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Extended Malus law with terahertz metallic metamaterials for sensitive detection
with giant tunable quality factor
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We study a polarizer-analyzer mounting for the terahertz regime with perfectly conducting metallic polarizers
made of a periodic subwavelength pattern. With a renewed Jones formalism, we analytically investigate the
influence of the multiple reflections, which occur between the polarizer and the analyzer, on the transmission
response. We demonstrate that this interaction leads to a modified transmission response: the extended Malus
law. In addition, we show that the transmission response can be controlled by the distance between the polarizer
and the analyzer. For particular setups, the mounting exhibits extremely sensitive transmission responses. This
interesting feature can be employed for high-precision sensing and characterization applications. We specifically
propose a general design for measuring the electro-optical response of materials in the terahertz domain allowing
detection of refractive index variations as small as 10−5.
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I. INTRODUCTION

Unusual light phenomena, such as extraordinary optical
transmission based on periodically pierced metallic films, can
be observed and engineered when using subwavelength pat-
terned materials also known as metamaterials [1–3]. Since the
advent of metamaterials, the enhanced optical transmission,
based on the excitation of guided mode inside subwavelength
apertures, has been extensively studied in our team [4–6].
Presently, metamaterials are used for polarization applica-
tions such as in anisotropic plates [7,8], and polarization
manipulation [9–11], with higher performances compared to
conventional components used in visible/IR spectral domain.
For the terahertz (THz) domain, natural materials do not
exhibit efficient dichroism. For these frequencies, it is well
known that linear polarizers are commonly obtained with
frequency selective surfaces or with metallic gratings. Some
papers demonstrated the polarizing properties of periodic
subwavelength apertures with the use of the well-known
Malus law [12–15]. Nevertheless, recent experimental results
are clearly in contradiction with the output transmission
predicted theoretically by this law when using subwavelength
patterned metallic polarizers [16,17]. One explanation for this
breakthrough involves the reflections between the plates [17].

In this paper, we report a theory of an extended Malus
law for the metallic polarizer-analyzer mounting (PAM). For a
specific configuration based on multiple reflections inside the
PAM, we propose a principle for new ultrasensitive sensors
with giant quality factors controlled by the angle between the
polarizer axes. Precisely, we study a PAM as illustrated in
Fig. 1, made of parallel metallic polarizers with biperiodic
subwavelength grating, where each periodic cell consists of a
single rectangular aperture. The angle between the polarizer
and the analyzer axes is denoted by θ. The periods along x

and y axes (at θ = 0◦) are identical and denoted by p. Each
rectangular aperture only supports the fundamental guided
mode TE01. The linear electric polarization at the output
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of a polarizer is thus defined along the rectangle width
axis for the working wavelengths chosen as λ > λc,TE01 . In
this case, λc,TE01 = 2ay > p (subwavelength approximation),
λc,TE01 being the cutoff wavelength of TE01. The higher-order
modes, with cutoff wavelength <p, are evanescent. For this
study, metal is assumed to be a perfect electric conductor at
THz frequencies.

The analytical expression of the extended Malus law
is deduced from a renewed Jones formalism for metallic
polarizers [18,19] based on a monomode modal method
[7,20–22]. We show that this extended Malus law is given by

Iout = �Eout · �E∗
out = Iin|α(θ,λ,L)|2 cos2 θ, (1)

where ∗ denotes the complex conjugate, Iout is the output
electric intensity, �Eout is the transmitted electric field,
Iin = �Ein · �E∗

in, is the electric intensity incident on the
polarizer. The modulation factor α is analytically expressed
in Sec. II. Nevertheless, we highlight its dependencies on
three main parameters which affect the resonance properties
of the studied PAM. First, the θ dependency causes the
substantial discrepancies with the well-known and classical
Malus law (electric intensity proportional to square cosine of
θ ). Besides, θ controls the quality factor of PAM resonances.
Second, the coefficient α is an Airy-type spectrally resonant
term (λ dependency) which ensures a perfect transmission at
polarizers resonances [18]. Third, we have specified in Eq. (1)
the dependency of α on the optical path L = nid, where ni is
the refractive index of the space between polarizer and analyzer
separated by a distance d (see Fig. 1). We will show that
this parameter L is linked to the multiple reflections between
polarizers and controls the sensitivity of PAM resonances.

