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Microscopic dielectric permittivities of graphene nanoribbons and graphene
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We derive a microscopic Poisson equation using the density-density response function. This equation is valid
for any realistic potential perturbation and permits the study of dielectric response in nanostructures, especially in
one-dimensional nanostructures and quantum dots. We apply this equation to simulate a nanoscale parallel-plate
capacitor (nanocapacitor) with graphene as dielectric and two nanocapacitors with a graphene nanoribbon (GNR)
as dielectric. The density-density response function is calculated using first-order perturbation theory and
empirical pseudopotentials. From the microscopic electric field of the graphene nanocapacitor, we calculate
the out-of-plane microscopic dielectric constant of graphene and from the electric field of GNR nanocapacitors,
we calculate the full microscopic dielectric tensor of several GNRs with different widths. We find that the
out-of-plane microscopic dielectric constants of GNRs and graphene do not depend on their energy band gap.
We also study the effect of a surrounding dielectric on the dielectric permittivity of graphene and we conclude
that the surrounding dielectric barely affects the dielectric permittivity of graphene.
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I. INTRODUCTION

The dielectric properties of low-dimensional nanostructures
have attracted a broad scientific interest because of their
crucial importance in determining the optical conductivity
and transmittance of nanophotonic devices and electron
transport properties of nanoelectronic transistors [1–14]. Both
macroscopic and microscopic studies of the dielectric response
of perturbed nanosystems have been performed and several
methods have been developed [1–12]. The application of
a uniform external electric field as the perturbation has
been frequently used to calculate the atomic-scale dielectric
permittivity of two-dimensional (2D) layered structures [1–4]
and to compute the macroscopic transverse susceptibility
tensor of one-dimensional (1D) carbon nanotubes [8,9,15].
A δ-like and a truncated Coulomb-like potential perturbations
have been applied to study zero-dimensional (0D) quantum
dots [5] and a core-shell charge perturbation was applied
to study silicon spherical crystallites [1]. To study both the
macroscopic and the microscopic dielectric response of bulk
materials, Resta and Kunc [6,7] have proposed a periodically
repeated capacitor subject to the potential perturbation of
a constant field. A vanishing internal electric field with
applying external dipole layer (i.e., “short-circuit” electrical
boundary conditions) was applied in an ab initio study of
ferroelectric thin-film perovskite compounds polarization [12].
An alternative way to study dielectric properties consists in
calculating the dielectric matrix ε−1

GG′(q) through first-order
perturbation theory and then determining the macroscopic
dielectric constant or tensor from the matrix [13,14].

However, the use of the approaches mentioned above to
calculate the microscopic dielectric tensor of 1D and 0D
nanomaterials has not been reported, to the best of our
knowledge. One particular instance showing the importance
of the microscopic dielectric tensor of low-dimensional nanos-
tructures is its appearance in the Poisson equation that must be
solved self-consistently in atomistic quantum-transport studies
[16–23]. Several authors [20–23] have simulated quantum
electron transport in graphene nanoribbon (GNR) field-effect
transistors atomistically by solving the Schrödinger equation

and the “ordinary” Poisson equation ∇ · [ε(r)∇ϕtot(r)] =
−ρext(r), self-consistently, where ε(r) is the dielectric constant
of the channel material or the surrounding oxide, ϕtot(r) is the
total potential, and ρext(r) is free charge density. However,
the Poisson equation was solved in a macroscopically crude
way, either arbitrarily assuming a uniform dielectric constant
throughout the entire device [18,20], or assuming one dielec-
tric constant for the channel material and another for the oxide
while defining the interface as “straight ε-discontinuity lines,”
lines arbitrarily drawn among atoms (“box assumption”)
[21–23]. Thus, the physical dielectric response is not properly
accounted for in these simulations. The aforementioned
atomic-scale dielectric permittivity of 2D layered structures
[1–4] may provide some guidance to determine the thickness
of an assumed uniform dielectric for 2D materials and validate
the box assumption. Nevertheless, atomistic dielectric permit-
tivities for 1D and 0D structures are currently not available.

