the lower equilibrium, after
reaching the limit cycle the trajectory winds up to the stable LP state
(see leftmost panel). Otherwise the system arrives at the “inverted
pendulum” (UP) state. Thin dotted lines in the central and rightmost
panels schematically mark the corridor of infinite motion (see the text
for more details).

unbound motion characterized by the running relative phase,
when the trajectory on the phase plane becomes reminiscent
of the ones shown in the central and rightmost panels of Fig. 6,
however infinite (not decaying towards the foci). Here, one
could say that the transition from oscillations around the lower
focus to oscillations around the upper focus happens via the
running phase regime. When the density increases (due to the
pump increase or the losses decrease), the effective detuning
grows, and the area of bounded motion (closed orbits) on the
phase plane (ρ,φ) reduces, while the corridor of infinite motion
(shown as thin dotted lines in Fig. 6) widens. Hence the smaller
amplitude of ρ is needed to get into this area and consequently
transit towards one of the attracting foci φ∞ = 2πk − 2κ

(k ∈ Z). The foci given by φ∞ = π (2k + 1) + 2κ (k ∈ Z) are
repulsive, as one can see in the rightmost panel of Fig. 6.
For more details and discussion of the regime of the running
relative phase please see Refs. [13,28].

IV. CONCLUDING REMARKS

In this work, we have demonstrated theoretically the
existence of an “unstable van der Pol” limit cycle and an
inverted stationary state of a polariton Rabi oscillator driven
by the cw pumping via the excitonic reservoir. The formation
of such an “inverted pendulum” state can be intuitively
understood as follows. In the C-X basis, we include the
pumping of the system from the reservoir in the equation for
ψX, which corresponds to feeding of the excitonic fraction
of polaritons. Since the UP state is more “exciton-like” (has
an increased exciton fraction compared to LP) due to the
blueshift, this kind of pumping favors the upper state, while
the “photon-like” LP state is getting depleted due to leakage of
photons from the cavity. This process is limited and stabilized
by the nonlinear exciton dissipation process. The dynamics
is then determined by the competition of real and imaginary
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nonlinearities in Eq. (1). When nonlinear exciton losses
�|ψX|2 are large enough compared to the blueshift g|ψX|2, the
system relaxes towards the LP condensate. If � is low, however,
the excitonic fraction of the polariton gas grows, which leads to
the accumulation of particles on the UP branch. The described
effects are essentially nonlinear: the stationary populations of
the UP and LP states are dependent on the dynamical balance
between exciton pumping and exciton-exciton scattering. It is
worth mentioning that the Kapitza pendulum-like effects were
also shown for atomic condensates in oscillating double-well
potentials [29]; however here they have a completely different
nature.

The problem considered here is strictly homogeneous.
When taking into account the spatial degree of freedom,
internal oscillations create density waves in space, similar to
the ones modeled numerically in Ref. [30]. The dispersion
law for these waves at sufficiently small momenta is expected
to coincide with the dispersion curve of the upper polaritons.
Correspondingly, for long-wavelength waves, locally, the phe-
nomena predicted in this paper should take place. Investigation
of short-wavelength waves of such type or the influence of
inhomogeneities caused by small pump spot size or disorder
is subject to a future study.

It has been argued recently that microcavity polaritons
present a solid-state quantum simulator platform [31]. Quan-
tum simulators can provide insights into complex physical
problems by mimicking their nature in a controlled setting.
Exciton polaritons enable one to define almost arbitrary lattice
structures in 2 and 1 dimensions, and in this open and
dissipative system excited state condensation can be readily
obtained [31–33]. In this work, we show that condensation
in an excited UP state is possible in a homogeneous two-
dimensional system, thanks to a specific pumping scheme
and the peculiar physics of polaritons, stemming from their
part-light part-matter nature. Our results therefore are widely
relevant for the interdisciplinary field of quantum simulations.
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Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).
[12] M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac,

L. Ferrier, I. Sagnes, E. Galopin, A. Lemaı̂tre, G. Malpuech, and
L. Bloch, Nat. Phys. 9, 275 (2013).

[13] N. S. Voronova, A. A. Elistratov, and Yu. E. Lozovik, Phys. Rev.
Lett. 115, 186402 (2015).

[14] L. Dominici, D. Colas, S. Donati, J. P. Restrepo Cuartas, M.
De Giorgi, D. Ballarini, G. Guirales, J. C. Lopez Carreno, A.

Bramati, G. Gigli, E. del Valle, F. P. Laussy, and D. Sanvitto,
Phys. Rev. Lett. 113, 226401 (2014).

[15] A. Brunetti, M. Vladimirova, D. Scalbert, M. Nawrocki, A.
V. Kavokin, I. A. Shelykh, and J. Bloch, Phys. Rev. B 74,
241101(R) (2006).

[16] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G.
Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.
D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A.
Forchel, Y. Yamamoto, and S. Höfling, Nature (London) 497,
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