In Sec. II, we present the theoretical formalism which
allows us to derive the extended Malus law given in Eq. (1).
To underline the influence of the multiple reflections inside
the PAM, we compare it with the one obtained with dichroic
polarizers. Afterwards, we numerically investigate the PAM’s
transmission response to highlight the properties of the
extended Malus law. Particularly, we show that high sensitivity
can be obtained. In Sec. III, we take benefits of this interesting
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FIG. 1. (a) 3D view of the polarizer-analyzer mounting (PAM)
where d is the distance between polarizer and analyzer, ni is the
refractive index of the space between the two metallic plates, t is the
plate thickness, and θ is the angular difference between polarizer and
analyzer axes. (b) 2D view of the considered subwavelength pattern
with p the biperiodicity, and ax and ay the rectangle’s width and
length, respectively.

property to propose a device combining a good sensitivity, a
tunable quality factor, and a high extinction ratio over a spectral
broad band.

II. TUNABLE TRANSMISSION RESPONSE OF A
METALLIC POLARIZER-ANALYZER MOUNTING

A. Theoretical framework

Our model is based on a monomode modal method
[7,20–22] which considers that, only the fundamental guided
mode of the rectangular apertures is excited and it propagates
along the metal film thickness. It has to be noted that the
formalism is also applicable to other common two-dimensional
(2D) shapes such as split-ring resonators [23] and annular
apertures [24], and also one-dimensional (1D) shapes such as
wire grids [25]. The light passes through the PAM along the
z direction. We assume that working wavelengths are higher
than the first Rayleigh wavelength. This means that only the 0th
diffracted order in Fourier-Rayleigh expansions is propagative
in homogeneous regions inside and outside the PAM. We
consider a far-field approximation, where the evanescent
waves are not taken into account in the spatial description
of the electromagnetic fields. In other words, Fourier-Rayleigh
expansions are reduced to the single propagative 0th diffracted
order. This last assumption is verified especially for L > λ/2.
However, evanescent diffracted orders are taken into account
for the computation of the transmission and reflection Jones
matrices J

T,R
k of the kth polarizer (k ∈ {1,2}). It can be

expressed as follows [18]:

J
T,R
k = αT,R(λ)Jk − ξT,RId, (2)

where Id is the identity matrix, ξT = 0, and ξR = 1. The
terms αT,R(λ) are Fabry-Perot–type spectral resonant trans-
mission/reflection complex coefficients for the kth polarizer
[18]. For the whole study, the optogeometrical parameters
are identical for both polarizers and they differ by their
orientation only. Hence, the resonant terms αT,R are identical
for the polarizer and the analyzer. J1 and J2 are conventional
transmission Jones matrices. J1 being that of a linear polarizer
oriented along the x axis, and J2 being that of the analyzer

which is rotated from the x axis by an angle θ . J
T,R
k identifies

to the propagative 0th diffracted order 2×2 subblocks of the
full scattering matrix for each polarizer. Hence, the scattering
propagation algorithm [26] is used to analytically compute the
transmission Jones matrix of the PAM J T

PAM. After extensive
calculations, we obtain

J T
PAM = α(θ,λ,L)J2J1. (3)

We focus on the transmitted output intensity. Then, the
expression of the reflection Jones matrix of the PAM is not
given in this paper. The extended Malus law given in Eq. (1)
is directly derived from Eq. (3), where the term α is expressed
as

α(θ,λ,L) = α2
T (λ)u

γ − u2[1 − αR(λ)]2 (4)

with

γ = 1 − u2
[
1 − α2

R(λ) sin2 θ
]

1 − u2
, (5)

where u = exp(ik0L), is the propagation term between the
polarizer and the analyzer, with k0 = 2π/λ. It is important to
notice that in our study, the extended Malus law is evaluated at
spectral resonances of α (maxima of |α|). The θ dependency
of α clearly appears in the expression of γ with sin2 θ in
Eq. (5). This term is multiplied by α2

R(λ), which implies that
the multiple reflections occurring between the two polarizers
are directly linked to the transmission response and provoke
the important discrepancies with the classical Malus law.
Moreover, the term u2 in the numerator of γ means that the
optical path L controls the influence of the multiple reflections
on the extended Malus law variation.