Methodologically, the idea of applying a uniform exter-
nal electric field to study the dielectric response of low-
dimensional nanostructures is questionable for two reasons.
First, when using a plane-wave basis, the periodic boundary
conditions of the supercell approach introduce an artificial per-
turbation from image dipoles (“supercell artifact”) [9,12,24].
Dipole corrections [25], the application of a large vacuum
region in the supercell [9,26] and/or a truncated Coulomb
kernel [27], are the typical methods used in density-functional
theory and GW calculations that aim at minimizing/removing
the image interactions and the artificial electric field. The
second reason originates from the physical fact that the
displacement field is nonuniform in an inhomogeneous system
composed of 1D or 0D nanomaterials and the surrounding
dielectric. Therefore, the approach used for bulk materials
and 2D materials cannot be directly extended to 1D and 0D
nanostructures [5,8–11].

In this paper we derive a microscopic Poisson equation
based on the density-density response function [28,29] and
study the static dielectric properties of armchair-edge GNRs
(aGNRs). We introduce nanoscale parallel-plate capacitors
(nanocapacitors) with aGNR dielectrics. We apply physi-
cally realistic boundary conditions by imposing a voltage
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bias between capacitor plates. This results in a nonuniform
electric-field perturbation in the nanosystems. By solving the
microscopic Poisson equation for two nanocapacitors with
their plates along different orientations with respect to the
aGNR surface, we are able to calculate the full microscopic
dielectric tensor. Next, we also compute the microscopic
dielectric constant of graphene and compare it with the dielec-
tric constant of several aGNRs. We find that the out-of-plane
microscopic dielectric constants of aGNRs and graphene do
not show a band-gap dependence. Finally, we study the effect
of hexagonal boron nitride (hBN) on the dielectric constant of
graphene and find that the presence of hBN barely affects the
permittivity of graphene. In our methodology, the supercell
artifact is avoided since the density-density response function
decays exponentially with the spatial decay of the valence
electron density. By employing empirical pseudopotentials and
supercells with suitable sizes, we are able to reduce the size of
the plane-wave basis and the associated computational burden.

The paper is organized as follows. Section II introduces
the density-density response function and proceeds with the
derivation of the microscopic Poisson equation. We present
the microscopic dielectric tensor of an aGNR in Sec. III A,

the ribbon-width dependence of the dielectric constant in
Sec. III B, and the out-of-plane microscopic dielectric constant
of graphene in Sec. III C. We study the effect of hBN on
graphene in Sec. III D. We conclude the paper in Sec. IV.

II. COMPUTATIONAL METHODS

A. Density-density response function

In static linear response theory [14,28,29], the density-
density response function χ (r,r′) describes the change of the
charge density δn at position r if the external potential δvext un-
dergoes a small change at r′ so that χ (r,r′) = δn(r)/δvext(r′).
For our study, we start by calculating the independent-particle
density-density response function χ0(r,r′). To illustrate this
quantity, we use a 7-aGNR, which is the smallest ribbon
fabricated up to date [30,31], as an example. We choose a
supercell size of 1.72 nm × 0.85 nm and calculate the band
structure of the ribbon using empirical pseudopotentials [32].
We use an energy cutoff of 10 Ry, resulting in 2237 plane
waves in the basis set. Applying first-order perturbation the-
ory [14,33,34], the static independent-particle polarizability
matrix is calculated as

χ0
GG′(q) = 4

�

∑
c,v,k

〈v,k|e−i(q+G)·r|c,k + q〉〈c,k + q|ei(q+G′)·r′ |v,k〉
Ev

k − Ec
k+q

(1)

using the eigenvalues En
k (n = c,v) and eigenfunctions |n,k〉

obtained from the calculation of the band structure. In Eq. (1),
G and G′ are reciprocal lattice vectors, q and k are the
vectors within the first Brillouin zone, and � denotes the
crystal volume. Since vacuum separates the aGNRs along
the width direction x and the direction perpendicular to the
surface y, χ0