It has to be noted that a device with similar polariza-
tion properties called Malus Fabry-Perot interferometer was
theoretically investigated in 1999 by Vallet et al. [27]. This
device consisted of a Fabry-Perot interferometer inside a
PAM (without spectral resonances of polarizing plates) made
of crossed polarization beam splitters. The two mirrors of
that device produce similar multiple reflections to the ones
generated by the metallic polarizers in our structure. However,
the behaviors of these two kinds of polarizing resonators
are different. For the Malus Fabry-Perot interferometer [27],
the Fabry-Perot resonances and polarization effects are in-
dependent. For our structure, the metallic plates play the
role of both polarizers and mirrors. At resonance, only the
waves polarized along the rectangle’s length axis are reflected
inside the PAM. The Fabry-Perot–type resonances between
polarizers and polarization effects are closely linked, and this
is exploited to perform the efficient application proposed in
Sec. III.

Our formalism also allows us to compute the classical
Malus law obtained with dichroic polarizing plates. We first
give the general expression of the reflection Jones matrix of
the kth polarizer oriented along the x axis:

JR
k =

(
αR − 1 0

0 β

)
, (6)

where β is the reflection coefficient of one polarizer along
the rectangle length axis, calculated in accordance with
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the absorption along this axis only. For metallic polarizers,
β = −1 (no absorption), Eq. (6) is identical to Eq. (2) for
k = 1. For dichroic polarizer, β = 0 (total absorption along the
rectangle length axis) which means that the multiple reflections
in the PAM are reduced to the ones oriented along the rectangle
width axis (term αR − 1 in JR

k ). These reflections are weak for
most of the natural dichroic plates. This leads to the expression
αd for α of Eq. (1) in the case of the classical Malus law, when
the multiple reflections are not neglected (β = 0 and αR ≈ 1
with αR �= 1):

αd (θ,λ,L) = α2
T (λ)u

1 − u2[1 − αR(λ)]2 cos2 θ
−→
αR→1

α2
T (λ)u.

(7)

This equation highlights the discrepancies between the
factor αd found for commonly used dichroic polarizers and
the modulation factor α previously obtained for metallic
polarizer [Eqs. (4) and (5)]. We see that αd is dependent
on θ , but the factor u2[1 − αR(λ)]2 relating to the multiple
reflections may be neglected for the special case of highly
absorbing dichroic polarizers (αR → 1). On the contrary,
the term u2[1 − α2

R(λ) sin2 θ ] cannot be neglected in Eq. (5)
for the case of metallic polarizers. Indeed, we know that
αR ≈ 1 when |αT | = 1 due to the energy balance criterion:
|α2

T − (αR − 1)2| = 1 (see Fig. 3 in [18]). Consequently and
contrary to the extended Malus law for metallic polarizers,
we can assume that αd is independent of θ , as it is well
known for dichroic polarizers. The extended Malus law takes
the form of the classical one which corresponds to the single
pass propagation through the PAM as shown in Eq. (7).

B. Numerical results

We propose a numerical investigation of the PAM’s trans-
mission depicted in Fig. 1. We focus on the influence of the
optical path L. The rectangles of the polarizer and the analyzer
are identical and its dimensions are given by ay/p = 0.9
and ax/p = 0.45. These values are chosen such that the
radiative losses of the apertures are maximized (broadband
transmission). Besides, the ax/p value is set to ensure that
only the fundamental mode can propagate in apertures at
wavelengths located above the Rayleigh anomaly (monomode
regime). In other words, the cutoff wavelength of the second
cavity mode is smaller than the first Rayleigh wavelength. The
thickness of the polarizer and the analyzer is set to t/p = 1. In
this section, we consider that the apertures and homogeneous
regions are filled with air. For all the results, we compute the
normalized transmission coefficient: Iout/Iin.

We first calculate the transmitted electric intensity spectrum
as a function of the distance L/p for θ = 0◦ (Iout = |α|2) as
shown in Fig. 2, in order to reveal the spectral resonances
of α supported by the whole structure. The resonance at
λ/p = 1.434 (blue vertical line) corresponds to the first
harmonic of the Fabry-Perot resonance (FPA) of the funda-
mental mode guided inside the rectangular apertures along the
metal thickness. The resonance at λ/p = 1.69 (red vertical
line) corresponds to the cut-off of the same mode (CO).
Both resonances correspond to the transmission resonances
of one metallic polarizer: |αT (λ)| = 1. The different oblique

FIG. 2. Normalized transmitted electric intensity spectra of
the PAM versus L/p for θ = 0◦. The parameters are ax/p =
0.45, ay/p = 0.9, and t/p = 1.0. Vertical lines show resonances of
|α| (Iout = 1). The resonance at λ/p = 1.434 is related to the first
harmonic of the Fabry-Perot resonance of the fundamental mode
guided inside the rectangular apertures (FPA). The other resonance
at λ/p = 1.69 corresponds to the cutoff of the same mode (CO).
The FPPAM branches (oblique dashed lines) denotes Fabry-Perot
interferences located between the polarizer and the analyzer.

branches (FPPAM in oblique dashed line) are the Fabry-Perot
resonances resulting from the multiple reflections between
the two polarizers. The FPA and CO resonances ensure a
total transmission for any value of L/p. Then, we restrict our
analysis to the transmission at FPA and CO resonances related
to each polarizer.

Figure 3(a) shows the transmission spectra as a function
of θ for L/p = 1. It reveals that resonance wavelength values
are affected by the variation of θ (dashed lines). Figure 3(b)
shows the transmission at the resonance wavelengths plotted
as solid lines in Fig. 3(a), for θ = 0◦. It is compared with
the classical Malus law (dashed black line) for which the
half-width half-maximum (HWHM) is equal to π/4. The
observed discrepancies confirm the important contribution of
the multiple reflections between the polarizer and the analyzer.
The results obtained with our analytical model are in good
agreement with results obtained with homemade FDTD code
[4]. The FDTD simulations were done with a uniform spatial
mesh of p/200 along the x, y, and z axes, and a temporal
resolution respecting the stability criterion.

In Fig. 4(a), we choose λ/p = 1.434 (FPA resonance) and
we plot the transmission as a function of θ and L/p. As
mentioned in Sec. II A, the optical path L/p is an important
parameter that will allow us to tune the PAM transmission. We
distinguish two contrasting cases:

(1) When u2 = 1 which is equivalent to L = mλ/2 where
m is a natural integer, we observe an infinitely narrow angle
Malus law where HWHM 	 π/4. Precisely, the transmitted
electric intensity drops to 0 for this particular value of L/p

when θ �= 0◦. Indeed, this is explained by the fact that the term
γ in Eq. (5) diverges when θ �= 0◦. For θ = 0◦, we clearly see
that γ = 1. This implies that α = α2

T (λ)/α2
R(λ) approximately

equals to 1 at maxima of αT (Iout ≈ 1). For clarity, the Malus
law is shown in Fig. 4(b) for L/p = 1.435 (green line) and
not exactly at L/p = 1.434 (u2 = 1 for m = 2) for which the
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FIG. 3. (a) Normalized transmission spectra versus θ for L/p = 1 (see Fig. 2 for other parameters). The curved dashed lines represent the
trajectories of the resonance of α (|α| = 1). (b) Normalized transmission computed for fixed values of λ/p [blue and red vertical solid lines in
(a)] and compared with the classical one (dashed black line).

transmission results in a Kronecker function:

α(θ ) = δθ,0. (8)

(2) When u2 = −1, which is equivalent to L = λ/4 +
m′λ/2 where m′ is a natural integer, we observe broad angle
Malus law. The transmitted electric intensity remains high for a
wide range of θ . The transmission as a function of θ is shown in
Fig. 4(b) (purple line) for L/p = 1.793 (u2 = −1 for m′ = 2).
Such a transmission can be seen as a complementary Airy-type
function (HWHM > π/4) with a unity value plateau for small
θ . The following equation gives the simple expression of α

for the purple line in Fig. 4(b), assuming that αR = 1 (the
computed value being exactly equal to 1.0077 + i0.1307):

α(θ,λ) = i(−1)m
′ α2

T (λ)

1 − 1
2 sin2 θ

. (9)

Consequently, both narrow and broad angle Malus law can
be achieved by tuning L.

III. APPLICATION TO DESIGN ULTRASENSISTIVE
THZ DETECTORS WITH GIANT AND TUNABLE Q

Taking advantage of an infinitely narrow angle Malus law
shown in the previous section for particular values of L, we

present the principle of a spectrally sensitive system in the THz
domain with a tunable quality factor. Such a system can be used
for many applications, like for temperature or pressure sensors,
or characterization of an electro-optical (EO) material. We now
assume that the region sandwiched between the polarizers
with θ �= 0◦ is filled with an isotropic, homogeneous, and
transparent EO material [see Fig. 5(b)]. It is interesting to
remark that the two metallic polarizers also play the role
of electrodes allowing to tune the refractive index ni(V ) of
the EO material. For this study, the value of the distance d,
corresponding to the EO material’s thickness is fixed, so that
L varies only with its refractive index ni . The dimensions are
p = 200 μm, ax = 90 μm, ay = 180 μm, t = 200 μm, and
d = 200 μm.