GG′(q) does not depend on qx or qy . Along the
periodic direction of the ribbon z we choose to deal only
with long-wavelength perturbing electric fields (i.e., qz → 0).
The “head,” “wing,” and “body” elements of the polarizability
matrix when qz → 0 are calculated following Ref. [14]. We
sum over all of the 30 valence bands and over 800 conduction
bands [35]. The first Brillouin zone is discretized with 20 kz

points along z.
We obtain χ0(r,r′) by transforming χ0

GG′(qz → 0) to real
space as

χ0(r,r′) = 1

�cell

∑
GG′

eiGrχ0
GG′(qz → 0)e−iG′r′

, (2)

where �cell is the supercell volume. Within the random-phase
approximation (RPA), χ0(r,r′) equals the screened response
function P (r,r′), which relates the induced charge ρind(r) to
the total potential ϕtot(r) through

ρind(r) = e2
∫

P (r,r′)ϕtot(r′)dr′, (3)

where e is the elemental electron charge. The function χ0(r,r′),
averaged along z, is shown in Fig. 1 for a perturbation at
r′, for r′ is at the ribbon center (a) and at the bottom-left
vacuum region (b), respectively. Two important features of the
density-density response function are its exponential spatial
decay, like the electron density, and its scalar nature. The first

feature enables us to employ a small supercell—as long as
it is sufficiently large to guarantee the independence of the
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FIG. 1. The independent-particle density-density response func-
tion χ 0(r,r′) of a 7-aGNR in response to a long-wavelength perturbing
electric field qz → 0, (a) when the perturbation r′ is at the ribbon
center [i.e., r′ = (0.86 nm, 0.43 nm)], and (b) when the perturbation
r′ is at the bottom-left vacuum [i.e., r′ = (0.43 nm, 0.21 nm)]. The
microscopic distribution of polarization charge can be observed. The
seven carbon atoms in the center of the ribbon and the two terminating
hydrogen atoms on the edges are indicated with the black cross
symbols.

045318-2



MICROSCOPIC DIELECTRIC PERMITTIVITIES OF . . . PHYSICAL REVIEW B 94, 045318 (2016)

calculated band structure on its size—to study the dielectric
response.

B. Microscopic Poisson equation

A microscopic Poisson equation follows from the relation-
ship between the induced charge and the total potential:

ε0∇2ϕtot(r) + e2
∫

P (r,r′)ϕtot(r′)dr′ = −ρext(r), (4)

where ε0 is the vacuum permittivity and ρext(r) is the
external charge. Equation (4) is obtained by combining
Gauss’s law ∇ · Etot(r) = ρtot(r)/ε0 = [ρext(r) + ρind(r)]/ε0,
with the relation between the electric field Etot(r) = −∇ϕtot,
in the Coulomb gauge and using Eq. (3) to express the
induced charge as a function of the total potential. Equation
(4) effectively presents us a microscopic Poisson equation
which can be straightforwardly discretized and solved when
Dirichlet/Neumann/periodic boundary conditions are applied.
Under the assumption of linear response and the RPA, solving
the microscopic Poisson equation with χ0(r,r′) yields the exact
microscopic total potential.

Whereas the total potential is obtained by solving the
microscopic Poisson equation, the contributions of the external
potential and the induced potential are not immediately
evident. Since the aGNR is surrounded by vacuum, the induced
charge density is contained in the aGNR and can be calculated
using Eq. (3). From the knowledge of the induced charge
density, we can calculate the induced potential as

ϕind(r) =
∫

ρind(r′)
4πε0|r − r′|dr′. (5)

Once the induced potential is determined, the external
perturbing potential can be obtained by subtracting the induced
potential from the total potential. The electric fields (external,
induced, and total) are then calculated as the negative gradients
of the respective potential. For a 2D charge distribution after
averaging along z, the 2D Coulomb kernel rather than the 3D
Coulomb kernel should be used and the induced potential is
determined as

ϕind(r) =
∫

ρind(r′) ln (|r − r′|/L)

2πε0
dr′, (6)

where L is an arbitrary scaling length. In practice, to avoid inte-
grating over the singularity of ln (|r − r′|/L), we can calculate
the induced potential by placing the induced charge in a much
larger simulation region. We transform the induced charge to
reciprocal space using the Fourier transform ρind(r) → ρind(q),
and obtain the potential as ϕind(q) = ρind(q)/(4πε0|q|2) →
ϕind(r).