Figure 5(a) shows the transmitted electric intensity spec-
trum vary with ni . Contrary to the intensity spectra plotted in
Fig. 2 where θ = 0◦, oblique and very narrow dark branches
appear in transmission bands when θ �= 0◦. They correspond to
transmission dips satisfying ni = mλ/(2d) (u2 = 1). In order
to match the refractive index range for most of the materials in
the THz domain (ni approximately between 3 and 4 [28]), we
consider the branch m = 4. We also observe that the device
can be adapted to any range of refractive index values by
considering the appropriate value of m. The sensitivity S,

FIG. 4. (a) Normalized transmitted intensity versus L/p and θ for λ/p = 1.434 (see Fig. 2 for other parameters). (b) Normalized
transmission computed for fixed values of L/p [green and purple vertical dashed lines in (a)] by comparison with the classical one (dashed
black line).

045407-4



EXTENDED MALUS LAW WITH TERAHERTZ METALLIC . . . PHYSICAL REVIEW B 94, 045407 (2016)

FIG. 5. (a) Normalized transmitted intensity spectrum vs the refractive index ni , for θ = 10◦. The parameters are p = 100 μm,

ax = 45 μm, ay = 90 μm, t = 100 μm, and d = 100 μm. The dark branches correspond to narrow transmission dips when L = mλ/2. (b)
Scheme of the general principle to characterize electro-optical material responses. P: polarizer (first electrode), A: analyzer (second electrode),
V: applied dc voltage, d: EO material thickness, and ni (V ): refractive index of the electro-optical sample. (c) Normalized transmission dips for
different values of θ in degrees, at ni = 3.38. (d) Quality factor Q as a function of θ at ni = 3.38.

associated to the dark branches in our case, is

S = 
λ


ni

= 2d

m
, ∀ θ �= 0◦. (10)

For m = 4, we have S = 100 μm/refractive index unit (RIU).
We point out that it is possible to improve the sensitivity by
increasing the thickness d (tradeoff between the compactness
and the sensitivity).

Figure 5(c) shows the intensity spectra for λ close to
338 μm (λ/p = 1.69) for different values of θ at ni = 3.38,
which is close to the gallium phosphide (GaP) refractive index
in the THz domain (ni � nGaP = 3.34, see [28]). The dips
have high extinction ratios in transmission bands, and the
sensitivity is not affected by θ . However, the quality factor Q,
or in other words, the width of the transmission dips, can be
controlled by adjusting θ , in accordance with results presented
in Fig. 4. Figure 5(d) shows the variation of the quality factor
Q as a function of θ (for ni = 3.38 at λ = 338 μm). The
quality factor theoretically diverges when θ tends to 0◦, and
the linearity of the curve allows us to write

Q = mA

θB
, ∀ θ �= 0◦, (11)

where A and B are two empirical and positive parameters, and
θ is expressed in degree. From Fig. 5(d), we deduce B = 2,
and A = 1.25×104 degrees2, for m = 4.

Finally, we are interested in finding a suitable value of
θ to obtain a quality factor matching the resolution of THz
spectrometers under the Rayleigh criterion. Hence, we deduce
the minimum variation of the refractive index (
ni)min which
can be detected by the device. Heterodyne detectors in THz
domain offer spectral resolution [29] (R = 
λ/λ) equal to
3.3×10−6. Thus, according to Eq. (11), to reach Q = 1/R =
3×105, θ must be equal to 0.4◦ at ni = 3.38 and λ = 338 μm.
With such a quality factor, we derive from Eq. (10) that
(
ni)min = λ/(S.Q) = 1.1×10−5.

Consequently, we have designed a very efficient system
for THz applications (S = 100 μm/RIU, Q = 3.105). Ranjan
Singh et al. [30] have experimentally proposed a metasurface

reaching S = 57 μm/RIU and Q = 28. We have to keep in
mind that our numerical results are obtained from a theory
which assumes rigorously identical apertures and infinite
periodicity of the metallic polarizers, in addition to a perfect
parallelism between the polarizer and the analyzer. We also
assume an isotropic and lossless EO material. Breaking these
assumptions may affect the performances of the proposed
system.