C. Microscopic dielectric tensor

To compute a microscopic dielectric tensor, we apply
Eq. (4) to two nanocapacitors, a “horizontal” one with the
plates parallel to the aGNR surface and a “vertical” one
with the plates perpendicular to the aGNR surface. For the
horizontal nanocapacitor we apply the potential perturbation
by imposing 1 V on the top plate and −1 V on the bottom plate.
Periodic boundary conditions are applied on the left and right
boundaries. There is no free charge inside the capacitor. By
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FIG. 2. The total potential (a) and the induced charge density (b)
for a “horizontal” parallel-plate capacitor when 1 V is applied to the
top plate and −1 V to the bottom plate. In response to the external
field, a dipole is formed which counteracts the external electric field
with a polarization field.

solving Eq. (4) in the two-dimensional case, we obtain the total
potential and the induced charge density whose distributions
are shown in Fig. 2. We can observe the curved potential
distribution around the nanoribbon region from Fig. 2(a). The
microscopic induced-charge distribution forming a dipole can
be seen in Fig. 2(b). Similarly, we determine the potential and
induced charge for the vertical nanocapacitor (not shown).

Having obtained ϕtot(r) and ρind(r), we calculate the respec-
tive microscopic external electric field and total electric field
for the horizontal (Ehor

ext/tot) and the vertical (Ever
ext/tot) capacitor.

The microscopic dielectric tensor of a 1D nanostructure in the
confined (x,y) plane (i.e., the transverse dielectric tensor) is
then evaluated as[

εxx
r (r) ε

xy
r (r)

ε
yx
r (r) ε

yy
r (r)

]

=
[
Ehor

ext,x(r) Ever
ext,x(r)

Ehor
ext,y(r) Ever

ext,y(r)

][
Ehor

tot,x(r) Ever
tot,x(r)

Ehor
tot,y(r) Ever

tot,y(r)

]−1

, (7)

where Ehor/ver
ext/tot,x/y(r) is the x or y component of the external/total

electric field for the horizontal/vertical nanocapacitor and
ε

ij
r (r) (i,j = x,y) is a component of the dielectric tensor which

indicates the dielectric response along the direction i when the
perturbing electric field is applied along the direction j .

III. RESULTS AND DISCUSSION

A. Microscopic dielectric tensor of a 7-aGNR

From the total potential and the induced-charge density
of a 7-aGNR, shown in Fig. 2, we calculate the microscopic
dielectric tensor using Eq. (7) and each component of the tensor
is shown in Fig. 3. The anisotropy of the microscopic dielectric
properties can be observed. Observing the distribution of
both εxx

r (r) and ε
yy
r (r), the ribbon region exhibits a large
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FIG. 3. The microscopic dielectric tensor of a 7-aGNR in vacuum. The top-left figure and bottom-right figure show the diagonal components
and the top-right figure and bottom-left figure show the off-diagonal components.

microscopic dielectric constant, whereas it approaches ε0 in the
vacuum region. Nevertheless, inside the ribbon, εxx

r (r) exhibits
more pronounced microscopic oscillations compared to ε

yy
r (r).

The off-diagonal elements of the microscopic dielectric tensor
ε

xy
r (r) and ε

yx
r (r) obviously exhibit the inversion symmetry of

the aGNR. Macroscopically, the off-diagonal elements of the
macroscopic dielectric tensor vanish. This is the consequence
of the fact that x and y are two of the three principal axes of the
nanosystem. Our results for the microscopic dielectric tensor
show that no long-range Coulomb kernel or mirror-image
effects are present when using the density-density response
function and the vacuum permittivity is recovered even using
a relatively small supercell. Unfortunately, this is not the case
when we wish to calculate the dielectric matrix ε−1

GG′(q). A
direct calculation of the permittivity from ε−1

GG′(q) requires the
use of a large supercell [9,26] and/or a truncated Coulomb
kernel [27] to minimize the long-range Coulomb interaction
between the real dipole and the image dipoles.

B. Ribbon-width dependence of dielectric permittivity

To investigate the size dependence of the out-of-plane
microscopic dielectric constant ε

yy
r (r), we also simulate a

3-aGNR, a 5-aGNR, and a 6-aGNR. Using empirical pseu-
dopotentials, we find for each of these ribbons a band gap of
1.19, 0.43, and 1.03 eV, respectively, in contrast to the band
gap of 1.70 eV for the 7-aGNR. The distribution of ε

yy
r (r)

along the horizontal plane of these ribbons is plotted in Fig. 4
[36]. The permittivities in the center of all ribbons, except
the 3-aGNR, are approximately 6ε0 and the permittivities on
the ribbon edges show similar peaks and valleys oscillating
around 7 ε0. These features show that band gap barely affects
the out-of-plane microscopic dielectric constant. This suggests
that the matrix elements in Eq. (1) corresponding to dipole
transitions from the valence band maximum to the conduction
band minimum do not dominate the polarizability. Rather, it
indicates that the dipole transitions from valence bands to
high-energy conduction bands are equally important [10].

Previous studies have showed that the macroscopic trans-
verse susceptibility tensor of carbon nanotubes depends on
their diameter but not on the band gap [8,9,37,38]. This

independence on the chirality and energy band gap was
attributed to selection rules forcing the matrix element of
Eq. (1) to be zero for the valence bands and conduction bands
near the band gap. It was also shown that the macroscopic (i.e.,
averaged) dielectric constant of nanostructures was reduced as
their size (e.g., the radius of quantum dots or the thickness
of silicon thin films) decreased [1–5,11,39]. However, this
was attributed to a surface effect [1,5,40], rather than to
the commonly assumed quantum-confinement and band-gap
effect [11,41,42].

C. Microscopic dielectric permittivity of graphene

To enable a direct comparison of the microscopic dielectric
constant ε

yy
r (r) of the GNRs with that of graphene, as for

aGNRs, we build a nanocapacitor with graphene as dielectric
and the capacitor plates are parallel to the graphene surface.
We apply the potential perturbation by imposing a voltage on
the plates. By solving the microscopic Poisson equation, we
obtain the induced charge density.
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FIG. 4. Out-of-plane microscopic dielectric constant εyy
r (r) in the

horizontal plane for different ribbon widths. The local permittivity in
the interior of all ribbons except for the 3-aGNR shows values close
to 6ε0. The local permittivities on the ribbon edges show similar
oscillating peaks. The black horizontal straight line ε = 6.9ε0 is the
macroscopic dielectric constant of graphene at the carbon-atom plane,
as shown in Fig. 5.

045318-4



MICROSCOPIC DIELECTRIC PERMITTIVITIES OF . . . PHYSICAL REVIEW B 94, 045318 (2016)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y (nm)

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

ρ
in

d
(e

/n
m

3
)

0

1

2

3

4

5

6

7

(
0
)

FIG. 5. Induced charge density (left y axis, dashed blue line)
when a voltage U = 2 V is applied to the graphene nanocapacitor and
the microscopic dielectric constant of graphene along the direction
perpendicular to the graphene plane (right y axis, solid red line).
In response to the potential perturbation, a dipole is formed across
the graphene plane, as shown by the induced charge density. The
microscopic dielectric permittivity exhibits a peak value of 6.9 ε0 on
the carbon-atom plane and decays to the vacuum permittivity about
0.1 nm away from the carbon-atom plane, indicated by the dashed
vertical line.

The induced charge density averaged on the (x,z) plane is
shown in Fig. 5. The long-range oscillations of the induced
charge are caused by local-field effects [7]. The polarization
profile along y can be calculated by applying Gauss’s law
in 1D [43]. Thus, the microscopic dielectric constant of
graphene along y can be determined straightforwardly and it is
also shown in Fig. 5. The microscopic dielectric permittivity
decays from 6.9 ε0 in the carbon-atom plane to the vacuum
permittivity within approximately 0.1 nm. This shows that the
out-of-plane dielectric permittivity of the aGNRs resembles
that of graphene.