IV. CONCLUSION

In summary, we have given an analytical formalism of an
extended Malus law with metallic polarizers for the terahertz
regime. Our theoretical investigation highlights the important
discrepancies with the classical Malus law. This is due to
the θ dependency of the modulation factor as well as the
multiple reflections inside the PAM which are tunable through
the optical path L. Indeed, for specific values of L one can
obtain broad angle or narrow angle Malus law. Then, we
designed a structure with high sensitivity and high-quality
factor for characterizing the EO response of terahertz EO
material based on an extremely narrow angle Malus law.
This analytical model of a two-layer stack of subwavelength
structures provide new theoretical insights into the interactions
between polarizing metamaterials. This simple structure can
be seen as the basic component for multilayered and more
complex structures. In future works, we will use our analytical
model as a platform to propose other applications such as
high-efficiency polarization conversion, high-Q filtering, and
ultrasensitive polarimetry.
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APPENDIX A: JONES MATRICES FOR
THE METALLIC POLARIZERS

From the monomode modal method [22], we extract the
2×2 subblocks for the 0th diffracted order of the scattering
matrix of a metallic polarizer. This reduced matrix, denoted
by S, is expressed as

S =
(

J T JR

JR J T

)
with J T,R

= fT,R

(
g̃0,x g̃

∗
0,x g̃0,x g̃

∗
0,y

g̃0,y g̃
∗
0,x g̃0,y g̃

∗
0,y

)
− ξT,R

(
1 0

0 1

)
, (A1)

where J T and JR are the Jones matrices for the transmission
and reflection, respectively. The terms fT,R are Airy-type
spectral resonant factors in transmission and reflection [18].
ξT = 0 and ξR = 1. The coefficients g̃0,x and g̃0,y are the
overlap integral between the fundamental cavity mode T E01

and the 0th order Floquet modes, polarized along x and y

axis, respectively. For a normal incidence and for rectangular
apertures, their expressions are given by

g̃0,x = 2

π

√
2axay

dxdy

cos θ and g̃0,y = 2

π

√
2axay

dxdy

sin θ.

(A2)
Substituting Eq. (A2) in (A1) leads to Eq. (2) where αT,R are
expressed as

αT,R = fT,R

∣∣∣∣∣ 2

π

√
2axay

dxdy

∣∣∣∣∣
2

. (A3)

APPENDIX B: EXTENDED MALUS
LAW DEMONSTRATION

In this appendix, we give the main steps to derive the
analytical expressions of the extended Malus law given by
Eq. (1), from the ones of the Jones matrices for metallic
polarizer and analyzer given by Eq. (2). The PAM is seen
as a three-layer system. The first and the third layers are the
polarizer and the analyzer, respectively. The reduced S matrix
for each polarizer is expressed as

Sk =
(

J T
k JR

k

JR
k J T

k

)
, k ∈ {1,2}. (B1)

The matrices J
T,R
k are given by Eq. (2). The second layer cor-

responds to the homogeneous region between both polarizers.
Its reduced S matrix is given by

Shom =
(

Jhom 0

0 Jhom

)
with Jhom =

(
u 0

0 u

)
, (B2)

where u = exp(ik0L), is the propagation term between polar-
izers.

The theoretical approach consists in applying the scattering
matrix propagation algorithm [26] (S algorithm) on the
reduced S matrices twice. The operator related to the S

algorithm is denoted as ⊗. The first iteration of S algorithm is

S ′ = S1 ⊗ Shom =
(

uJ T
1 u2JR

1

JR
1 uJ T

1

)
, (B3)

where S ′ is the S matrix of the system composed of the
polarizer and the homogeneous region. Then, the reduced
scattering matrix of the PAM, SPAM, is obtained by the second
iteration of the S algorithm applied on S ′ and S2:

SPAM = S ′ ⊗ S2 =
(

J T
PAM JR

PAM

JR
PAM J T

PAM

)
, (B4)

where J
T,R
PAM are transmission and reflection Jones matrix of the

PAM. The expression of JR
PAM is not given in this paper since

it is not useful to express the extended Malus law. The matrix
J T

PAM is

J T
PAM = uJ T

2

[
Id − u2JR

1 JR
2

]−1
J T

1 , (B5)

where the inversion of Id − u2JR
1 JR

2 , after substituting expres-
sion of JR

1 and JR
2 given by (2), is[

Id − u2JR
1 JR

2

]−1

= 1

D

(
1−u2(1−αR sin2 θ ) −u2(1−αR)αR cos θ sin θ

−u2αR cos θ sin θ 1−u2(1−αR)(1−αR cos2 θ )

)

(B6)

with

D = 1 + u2(u2 − 1)(1 − αR)
(
α2

R sin2 θ − 1
)
. (B7)

Substituting Eqs. (B6) and (B7) in (B5) leads to Eq. (3).
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