We also evaluate the capacitance per unit area of the
graphene nanocapacitor as D/U , where D is the displacement
field and U is the applied voltage. We find a capacitance of
13.28 F/m2. Equivalently, attributing an effective dielectric
thickness d and a macroscopic dielectric constant εmac to
graphene, the capacitance can also be calculated as U/D =
d/εmac + (d0 − d)/ε0 (d0 is the distance between the capacitor
plates) since graphene and vacuum are connected in series.
Assuming εmac = 6.9ε0, the effective dielectric thickness of
graphene is about 0.22 nm. This corresponds roughly to the
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FIG. 6. Band structure of a monolayer hBN-graphene het-
erostructure using empirical pseudopotentials.
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FIG. 7. The induced charge density (left y axis, dashed blue
line) when a voltage U = 2 V is applied on the hBN-graphene-
hBN heterostructure and the microscopic dielectric constant of the
heterostructure along the direction perpendicular to the graphene
plane (right y axis, solid red line). The dashed vertical line in the
middle represents the carbon-atom plane of graphene and the dashed
vertical lines on the sides represent the atomic plane of the monolayer
hBN.

distance of the center of the respective induced-charge layer
comprising the dipole shown in Fig. 5.

D. Surrounding dielectric effect on graphene

To elucidate the impact of surrounding dielectrics on
the dielectric constant of graphene, we study the case of a
hBN-graphene-hBN heterostructure. Such a heterostructure is
considered for applications in future nanoelectronics [44–47].
Referring to the literature [48], the stacking sequence is
AaA and the equilibrium distance between the monolayer
hBN and graphene is set to 0.324 nm. The in-plane lattice
constant is assumed to be 0.246 nm for both graphene and
hBN. We determine the empirical pseudopotentials of boron
and nitrogen assuming that they have the same form as the
pseudopotential of the carbon atom [32]. Fitting the parameters
so that the calculated band structure of the monolayer hBN-
graphene heterostructure (shown in Fig. 6) resembles the
one calculated with the plane-wave density-functional theory
package, Vienna ab initio simulation package (VASP) [49–52],
we obtain vB(q) = 1.01(0.3q2 − 1.424)/(e0.3q2−0.938 + 1) and
vN(q) = 1.95(0.354q2 − 1.65)/(e0.354q2−0.938 + 1) (in atomic
units), for B and N, respectively.

The atomic-scale dielectric permittivity of the hBN-
graphene-hBN heterostructure is calculated and shown in
Fig. 7. Comparing it to Fig. 5, we see that the dielectric
constant of graphene is barely affected by the hBN layers
and the macroscopic dielectric constant of the monolayer hBN
is around 6.4 ε0. In the interlayer region between graphene
and the hBN layers, the dielectric constant decays quickly
to the vacuum permittivity due to the screening effect of the
polarization charge induced in each layer.

IV. CONCLUSION

We have presented a microscopic Poisson equation which
provides a way to calculate the microscopic dielectric tensor
of 1D nanostructures and the out-of-plane microscopic
dielectric constant of 2D nanostructures. We have studied the
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ribbon-width dependence of the dielectric constant of aGNRs
and found that the width and the related band gap barely affect
the out-of-plane microscopic dielectric constant. We have also
shown the atomic-scale dielectric permittivity of graphene
and calculated the effective dielectric thickness of graphene to
be 0.22 nm for a dielectric constant of 6.9 ε0. We investigated
the effect of a surrounding monolayer hBN dielectric on the
dielectric constant of graphene and concluded that the effect
was minor because of the screening by the induced charge.

As demonstrated, a direct solution of the microscopic
Poisson equation incorporates all quantum effects on the
electrostatics. This provides a physically sound avenue for
atomistic quantum transport simulation in nanotransistors by
solving the Schrödinger equation and the microscopic Poisson
equation self-consistently without the necessity of knowing

the dielectric tensor of the nanosystems. When simulating
aGNR field-effect transistors which may have electrostatic
configurations other than the two capacitors considered here,
the microscopic Poisson equation [Eq. (4)] can be solved
again. Alternatively, the microscopic dielectric tensor shown in
Fig. 3 provides a rigorous replacement for the previously used
uniform dielectric constant assumption in Refs. [18,20] or the
box assumption in Refs. [21–23] when solving the “ordinary”
Poisson equation ∇ · [ε(r)∇ϕtot(r)] = −ρext(r).
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